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Abstract. A Gizatullin surface is a normal affine surface V over C, which can
be completed by a zigzag; that is, by a linear chain of smooth rational curves. In
this paper we deal with the question of uniqueness of C∗-actions and A1-fibrations
on such a surface V up to automorphisms. The latter fibrations are in one to one
correspondence with C+-actions on V considered up to a “speed change”.

Non-Gizatullin surfaces are known to admit at most one A1-fibration V → S up
to an isomorphism of the base S. Moreover an effective C∗-action on them, if it does
exist, is unique up to conjugation and inversion t 7→ t−1 of C∗. Obviously uniqueness
of C∗-actions fails for affine toric surfaces; however we show in this case that there are
at most two conjugacy classes of A1-fibrations. There is a further interesting family of
non-toric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are
in general several conjugacy classes of C∗-actions and A1-fibrations, see e.g., [FKZ1].

In the present paper we obtain a criterion as to when A1-fibrations of Gizatullin
surfaces are conjugate up to an automorphism of V and the base S. We exhibit as
well a large subclasses of Gizatullin C∗-surfaces for which a C∗-action is essentially
unique and for which there are at most two conjugacy classes of A1-fibrations over
A1.
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Introduction

Let V be a normal affine surface admitting an effective action of the group C∗.
It is a natural question as to when any two such actions on V are conjugate in the
automorphism group Aut(V ). Similarly, given an C+-action on V one may ask whether
its associated A1-fibration V → S is unique up to conjugation; that is, up to an
automorphism of V and an isomorphism of the the base S.

Recall [FKZ2] that a Gizatullin surface is a normal affine surface completable by
a zigzag that is, by a linear chain of smooth rational curves. The uniqueness of C∗-
actions on normal affine surfaces, up to conjugation and inversion, is known to hold
for all non-Gizatullin surfaces (see [Be] for the smooth case, [FlZa3, Theorem 3.3] for
the general one). Similarly in these cases there is at most one A1-fibration V → S
over an affine base up to an isomorphism of S, so any two C+-actions define the same
A1-fibration. However uniqueness fails for every affine toric surface, which admits a
sequence of pairwise non-conjugate C∗-actions.

Another important class of counterexamples is provided by the Danilov-Gizatullin
surfaces. By definition such a surface V is the complement of an ample section, say S,
in a Hirzebruch surface Σn. A surprising theorem established in [DaGi]1 says that the
isomorphism type of V = Vk+1 = Σn \ S depends only on k = S2 − 1 and neither on n
nor on S. Answering our question, Peter Russell observed that the Danilov-Gizatullin
theorem actually provides k pairwise non-conjugate C∗-actions on Vk+1. We reproved in
[FKZ2, 5.3] this result showing moreover that these k C∗-actions exhaust all C∗-actions
on Vk+1 up to conjugation. At least half of them stay non-conjugate up to inversion in
C∗. Moreover by [FKZ2, 5.16] in this case there are at least bk+1

2
c different conjugacy

classes of A1-fibrations.
Let us recall that every Gizatullin surface V 6∼= A1 × C∗ can be completed by a

standard zigzag

(1) cC0

0

cC1

0

cC2

w2

. . . cCn

wn

,

with wi = C2
i ≤ −2 ∀i ≥ 2. Although this completion is not unique the sequence of

weights (w2, . . . , wn) is up to reversion an invariant of V [Gi], cf. also [Du, FKZ2].

1See [CNR, Corollary 4.8] for an alternative approach.
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The linear system |C0| provides a P1-fibration Φ0 : V̄ → P1, which restricts to an
A1-fibration Φ0 : V → A1 (similarly, reversing the zigzag gives a second A1-fibration
Φ∨

0 : V → A1). This P1-fibration lifts to the minimal resolution of singularities Ṽ of V̄ .
Our results are formulated in terms of the so called extended boundary divisor

Dext := C0 + C1 + Φ̃−1
0 (0) ⊆ Ṽ

considered in [Gi, Du, FKZ2], where Φ̃0 is the induced fibration. Its structure is well
known, see Proposition 1.11. We introduce rigid and distinguished extended divisors
that are characterized by their weighted dual graph, see 1.20 and 2.13 for details. The
main result of the paper (see Theorem 5.2) can be stated as follows.

Theorem 0.1. Let V be a Gizatullin surface whose extended divisor Dext is distin-
guished and rigid. Then Φ0 and Φ∨

0 are up to conjugation the only A1-fibrations
V → A1.

In the special case of surfaces xy = p(z) in A3, this result was obtained in terms
of locally nilpotent derivations by Daigle [Dai] and Makar-Limanov [ML2]. A similar
uniqueness result was obtained by Daigle and Russell [DR] for normal affine Gizatullin
surfaces under the assumption that the divisor class group2 is finite.

Our approach has important applications to the classification of C∗-actions on V .
In [FKZ2] we conjectured that among smooth affine C∗-surfaces, the toric surfaces and
the Danilov-Gizatullin surfaces are the only exceptions to uniqueness of a C∗-action.
In Theorem 0.2 below we confirm this conjecture in the particular case of Gizatullin
surfaces with a rigid extended divisor. Recall [FlZa1] that every normal affine surface V
with a hyperbolic C∗-action admits a DPD presentation V = SpecA0[D+, D−], where
D+, D− are two Q-divisors on the smooth affine curve C = Spec A0 with D++D− ≤ 0,
and A0 is the ring of invariants; see Section 3.1 for details. For a Gizatullin C∗-surface
V one has [FlZa2]: A0 = C[t], and each of the fractional parts {D±} = D± − bD±c
is concentrated on at most one point {p±}. To formulate our second main result we
consider the following 3 conditions on the pair (D+, D−).

(α+) supp {D+}∪supp {D−} is empty or consists of one point, say, p satisfying either
D+(p) +D−(p) = 0 or

D+(p) +D−(p) ≤ −max

(
1

m+2 ,
1

m−2

)
,

where ±m± is the minimal positive integer such that m±D±(p) ∈ Z.
(α∗) supp {D+} ∪ supp {D−} is empty or consists of one point p, where D+(p) +

D−(p) ≤ −1 or both fractional parts {D+(p)}, {D−(p)} are nonzero.
(β) supp {D+} = {p+} and supp {D−} = {p−} for two different points p+, p−,

where D+(p+) +D−(p+) ≤ −1 and D+(p−) +D−(p−) ≤ −1.

Theorem 0.2. For a non-toric normal Gizatullin C∗-surface V = Spec C[t][D+, D−]
the following hold.

1. If (α∗) or (β) is fulfilled then the C∗-action on V is unique up to conjugation
in the automorphism group of V and up to inversion λ 7→ λ−1 in C∗. Moreover the

2This is just the Picard group of the smooth part.
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given C∗-action is conjugate to its inverse if and only if for a suitable automorphism
ψ ∈ Aut(A1)

(2) ψ∗(D+)−D− is integral and ψ∗(D+ +D−) = D+ +D− .

2. If (α+) or (β) holds then up to conjugation there are at most two conjugacy classes
of A1-fibrations V → A1. There is only one such conjugacy class if and only if (2) is
fulfilled for some ψ ∈ Aut(A1).

We notice that for smooth non-toric Gizatullin C∗-surfaces this proves uniqueness
of C∗-actions up to conjugation and inversion unless the weights wi in the boundary
zigzag (1) satisfy wi = −2 ∀i 6= s for some s in the range 2 ≤ s ≤ n. In a forthcoming
paper we will show that in the latter case, except for the Danilov-Gizatullin surfaces,
there always exists a deformation family of pairwise non-conjugate C∗-actions on V .
Consequently, for smooth Gizatullin C∗-surfaces the sufficient conditions in Theorem
0.2 are also necessary for the uniqueness of a C∗-action.

Let us survey the content of the various sections. First we review some standard facts
on Gizatullin surfaces in Section 1.1 and describe their extended divisors, see Section
1.2. After some preparations in 1.3 we treat in Section 1.4 families of completions of
a given Gizatullin surface by zigzags. The main result here is the triviality criterion
1.21, which provides one of the basic tools in the proof of Theorem 0.1. In Section
2 we study possible degenerations of extended divisors in such families. Important is
Theorem 2.17, where we give a criterion for when the extended divisor is rigid, i.e.
stays constant in a family.

In Section 3 we translate these conditions into the language of DPD presentations.
First we recall the description of standard equivariant completions of Gizatullin C∗-
surfaces in terms of a DPD presentation according to [FKZ2]. In Theorem 3.24 we give
the required criterion for the extended divisor Dext to be distinguished and rigid.

One of our main technical tools is the so called reconstruction space. Roughly speak-
ing, this space forms a moduli space for the completions of a given normal surface. In
Section 4 we show that this moduli space exists and is isomorphic to an affine space,
see Corollary 4.10. This provides a basic ingredient in the proofs of Theorems 0.1 and
0.2 in the final Section 5.

1. Gizatullin surfaces

1.1. Standard completions of Gizatullin surfaces. Let us recall the notion of a
standard zigzag [FKZ1].

1.1. Let X be a complete normal algebraic surface. By a zigzag on X we mean an
SNC divisor3 D with rational components contained in the smooth part Xreg, which
has a linear dual graph

(3) ΓD : cC0

w0

cC1

w1

. . . cCn

wn

,

where w0, . . . , wn are the weights of ΓD. We abbreviate this chain by [[w0, . . . , wn]].
We also write [[. . . , (w)k, . . .]] if a weight w occurs at k consecutive places. Note that

3I.e. a simple normal crossing divisor.
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the intersection matrix of a zigzag has at most one positive eigenvalue by the Hodge
index theorem. We recall the following notion.

Definition 1.2. ([FKZ1, Definition 2.13 and Lemma 2.17]) A zigzag D is called stan-
dard if its dual graph ΓD is one of

(4) [[0]] , [[0, 0]] , [[0, 0, 0]] or [[0, 0, w2, . . . , wn]], where n ≥ 2, wj ≤ −2 ∀j.

A linear chain Γ is said to be semistandard if it is either standard or one of

(5) [[0, w1, w2, . . . , wn]], [[0,m, 0]] where m ∈ Z, n ≥ 1, wj ≤ −2 ∀j.

We note that a standard zigzag [[0, 0, w2, . . . , wn]] is unique in its birational class up
to reversion

(6) [[0, 0, w2, . . . , wn]] [[0, 0, wn, . . . , w2]] ,

see Corollary 3.33 in [FKZ1]. A zigzag is called symmetric if it coincides with its
reversed zigzag.

By definition a Gizatullin surface is a normal affine surface V which admits a com-
pletion (V̄ , D) with a zigzag D. Such a completion is called (semi)standard if D has
this property. We need the following facts.

Lemma 1.3. For a Gizatullin surface V the following hold.

(a) ([DaGi, Du, FKZ1, Corollary 3.36]) V admits a standard completion (V̄ , D).
(b) ([FKZ2, Theorem 2.9(b)]) If a torus T = (C∗)m acts on V then V admits an equi-

variant standard completion, which is unique up to reversing the boundary zigzag.
(c) ([FKZ2, Theorem 2.9(a) and Remark 2.10(1)]) If C+ acts on V then V admits an

equivariant semistandard completion.

1.4. The reversion of a zigzag, regarded as a birational transformation of the weighted
dual graph, admits the following factorization [FKZ1]. Given [[0, 0, w2, . . . , wn]] we can
successively move the pair of zeros to the right

[[0, 0, w2, . . . , wn]] [[w2, 0, 0, w3, . . . , wn]] . . . [[w2, . . . , wn, 0, 0]]

by a sequence of inner elementary transformations4, see Example 2.11(2) in [FKZ1].
The corresponding birational transformation [[0, 0, w2, . . . , wn]] [[w2, . . . , wn, 0, 0]] is
non-trivial unless our standard graph is one of [[0]], [[0, 0]] or [[0, 0, 0]].

If (V̄ , D) is a standard completion of a Gizatullin surface V , then reversing the zigzag
D by a sequence of inner elementary transformations as explained above we obtain from
(V̄ , D) a new completion (V̄ ∨, D∨), which we call the reverse standard completion. It
is uniquely determined by (V̄ , D). Note that even in the case where the zigzag D is
symmetric with dual graph 6= [[0]], [[0, 0]], [[0, 0, 0]], this reverse completion (V̄ ∨, D∨)
is not isomorphic to (V̄ , D) under an isomorphism fixing pointwise the affine part V .

4By an inner elementary transformation of a weighted graph we mean blowing up at an edge incident
to a 0-vertex of degree 2 and blowing down the image of this vertex. We recall that the degree of a
vertex in a simple graph is the number of its incident edges.
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1.2. Extended divisors of Gizatullin surfaces.

1.5. Let V be a Gizatullin surface and (V̄ , D) be a completion of V by a standard
zigzag [[0, 0, w2, . . . , wn]] with n ≥ 2 and wi ≤ −2 ∀i. We write

D = C0 + . . .+ Cn ,

where the irreducible components Ci are enumerated as in (3). We consider the minimal
resolutions of singularities V ′, (Ṽ , D) of V and (V̄ , D), respectively.

Since C2
0 = C2

1 = 0, the linear systems |C0| and |C1| define a morphism Φ = Φ0×Φ1 :
Ṽ → P1 × P1 with Φi = Φ|Ci|, i = 0, 1. We call it the standard morphism associated
to the standard completion (V̄ , D) of V . Similarly Φ0 is referred to as the standard
P1-fibration of (Ṽ , D).

We note that C1 is a section of Φ0 and so the restriction Φ0|V ′ : V ′ → P1 is an
A1-fibration. We can choose the coordinates on P1 = A1 ∪ {∞} in such a way that

C0 = Φ−1
0 (∞) , Φ(C1) = P1 × {∞} and C2 ∪ . . . ∪ Cn ⊆ Φ−1

0 (0) .

The standard morphism Φ contracts the curves Ci for i ≥ 3 and does not contract
C0, C1, C2. By abuse of notation we denote the images of C0, C1, C2 in P1 × P1 by the
same letters. The divisor Dext = C0 ∪ C1 ∪Φ−1

0 (0) on Ṽ is called the extended divisor.

Remark 1.6. 1. The dual graph of Dext is linear if and only if V is toric [FKZ2,
Lemma 2.20].

2. If V carries a C∗-action then we can find an equivariant standard completion
(V̄ , D), see Lemma 1.3(b). Since the minimal resolution of singularities is also equi-
variant, so are (Ṽ , D) and Φ with respect to a suitable C∗-action on P1 × P1, and the
divisor Dext is invariant under the C∗-action on Ṽ . For C∗-surfaces this divisor was
studied systematically in [FKZ2].

3. The morphism Φ = Φ0 × Φ1 contracts C3 ∪ . . . ∪ Cn. According to Lemma 2.19
in [FKZ2] it also contracts all exceptional curves of the resolution V ′ → V , whence
descends to a morphism Φ̄ = Φ̄0 × Φ̄1 : V̄ → P1 × P1. We also call Φ the standard
morphism of (V̄ , D) and Φ̄0 the standard P1-fibration.

We recall the following fact, see [FKZ2, Lemma 2.19].

Lemma 1.7. With the notation as in 1.5, Φ is birational and induces an isomorphism
Ṽ \Φ−1

0 (0) ∼= (P1\{0})×P1. In particular, D(e) := Φ−1
0 (0) is the only possible degenerate

fiber of the P1-fibration Φ0 : Ṽ → P1.

To exhibit the structure of this extended divisor let us recall some notation from
[FKZ2].

1.8. For a primitive dth root of unity ζ and 0 ≤ e < d with gcd(e, d) = 1 5 the cyclic
group Zd = 〈ζ〉 acts on A2 via ζ.(x, y) = (ζx, ζey). The quotient Vd,e = A2//Zd is a
normal affine toric surface. Moreover, any such surface different from6 A1

∗ × A1
∗ and

A1
∗ × A1 arises in this way. Singularities analytically isomorphic to the singular point

of Vd,e are called cyclic quotient singularities of type (d, e).

5In the case d = 1 this forces (d, e) = (1, 0).
6Hereafter A1

∗ = A1 \ {0}.
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1.9. We abbreviate by a box with rational weight e/m, where 0 < e < m and
gcd(m, e) = 1, the weighted linear graph

(7) cC1

−k1

. . . cCn

−kn

=
e/m

with k1, . . . , kn ≥ 2, where

m/e = [k1, . . . , kn] = k1 −
1

k2 − 1

...− 1
kn

.

