Page is under construction
Shulim Kaliman
Professor of Mathematics,
Graduate Director
My Address and Phone Numbers:
- University of Miami, Department of Mathematics
- P.O. Box 249085 Coral Gables, FL 33146
- 305-284-2195 FAX: 305-284-2848 att. Dr. Kaliman Office: 543 Ungrad Building
- e-mail: kaliman@math.miami.edu
Information about the courses I'm teaching
can be obtained via
Blackboard.
My mathematical interest: affine algebraic geometry,
transformation groups, complex
analysis
Recent Publications
Kaliman, Shulim; Kutzschebauch, Frank: On the present state of
the Andersen-Lempert theory
Kaliman, Shulim; Kutzschebauch, Frank: Algebraic volume density property of affine algebraic
manifolds}, Inventiones Math. (to appear)
Fabrizio, Donzelli; Dvorsky, Alexandr; Kaliman, Shulim: Algebraic
density property of
homogeneous spaces, Trans. Groups, (to appear)
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail:
Smooth affine surfaces with non-unique $C^*$-actions, Journal of
Algebraic Geometry, (to appear)
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail: Embedding of $
C^*$-surfaces into weighted projective spaces. Manuscripta Math. 131
(2010), no. 1-2, 265--274.
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail: On the
Danilov-Gizatullin isomorphism theorem. Enseign. Math. (2) 55 (2009),
no. 3-4, 275--283.
Daigle, Daniel; Kaliman, Shulim: A note on locally nilpotent derivations
and variables of $k[X,Y,Z]$. Canad. Math. Bull. 52 (2009), no. 4,
535--543.
Kaliman, Shulim: Actions of $C^*$ and $C_+$ on affine algebraic
varieties. Algebraic geometry---Seattle 2005. Part 2, 629--654, Proc.
Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail: Uniqueness of
$C^*$- and $C_+$-actions on Gizatullin surfaces. Transform.
Groups 13 (2008), no. 2, 305--354.
Kaliman, Shulim; Kutzschebauch, Frank: Criteria for the density property
of complex manifolds. Invent. Math. 172 (2008), no. 1, 71--87.
Kaliman, Shulim; Kutzschebauch, Frank: Density property for hypersurfaces
$UV=P( X)$. Math. Z. 258 (2008), no. 1, 115--131.
Kaliman, Sh.; Makar-Limanov, L.: AK-invariant of affine domains. Affine
algebraic geometry, 231--255, Osaka Univ. Press, Osaka, 2007.
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail: Completions of
$C^*$-surfaces. Affine algebraic geometry, 149--201, Osaka Univ.
Press, Osaka, 2007.
Flenner, Hubert; Kaliman, Shulim; Zaidenberg, Mikhail: Birational
transformations of weighted graphs. Affine algebraic geometry, 107--147,
Osaka Univ. Press, Osaka, 2007.
Kaliman, Shulim: On a theorem of Ax. Proc. Amer. Math. Soc. 133 (2005),
no. 4, 975--977 .
Kaliman, Shulim; Saveliev, Nikolai: $C_+$-actions on contractible
threefolds. Michigan Math. J. 52 (2004), no. 3, 619--625.
Kaliman, Shulim: Free $C_+$-actions on $\bold C^3$ are
translations. Invent. Math. 156 (2004), no. 1, 163--173.