A chain of rational curves (Ci) on a smooth surface with dual graph (7) contracts to a
cyclic quotient singularity of type (m, e) [Hi]. It is convenient to introduce the weighted

box
0

for the empty chain. Given extra curves E, F we also abbreviate

(8) cE cC1
. . . cCn

= cE e/m
=

(e/m)∗ cE
and

(9) cC1
. . . cCn cF =

e/m cF = cF (e/m)∗

.

The orientation of the chain of curves (Ci)i in (7) plays an important role. Indeed
[kn, . . . , k1] = m/e′, where 0 < e′ < m, ee′ ≡ 1 (mod m), and the box marked with
(e/m)∗ := e′/m corresponds to the reversed chain in (7), see e.g., [Ru]. The chain
[[(−2)m]] will be abbreviated by Am.

Definition 1.10. A feather F is a linear chain of smooth rational curves with dual
graph

(10) F : cB e/m
,

where B has self-intersection ≤ −1 and e,m are as before, cf. (8). Note that the box
does not contain a (−1)-curve; it can also be empty. The curve B will be called the
bridge curve.

A collection of feathers {Fρ} consists of feathers Fρ, ρ = 1, . . . , r, which are pairwise
disjoint. Such a collection will be denoted by a plus box . We say that a collection
{Fρ} is attached to a curve Ci in a chain (3) if the bridge curves Bρ meet Ci in pairwise
distinct points and all the feathers Fρ are disjoint with the curves Cj for j 6= i. In a
diagram we write in brief

cCi {Fρ}
or, in the case of a single feather, cCi F

.

We often draw this diagram vertically, with the same meaning.
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An Ak-feather cB Ak
represents the contractible7 linear chain [[−1, (−2)k]]. Thus

the A0-feather represents a single (−1)-curve B, while the box is empty.
Let us further exhibit the structure of the extended divisor of a Gizatullin surface

according to [Du].

Proposition 1.11. Let (Ṽ , D) be a minimal SNC completion of the minimal resolution
of singularities of a Gizatullin surface V , where D = C0 + . . . + Cn is a zigzag as in
(3). Then the extended divisor Dext has dual graph

(11) Dext : c0
C0

c0
C1

c
C2

{F2j}

. . . c
Ci

{Fij}

. . . c
Cn

{Fnj}

,

where Fij (1 ≤ j ≤ ri) is a collection of feathers attached to the curve Ci, i ≥ 2.

Moreover the surface Ṽ is obtained from P1×P1 by a sequence of blowups with centers
in the images of the components Ci, i ≥ 2.

Proof. A proof can be found (using different notation) in [Du]. For the convenience
of the reader we provide a short argument. First we note that D(e) = Φ−1

0 (0) ⊆ Ṽ is
a tree of rational curves, since it is the blowup of a fiber C2 = {0} × P1 ⊆ P1 × P1.
Let Fij, j = 1, . . . , ri, be the connected components of Dext 	 Ci

8 that do not contain
components of D. Every such connected component contains a unique curve Bij, which
meets Ci. The divisor Rij = Fij 	 Bij is then disjoint from D. Since V is affine, Rij

contracts to a point in V . Hence it is the exceptional divisor of a minimal resolution
of a singular point of V , and so its dual graph contains no (−1)-vertex of degree ≤ 2.
On the other hand, the divisor D(e) contracts to C2. We claim that the dual graph
of Fij contains no branch point, and its ‘bridge vertex’ Bij is the only possible (−1)-
vertex in Fij. Let us check this claim by induction on the number of blowdowns in
the contraction of D(e) to C2, or rather of blowups when growing D(e) starting from
C2. Projecting to a surface which appears on some intermediate step of this blowup
process, let us assume that

• the image, say D′, of the chain D = C0 + . . .+ Cn is again a linear chain,
• the image F′ij of Fij is either empty or a connected component of D′

ext 	D′, where
D′

ext is the image of Dext. Moreover
• if F′ij 6= ∅ then it contains just one neighbor say B′

ij of D′ in D′
ext,

• R′ij := F′ij 	 B′
ij is either empty or a minimal resolution of a singular point with a

linear dual graph,
• B′

ij is a vertex of degree ≤ 2 in the dual graph of D′
ext, and the only possible (−1)-

curve in F′ij.

The next blowup must be done at a point of D′, which is either a smooth point
of D′

ext, or a double point of D′
ext. Indeed otherwise it would be done at a point of

7A graph is contractible if it can be reduced to the graph with a single vertex [[−1]] by a succession
of contractions of (−1)-vertices of degree ≤ 2.

8For a reduced divisor D on a surface X and an irreducible component C of D, Dext 	 C stands
for the divisor D − C viewed as a curve on X.
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F′ij 	 D′, and then clearly Rij cannot be minimal i.e., it would contain a (−1)-curve,
which is impossible. Thus all the properties mentioned above are preserved under this
blowup.

This implies that the feather Fij is a linear chain of the form

Fij : cBij Rij

,

which yields the desired form of Dext, and also the last assertion. �

Remark 1.12. The collection of linear chains Rij corresponds to the minimal resolu-
tion of singularities of V . So V has at most cyclic quotient singularities, cf. [Miy, Ch.
3, Lemma 1.4.4(1)]. Moreover V is smooth if and only if the collection Rij is empty, if
and only if every feather Fij reduces to a single bridge curve Bij.

1.3. Simultaneous contractions. The following lemma is a standard fact in surface
theory.

Lemma 1.13. For a smooth rational surface X and a smooth rational curve C on X
with C2 = 0, we have

H0(X,OX(C)) ∼= C2 , H i(X,OX(C)) = 0 for i ≥ 1 .

Moreover the linear system |C| is base point free and defines a P1-fibration Φ|C| : X →
P1.

A relative version of this result is as follows.

Lemma 1.14. Let f : X → S be a smooth family of rational surfaces over a quasi-
projective scheme S with Pic(S) = 0, and let C be an S-flat divisor in X such that the
fibers Cs := f−1(s)∩C are smooth rational curves of self-intersection 0 in Xs := f−1(s).
Suppose that R ⊂ X is a section of f disjoint from C. Then there exists a morphism
ϕ : X → P1 such that ϕ∗(∞) = C and ϕ(R) = 0.

Proof. In lack of a reference we provide a short proof. Since for every s ∈ S the
curve Cs has self-intersection 0 in Xs, the cohomology groups H i(Xs,OXs(Cs)) vanish
for i ≥ 1. Thus for every coherent sheaf N on S the higher direct image sheaves
Rif∗(OX(C) ⊗OS

N ) vanish for i ≥ 1, see e.g. [Ha, 12.10]. Thus E = f∗(OX (C))
is a locally free sheaf of rank 2 on S, and forming R0f∗(OX (C)) is compatible with
restriction to the fiber, i.e. the canonical map

E/msE −→ H0(Xs,OXs(Cs))

is bijective, where ms denotes the ideal sheaf of the point s ∈ S (see [Ha, 12.10 and
3.11]). The inclusion OX ⊆ OX (C) induces a trivial subbundle OS of E (indeed this is
true in each fiber). Since the section R is disjoint from C, the projection OX → OR

extends to a map OX (C) → OR. Taking f∗ gives a morphism E → f∗(OR) ∼= OS which
restricts to the identity on OS ⊆ E . Thus E ∼= OS ⊕ L for some line bundle L on S.
The latter bundle is trivial due to our assumption that Pic(S) = 0. If now σ0 and σ1

are sections of E which correspond to the standard basis of E ∼= OS ⊕ OS then the
morphism [σ0 : σ1] : X → P1 has the desired properties. �

The following relative version of Castelnouvo’s contractibility criterion is well known9.

9Cf. e.g., [KaZa, Theorem 1.3].
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Lemma 1.15. Let f : X → S be a proper smooth family of surfaces and let C be an
S-flat divisor in X such that the fibers Cs := f−1(s)∩C are smooth rational curves with
self-intersection −1 in Xs := f−1(s). Then there exists a contraction π : X → X ′ of C,
and X ′ is again flat over S.

Proof. It is sufficient to treat the case where the base S is affine. In this case there
exists an f -ample divisor D on X which defines an embedding X ↪→ S × PN for some
N . Then the sheaf OX (D+ kC), where k := D.C, is f -semiample on X and provides a
desired contraction, since this is true in every fiber. �

Lemma 1.16. Let S be a scheme with H1(S,OS) = 0 and Pic(S) = 0. If f : X → S
is a flat morphism with a section σ : S → X such that every fiber is isomorphic to P1,
then X is S-isomorphic to the product P1 × S such that σ(S) corresponds to {p} × S
for some point p ∈ P1.

Proof. We note first that R0f∗(OX ) ∼= OS and R1f∗(OX ) = 0 since the fibers are
isomorphic to P1. Using the spectral sequence Hp(S,Rqf∗(OX )) ⇒ Hp+q(X ,OX ) and
our assumption H1(S,OS) = 0 this implies that H1(X ,OX ) = 0. Letting Σ = σ(S)
we consider the f -ample sheaf OX (Σ). Its direct image sheaf E = f∗(OX (Σ)) is locally
free of rank 2 and X ∼= P(E). The sheaf L = OX (Σ) ⊗ OΣ is a line bundle on Σ ∼= S
and so is trivial, since Pic(S) = 0 by our assumption. Taking the direct image f∗ of
the exact sequence

0 → OX → OX (Σ) → L ∼= OS → 0

yields an exact sequence

0 → OS → E → OS → R1f∗(OX ) = 0 .

Thus E is an extension of OS by OS and so can be considered as an element of
Ext1

S(OS,OS) ∼= H1(S,OS). Since by our assumption the latter group vanishes, this
extension splits, i.e., E ∼= O2

S. Hence X ∼= P(E) = P1 × S, where by our construction
Σ corresponds to {p} × S for some point p ∈ P1. �

The following corollary of Lemma 1.16 is well known; the proof is immediate.

Corollary 1.17. Assume that S as in 1.16 above does not admit non-constant in-
vertible regular functions. Let C → S be a flat family of smooth rational curves
with a non-empty S-flat subfamily Z ⊆ C of reduced effective divisors10. Then the
family (C,Z) → S is trivial i.e., there is an S-isomorphism h : C → P1 × S with
h(Z) = {P1, . . . , Pr} × S, where P1, . . . , Pr are points of P1.

1.4. Families of completions of a Gizatullin surface. In this section we study
families of completions of a given Gizatullin surface V . We introduce the notion of
a distinguished extended divisor. In Proposition 1.21 we show that any deformation
family of completions of a Gizatullin surface over a sufficiently large base is necessarily
trivial provided that the extended divisor is distinguished and its dual graph stays
constant along the deformation.

1.18. We start with the trivial family f : V = V ×S → S, where S is a quasiprojective
scheme with Pic(S) = 0. We let (V̄ ,D) → S be a family of completions of V by a
family of standard SNC-divisors D =

⋃n
i=0 Ci over S with a fixed dual graph. In other

10I.e., a disjoint union of images of several sections S → C.
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words, V̄ → S is a flat family of complete normal surfaces, D → S is a flat subfamily of
divisors and for every i, f : Ci → S is a flat family of smooth rational curves which form
in every fiber a fixed standard zigzag (3). In particular for i = 0, . . . , n − 1, Ci ∩ Ci+1

are disjoint sections of f .
Since on the affine part our family is trivial, there is a simultaneous minimal res-

olution of singularities h : Ṽ → V̄ . This means that Ṽ → S is a smooth family
of complex surfaces, which is fiberwise the minimal resolution of singularities of V̄ .
Clearly h−1(V) ∼= V ′ × S, where V ′ → V is the minimal resolution.

According to 1.14 the components Ci, i = 0, 1, define morphisms Φi = Φ|Ci| : Ṽ → P1

with

Φ−1
0 (∞) = C0, Φ−1

1 (∞) = C1 and C2 ∪ . . . ∪ Cn ⊆ Φ−1
0 (0) .

As in the absolute case, we consider the family of divisors D(e) := Φ−1
0 (0) and the

extended divisor Dext := C0 ∪ C1 ∪ D(e).

It is convenient to introduce the following subgraphs of the extended divisor Dext as
in (11).

1.19. For every 1 ≤ i ≤ n we let D>i
ext denote the union of all connected components of

Dext 	Ci which do not contain C0. Similarly we let D≥i
ext be the connected component

of Dext 	 Ci−1 that contains Ci.
Obviously, D>i

ext is non-empty for every 1 ≤ i ≤ n − 1, while D>n
ext may be empty

depending on whether the feather collection {Fnj} in (11) is empty or not.

Definition 1.20. The extended divisor Dext will be called distinguished if there is no
index i with 3 ≤ i ≤ n such that D>i

ext is non-empty and contractible.

Proposition 1.21. Let V be a Gizatullin surface and let (V̄ ,D) be a family of standard
completions of V over S = Am as in 1.18 with a minimal resolution of singularities
(Ṽ ,D) and extended divisor Dext. Suppose that at every point s ∈ S the divisor Dext,s

is distinguished and its dual graph does not depend on s ∈ S. Then the family (V̄ ,D)
is trivial i.e., there is an isomorphism11 (V̄ ,D) ∼= (V̄ , D) × Am compatible with the
projection to Am, where V̄ = V̄s and D = Ds are the fibers over a point s ∈ Am.

Proof. In the case where D is one of the zigzags [[0, 0]] or [[0, 0, 0]] the map Φ := Φ0×Φ1

(see 1.18) is an isomorphism and the claim is trivial. Otherwise, since the dual graph
Dext,s at each point s ∈ S is the same, we can find a smooth family of (−1)-curves E in
D(e). By Lemma 1.15 we can contract E simultaneously, which results again in a flat
family of surfaces together with an induced map to P1 × P1 × Am. Continuing in this
way we get a sequence of blowdowns

(12) π : Ṽ = Xk → Xk−1 → . . .→ X0 = P1 × P1 × Am,

where at every step a family of (−1)-curves is blown down. Reading this sequence in
the opposite direction, Ṽ is obtained from P1×P1×Am by a sequence of blowups along
sections say Σi ⊆ Xi. Let us show by induction on i that the family Xi is trivial, i.e.
S-isomorphic to Xi × Am for a suitable blowup Xi of P1 × P1. This yields the desired
conclusion, since the triviality of the family (Ṽ ,D) implies that of (V̄ ,D).

11Note that this isomorphism is not the identity on V , in general!
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In the case i = 0 this is evident. If i = 1 then we can adjust the coordinates in
P1×P1×Am so that the section Σ1 is contained in (0, 0)×Am, see Lemma 1.14. Thus
the first blowup in (12) takes place at (0, 0)× Am and so X1 is a trivial family.

Assume by induction that we have an S-isomorphism Xi
∼= Xi×Am for some blowup

Xi of P1 × P1, where i ≥ 1. We let E0 = C2 × Am ⊆ X0 and let Ej ⊆ Xj indicate the
exceptional divisor of the jth blowup. If E i

j denotes its proper transform in Xi for i ≥ j,

then by our assumption the family E i
j → S is trivial and S-isomorphic to Ei

j × Am.

If the next blowup is inner with center Σi = E i
j ∩ E i

j′
∼=S (Ei

j ∩ Ei
j′)× Am, then also

Xi+1 is a trivial family. So assume further that the next blowup is outer with center Σi

contained in E i
j
∼= Ei

j × Am. The section Σi is the graph of a map σi : Am → Ei
j with

image contained in Ei
j\(D′

ext 	 Ei
j), where as before D′

ext denotes the image of Dext in

Xi. If Ei
j meets two other components of D′

ext then σi maps Am to P1 with at least 2
points deleted and so must be constant. Hence Xi+1 is again a trivial family.

Finally consider the case where the divisor Ei
j meets just one other component of

D′
ext. According to Proposition 1.11 all blowups in (12) are done at the images of the

zigzag D. Thus Ei
j is the image in Xi, say, C ′

l , of some component Cl of D. If Ei
j is

an exceptional divisor then l ≥ 3. By our assumption Ei
j = C ′

l is an end component
of D′

ext, and so the image D′ of D in Xi is a linear chain with end components C ′
0 and

C ′
l . Therefore C ′

l meets a component C ′
j with j < l. Consequently the divisor D>l

ext is
contracted in Xi, hence it is contractible. Since by our assumption Dext is distinguished
and l ≥ 3, this contradicts Definition 1.20.

In the remaining case l = 2, C2 = Ei
0 is an end component of D′

ext, so k = 2, and no
blowup was done so far with center at C2 × Am, so i = 1. This returns us to the case
considered above. �

In the next Sections 2 and 3 we will show that the condition of constancy of the
dual graph of Dext,s in Proposition 1.21 is satisfied under the assumptions of Theorem
0.2. However, in general this condition does not hold as feathers can jump in families
of Gizatullin surfaces. We illustrate this below by the example of Danilov-Gizatullin
surfaces. In Section 2 we will provide a more thorough treatment of this phenomenon.

Example 1.22. Recall that a Danilov-Gizatullin surface V = Vk+1 is the complement
of a section say σ in a Hirzebruch surface with self-intersection σ2 = k+1. By a theorem
of Danilov-Gizatullin [DaGi] the isomorphism class of Vk+1 depends only on k and not
on the choice of σ or of the concrete Hirzebruch surface. This surface Vk+1 can be
completed by the zigzag [[0, 0, (−2)k]] with components say C0, . . . , Ck+1. According to
Proposition 5.14 in [FKZ2], Vk+1 admits exactly k pairwise non-conjugate C∗-actions.
In terms of the DPD presentation (see [FlZa1] or Section 3 below), for a fixed k these
C∗-surfaces are given by the pairs of Q-divisors on C = A1

(D+, D−) =

(
−1

r
[0], − 1

k + 1− r
[1]

)
, r = 1, . . . , k .

So any other C∗-action on Vk+1 is conjugate to one of these.
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Given r ∈ {1, . . . , k} such a C∗-surface V (r) admits an equivariant standard com-
pletion (V̄ (r), D) with extended graph

(13) Dext(r) : cC0

0

cC1

0

cC2

−2

. . . cCr+1

−2

cF1 −r

cCr+2

−2

. . . cCk+1

−2

cF0 −1

where the curve Cr+1 is attractive for the extended C∗-action on V̄ (r) (cf. Section 3).
Here the bottom line corresponds to the boundary zigzag D, the feather F1 consists
of a single (−r)-curve F1 attached to the component Cr+1 and F0 represents a single
(−1)-curve F0 attached to Ck+1. For r = k both feathers F0,F1 are attached to the
component Ck+1. The standard morphism Φ : V̄ → P1×P1 is equivariant with respect
to a suitable C∗-action on P1 × P1 fixing (0, 0).

We note that the extended divisor Dext = Dext(r) is not distinguished (see 1.20);
indeed, D>k+1

ext = F0 is contractible.
Let us construct a family of standard completions of Vk+1 in which Dext,s jumps from

one of these extended graphs to another one, so that r jumps. We restrict for simplicity
to the case where r = k. Blowing down the contractible divisor F0 + Ck+1 in V̄ (k) we
get a new surface X in which Dext is contracted to a chain [[0, 0, (−2)k−2,−1,−k + 1]]
consisting of the images C̄0, . . . , C̄k, F̄1 of C0, . . . , Ck, F1, respectively. The affine curve
S := C̄k\C̄k−1 is isomorphic to A1. We let X ′ be the blowup of the trivial family X×S
along the graph of the embedding S ↪→ X with exceptional curve C̄k+1 over S. Finally
we let V̄ be the blowup of X ′ along a section S ↪→ C̄k+1 which does not meet the proper
transforms of C̄k × S and F̄1 × S, and we denote its exceptional set by F0.

The proper transforms

C0, . . . , Ck+1,F1 of C̄0 × S, . . . , C̄k × S, C̄k+1, F̄1 × S

form together with F0 a family of extended divisors Dext in V̄ , while D = C0∪ . . .∪Ck+1

is a family of zigzags, being all of the same type.
Obviously, the fiber of (V̄ ,D) over the point s0 corresponding to C̄k∩ F̄0 is V̄ (k) with

extended divisor Dext(k), while the fibers over the other points s ∈ S\{s0} are V̄ (k−1)
with extended divisor Dext(k− 1). Note that all fibers of the family V = V̄\D → S are
isomorphic to Vk+1 by the theorem of Danilov-Gizatullin mentioned above.

2. Degenerations of singular fibers in families of P1-fibrations

As we have seen in Example 1.22, given a family of standard completions of a Gizat-
ullin surface V with the same zigzag as in 1.18, the extended divisors Dext,s do not
necessarily have the same dual graph at each point s ∈ S. In this section we will give
a criterion as to when this dual graph stays constant.

2.1. Degenerate fibers of a P1-fibration. Let us fix the setup.

2.1. Given a surface V , we consider a sequence of blowups

(14) σ : W = Wm → Wm−1 → . . .W1 → W0 = V

with centers in smooth points on V and in its infinitesimally near points. For i ≥ 1
we let Ei ⊆ Wi denote the exceptional (−1)-curve of Wi → Wi−1. We consider their

proper and total transforms Ci := Êi and C̃i := E∗
i in W , respectively. Clearly the

curves Ci (or, equivalently, the effective cycles C̃i) generate freely the group Cycl1(E)
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of 1-cycles supported on the exceptional set E =
∑

iCi. The intersection form gives a
symmetric bilinear pairing on Cycl1(E).

In the next lemma we describe all cycles in Cycl1(E) with self-intersection −1.

Lemma 2.2. (a) C̃i.C̃j = −δij for 1 ≤ i, j ≤ m. Moreover F̂ .C̃i = 0 for every curve
F of V .

(b) If C is a cycle supported in E with self-intersection −1 then C = ±C̃i for some
i ≥ 1. In particular the only effective cycles with self-intersection −1 are the C̃i.

(c) C̃i.Ci = −1 and C̃i.Cj ≥ 0 for i 6= j.

(d) C̃i and C̃i − Ci are orthogonal i.e., C̃i.(C̃i − Ci) = 0.

Proof. To prove (a) we consider the contraction πi : W → Wi, and we assume that
j ≥ i. If j > i then πi(C̃j) is a point and so by the projection formula C̃i.C̃j =

πi∗(Cj).Ei = 0. If i = j then with the same argument C̃i.C̃i = Ei.Ei = −1. The proof
of the second part is similar.

For the proof of (b) we write C = α1C̃1 + . . . + αmC̃m. The self-intersection index
C2 = −α2

1− . . .−α2
m is equal to −1 if and only if αi = ±1 for exactly one i and αj = 0

otherwise.
(c) and (d) follow immediately using the projection formula C̃i.Cj = π∗i (Ei).Cj =

Ei.πi∗(Cj). �

To study degenerations of extended divisors as introduced in 1.5, it is convenient to
restrict to the piece D(e) = Φ−1

0 (0) instead of the full extended divisor Dext.

2.3. Letting π : V = U × P1 → U , where U is a neighbourhood of 0 ∈ A1
C, we

consider a sequence of blowups as in (14) with centers on the fiber F = {0}×P1 and in

infinitesimally near points. We assume that the full fiber D(e) = σ−1(F ) = F̂ +
∑

iCi

has dual graph

(15) D(e) : c
F̂ = D0

{F0j}

. . . c
Di

{Fij}

. . . c
Dn

{Fnj}

,

where at each curve Di, 0 ≤ i ≤ n, a collection of feathers Fij is attached with
1 ≤ j ≤ ri. Thus each feather Fij has dual graph

(16) cBij Rij

= cBij cRij1

. . . cRijsij

,

where the box Rij denotes a linear chain of curves Rijk (possibly empty) connected to
the bridge curve Bij. We remind that Rij does not contain a (−1)-curve, see Definition
1.10. However, unlike in Section 1 we allow that some of the curves Di were (−1)-
curves. This will be convenient in a later induction argument.

If Di is one of the curves Ck as considered in 2.1 above then we let D̃i = C̃k. We
introduce similarly the effective cycles B̃ij and R̃ijk. Given an irreducible component H
of one of the feathers Fij, we call a component Dµ of the zigzag D a mother component

of H if H̃.Dµ = 1.

Lemma 2.4. (a) Every component H of Fij has a unique mother component Dµ.
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(b) H̃.C = 0 for every component C in D(e) different from Dµ, H and the neighbor of
H in (16) to the right.

Proof. Let H be the curve Ck considered in 2.1 so that H̃ = π∗k(Ek), where Ek is the
exceptional (−1)-curve created in the blowup Wk → Wk−1 and πk : W → Wk is the

contraction as in the proof of 2.2. SinceH = Êk does not separate the zigzag, the center
of σk : Wk → Wk−1 cannot be a double point of the zigzag πk(D). Thus Ek meets a
unique component of πk(D). In view of the projection formula H̃.Di = Ek.πk(Di) this
proves (a).

To deduce (b), assume that C ⊆ D(e) is a component different from Dµ, H and

satisfying H̃.C 6= 0. Again by the projection formula H̃.C = Ek.πk(C) 6= 0. Since
Ek is an at most linear vertex of the dual graph of πk(D(e)), this is only possible if
Ek.πk(C) = 1. As observed before, H does not separate the zigzag D, and so C being
different from Dµ must belong to the feather Fij. Since R̃ij contains no (−1)-curves,
the projection formula forces C to be the neighbor on the right in (16) as claimed in
(b). �

Example 2.5. To illustrate these notions let us consider the graph

D(e) : cF̂ = D0

w0

. . . cDj

wj

cDj+1

−2

. . . cDl−1

−2

cDl

−2

cB j − l − 1

cDl+1

wl+1

. . . ,

where D≥l+1
(e) is contractible to a smooth point on Dl. It is easily verified that the

mother component of B is Dj.

In the next proposition we collect some important properties of mother components.
For a graph D(e) as in (15), similarly as before, D>i

(e) denotes the union of all con-

nected components of D(e)	Di not containing D0, while D≥i
(e) stands for the connected

component of D(e) 	Di−1 containing Di.

Proposition 2.6. (a) Let Dµ, µ = µ(i, j), be the mother component of Bij. Then
µ ≤ i and B2

ij ≥ µ − i − 1. Furthermore, B2
ij ≤ −1 and B2

ij = −1 if and only if
µ = i.

(b) If µ < i then the divisors

(17) D≥µ+1
(e) 	 Fij, D>i

(e) 	 Fij and Fi′j′ with µ < i′ < i

are all contractible inside D(e).
(c) Assume that Bi′j′ (where (i′, j′) 6= (i, j)) is a further bridge curve with mother

component Dµ′. If µ < i and µ′ < i′ then the intervals [µ+ 1, i] and [µ′ + 1, i′] are
disjoint.

Proof. (a) The piece of the zigzag D between Dµ+1 and Di separates the mother com-

ponent Dµ from Bij = Êk. Hence πk contracts this piece. Furthermore, Dµ separates

it from D0 = F̂ within D, therefore µ ≤ i. Moreover at most i − µ blowups are done
near the images of Bij, so B2

ij ≥ µ− i− 1.
The remaining assertions of (a) are easy and so we leave the proof to the reader.
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(b) To show that D≥µ+1
(e) 	 Fij is contractible, it suffices to verify that D≥µ+1

(e) 	 Rij

supports the total preimage B̃ij, since then it contracts to Ek = πk(Bij) under πk. As
before Ek = πk(Bij) represents an at most linear vertex of the dual graph of πk(D(e)),
where one neighbor is Dµ and the other one (if existent) is the neighbor of Bij in Fij

to the right in (16). Moreover all components in D≥µ+1
(e) 	 Fij appear under further

blowups with center at πk(Dµ) ∩ Ek and its infinitesimally near points. Hence the
assertion follows.

If D>i
(e) 	 Fij were not contractible, then contracting successively all (−1)-curves in

D≥µ+1
(e) 	Fij the vertex Di of (15) would remain a branching point, which is impossible.

Similarly, if a feather Fi′j′ with µ < i′ < i were not contractible, then contracting

successively all (−1)-curves in D≥µ+1
(e) 	 Fij, the vertex Di′ of (15) would remain a

branching point, which is impossible.
To show (c) we let Bij = Êk and Bi′j′ = Êk′ . We may assume that k′ < k so that πk

does not contract Bi′j′ . As the divisor D≥µ+1
(e) 	 Fij is contracted under πk this implies

that i′ ≤ µ. Hence
µ′ < i′ ≤ µ < i,

proving (c). �

2.2. Families of rational surfaces: the specialization map. Let us recall the
notion of specialization and generalization map for smooth proper families.

2.7. We consider a proper smooth holomorphic map π : X → D, where X is a con-
nected complex manifold and D stands for the unit disc in C with center 0 ∈ D. By
Ehresmann’s theorem for any point s ∈ D there is a D-diffeomorphism X ∼= Xs × D,
where Xs = π−1(s). Hence the embedding Xs ↪→ X induces an isomorphism in coho-

mology H∗(X )
∼=−→ H∗(Xs). Composing the isomorphisms

H∗(Xs)
∼=−→ H∗(X )

∼=−→ H∗(X0)

we obtain a specialization map σ : H∗(Xs)
∼=−→ H∗(X0); its inverse is called a general-

ization map.

2.8. From now on we assume that the fibers Xs are complete rational surfaces. Then

NS(Xs) = Pic(Xs) ∼= H2(Xs; Z) ,

where NS(Xs) = Div(Xs)/ ∼ is the Neron-Severi group of algebraic 1-cycles modulo
numerical equivalence. From the exact sequence

0 = H1(X ,OX ) → H1(X ,O×
X ) ∼= Pic(X ) → H2(X ,Z) → H2(X ,OX ) = 0

induced by the exponential sequence we obtain an isomorphism

NS(X ) = Pic(X ) ∼= H2(X ; Z) ,

which commutes with restrictions to the fibers that is, with the isomorphisms

(18) Pic(X )
∼=−→ Pic(Xs) and H2(X ; Z)

∼=−→ H2(Xs; Z)

induced by the embeddings Xs ↪→ X . Composing the isomorphisms above leads to

σ : NS(Xs)
∼=−→ NS(X0)



UNIQUENESS OF C∗- AND C+-ACTIONS ON GIZATULLIN SURFACES 17

also called a specialization map. Clearly σ is an isometry with respect to the intersection
forms.

Lemma 2.9. For a general point s ∈ D, the specialization map σ sends the effective
cone in NS(Xs)⊗Q into the effective cone in NS(X0)⊗Q.

Proof. For an invertible sheaf L ∈ Pic(X ), its direct image R1π∗(L) is a coherent sheaf
on D, with a torsion located on a discrete set, say, A(L) ⊆ D. Since Pic0(X ) = 0 the
set A =

⋃
L∈Pic(X )A(L) is at most countable.

Picking now a point s ∈ D \ A, for an effective 1-cycle C on Xs we consider the
corresponding invertible sheaf Ls = OXs(C). By virtue of (18) there exists an invertible
sheaf L ∈ Pic(X ) such that L|Xs = Ls. Let t be the coordinate function on D. We

consider the cohomology sequence associated to the exact sequence 0 → L t−s→ L →
L|Xs → 0:

0 - H0(X ,L)
t−s- H0(X ,L)

ρ- H0(Xs,Ls) - H1(X ,L)
t−s- H1(X ,L) .

Since D is Stein, we have Hp(X ,L) ∼= H0(X , Rpf∗(L)) for all p ≥ 0. Since R1π∗(L)
has no torsion at s, it follows from the long exact sequence that the restriction map
ρ is surjective and so the sections of the sheaf Ls can be lifted to sections of L. In
particular L = OX (C) for some effective 1-cycle C on X with C|Xs = C. Hence also
σ(C) = C|X0 is effective. This yields the lemma. �

2.3. Formal specialization map and jumping feathers. In this section we study
possible degenerations of families of extended divisors. We recall first the geometric
setup of Section 1.4.

2.10. Let V = X \ D be a Gizatullin surface with a boundary zigzag D. As in
Section 1.4 we consider families of standard completions (Ṽ ,Ds), s ∈ S, of a minimal
resolution of singularities V ′ → V with a corresponding family of extended divisors
(Dext)s = (C0)s + (C1)s + (D(e))s. We are interested in degenerations in such families.
More precisely, each divisor (D(e))s has a dual graph as in (15), however this graph
may depend on s ∈ S. If Fij(s) = Bij(s) + Rij(s) denotes the feathers at the point
s then clearly the part Rs =

∑
Rij(s) must be constant being the exceptional set of

the resolution of singularities of V . Similarly the dual graph of the boundary zigzag
Ds

∼= D stays constant.
Assuming that S is a smooth curve, for a general point s ∈ S the specialization map

σ : NS(Ṽs)
∼=−→ NS(Ṽs0)

restricts to an isomorphism

σ : Cycl1((D(e))s)
∼=−→ Cycl1((D(e))s0)

of the corresponding cycle spaces compatible with the intersection forms. In what
follows we study this map σ on a formal level.

2.11. Let us consider two modifications π : W → V and π′ : W ′ → V as in 2.3
above, with the same number m of blowups. Moreover assume that on W,W ′ we have
decompositions

D(e) = D +
∑

Fij and D′
(e) = D′ +

∑
F′ij
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as in 2.3 with the same number n of curves Di, D
′
i and with feathers

Fij = cBij Rij

and F′ij = cB′
ij R′ij

,

respectively. We let G = Cycl1(D(e)) and G′ = Cycl1(D
′
(e)) be their groups of 1-cycles

with generators (Ci) and (C ′
i) or, equivalently, (C̃i) and (C̃ ′

i), respectively. Suppose
that we are given an isomorphism

δ : G→ G′

with the following properties:

(i) δ respects the intersection forms.
(ii) δ transforms effective cycles into effective cycles.
(iii) δ(Di) = D′

i for all i.
(iv) δ(Rijk) = R′i′j′k for some i′, j′, where Rijk, R

′
i′j′k are the components of Rij, R

′
i′j′ ,

respectively, ordered as in 2.3.

We then call δ a formal specialization map, and δ−1 a formal generalization map.
It is clear from the discussion in 2.10 that any specialization map arising from a

degeneration in a family of completions/resolutions of a Gizatullin surface is also a
formal specialization map. Indeed (i) and (ii) follow from the construction in view of
Lemma 2.9, (iii) follows immediately by the triviality of the family D → S, and (iv)
holds due to the constancy of singularities in the open part Vs

∼= V .

We assume in the sequel that δ is a formal specialization map.
The structure of δ can be understood on the level of the generators D̃i, R̃ijk and B̃ij

of G = Cycl1((D(e))s). These generators form an orthogonal basis of G (see Lemma
2.2(a)). The same is true for their images in G′. So according to Lemma 2.2(b)

(19) {δ(D̃i), δ(B̃ij), δ(R̃ijk)} = {D̃′
i, B̃

′
ij, R̃

′
ijk} .

Proposition 2.12. With the assumptions as before the following hold.

(a) δ(D̃i) = D̃′
i and δ(R̃ijk) = R̃′i′j′k ;

(b) δ(B̃ij) = B̃′
i′j′ ;

(c) δ respects the mother components, i.e. if Dµ is the mother component of Bij then
D′

µ is the mother component of B′
i′j′.

(d) Every feather Fij = Bij + Rij either stays fixed or jumps to the right under δ, i.e.

δ(B̃ij) = B̃′
i′j′ and δ(Rij) = R′i′j′ with i′ ≥ i.

Proof. To deduce (a) we note that by 2.2(b) δ(D̃i) = C̃ ′ for some irreducible component
C ′ of D′

(e). Using properties (i) and (iii) of δ

C̃ ′.D′
i = δ(D̃i).D

′
i = D̃i.δ

−1(D′
i) = D̃i.Di = −1.

Using Lemma 2.2(c) this implies that C ′ = D′
i. With the same argument it follows

that δ(R̃ijk) = R̃′i′j′k. Clearly (b) is a consequence of (a) and (19).
(c) follows from the equation

B̃ij.Dα = δ(B̃ij).δ(Dα) = B̃′
i′j′ .D

′
α

and the characterization of mother components given in Lemma 2.4.
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(d) By property (ii) δ sends the effective cone of G = Cycl1(D(e)) into the effective

cone of G′ = Cycl1(D
′
(e)). Moreover, Bij, B

′
i′j′ appear in the cycles B̃ij and δ(B̃ij) =

B̃′
i′j′ , respectively, with coefficient 1. Hence δ(Bij) = B′

i′j′ + ∆ with an effective divisor
∆ = ∆(i, j) which does not contain B′

i′j′ so that

∆ =
∑
p≥1

αpD
′
p +

∑
(p,q) 6=(i′,j′)

αpqB
′
pq +

∑
p,q,r

αpqrR
′
pqr , where αp, αpq, αpqr ≥ 0 .

Suppose that Bij jumps indeed, i.e. i 6= i′. Then Di′ .Bij = 0, hence

0 = D′
i′ .δ(Bij) = D′

i′ .B
′
i′j′ +D′

i′ .∆ = 1 +D′
i′ .∆.

Thus D′
i′ .∆ = −1 and so αi′ > 0. It follows that K := {p : αp > 0} contains i′. It is

easily seen that 0 /∈ K. We choose p ∈ {0, . . . , n} \K so that at least one of p ± 1 is
in K. Since δ(Di) = D′

i ∀i and δ preserves the intersection form, we have

(20) Dp.Bij = δ(Dp).δ(Bij) = D′
p.B

′
i′j′ +D′

p.∆ ≥ D′
p.∆ > 0 .

Hence Dp.Bij = 1 and so p = i. Consequently K = [i + 1, . . . , n] (indeed, 0 /∈ K).
Since i′ ∈ K we have i+ 1 ≤ i′. This proves (d). �

2.4. Rigidity. In Theorem 2.17 below we give a criterion for the dual graph of the
extended divisor Dext to stay constant under any specialization or generalization. We
use the following terminology.

Definition 2.13. We say that the divisor D(e) as in 2.3 is stable under specialization if
for any specialization map δ : G = Cycl1(D(e)) → G′ = Cycl1(D

′
(e)) as in 2.11 we have

δ(Bij) = B′
ij with a suitable numbering of B′

i1, . . . , B
′
i,ri

. This means that no feather
jumps to the right in (15).

Similarly, a divisor D(e) is said to be stable under generalization if for any general-
ization map12 γ : G = Cycl1(D(e)) → G′ = Cycl1(D

′
(e)) we have γ(Bij) = B′

ij with a

suitable numbering of B′
i1, . . . , B

′
i,ri

. Therefore no feather jumps to the left in (15).
Finally, a divisor D(e), which is stable under both specialization and generalization,

is said to be rigid. This terminology can be equally applied to the extended divisor
Dext = C0 + C1 +D(e).

We have the following fact.

Proposition 2.14. D(e) is stable under generalization if and only if B2
ij = −1 for all

bridge curves Bij.

Proof. By Proposition 2.12(d) Bij can only jump to the left under generalization so

that γ(B̃ij) = B̃′
i′j′ with i′ ≤ i. Assume that B2

ij = −1. Then Di is the mother
component of Bij, see Proposition 2.6(a). By virtue of Proposition 2.12(c) D′

i is the
mother component of B′

i′j′ . Using again Proposition 2.6(a) i ≤ i′, hence i = i′ and the
feather Fij stays fixed, as required.

To show the converse we assume that B2
ij ≤ −2. By Proposition 2.6(a) then µ < i,

where Dµ is the mother component of Fij. Using Proposition 2.6(b) the divisor P :=

D≥µ+1
(e) 	Fij is contractible. Let F be the contracted divisor D(e)/P . Then the image of

12i.e., δ = γ−1 is a specialization map as in 2.11.
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P is the intersection point of the images, say B̄ij and D̄µ of Bij and Dµ in F . Moreover
B̄2

ij = −1.

Let now q be a point on D̄µ different from this intersection point. Rebuilding P at
this point q yields a new divisor, say, D′

(e). We claim that this procedure provides a non-

trivial generalization map γ : Cycl1(D(e)) → Cycl1(D
′
(e)) or, equivalently, a non-trivial

specialization map δ : Cycl1(D
′
(e)) → Cycl1(D(e)).

Obviously the curves in D(e) and D′
(e) are in 1 − 1-correspondence. Let for a curve

C in D(e), C
′ denote the corresponding curve in D′

(e). We define δ by δ(C ′) = C for

C ′ 6= B′
ij and δ(B′

ij) := B̃ij. Since

B̃ij.C = 0 for C 6= Bij, Dµ, B̃2
ij = −1 and B̃ij.Dµ = 1 ,

δ is an isometry. Since it maps effective cycles into effective cycles, δ is a specialization
map, as required. �

Proposition 2.15. Assume that a feather Fij in (15) jumps to F′i′j′ under a special-
ization δ : D(e) → D′

(e). If i′ > i then the following divisors are either empty or
contractible:

(a) Fkl with i < k < i′;
(b) D>i′

(e) and D′ >i′

(e) 	 F′i′j′;

(c) D≥i+1
(e) and D′ ≥i+1

(e) 	 F′i′j′.

Proof. (a) follows from Proposition 2.6(b). Indeed, if Dµ is the mother component of
Bij the by Proposition 2.12(c) D′

µ is the mother component of B′
i′j′ , so µ ≤ i < k < i′.

Similarly by the same Proposition 2.6(b), D′ >i′

(e) 	 F′i′j′ is either empty or contractible,

as stated in (b).
Now (b) and (c) can be shown by induction on the number of irreducible compo-

nents of D(e). Let (b)m and (c)m be the corresponding statements for divisors with m
components. We show below that

(i) (b)m−1,(c)m−1 ⇒ (b)m, and
(ii) (b)m,(c)m−1 ⇒ (c)m.

To deduce (i) and (ii) we use the following claim.
Claim 1. Suppose that the divisor D>i′

(e) is non-empty. Then there exist (−1)-curves

C in D>i′

(e) and C ′ in D′ >i′

(e) with δ(C) = C ′, which are contractible in D(e) and D′
(e),

respectively.
The contractibility of D>i′

(e) , and then also (i) and (b), follow from this claim by

induction on m. Indeed, contracting C,C ′ in D(e), D
′
(e), respectively, leads to new divi-

sors, say, D∨
(e) and D′ ∨

(e), where D′ ∨
(e) is a specialization of D∨

(e). By virtue of Proposition

2.6(a) the feather F′i′j′ is minimal. Hence Fij = F∨ij and F′i′j′ = F′∨i′j′ are not affected by

these contractions and again F∨ij jumps to F′∨i′j′ .

Proof of Claim 1. Assume first that i′ < n. The divisor D′ ≥i′+1
(e) is then non-empty and

contractible. Hence it contains a (−1)-curve C ′ representing an at most linear vertex
of the dual graph of D′

(e). This curve C ′ can be either D′
k′ or a bridge B′

k′l′ , where

k′ ≥ i′ + 1.
In the latter case we let B̃′

k′l′ = δ(B̃kl). Since (B′
k′l′)

2 = −1, by Propositions 2.6(a)
and 2.12(c) Dk′ and D′

k′ are the mother components of Bkl and B′
k′l′ , respectively.
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Hence k ≥ k′. Since under specialization a feather can only jump to the right (see
Proposition 2.12(d)), we have k = k′. Therefore again by Proposition 2.6(a), B2

kl = −1
and the curves C = Bkl, C

′ = B′
k′l′ are as desired. Indeed, in view of Lemma 2.2(b),

Bkl = B̃kl, B
′
k′l′ = B̃′

k′l′ and so by Proposition 2.12(b), δ(Bkl) = B′
k′l′ .

In the former case C = Dk′ is again a (−1)-curve, since δ respects the intersection
forms and C ′ = δ(C). If Dk′ is at most linear vertex of the dual graph then the curves
C,C ′ are as desired. Otherwise Dk′ is a branch point of the dual graph while D′

k′ is
not. So there is a feather Fk′l at Dk′ which jumps to the right under δ. Thus k′ < n,
and we can repeat the consideration using induction on k′.

Suppose further that i′ = n. Since by our assumption D>n
(e) is non-empty, there is a

non-empty feather, say, Fnl at Dn. This feather stays fixed under δ i.e., δ(B̃nl) = B̃′
nl′ .

Moreover, since µ < n, by virtue of Proposition 2.6(c) Dn and D′
n are the mother

components of Fnl,F
′
nl′ , respectively. Similarly as above, this implies that C = Bnl,

C ′ = B′
nl′ are (−1)-curves with δ(C) = C ′, as desired. This proves the claim.

The proof of (ii) proceeds in a similar way. Because of (b)m we may assume that
D>i′

(e) and D′ >i′

(e) 	F′i′j′ are empty since otherwise we can contract them inside D(e), D
′
(e),

respectively, and use induction on m as before. Similarly due to (a) we may suppose
that both D(e) and D′

(e) have no feathers at components Dk, D
′
k with i < k < i′.

Now the induction step can be done due to the following

Claim 2. Under the assumption as above there are (−1)-curves C in D≥i+1
(e) and C ′

in D′ ≥i+1
(e) 	 F′i′j′, with δ(C) = C ′, which are contractible in D(e), D

′
(e), respectively.

Proof of Claim 2. These divisors in our case consist of the linear strings [Di+1, . . . , Di′ ]
and [D′

i+1, . . . , D
′
i′ ], respectively. It is enough to show that there is a (−1)-curve in one

of these linear strings, and then similarly as above there is also the second one.
Let as before Dµ be the mother component of the bridge curve Bij. Then D′

µ is the
mother component of B′

i′j′ . If µ = i(< i′) then by Proposition 2.6(b) the non-empty

divisor D′≥i+1
(e) 	F′i′j′ = [D′

i+1, . . . , D
′
i′ ] is contractible and so the result follows. If µ < i

then again by Proposition 2.6(b) the divisor D>i
(e) 	 Fij is contractible, and also its

connected component D≥i+1
(e) = [Di+1, . . . , Di′ ] is. Hence again we are done, and so the

proof is completed. �

The following fact is in a sense a converse to Proposition 2.15.

Proposition 2.16. Suppose that, for two indices i, i′ with 0 ≤ i < i′ ≤ n, each one of
the following divisors is either empty or contractible:

(a) the feathers Fkl with i < k < i′;
(b) the divisor D>i′

(e) ;

(c) the divisor D≥i+1
(e) .

Then any feather Fij jumps to a feather F′i′j′ under a suitable specialization.

Proof. The proof is similar to that of Proposition 2.14. Contracting first D>i′

(e) and then

the remaining part, say, P of D≥i+1
(e) , we rebuild P blowing up at the intersection point

of Di and Fij and its infinitesimally near points. After that we rebuild D>i′

(e) at points

of Di′ different from the intersection point with the new feather F′i′j′ . We leave the
details to the reader. �
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Now we are ready to formulate our main rigidity criterion. This enables us in the
next section to check rigidity for Gizatullin C∗-surfaces satisfying one of the conditions
(α+), (α∗) or (β+), (β∗) of Theorem 0.2.

Similarly as in 1.20 we call a divisor D(e) distinguished if there is no index i with
1 ≤ i ≤ n such that D>i

(e) is non-empty and contractible.

Theorem 2.17. A distinguished divisor D(e) is rigid provided that all its bridges Bij

are (−1)-curves and one of the following conditions is satisfied.

(i) D>n
(e) 6= ∅.

(ii) If for some i, 0 ≤ i < n, the feather collection {Fij} is non-empty then the divisor

D≥i+1
(e) is not contractible.

Proof. By Proposition 2.14D(e) is stable under generalization. Suppose on the contrary
that a feather Fij jumps to F′i′j′ under a specialization, where i < i′ ≤ n. By Proposition

2.15(c) D≥i+1
(e) is contractible and so (ii) is violated. Similarly, by Proposition 2.15(b)

D>i′

(e) is contractible. Since D(e) is distinguished and i′ + 2 ≥ 3, this is only possible if

i′ = n and D>n
(e) = ∅. Thus (i) is violated as well, proving the theorem. �

We finish this section with several examples of rigid or non-rigid divisors.

Examples 2.18. 1. Consider the Gizatullin C∗-surface V defined by the following pair
of Q-divisors on A1 (see Section 3.1):

(D+, D−) =

(
1

n
[0]− [1], − 1

n
[0]

)
.

According to Proposition 3.10 below its standard completion has degenerate fiber with
dual graph

D(e) : cD0

−n
cD1

−2

cB1 −1

cD2

−2

. . . cDn−1

−2

cDn

−2

.

Using Propositions 2.14 and 2.15 the divisor D(e) is rigid i.e., stable under specialization
or generalization.

2. Let us revisit the standard completion of a Danilov-Gizatullin surface V = Vn with
n = k + 1 ≥ 3 (see 1.22), which has extended divisor (13). The feather F1 has mother
component C2. By Proposition 2.14 it can jump to C2 under a suitable generalization,
but also to any other component Ci, i ≥ 2, using Proposition 2.16.

3. Let D(e) be the divisor

D(e) : cD0

−n
cD1

−2

cB1 −1

cD2

−2

. . . c
−2

cB2 −2

Dn−1 .

Again this is the dual graph of the degenerate fiber in a standard completion of a
Gizatullin C∗-surface V = Spec C[t][D+, D−] with

(D+, D−) =

(
1

n
[0]− [1], − 1

n− 1
[0]

)
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(cf. Example 1 above). According to Proposition 2.15, D(e) does not admit a nontrivial
specialization. The mother component of B2 is D0. Hence by Proposition 2.14, D(e)

admits a generalization into the divisor

D′
(e) : D0 c

−n

cB′
2 −1

cD1

−2

cB′
1 −1

cD2

−2

. . . cDn−1

−2

.

It is interesting to note that D′
(e) does no longer correspond to a C∗-surface (see Propo-

sition 3.10 below).

3. Extended divisors of C∗-surfaces

In this section we examine as to when a Gizatullin C∗-surface has a distinguished
or rigid extended divisor. Our main criterion is Theorem 3.24 below. We review first
some basic facts about C∗-surfaces.

3.1. DPD presentation for C∗-surfaces.

3.1. A normal affine surface V = SpecA endowed with an effective C∗-action is called
a C∗-surface. Such a surface can be elliptic, parabolic or hyperbolic. On a non-toric
elliptic or parabolic C∗-surface V the C∗-action is unique up to conjugation in the
automorphism group Aut(V ) and inversion in C∗ [FlZa3, Corollary 4.3]. Moreover by
Corollaries 3.23, 4.4 and Theorem 4.5 in [FlZa2] for any non-toric Gizatullin C∗-surface
V , the C∗-action on V is hyperbolic. Therefore to deduce Theorem 0.2 it is enough to
restrict to hyperbolic C∗-surfaces.

3.2. A simple and convenient description for elliptic and parabolic C∗-surfaces in
terms of the associated gradings on the coordinate rings was elaborated by Dolgachev,
Pinkham and Demazure. It was extended to the hyperbolic case in [FlZa1], where this
construction was called a DPD presentation.

Namely, any hyperbolic C∗-surface V can be presented as

V = SpecA, where A = A0[D+, D−] = A0[D+]⊕A0 A0[D−]

for a pair of Q-divisors (D+, D−) on a smooth affine curve C = SpecA0 satisfying the
condition D+ +D− ≤ 0. Here

A0[D±] =
⊕
k≥0

H0(C,OC(bkD±c))u±k ⊆ Frac(A0)[u, u
−1] ,

where bDc stands for the integral part of a divisor D and u is an independent variable.
A posteriori, u ∈ Frac(A0)⊗A0 A and deg (u) = 1. One can change u by multiplying it
by a function ϕ ∈ Frac(A0); then D± will be replaced by D′

± = D± ± divϕ.
We say that two pairs (D+, D−) and (D′

+, D
′
−) are equivalent if D′

± = D±±divϕ for
a rational function ϕ on C. By Theorem 4.3(b) in [FlZa1] two hyperbolic C∗-surfaces
V = SpecA0[D+, D−] and V ′ = SpecA0[D

′
+, D

′
−] are equivariantly isomorphic over

C = SpecA0 if and only if the pairs (D+, D−) and (D′
+, D

′
−) are equivalent.

3.3. The embedding A0 ↪→ A0[D+, D−] induces an orbit map π : V → C. The fixed
points on a hyperbolic C∗-surface V are all isolated, attractive in one and repelling in
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the other direction. The numerical characters of these singular points are precized in
the next result.

Lemma 3.4. ([FlZa1, Theorem 4.15]) For a point p ∈ A1 we let

(21) D+(p) = − e+

m+
and D−(p) =

e−

m− with gcd(e±,m±) = 1 and ±m± > 0 .

Then the following hold.

(a) If D+(p) +D−(p) = 0 then π−1(p) ∼= C∗ is a fiber of multiplicity m := m+ = −m−

which contains no singular point of V .
(b) If D+(p) + D−(p) < 0 then the fiber π−1(p) in V consists of two orbit closures

O± ∼= A1 of multiplicity ±m± in the fiber π−1(p) meeting in a unique point p′.
Moreover V has a cyclic quotient singularity of type (∆, e) at p′, where

(22) ∆ = ∆(p′) = −
∣∣∣∣ e+ e−

m+ m−

∣∣∣∣ = m+m−(D+(p) +D−(p)) > 0 ,

and e with 0 ≤ e < ∆ is defined by

e = e(p′) ≡
∣∣∣∣ a e−

b m−

∣∣∣∣ mod ∆ if

∣∣∣∣ a e+

b m+

∣∣∣∣ = 1 .

For instance, if D±(p) are both integral and k = −(D+(p) +D−(p)) > 0 then V has
an Ak−1-singularity at p′. We also need the following observation, see [FlZa2, Theorem
4.5] and [FKZ2, Lemma 4.2(b)].

Lemma 3.5. For a C∗-surface V = SpecA0[D+, D−] the following hold.

(a) V is a Gizatullin C∗-surface if and only if A0
∼= C[t] and supp {D±} ⊆ {p±} for

some points p± ∈ A1 = Spec C[t].
(b) V is toric if and only if A0

∼= C[t] and up to equivalence (D+, D−) is the divisor

(−e+

m+ [p0],
e−

m− [p0]), for some point p0 ∈ A1 = Spec C[t].

3.2. Completions of C∗-surfaces. We let V = SpecA0[D+, D−] be a normal affine
C∗- surface. We review here some facts on equivariant completions of V ; for proofs we
refer the reader to [FKZ2].

Lemma 3.6. V admits an equivariant normal completion (X̄, D̄) with the following
properties.

1. (Cf. [FKZ2, Proposition 3.8 and Remark 3.9(4)]) The orbit map V → C = SpecA0

extends to a P1-fibration π : X̄ → C̄, where C̄ is the smooth completion of C.
2. D̄ has exactly two horizontal components C̄±, which are sections of π, where C̄+ is

repelling and C̄− is attractive.
3. (Cf. [FlZa2, 3.10 and Proposition 4.18]) For D+(p) + D−(p) = 0 the fiber Ōp =
π−1(p) ∼= P1 has multiplicity m+ = −m−, where m± are as in (21).

4. (Cf. [FKZ2, 3.10 and Proposition 3.13(d) ] and [FlZa2, Proposition 4.18]) If D+(p)+
D−(p) < 0 then13 the fiber π−1(p) consists of two orbit closures Ō±

p
∼= P1 of multi-

plicity ±m± meeting in a unique point p′ (cf. Lemma 3.4(b)). Moreover Ō±
p have

self-intersection indices m∓

∆m± , respectively.

13with the notation as in Lemma 3.4.
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In general, D̄ can contain singular points of X̄. Let ρ : X̃ → X̄ denote the minimal
resolution of singularities of X̄ and D̃ := ρ−1(D̄). The C∗-action on X̄ then lifts to X̃.

Lemma 3.7. (See [FKZ2, Proposition 3.16]) Let π̃ : X̃ → C̄ be the induced P1-fibration
and let C̃± be the proper transforms of C̄± on X̃. Then the following hold.

(a) (X̃,D) is an SNC completion of the minimal resolution of V ′ of V . Moreover,
C̃2
± = degbD±c.

(b) If D+(p) +D−(p) < 0 then the fiber π̃−1(p) together with C̃± has dual graph

(23) cC̃+ {D+(p)} cÕ+
p (e/∆)∗ cÕ−

p {D−(p)}∗ cC̃− ,

where Õ±
p with (Õ±

p )2 = b m∓

∆m± c are the proper transforms of Ō±
p , respectively, and

at least one of them is a (−1)-curve 14.
(c) If D+(p) +D−(p) = 0 then the fiber π̃−1(p) together with C̃± has dual graph

(24) cC̃+ {D+(p)} cÕp {D−(p)}∗ cC̃− ,

where the proper transform Õp of Ōp is a (−1)-curve.

Remark 3.8. 1. If D±(p) ∈ Z and −(D+(p) + D−(p)) = ∆ > 0, then by Lemma
3.7(b) V has an A∆−1-singularity at p′ and the graph (23) is

(25) cC̃+ cÕ+
p

−1

A∆−1 cÕ−
p

−1

cC̃− .

3.3. Extended divisors of Gizatullin C∗-surfaces.

3.9. In this section we let V = Spec C[t][D+, D−] denote a Gizatullin C∗-surface. By
Lemma 3.5(a) supp {D+} ⊆ {p+}, supp {D−} ⊆ {p−}, and the orbit map π̃ : X̃ →
C̄ = P1 is defined by the linear system |F∞|, where F∞ denotes the fiber π̃−1(∞) over
the point {∞} = P1 \ A1. Furthermore by Lemma 3.7 the boundary zigzag D̃ of V in
X̃ has dual graph

(26) D̃ :
{D+(p+)}∗ cC̃+ cF∞

0

cC̃− {D−(p−)}
.

A standard equivariant completion Ṽ of the resolution V ′ of V can be obtained from
X̃ by moving the zero weight in (26) to the left via elementary transformations [FKZ1].
More precisely, to obtain the standard zigzag D = C0 + . . . + Cn from (26) one has
to perform first a sequence of elementary transformations at F∞ until C̃+ becomes a
0-curve. At this step the self-intersection index of the image Cs of C̃− becomes equal
to ws = deg (bD+c+ bD−c). By moving the two resulting neighboring zeros to the left

14See 1.9 for the notation (e/∆)∗.
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via a sequence of elementary transformations (which contracts in general the curve C̃+

and does not affect C2
s = ws) one gets a completion (Ṽ , D) of V ′ by the zigzag

(27) D : cC0

0

cC1

0

{D+(p+)}∗ cCs

ws

{D−(p−)}
.

This zigzag is standard as soon as ws ≤ −2. Indeed, all curves in the boxes labelled
{D+(p+)}∗ and {D−(p−)} have weight ≤ −2. The elementary transformations as above
result in a birational morphism X̃ 99K Ṽ , which is the identity on V ′.

By abuse of notation we keep the same symbols Õp, Õ
−
p± in both completions X̃ and

Ṽ , cf. (23). Note that the self-intersection indices (Õ−
p±)2, Õ2

p are the same in X̃ and

in Ṽ .

To describe the resulting extended graph it is convenient to introduce admissible
feather collections {Fρ}ρ≥1; see [FKZ2]. By this we mean that all but at most one
feather Fρ are Ak-feathers. Further, a curve on a C∗-surface is called parabolic if it is
pointwise fixed. For the next result, we refer the reader to Proposition 5.8 in [FKZ2]
and its proof.

Proposition 3.10. With the notations as above, the resolution of singularities V ′ → V
of a normal affine Gizatullin C∗-surface V admits an equivariant SNC completion
(Ṽ , D) with extended graph

(28) Dext : cC0

0

cC1

0 {D+(p+)}∗
cCs c
ws

{Fρ}ρ≥1

{D−(p−)}

F0

and with boundary zigzag D represented by the bottom line in (28). Here ws =
deg(bD+c + bD−c), F0 is a single feather (possibly empty), {Fρ}ρ≥1 is an admissible

feather collection with all Fρ, ρ ≥ 2, being Ak-feathers, and Cs = C̃− is an attractive
parabolic component. Moreover the following hold:

(a) The feather collection {Fρ}ρ≥1 is empty if and only if V is a toric surface. If V is

non-toric15 then ws ≤ −2 and consequently (Ṽ , D) is a standard completion of V ′.
(b) If p+ 6= p− then (Õ−

p−)2 = −1 and the feathers

(29) F0 : cÕ−
p− (e/∆)(p−)

and F1 : cÕ−
p+ (e/∆)(p+)

are contained in the fibers over p− and p+, respectively, as described in (23).
(c) If p+ = p− =: p then the Fρ are Akρ-feathers ∀ρ ≥ 1. The feather F0 is empty

if and only if D+(p) + D−(p) = 0. Otherwise it is as in (29) with p− = p and

(Õ−
p−)2 = b m+

∆m− c.

Proof. By virtue of Lemma 2.20 in [FKZ2], V is toric if and only if the extended divisor
Dext is linear. This yields the first assertion in (a). Thus by Proposition 5.8 in [FKZ2],
only the second assertion in (a) and the first one in (b) need to be proved.

15However, see Remark 3.11(4) below.
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Assuming that ws = 0 it is easily seen that (D+, D−) ∼ (0, 0), D = [[0, 0, 0]] and
Fρ = ∅ ∀ρ ≥ 0. But then V ∼= A1 × C∗ is a toric surface. If further ws = −1
then necessarily p+ = p− and bD+(q)c + bD−(q)c = 0 for any point q different from
p = p+ = p−. Since D+(q) +D−(q) ≤ 0 it follows that D+(q) = −D−(q) are integral
for q 6= p. Passing to an equivalent pair of divisors we may suppose that D+ and D−
are both supported at p. Hence again V is toric by Lemma 4.2(b) in [FKZ2]

16.
Finally, the equality (Õ−

p−)2 = −1 in (b) follows from Lemma 3.7(b). Indeed, as

D+(p−) ∈ Z we have m+ = m+(p−) = 1 and so (Õ−
p−)2 = b m+

∆m− c = −1. �

Remarks 3.11. 1. One can also move the zeros in (26) to the right. In the case
where ws ≤ −2 this yields a second standard completion with the boundary zigzag
reversed. However, in this completion (Ṽ ∨, D∨) the parabolic component is repelling,
and it becomes attractive when the given C∗-action is replaced by the inverse one via
the automorphism t 7→ t−1 of C∗. The extended dual graph Dext in (28) is uniquely de-
termined by the requirement that it corresponds to an equivariant standard completion
of V ′ with attractive parabolic component.

2. If V is smooth then every feather in (28) consists of a single irreducible curve,
see 1.12. A more detailed description can be found in [FKZ2, Corollary 5.10]. If for
instance p+ 6= p− or one of the fractional parts {D+}, {D−} vanishes then, up to
passing to an equivalent pair of Q-divisors,

(D+, D−) =

(
−1

k
[p+] ,−1

l
[p−]−D0

)
with k, l ≥ 1 ,

where D0 =
∑t

ρ=2[pρ] is a reduced integral divisor on C ∼= A1 so that all points pρ are

pairwise distinct and different from p±. Thus in (28) the boxes adorned {D+(p+)}∗
and {D−(p−)} are just Ak−1- and Al−1-boxes, which represent chains of (−2)-curves
[[(−2)k−1]] and [[(−2)l−1]], respectively.

3. Contracting the exceptional curves in Ṽ corresponding to the singularities in the
affine part V we obtain a standard completion (V̄ , D) of V .

4. For a toric Gizatullin surface it may happen that ws = −1, take e.g. V =
Spec C[t][D+, D−] with (D+, D−) =

(
−1

2
[0], 1

3
[0]

)
. The boundary zigzag as in Proposi-

tion 3.10 is now [[0, 0,−2,−1,−3]], which has standard form [[0, 0]]. Thus V ∼= A2.

Let us compute more generally the standard boundary zigzag of an arbitrary affine
toric surface V = Vd,e = A2/Zd (see 1.8), where 0 ≤ e < d and gcd(e, d) = 1.

Lemma 3.12. The toric surface Vd,e admits a standard completion with boundary
zigzag

(30) D : c0 c0 d−e
d
.

Moreover, the reverse zigzag D∨ is given by c0 c0 d−e′

d
, where e′ is the unique

number with 0 ≤ e′ < d and ee′ ≡ 1 mod d. In particular, the standard boundary of a
toric surface is symmetric if and only if e2 ≡ 1 mod d.

16Cf. Claim (α) in the proof of Proposition 5.8 in [FKZ2].
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Proof. Using Lemmas 3.4 and 3.5(b), Vd,e
∼= Spec C[t][D+, D−] with D+ = 0 and

D− = d
e−d

[0]. According to Proposition 3.10 the standard boundary has dual graph

c0 c0 cb d
e−d

c { d
e−d

}
.

A simple computation gives

cb d
e−d

c { d
e−d

}
=

d−e
d
.

Finally, the form of D∨ follows from 1.9. �

Remark 3.13. 1. The form of D∨ reflects the well known fact that Vd,e
∼= Vd′,e′ if and

only if d = d′ and either e = e′ or ee′ ≡ 1 mod d, see e.g. [FlZa1, Remark 2.5].
2. Due to the lemma, the toric surface Vd,e is uniquely determined by its standard

boundary zigzag.

For later use we give a criterion as to when a C∗-action is equivalent to its inverse.

Lemma 3.14. For a C∗-surface V = SpecA0[D+, D−] over C = Spec A0, the asso-
ciated hyperbolic C∗-action Λ on V and its inverse action Λ−1 are conjugate in the
automorphism group Aut(V ) if and only if there exists an automorphism ψ ∈ Aut(C)
such that

(i) ψ∗(D+ +D−) = D+ +D− and
(ii) ψ∗(D−)−D+ is a principal divisor.

Proof. Inverting the C∗-action results in interchanging the components A0[D+] and
A0[D−] of the graded algebra A0[D+, D−] or, equivalently, in interchanging the divisors
D+ andD− (see Section 3.1). Thus the inverse action Λ−1 corresponds to the C∗-surface
V ∨ = SpecA0[D−, D+] over C. By Theorem 4.3(b) in [FlZa1], the actions Λ and Λ−1

are conjugate in the group AutV if and only if the C∗-surfaces (V,Λ) and (V ∨,Λ−1)
are equivariantly isomorphic, if and only if there is an automorphism, say, ψ of C such
that the pairs (D+, D−) and (ψ∗(D−), ψ∗(D+)) are equivalent i.e.,

D+ +D0 = ψ∗(D−) and D− −D0 = ψ∗(D+)

for some principal divisor D0 on C. The first of these equalities yields (ii), and taking
their sum gives (i). �

Remarks 3.15. 1. Suppose that V = Spec C[t][D+, D−] is a C∗-surface over A1 =
Spec C[t]. Then condition (ii) in Lemma 3.14 is equivalent to ψ∗({D+}) = {D−}. In
particular, if the divisor D+−D− is integral then (i) and (ii) are automatically satisfied
with ψ = id.

2. We have seen in Remark 3.11(1) that changing the C∗-action of a Gizatullin
C∗-surface V = Spec C[t][D+, D−] by the automorphism t 7→ t−1 of C∗ amounts to
reversing the standard zigzag. So if the C∗-action on V is conjugate to its inverse then
the standard zigzag D of V is symmetric.

3. Note however that for a Gizatullin C∗-surface with a symmetric standard bound-
ary zigzag the C∗-action is not conjugate to its inverse, in general. A simple example is
given by the toric surface V = Spec C[t][D+, D−] ∼= A2 with (D+, D−) =

(
−1

2
[0], 1

3
[0]

)
,

see Remark 3.11(4). This pair does not satisfy condition (ii) of Lemma 3.14 although
its standard boundary zigzag is equal to [[0, 0]] and so is symmetric.
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3.4. A rigidity criterion. In Theorem 3.24 below we show that under the assump-
tions (α+) and (β) of Theorem 0.2, the standard divisor (15) is distinguished and rigid.
Moreover, if (α∗) holds then this divisor is rigid after possibly interchanging D+ and
D−.

3.16. We begin by recalling the assumptions (α+), (α∗) and (β) of Theorem 0.2.

(α+) supp {D+}∪supp {D−} is empty or consists of one point, say, p satisfying either
D+(p) +D−(p) = 0 or

(31) D+(p) +D−(p) ≤ −max

(
1

m+2 ,
1

m−2

)
,

where ±m± is the minimal positive integer such that m±D±(p) ∈ Z.
(α∗) supp {D+} ∪ supp {D−} is empty or consists of one point p, where

D+(p) +D−(p) ≤ −1 or {D+(p)} 6= 0 6= {D−(p)}.
(β) supp {D+} = {p+} and supp {D−} = {p−} for two different points p+, p−,

where

(32) D+(p+) +D−(p+) ≤ −1 and D+(p−) +D−(p−) ≤ −1 .

Lemma 3.17. For a point p ∈ A1 with (D+ +D−)(p) < 0 the following hold.

(a) Õ±
p in (23) is a (−1)-curve if and only if (D++D−)(p) ≤ −1/(m±)2. In particular,

both Õ+
p and Õ−

p in (23) are (−1)-curves17 if and only if (31) is fulfilled.
(b) If min ({D+(p)}, {D−(p)}) = 0 then (31) is equivalent to

(33) D+(p) +D−(p) ≤ −1 .

Proof. We let as before D±(p) = e±/m± with gcd(e±,m±) = 1, m+,−m− ≥ 1 and

∆ = ∆(p) = m+m−(D+(p) +D−(p)) ≥ 1 .

(a) follows from the equalities (Õ±
p )2 = b m∓

∆m± c, see Lemma 3.7(b). Indeed,⌊
m∓

∆m±

⌋
= −1 ⇐⇒ m∓

∆m± ≥ −1 ⇐⇒ m∓

m± ≥ −∆ ⇐⇒ −1

(m±)2
≥ (D+ +D−)(p).

To show (b), after interchanging D+ and D−, if necessary, and passing to an equiv-
alent pair of divisors, which does not affect our assumptions, we may suppose that
D+(p) = 0. Thus m− ≤ −1 and m+ = 1 and so

max

(
1

m+2 ,
1

m−2

)
= max

(
1,

1

m−2

)
= 1 .

Now (b) follows. �

For a Gizatullin C∗-surface V = Spec C[t][D+, D−] we let V ∨ = Spec C[t][D−, D+],
and we denote by Dext, D

∨
ext the corresponding extended divisors of the equivariant

standard completions as in Proposition 3.10.

Lemma 3.18. (a) All bridges Bρ of the feathers Fρ, ρ ≥ 0, are (−1)-curves in both
divisors Dext and D∨

ext if and only if (α+) or (β) holds.
(b) If (α∗) is fulfilled then all bridges Bρ are (−1)-curves in at least one of these divi-

sors.

17Anyway, at least one of these is a (−1)-curve, see Lemma 3.7(b).
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Proof. Assume first that p+ = p− = p. By Proposition 3.10(c) the Fρ are Akρ-feathers
∀ρ ≥ 1. Hence the corresponding bridges are (−1)-curves. If D+(p) +D−(p) = 0 then
again by Proposition 3.10(c), F0 = ∅ and we are done. If D+(p) + D−(p) < 0 then
by Lemma 3.17 the remaining bridges Õ±

p of the feather F0 in both Dext and D∨
ext are

(−1)-curves if and only if (31) holds, as claimed in (a). Anyhow, according to Lemma
3.7(b) at least one of Õ±

p is a (−1)-curve, hence (b) follows as well in this case.

Suppose further that p+ 6= p−. By Proposition 3.10(b) the bridge Õ−
p− of the feather

F0 in Dext is a (−1)-curve and, symmetrically, the bridge Õ+
p+

of the feather F0 in D∨
ext

is a (−1)-curve. Thus by Lemma 3.17 the bridge Õ−
p+

of the feather F1 in Dext
18 is a

(−1)-curve if and only if the first inequality in (32) is fulfilled. Similarly the bridge
Õ+

p− of the feather F1 in D∨
ext is a (−1)-curve if and only if the second inequality in

(32) is satisfied. The other bridges are as well (−1)-curves due to the fact that the
feather collection {Fρ} is admissible and F1 is the only potential non-Ak-feather, see
Proposition 3.10. This implies (a) in this case. �

Remark 3.19. Switching D+ and D− amounts to interchanging Dext and D∨
ext. So

replacing the given C∗-action by its inverse one can achieve, if necessary, that the con-
clusion of Lemma 3.18(b) holds for the model with an attractive parabolic component.

Definition 3.20. Suppose that supp {D+} ⊆ {p+} and supp {D−} ⊆ {p−} with (not
necessarily distinct) points p±. By the tail of the extended divisor (28) we mean the
subgraph

(34) L = Ls+1 =
{D−(p−)} F0

= cCs+1
. . . cCn cÕ−

p− (e/∆)(p−)
,

cf. (28), (29), and by a subtail a subgraph of L of the form

(35) Lt = cCt
. . . cCn cÕ−

p− (e/∆)(p−)

with s+ 1 ≤ t ≤ n.

Lemma 3.21. If D+(p−) + D−(p−) 6= 0 then the tail L is contractible if and only if
{D+(p−)} = 0. In particular, if p+ 6= p− then L is contractible19.

Proof. Suppose first that L is contractible. By Lemma 3.7(b) the fiber π̃−1(p) with
p := p− has dual graph

(36)
{D−(p)} cÕ−

p e/∆ cÕ+
p {D+(p)}∗

=
L cÕ+

p {D+(p)}∗
,

where we use the notations of loc.cit.. If L is contractible then contracting it in the

fiber (36) leads to the divisor cA {D+(p)}∗
, where A denotes the image of Õ+

p and all

the weights in the box adorned {D+(p)}∗ are ≤ −2. This divisor has to be contractible
to a smooth fiber [[0]], which is only possible if the box is empty.

18See (29).
19Cf. [FKZ2, Proposition 5.8].



UNIQUENESS OF C∗- AND C+-ACTIONS ON GIZATULLIN SURFACES 31

Conversely, if {D+(p)} = 0 then by 3.6(4) and Lemma 3.7(b) Õ+
p has multiplicity

1 in the fiber (36), hence the rest of it, which is L, can be contracted to a smooth
point. �

Lemma 3.22. (a) If p+ 6= p− and (D+ +D−)(p−) ≤ −1 then none of the subtails Lt

with t ≥ s+ 2 is contractible. The same holds if (α+) is satisfied.
(b) If p+ 6= p− and 0 > (D+ +D−)(p−) > −1 then the subtail Ls+2 is contractible.
(c) If p+ = p− =: p, (D+ +D−)(p) 6= 0 and (31) is not satisfied then either Õ−

p is not
a (−1)-curve or the subtail Ls+2 is contractible.

Proof. If in (a) (D+ + D−)(p−) = 0 then F0 = ∅ and so every non-empty subtail of
L is minimal and hence non-contractible. Otherwise F0 6= ∅, and under the assump-
tions of (a) Lemma 3.17(a) implies (Õ+

p−)2 = −1. If a proper subtail Lt of L were
contractible then, while contracting the fiber (36) with p = p− to [[0]], at least one
component neighboring Õ+

p− would be contracted. Hence the image of Õ+
p− would have

self-intersection ≥ 0 and so it must be the full fiber. This contradicts the assumption
that t ≥ s+ 2 and so (a) holds.

(b) In this case (Õ+
p−)2 ≤ −2, see Lemma 3.17(a). If (b) does not hold then con-

tracting L, Cs+1 must be contracted before the subtail Ls+2 is contracted. It follows
that there is a proper contractible subchain, say, P of L which contains the piece
[Cs+1, . . . , Cn, Õ

−
p− ]. Contracting P in the full fiber (36) leads to a linear chain

(37) c−1 cE1
. . . cEs cÕ+

p−
,

where [E1, . . . , Es] is a subchain of the box labelled by e/∆. However, since all curves
in [E1, . . . , Es, Õ

+
p− ] have self-intersection ≤ −2, (37) cannot be blown down to [[0]],

which gives a contradiction.
(c) By Lemma 3.17(a) one of the curves Õ±

p is not a (−1)-curve. Thus, if Õ−
p is a

(−1)-curve then (Õ+
p−)2 ≤ −2. Arguing as in (b) it follows that the subtail Ls+2 is

contractible. �

Lemma 3.23. Suppose that (α+) or (β) holds. Then the divisors Dext, D
∨
ext are both

distinguished20.

Proof. Since the conditions (α+) and (β) are symmetric in D+, D−, it suffices to show
that Dext is distinguished. If for some i with 3 ≤ i ≤ s the divisor D>i

ext = D>i−2
(e) were

contractible (cf. (28)) then after contracting D>i−2
(e) inside D(e) we would obtain as dual

graph

(38) cC2

w2

. . . cCi−1

wi−1

cCi

−1

, where wj ≤ −2 ∀j = 2, . . . , i− 1 .

However, D(e) can be contracted to [[0]] while (38) cannot, a contradiction. Thus it is
enough to consider the divisors D>i

ext with i ≥ s+ 1.
If (α+) or (β) holds then by Lemma 3.22(a) the divisors D>i

ext are not contractible
for all i = s+ 1, . . . , n. Therefore Dext is distinguished. �

20See Definition 1.20.
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Theorem 3.24. If V = Spec C[t][D+, D−] is a Gizatullin C∗-surface then the following
hold.

(1) If (α+) or (β) is fulfilled then both divisors Dext, D
∨
ext are distinguished and

rigid.
(2) If (α∗) holds then at least one of the divisors Dext, D

∨
ext is rigid.

Proof. (1) Since the conditions (α+) and (β) are stable under interchanging D+ and
D−, it is enough to consider the extended divisor Dext for the standard completion of V .
By Lemmas 3.18(a) and 3.23 Dext is distinguished and all its bridges are (−1)-curves.
In particular, no feather can jump to the left, see Proposition 2.14.

If the feather collection {Fρ}ρ≥1 as in (28) is empty then also no feather can jump
to the right, so Dext is rigid. Moreover, Dext is rigid if one of the conditions (i), (ii) of
Theorem 2.17 is fulfilled.

Suppose further that {Fρ}ρ≥1 6= ∅ but 2.17(i) fails. Then in (28) s < n and D>n
ext = ∅.

In particular F0 = ∅, and so by Proposition 3.10(b,c) p+ = p− =: p and D+(p) +
D−(p) = 0. Since s < n and F0 = ∅ the tail L = D≥s+1

ext is non-empty and contains
only curves of self-intersection ≤ −2. Thus L cannot be contractible and so 2.17(ii)
holds, whence (1) follows.

(2) In view of (1) we have to consider only the case that {D+(p)} 6= 0, {D−(p)} 6= 0
and D+(p) +D−(p) 6= 0. By Lemma 3.18(b), after interchanging D± if necessary, the
bridge curves of the extended divisor Dext are all (−1)-curves. In particular, no feather
can jump to the left. According to Lemma 3.21 the tail L is not contractible and so
condition (c) in Proposition 2.15 is violated. Thus none of the feathers Fρ (ρ ≥ 1) can
jump to the right and so Dext is rigid, as required. �

Remark 3.25. 1. It is worthwhile to remark that Theorem 3.24(1) is sharp. More
precisely, let us establish the following.

(a) If neither (α∗) nor (β) are satisfied then none of the divisors Dext, D
∨
ext is rigid. If

supp {D+} ∪ supp {D−} consists of two distinct points and (β) is violated then at
least one of them is not distinguished.

(b) If p+ = p− = p and (α+) fails then none of the divisors Dext, D
∨
ext is at the same

time distinguished and rigid.

Proof. Let us first deduce (a) in the case p+ 6= p−. This means that {D+(p+)},
{D−(p−)} 6= 0 while one of the two numbers (D+ + D−)(p±) is > −1. By symme-
try it suffices to show that Dext is non-rigid.

If (D++D−)(p+) > −1 then the bridge Õ−
p+

of the feather F1 for V (cf. (29)) has self-
intersection ≤ −2 (see Lemma 3.17(a)) and soDext is non-rigid. If (D++D−)(p−) > −1
then by Lemmas 3.21 and 3.22(b) the tail L = Ls+1 in (34) and its subtail Ls+2 are
both contractible. In other words, the divisors D>s+1

ext and D≥s+1
ext are both contractible.

Thus by Proposition 2.16 with i = s and i′ = s + 1 any feather Fρ = Fs,ρ, ρ ≥ 1,
can jump to a feather F′s+1,ρ′ under a suitable specialization, and again Dext is non-
rigid. Moreover it is non-distinguished. By interchanging D+ and D−, if necessary, the
assumption (D+ +D−)(p−) > −1 is satisfied. This proves the second assertion in (a).

The proof of (a) in the case p+ = p− is similar and left to the reader.
To deduce (b) assume that p+ = p− = p. As (α+) is not satisfied we have D+(p) +

D−(p) 6= 0 while (31) does not hold. By symmetry it is enough to show that the divisor
Dext cannot be distinguished and rigid at the same time. By Lemma 3.22(c) either Õ−

p
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is not a (−1)-curve, or the subtail Ls+2 is contractible. In the first case Dext is not
rigid while in the second one it is not distinguished. �

Theorem 3.24 and Remark 3.25 imply the following.

Corollary 3.26. (a) Under the assumptions of Theorem 3.24 suppose additionally that
supp {D+}∪ supp {D−} consists of at most one point. Then at least one of the divisors
Dext, D

∨
ext is rigid if and only if (α∗) holds. Moreover the following are equivalent:

• both Dext, D
∨
ext are distinguished and rigid;

• at least one of them is;
• (α+) is fulfilled.

(b) In the case where supp {D+} ∪ supp {D−} consists of two distinct points, the fol-
lowing are equivalent:

• both Dext, D
∨
ext are distinguished;

• at least one of them is rigid;
• both of them are distinguished and rigid;
• (β) is fulfilled.

The condition that Dext, D
∨
ext are both distinguished is also necessary in order that

(β) were fulfilled. Indeed, for (D+, D−) =
(
−3

2
[p+], −1

2
[p−]

)
the divisor Dext is distin-

guished, while D∨
ext is not and both of them are non-rigid.

In the next example we exhibit two smooth Gizatullin surfaces completed by the same
zigzag, such that one of them is a C∗-surface, whereas the second one does not admit a
C∗-action, even after any logarithmic deformation keeping the divisor at infinity fixed.

Example 3.27. There exists a smooth Gizatullin C∗-surface, say V0, with boundary
zigzag [[0, 0,−4,−2,−2]], see Example 4.7.3 in [FKZ2]. To construct a second Gizat-
ullin surface, say V , let us consider the following configurationDext in a suitable blowup
V̄ → Q = P1 × P1:

Dext : cC0

0

cC1

0

cC2

−4

{Fρ}ρ=1,2

cC3

−2

cB2 −1

cC4

−2

,

where the map Φ : V̄ → Q is given by the linear systems |C0| and |C1| and the feathers
F1 and F2 consist of two single (−1)-bridges. Inspecting Proposition 3.10 we see that
this extended divisor Dext does not correspond to a Gizatullin C∗-surface.

By Proposition 2.14 the divisor Dext is stable under generalization. However, due to
Proposition 2.16 it does admit a nontrivial specialization. Namely, any of the feathers
Fρ can jump to C3 or to C4. Using Proposition 2.6(c) under such a specialization the
dual graph of Dext still has at least two branching vertices and so, cannot correspond
to a Gizatullin C∗-surface, see Proposition 3.10.

Thus indeed the surface V = V̄ \D with D = C0 + . . . + C4 cannot be deformed to
one with a C∗-action.

4. The reconstruction space

Given a Gizatullin surface, any two SNC completions are related via a birational
transformation which we call a reconstruction. Let us denote by γ the corresponding
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combinatorial transformations of the weighted dual graphs of the boundary divisors.
The main result of this section (Corollary 4.10) states that the space of all geomet-
ric reconstructions of a pair (X,D) with a given combinatorial type γ has a natural
structure of an affine space Am for some m.

4.1. Reconstructions of boundary zigzags. We use in the sequel the following
terminology from [FKZ1].

Definition 4.1. Let Γ and Γ′ be weighted graphs. A combinatorial reconstruction or
simply reconstruction of Γ into Γ′ consists in a sequence

γ : Γ = Γ0
.......
γ1

- Γ1
..........

γ2

· · · ......
γn
- Γn = Γ′ ,

where each arrow γi is either a blowup or a blowdown. The graph Γ′ is called the end
graph of γ. The inverse sequence γ−1 = (γ−1

n , . . . , γ−1
1 ) yields a reconstruction of Γ′

with end graph Γ. Reconstructions can be composed: if γ is a reconstruction of Γ with
end graph Γ′ and γ′ is a reconstruction of Γ′ with end graph Γ′′, then the sequence
(γ, γ′) gives a reconstruction of Γ into Γ′′.

A reconstruction γ is called admissible if it only involves

• blowdowns of at most linear vertices;
• inner blowups i.e., blowups at edges;
• outer blowups done at end vertices i.e., vertices of degree ≤ 1.

Thus an admissible reconstruction does not change the number of branch points of the
graph and their degrees.

4.2. We let (X,D) and (Y,E) be two pairs consisting of smooth complete surfaces and
SNC divisors on them. Similarly as in the combinatorial setting we can speak about a
reconstruction γ̃ of (X,D) into (Y,E) meaning a sequence of blowups and blowdowns

γ̃ : X = X0
......
γ̃1
- X1

........
γ̃2
- · · · ......

γ̃n
- Xn = Y ,

performed on D and on its subsequent total transforms. We say that γ̃ is of type
γ if γ is the corresponding reconstruction of the dual graph ΓD into ΓE. Clearly
the complements X\D and Y \E are isomorphic under the birational transformation
γ̃ : X 99K Y .

A reconstruction γ̃ will be called linear if there is a domination

Z

	�
�

� @
@

@R

X - Y

such that the total transform of D is a linear chain of rational curves.

The next fact follows immediately from Proposition 2.9 in [FKZ1].

Proposition 4.3. For any two standard completions (X,D) and (Y,E) of a Gizatullin
surface V there exists an admissible reconstruction of (X,D) into (Y,E).

Proposition 4.4. Let γ : Γ .......- Γ′ be an admissible reconstruction as in 4.1 between
two linear chains Γ, Γ′, and let D ⊆ X be an SNC divisor with dual graph Γ. Then
there exists a linear reconstruction γ̃ : (X,D) - (Y,E) of type γ.
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Proof. Using induction on the length n of γ we may assume that for the shorter recon-
struction γ′ : Γ = Γ0

.......- . . . .......- Γn−1 there exists already a linear reconstruction

γ̃′ : X = X0
- . . . - Xn−1

of type γ′. ThusX, Xn−1 are dominated by a blowup Zn−1 such that the total transform
D′ of D in Zn−1 is linear. Since γ is admissible the last transform γn can be either a
blowdown, an inner blowup or an outer blowup at an end vertex, see 4.1.

If γn is a blowdown then blowing down the corresponding curve in Xn−1 gives a
morphism γ̃n : Xn−1 → Y . Obviously γ̃ = (γ̃′, γ̃n) is a reconstruction of type γ
dominated by Z := Zn−1 and so is linear. The same construction works in the case
where γn is an inner or an outer blowup dominated by the contraction ΓD′ → ΓD.

We let G denote the total transform of D in Xn−1. If γn is an inner blowup which
is not dominated by the contraction ΓD′ → ΓD then we perform an additional blowup
γ̃n : Xn−1 99K Y at the corresponding double point of G. This is dominated by the
corresponding inner blowup Zn−1 99K Z. Hence Z provides a linear domination of both
X and Y , as desired.

Similarly, if γn is an outer blowup at an end vertex, say, vi of Γn−1 which is not
dominated by the contraction ΓD′ → ΓD then necessarily the proper transform v′i of
vi in ΓD′ is also an end vertex. In this case we perform additionally an outer blowup
Zn−1 99K Z at a point of the corresponding irreducible component G′

i of D′ which is
not a double point of D′. This yields a linear domination Z of both X and Y , as
required. Now the proof is completed. �

4.2. Symmetric reconstructions.

Definition 4.5. A reconstruction of a graph Γ is called symmetric if it can be written
in the form (γ, γ−1). Clearly for a symmetric reconstruction the end graph is again Γ.

We have the following results on symmetric reconstructions.

Proposition 4.6. (a) We let (X,D) and (Y,E) be two standard completions of a nor-
mal Gizatullin surface V 6∼= A1 × C∗. After replacing, if necessary, (X,D) by its
reversion (X∨, D∨) there exists a symmetric reconstruction of (X,D) into (Y,E).

(b) Let X be a normal surface and D be a complete SNC divisor on X with dual graph
Γ. Given an admissible symmetric reconstruction γ = (τ, τ−1) : Γ 99K Γ, there is a
reconstruction of (X,D) into itself of type γ.

Proof. (a) By Proposition 4.3 there exists an admissible reconstruction γ̃ : (X,D) 99K
(Y,E) of type, say, γ. Using again Proposition 4.4 we can find a linear reconstruction
η̃ : (X ′, D′) 99K (X,D) of type η := γ−1, where (X ′, D′) is another standard completion
of V . Thus the composition (η̃, γ̃) : (X ′, D′) 99K (Y,E) of type (γ−1, γ) is symmetric.
We note that our standard zigzags are different from [[0, 0, 0]] since V 6∼= A1 × C∗. As
follows from Proposition 3.4 in [FKZ1], any linear reconstruction of a standard zigzag
different from [[02k+1]] is either the identity or the reversion. Thus (X ′, D′) = (X,D)
or (X ′, D′) = (X∨, D∨).

(b) Clearly there is a reconstruction τ̃ of (X,D) of type τ . Then γ̃ = (τ̃ , τ̃−1) has
the desired properties. This completes the proof. �
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4.3. Moduli space of reconstructions. In this subsection we show that the recon-
structions of a given type form in a natural way a moduli space.

Definition 4.7. Let f : X → S be a flat family of normal surfaces and D = D1∪ . . .∪
Dr ⊆ X be a family of SNC divisors sitting in the smooth part of f . We assume that
Di → S is a smooth family of curves for every i and that the fiber D(s) forms an SNC
divisor with the same dual graph Γ in each fiber Xs. If γ is a reconstruction of Γ as in
Definition 4.1, then a reconstruction of X/S of type γ is a sequence

γ̃ : X = X0
.......
γ̃1
- X1

........
γ̃2
- · · · ......

γ̃n
- Xn ,

where at each step Xi+1 is either the blowup of Xi in a section ι : S ↪→ Xi or a blowdown
of a family of (−1)-curves C ⊆ Xi such that fiberwise γ̃ is of type γ.

In the next result we show that the set of all reconstructions of X of type γ has a
natural structure of a smooth scheme. It is convenient to formulate this result in a
relative setup.

With the notations as in Definition 4.7, if S ′ → S is a morphism of algebraic C-
schemes and γ̃ is a reconstruction of X/S of type γ then by a base change S ′ → S we
obtain a reconstruction γ̃′ of X ×S S

′/S ′. This defines a set valued functor Rγ on the
category of S-schemes that assigns to an S-scheme S ′ the set of all reconstructions of
type γ of X ×S S

′/S ′.

Proposition 4.8. With Γ and X/S as in Definition 4.7 the functor Rγ is representable.
The latter means that there exists an S-scheme R = Rγ of finite type over S and a
universal reconstruction in Rγ(R):

γ̃u : X0 := X ×S R .......
γ̃u1

- X1
........

γ̃u2
- · · · .......

γ̃un
- Xn

such that for every S-scheme S ′ and every reconstruction γ̃ ∈ Rγ(S
′) there is a unique

S-morphism g : S ′ → R satisfying γ̃ = g∗(γ̃u). Moreover R is smooth over S.

Proof. Let us first assume that γ consists of a single blowdown or an inner blowup of
Γ. We claim that in these cases R := S is the required moduli space. The universal
family γ̃u is constructed as follows. If γ is the blowdown of the vertex corresponding to
the component Dρ of D, then Dρ is a family of (−1)-curves and so can be blown down
via a map γ̃ : X → X ′ so that X ′ → S is a flat family, see Lemma 1.15. It is clear that
γ̃u := γ̃ is in this case the universal reconstruction of type γ.

Similarly, suppose that γ is the blowup of the edge joining the two vertices which
correspond to Dρ and Dτ . In particular Dρ∩Dτ is a section of X → S. Blowing up this
section leads to a morphism τ : X ′ → X , and the composed map X ′ → X → S is flat.
It is easy to check that in this case γ̃u := τ−1 ∈ Rγ(S) is the universal reconstruction
of type γ.

We assume further that γ is an outer blowup in a vertex of Γ which corresponds to
Dρ. The complement

R := Dρ\
⋃
τ 6=ρ

Dτ

is then smooth over S, and the fiber product XR := X ×S R → R is a flat family of
normal surfaces which has a canonical section given by the diagonal embedding R ↪→
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XR. The blowup τ : X ′ → XR of this section provides again a universal reconstruction
γ̃u := τ−1 ∈ Rγ(S) of type γ.

To build up the reconstruction space for an arbitrary sequence γ = (γ1, . . . , γn) as
in Definition 4.7 we proceed by induction on n. Assume that there is a universal
reconstruction space R′ for the sequence γ′ := (γ1, . . . , γn−1) of length n− 1. Thus the
universal reconstruction γ̃′u of type γ′ consists in a sequence

γ̃′u : X ′
0 = X ×S R′ .......

γ̃′u1
- X ′

1
........

γ̃′u2
- · · · .........

γ̃′un−1
- X ′

n−1

as in Definition 4.7. Let D′ ⊆ X ′
n−1 be the total transform of D×S R′ so that the dual

graph of D′ is Γn−1. Now γn : Γn−1 99K Γn is a reconstruction of length 1. Hence by
the first part of the proof there exists a universal reconstruction space R for X ′

n−1/R′,
where the universal reconstruction is a birational transformation

γ̃un : Xn−1 := X ′
n−1 ×R′ R .....- Xn .

Combining the universal properties of R′ and R it follows that R together with

γ̃u : X0 = X ×S R .....
γ̃u1
- X1 := X ′

1 ×R′ R ......
γ̃u2

- · · · .........
γ̃un−1

- Xn−1
......
γ̃un
- Xn ,

where γ̃ui := γ̃′ui ×R′ idR, forms the required universal reconstruction of type γ.
Finally let us show that R is smooth over S. Using the iterative construction of R

it is sufficient to show this for a reconstruction γ : Γ 99K Γ1 of length 1. But the latter
is immediate from the first part of the proof. �

In the case where the reconstruction is admissible we get the following important
information on the structure of R.

Proposition 4.9. Let Γ, γ and X/S be as in Definition 4.7. We let Γi denote the
dual graph of the total transform D(i) of D in Xi, and we assume that the following
conditions are fulfilled:

(i) H1(S,OS) = 0 and Pic(S) = 0.
(ii) Γ is connected, and for every i the graph Γi is not reduced to a point.
(iii) γ is admissible.

Then the reconstruction space R = Rγ is isomorphic to S × Am for some m ∈ N.

Proof. Let us first consider the case where the reconstruction γ : Γ → Γ1 has length 1.
If γ is a blowdown or an inner blowup we have R = S, hence the assertion is obvious.
If γ is an outer blowup then by our assumption it is performed in an end vertex of
Γ. The corresponding component of D, say, Dρ meets exactly one other component,
say, Dτ . The intersection Σ := Dρ ∩ Dτ is a section of the P1-bundle Dρ → S. Thus
by Lemma 1.16 Dρ → S is S-isomorphic to the product S × P1 so that the section
corresponds to S × {∞}. Since R = Dρ\Dτ by our construction, we conclude that R
is S-isomorphic to S × A1.

In the general case we proceed by induction. We consider γ′ = (γ1, . . . , γn−1) and
the universal reconstruction space R′ over S of combinatorial type γ′. By induction
hypothesis R′ is S-isomorphic to S×Am′

. Since R = Rγ is the universal reconstruction
of γn with respect to21 Xn−1 ×S R′/R′, from the first part of the proof we obtain that
R ∼= R′ or R ∼= R′ × A1, proving the result. �

21See the proof of Proposition 4.8.
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Propositions 4.8 and 4.9 lead to the following corollary.

Corollary 4.10. Let X be a normal surface, and let D be an SNC divisor in Xreg with
dual graph Γ. Given a reconstruction γ of Γ, the set Rγ of all reconstructions of X of
type γ has a natural structure of a smooth scheme. Moreover if γ is admissible then
Rγ

∼= Am for some m ≥ 0.

5. Applications

Here we prove Theorems 0.1 and 0.2 on the uniqueness of C∗- and C+-actions. The
proofs are based on the results of the previous sections and on Theorem 5.2 below,
which states that a standard completion of a Gizatullin surface with a distinguished
and rigid extended divisor Dext is up to reversion (see 1.4) unique.

5.1. The main technical result. To formulate our result let us first fix the notations.

5.1. Let V be a non-toric Gizatullin surface and let (V̄ , D) and (V̄ ′, D′) be standard
completions of V . We also consider the minimal resolutions of singularities V ′, (Ṽ , D),
(Ṽ ′, D′) of V , (V̄ , D) and (V̄ ′, D′), respectively. As in 1.5 we let

Φ = Φ0 × Φ1 : Ṽ → P1 × P1 and Φ′ = Φ′
0 × Φ′

1 : Ṽ ′ → P1 × P1

denote the standard morphism and Dext, D
′
ext the extended divisors.

Reversing the zigzag D′ = [[0, 0, w′2, . . . , w
′
n]] by a sequence of inner elementary

transformations provides the standard completion (V̄ ′∨, D′∨), see 1.4.

Theorem 5.2. Assume that the extended divisor Dext of (Ṽ , D) is distinguished and
rigid. After replacing (V̄ ′, D′) by (V̄ ′∨, D′∨) if necessary there is an isomorphism f :
V̄ → V̄ ′ with f(D) = D′.

Note that this isomorphism is not the identity on the affine part V , in general.

Proof. Replacing (V̄ ′, D′) by (V̄ ′∨, D′∨) if necessary, by Proposition 4.6(a) there is
a reconstruction γ̃′ from (Ṽ , D) to (Ṽ ′, D′) of type, say γ, which is admissible and
symmetric. Thus γ̃′ can be considered as a point in the reconstruction space R =
Rγ

∼= Am, see Corollary 4.10. By Proposition 4.6(b) there is also a reconstruction γ̃ of

(Ṽ , D) of type γ into itself. Let

γ̃u : X0 = Ṽ ×R .......
γ̃u1

- X1
........

γ̃u2
- · · · .........

γ̃un−1
- Xn−1

......
γ̃un

- Xn

be the universal reconstruction of combinatorial type γ and consider the family Ṽ :=
Xn together with the total transform D of D × R in Ṽ . Thus (Ṽ ,D) is a family of
completions of V ′ over the reconstruction space R as considered in Proposition 1.21.
Moreover, by construction the completions (Ṽ , D) and (Ṽ ′, D′) are the fibers over the
points γ̃, γ̃′ ∈ R, respectively.

Let now Dext be the family of extended divisors of (Ṽ ,D). Its fiber over γ̃ is Dext

and so is rigid. Hence the family of extended divisors Dext has the same dual graph
over each point of R. By Proposition 1.21 the family (Ṽ ,D) is trivial and so there
is an isomorphism (Ṽ , D) × R ∼= (Ṽ ,D). Restricting it to the fiber over γ̃′ gives an

isomorphism f̃ : (Ṽ , D) → (Ṽ ′, D′) that induces an isomorphism f : V̄ → V̄ ′ with the
desired property. �
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In particular, in the situation of Theorem 5.2 it follows that the extended divisors
Dext, D

′
ext, considered as schemes via their reduced structures, are isomorphic at least

after reversion, if necessary. It is important to note that this holds even without the
assumption that Dext is distinguished:.

Proposition 5.3. With the notations as in 5.1, assume that the extended divisor Dext

of (Ṽ , D) is rigid. After replacing (V̄ ′, D′) by (V̄ ′∨, D′∨), if necessary, the corresponding

extended divisors are isomorphic as reduced curves under an isomorphism f̃ : Dext →
D′

ext with f̃(D) = D′ preserving the weights.

Proof. As in the proof above the family of extended divisors Dext has the same dual
graph over each point of R ∼= Am. Since the fibers of Dext are trees of rational curves
with at least 2 components, the result is immediate from Corollary 1.17. �

5.2. Uniqueness of C∗-actions. In Theorem 5.4 below we deduce part (1) of Theo-
rem 0.2.

Theorem 5.4. Let V = Spec C[t][D+, D−] be a non-toric normal Gizatullin surface
satisfying one of the following two conditions.

(α∗) supp {D+} ∪ supp {D−} is empty or consists of one point, say p, where

D+(p) +D−(p) ≤ −1 or {D+(p)} 6= 0 6= {D−(p)}.
(β) supp {D+} = {p+} and supp {D−} = {p−} for two distinct points p+, p−, where

D+(p+) +D−(p+) ≤ −1 and D+(p−) +D−(p−) ≤ −1 .

Then the C∗-action on V is unique, up to conjugation in the group Aut(V ) and up to
inversion λ 7→ λ−1 in C∗. Moreover the given C∗-action is conjugate to its inverse if
and only if there is an automorphism ψ : A1 → A1 such that

ψ∗(D−)−D+ is integral and ψ∗(D+ +D−) = D+ +D− .

Proof. Let Λ,Λ′ : C∗ × V → V be two C∗-actions on V , where Λ is the given one. We
consider the corresponding equivariant standard completions (V̄ , D) and (V̄ ′, D′) of V .
After reversing the first one, if necessary, its extended divisor Dext is rigid according
to Theorem 3.24. Applying Proposition 5.3, after reversing (V̄ ′, D′), if necessary, the
extended divisors Dext and D′

ext are isomorphic. Since by Proposition 5.12 in [FKZ2]
and its proof a non-toric Gizatullin C∗-surface is uniquely determined by its extended
divisor, the first part follows. The second one is a consequence of Lemma 3.14. �

Applying Theorem 5.4 to smooth Gizatullin C∗-surfaces, we obtain the following

Corollary 5.5. If V = Spec C[t][D+, D−] is a non-toric smooth Gizatullin C∗-surface,
then its C∗-action is uniquely determined up to conjugation and inversion unless its
standard zigzag is

(39) [[0, 0, (−2)s−2, ws, (−2)n−s]] , where ws ≤ −2, n ≥ 4 and 2 ≤ s ≤ n .

Proof. Suppose that supp {D+} ⊆ {p+} and supp {D−} ⊆ {p−}. If p+ = p− =: p
and {D+(p)} 6= 0 6= {D−(p)} then by Theorem 5.4 the C∗-action is unique up to
conjugation and inversion. Otherwise either p+ 6= p− or one of the fractional parts
{D+}, {D−} vanishes. Anyhow the smoothness of V implies the desired form (39) of
the dual graph of D, see Remark 3.11(2). �
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5.3. Uniqueness of A1-fibrations.

5.6. In this subsection we consider a normal Gizatullin surface V with a fixed standard
completion (V̄ , D), where D = [[0, 0, w2, . . . , wn]] is a zigzag with irreducible compo-
nents C0, . . . , Cn. As usual the linear system |C0| defines an A1-fibration Φ0 : V → A1.
Reversion as in 1.4 provides the standard completion (V̄ ∨, D∨) so that D∨ has irre-
ducible components C∨

0 , . . . , C
∨
n with self-intersections [[0, 0, wn, . . . , w2]]. The linear

system |C∨
0 | defines a second A1-fibration Φ∨

0 : V → A1, which we call the reverse
fibration. We say that two A1-fibrations ϕ, ϕ′ : V → A1 are conjugate if ϕ′ = β ◦ ϕ ◦ α
for some automorphisms α of V and β of A1.

In Theorem 5.10 below we give a partial answer to the following problem.

Problem 5.7. Suppose that V is not a Danilov-Gizatullin surface. Is then every A1-
fibration ϕ : V → A1 conjugate to one of the standard A1-fibrations Φ0,Φ

∨
0 ?

A complete answer is known in the case of normal Gizatullin surface with a finite
divisor class group [DR]. The problem above is actually equivalent to the uniqueness
problem for C+-actions on V in the sense of (3) and (4) below. Let us recall some
standard facts concerning C+-actions.

5.8. (1) ([Re]) If C+ acts on an affine algebraic C-scheme V = SpecA then the associ-
ated derivation ∂ on A is locally nilpotent, i.e. for every f ∈ A we can find n ∈ N such
that ∂n(f) = 0. Conversely, given a locally nilpotent C-linear derivation ∂ : A → A
the map ϕ : C+ × A→ A with ϕ(t, f) := et∂f defines an action of C+ on V .

(2) (See e.g., [ML1, Zai]) Assume that A as in (1) above is a domain and let
∂ ∈ DerCA be a locally nilpotent derivation of A. Then the subalgebra ker ∂ =
AC+ ⊆ A is algebraically and factorially closed, or inert22, in A, and the field ex-
tension Frac(ker ∂) ⊆ FracA has transcendence degree 1. Moreover for any u ∈ FracA
with u∂(A) ⊆ A, the derivation u∂ ∈ DerCA is locally nilpotent if and only if
u ∈ Frac(ker ∂).

If A as in (1) above is normal then the ring of invariants AC+ is normal too. If
dimA ≤ 3 then by a classical result of Zariski [Zar] AC+ is finitely generated and
C = Spec AC+ is the algebraic quotient V//C+. Thus the orbit map V → C provides
an A1-fibration.

(3) Conversely if a normal affine surface V admits an A1-fibration V → C over a
smooth affine curve C, then there exists a non-trivial regular C+-action on V along
this fibration. It is unique up to multiplication of an infinitesimal generator ∂ with an
element u ∈ Frac(ker ∂) as in (2) above.

(4) As mentioned in the introduction, every normal affine surface V which is not a
Gizatullin surface admits at most one A1-fibration over A1, see [BML].

We restrict in the sequel to A1-fibrations on Gizatullin surfaces. Let us provide
several examples of such fibrations.

Example 5.9. 1. Let V = C[t][D+, D−] be a Gizatullin C∗-surface. Taking in 5.6 an
equivariant standard completion the A1-fibrations Φ0, Φ∨

0 on V are equivariant with
respect to suitable C∗-actions on A1. By Proposition 3.25 in [FlZa2], they are given by

22The latter means that ab ∈ ker ∂ ⇒ a, b ∈ ker ∂.
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two homogeneous elements

(40) v+ : V → A1 and v− : V → A1

of positive and negative degree, respectively. Moreover, by loc. cit. any other A1-
fibration ϕ : V → A1 compatible with the C∗-action on V is equal to v+ or v−.

2. The toric surface Vd,e = A2//Zd (see 1.8) admits many hyperbolic C∗-actions.
Indeed, for any coprime integers a, b the action t.(x, y) := (tax, tby), t ∈ C∗, on A2

descends to V , and in the case where ab < 0 it is hyperbolic. Up to a twist, the
A1-fibrations v± : V → A1 are induced by the projections (x, y) 7→ x, (x, y) 7→ y,
respectively.

3. Let now V = Vk+1 be a Danilov-Gizatullin surface, see [FKZ2], section 5.3.
According to loc.cit., Corollary 5.16(b) V carries at least bk+1

2
c pairwise non-conjugate

A1-fibrations Vk+1 → A1.

The following theorem is the main result of this subsection.

Theorem 5.10. Let V be a Gizatullin surface with a distinguished and rigid extended
divisor23 Dext. Then every A1-fibration ϕ : V → A1 is conjugate to one of Φ0, Φ∨

0 .

Before starting the proof, let us make the following observation.

5.11. Consider a semistandard completion24 (V̄ ′, D′) of a Gizatullin surface V , where
D′ = C ′

0 + . . . + C ′
n and (C ′

0)
2 = 0. Then the linear system |C ′

0| defines a morphism
Φ′

0 : V̄ ′ → P1 which restricts to an A1-fibration V → A1.
Conversely, we claim that any A1-fibration ϕ : V → A1 is induced by the standard A1-

fibration of a suitable standard completion (V̄ , D) of V . Indeed, given an A1-fibration
ϕ : V → A1, there exists an effective C+-action on V along this fibration, see 5.8(3). By
virtue of Lemma 1.3(c) one can find an equivariant semistandard completion (V̄ ′, D′)
of V such that ϕ extends to a morphism ϕ′ : V̄ ′ → P1. Performing a sequence of
elementary transformations with centers at the fiber C ′

0 of ϕ′, one can reach a standard
completion, say, (V̄ , D) of V , where this time D = C0+. . .+Cn with C2

0 = C2
1 = 0. The

morphism Φ0 : V̄ → P1 defined by the linear system |C0| restricts again to ϕ : V → A1.

Proof of Theorem 5.10. We let as in 5.6 (V̄ , D) denote the standard completion of V
with standard A1-fibration Φ0, and we let (V̄ ′, D′) denote another such standard pair
with standard morphism as in 5.11 inducing the given fibration ϕ : V → A1.

Since by our assumption the extended divisor Dext is distinguished and rigid, The-
orem 5.2 applies. By this theorem, (V̄ , D) is isomorphic to one of the pairs (V̄ ′, D′),
(V̄ ′∨, D′∨) or, equivalently, (V̄ ′, D′) is isomorphic to one of (V̄ , D), (V̄ ∨, D∨). In par-
ticular ϕ is conjugate to Φ0 or Φ∨

0 under this isomorphism. �

The following lemma shows that the extended divisor is uniquely determined by ϕ.

Lemma 5.12. Let (V̄ , D) and (V̄ ′, D′) be two standard completions of the same Gizat-
ullin surface V . If the associated A1-fibrations Φ0,Φ

′
0 : V → A1 are conjugate then there

is an isomorphism f : Dext → D′
ext of the corresponding extended divisors (regarded as

reduced curves) with f(D) = D′, which preserves the weights.

23This is fulfilled for instance if the assumptions of Theorem 2.17 hold.
24See 1.2.
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Proof. We may assume that the automorphism of V which conjugates Φ0 and Φ′
0

extends to a birational map f̃ : Ṽ - Ṽ ′ of the minimal resolutions of V̄ , V̄ ′ with
Φ′

0 ◦ f̃ = Φ0. If D = C0 + . . .+Cn and D′ = C ′
0 + . . .+C ′

n then clearly f̃ is regular at
the points of C1\(C0 ∪C2). Performing elementary transformations on Ṽ with centers

at C0, if necessary, we may suppose that f̃ is biregular along C0, so that f̃−1 is also
regular along (C ′

0∪C ′
1)\C ′

2. Contracting the divisors25 C2+. . .+Cn and C ′
2+. . .+C

′
n on

the surfaces Ṽ and Ṽ ′ to singular points p, p′, respectively, yields two normal surfaces
W and W ′. Moreover f̃ induces a birational map f̄ : W → W ′ which is an isomorphism
outside p, p′. By the Riemann extension theorem f̄ is actually an isomorphism. Then
also f̃ , obtained from f̄ via minimal resolution of singularities, is an isomorphism.
Hence f̃ induces an isomorphism of the boundaries and the extended divisors of the
two completions. Since (C ′

1)
2 = 0, also C2

1 = 0 and so the standard zigzag D remains
the same under the elementary transformations above. Now the lemma follows. �

Let us apply these results to a C∗-surface V = Spec C[t][D+, D−]. In this case
we choose in 5.6 the equivariant standard completion (V̄ , D) so that Φ0 and Φ∨

0 are
equivariant. The next result yields part (2) of Theorem 0.2.

Corollary 5.13. We let V = Spec C[t][D+, D−] be a Gizatullin C∗-surface. If one of
the conditions (α+), (β) of 3.16 is fulfilled, then the following hold.

(1) Every A1-fibration V → A1 is conjugate to one of Φ0 or Φ∨
0 .

(2) Assume furthermore that V is non-toric. The A1-fibrations Φ0, Φ∨
0 are then con-

jugate if and only if {D+(p+)} = {D−(p−)} and the divisor D+ + D− is stable
under an automorphism of A1 interchanging p+ and p−. In the latter case up to
conjugation there is only one A1-fibration V → A1.

Proof. By Theorem 3.24 under our assumptions the extended divisor Dext is distin-
guished and rigid. So (1) follows directly from Theorem 5.10. To deduce (2), assume
first that {D+(p+)} = {D−(p−)} and D+ + D− = ψ∗(D+ + D−) for an appropriate
automorphism ψ ∈ Aut(A1) interchanging p+ and p−. By Lemma 3.14 the C∗-surfaces
SpecA0[D+, D−] and SpecA0[D−, D+] with A0 = C[t] are isomorphic. This isomor-
phism interchanges the fibrations v+ and ψ ◦ v− as in Example 5.9(1). Hence Φ0, Φ∨

0

are conjugate.
Suppose now that Φ0, Φ∨

0 are conjugate. By Lemma 5.12 there is an isomorphism
of extended divisors f : Dext → D′

ext as reduced curves with f(D) = D′ preserving
the weights. According to Proposition 5.12 in [FKZ2] and its proof the C∗-surfaces
SpecA0[D+, D−] and SpecA0[D−, D+] are equivariantly isomorphic. Now the assertion
follows from Lemma 3.14. �

As a particular case we obtain the following result, which was proved in the smooth
case by Daigle [Dai] and Makar-Limanov [ML2].

Corollary 5.14. Let V be a normal surface in A3
C with equation xy = P (t), where

P (t) 6= 0 is a polynomial. Then every A1-fibration on V is conjugate to x : V → A1.

Proof. According to Example 4.10 in [FlZa2], V admits a DPD presentation V =
Spec C[t][D+, D−] with integral divisors D+ = 0 and D− = −div(P ). Thus condition

25Both of them have negatively definite intersection forms.
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(α+) is fulfilled and so the result follows from Corollary 5.13(1,2) in virtue of Remark
3.15. �

Let us finally examine A1-fibrations of affine toric surfaces.

Proposition 5.15. The toric surface Vd,e
∼= A2//Zd (see 1.8) admits at most 2 conju-

gacy classes of A1-fibrations over A1. Moreover, there is only one such conjugacy class
if and only if e2 ≡ 1 mod d.

Proof. The DPD presentation of Vd,e considered in the proof of Lemma 3.12 satisfies
(α+). Applying Corollary 5.13 gives the first part. To prove the second assertion, we
assume first that e2 ≡ 1 mod d. Using the notations of Example 5.9(1), (2) the affine
fibrations Φ0, Φ∨

0 are induced by the projections (x, y) 7→ x and (x, y) 7→ y. Because
of our assumption the map h : (x, y) 7→ (y, x) satisfies h(ζ.(x, y)) = ζe.(y, x). Hence
h induces an automorphism h̄ on the quotient Vd,e that interchanges these projections
and thus also Φ0 and Φ∨

0 .
Conversely assume that the A1-fibrations Φ0, Φ∨

0 are conjugate in Aut(V ). According
to Lemma 5.12 the standard zigzag D of V is symmetric. Due to Lemma 3.12 D and
the reversed zigzag D∨ are given by

D : c0 c0 d−e
d
, D∨ : c0 c0 d−e′

d
,

where 0 ≤ e, e′ < d and ee′ ≡ 1 mod d, cf. 1.9. Hence D and D∨ are equal if and only
if e = e′ or, equivalently, e2 ≡ 1 mod d. �
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str. 150, 44780 Bochum, Germany

E-mail address: Hubert.Flenner@ruhr-uni-bochum.de

Department of Mathematics, University of Miami, Coral Gables, FL 33124, U.S.A.
E-mail address: kaliman@math.miami.edu
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