EMBEDDINGS OF \mathbb{C}^*-SURFACES INTO WEIGHTED PROJECTIVE SPACES

HUBERT FLENNER, SHULIM KALIMAN, AND MIKHAIL ZAIDENBERG

Abstract. Let V be a normal affine surface which admits a \mathbb{C}^*- and a \mathbb{C}_+-action. Such surfaces were classified e.g., in [FlZa1, FlZa2], see also the references therein. In this note we show that in many cases V can be embedded as a principal Zariski open subset into a hypersurface of a weighted projective space. In particular, we recover a result of D. Daigle and P. Russell, see Theorem A in [DR].

1. Introduction

If $V = \text{Spec } A$ is a normal affine surface equipped with an effective \mathbb{C}^*-action, then its coordinate ring A carries a natural structure of a \mathbb{Z}-graded ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$. As was shown in [FlZa1], such a \mathbb{C}^*-action on V has a hyperbolic fixed point if and only if $C = \text{Spec } A_0$ is a smooth affine curve and $A_{\pm 1} \neq 0$. The structure of the graded ring A can be elegantly described in this case in terms of a pair (D_+, D_-) of \mathbb{Q}-divisors on C with $D_+ + D_- \leq 0$. More precisely, A is the graded subring $A = A_0[D_+, D_-] \subseteq K_0[u, u^{-1}], \quad K_0 := \text{Frac } A_0,$

where for $i \geq 0$

$A_i = \{ f \in K_0 \mid \text{div } f + iD_+ \geq 0 \} u^i \quad \text{and} \quad A_{-i} = \{ f \in K_0 \mid \text{div } f + iD_- \geq 0 \} u^{-i}.$

This presentation of A (or V) is called in [FlZa1] a DPD-presentation. Furthermore, two pairs (D_+, D_-) and (D_+', D'_-) define equivariantly isomorphic surfaces over C if and only if they are equivalent that is,

$D_+ = D_+' + \text{div } f \quad \text{and} \quad D_- = D_-'+ - \text{div } f \quad \text{for some } f \in K_0^\times.$

Our main result (Theorem 2.4) states that if such a surface V admits also a \mathbb{C}_+-action then it can be \mathbb{C}^*-equivariantly embedded (up to normalization) into a weighted projective space minus a hyperplane; see also Remark 2.5 and Corollary 2.6 below. In particular we recover the following difficult result of Daigle and Russell (see [DR, Theorem A]; cf. also Remark 3.4 below).

Theorem 1.1. Let V be a normal Gizatullin surface1 with a finite divisor class group. Then V can be embedded into a weighted projective plane $\mathbb{P}(a, b, c)$ minus a hypersurface. More precisely:

(a) If $V = V_{d,e}$ is toric2 then V is equivariantly isomorphic to the open part3 $\mathbb{D}_+(z)$ of the weighted projective plane $\mathbb{P}(1, e, d)$ equipped with homogeneous coordinates $(x : y : z)$ and with the 2-torus action $(\lambda_1, \lambda_2).(x : y : z) = (\lambda_1 x : \lambda_2 y : z)$.

1That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below.

2See 3.1(a) below.

3We use the standard notation $V_+(f) = \{ f = 0 \}$ and $\mathbb{D}_+(f) = \{ f \neq 0 \}$.

1
(b) If V is non-toric then $V \cong \mathbb{D}_+(xy - z^m) \subseteq \mathbb{P}(a,b,c)$ for some positive integers a, b, c satisfying $a + b = cm$ and $\gcd(a,b) = 1$.

2. Embeddings of \mathbb{C}^*-surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa1] every normal affine \mathbb{C}^*-surface V is equivariantly isomorphic to the normalization of a weighted homogeneous surface V' in \mathbb{A}^4. In some cases (described in loc.cit.) V' can be chosen to be a hypersurface in \mathbb{A}^3. Cf. also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.4 below (see also Remark 2.5) we show that any normal hyperbolic \mathbb{C}^*-surface V with a \mathbb{C}_+-action is the normalization of a principal Zariski open subset of some weighted projective hypersurface.

For our purposes it is convenient to consider also weighted projective spaces with any weights in \mathbb{Z} as introduced in [BS]. More precisely, if A is a finitely generated \mathbb{Z}-graded algebra over \mathbb{C} then we can form ProjA to be the scheme covered by the affine pieces $D_+(f) = \text{Spec} A(f)$, where $f \in A$ is homogeneous of non-zero degree and $A(f) = (A)$0. In particular for any $d_0, \ldots, d_n \in \mathbb{Z}$ we can form a weighted projective space $\mathbb{P}(d_0, \ldots, d_n) = \text{Proj} \mathbb{C}[T_0, \ldots, T_d]$, where $\deg T_i = d_i$ for $i = 0, \ldots, d$. We note that this space is in general not complete.

In the proofs we use the following observation from [Fl]; this Proposition was formulated in loc.cit. only for positively graded algebras. We note that this result – with exactly the same proof – is also valid for \mathbb{Z}-graded rings as stated here.

Proposition 2.1. Let $R = \bigoplus_{i \in \mathbb{Z}} R_i$ be a graded R_0-algebra of finite type containing the field of rational numbers \mathbb{Q} and the group $E_d \cong \mathbb{Z}/d\mathbb{Z}$ of dth roots of unity, where $d > 0$. If $z \in R_d$ then E_d acts on R and then also on $R/(z - 1)$ via

$$\zeta \cdot a = \zeta^i \cdot a \quad \text{for} \quad a \in R_i, \quad \zeta \in E_d,$$

with ring of invariants $(R/(z - 1))^{E_d} \cong (R[1/z])_0$. Consequently

$$(\text{Spec } R/(z - 1))/E_d \cong \mathbb{D}_+(z)$$

is isomorphic to the complement of the hypersurface $\{z = 0\}$ in Proj(R).

We also recall the following result.

Proposition 2.2. Let $V = \text{Spec } A$ be a normal hyperbolic \mathbb{C}^*-surface with DPD-presentation

$$A = A_0[D_+, D_-] \subseteq \text{Frac}(A_0)[u, u^{-1}],$$

where (D_+, D_-) is a pair of \mathbb{Q}-divisors on the curve $C = \text{Spec } A_0$ with $D_+ + D_- \leq 0$. Then the following are equivalent.

(a) V carries a \mathbb{C}_+-action;

(b) $A_0 \cong \mathbb{C}[t]$, and after interchanging (D_+, D_-), if necessary, the fractional part $\{D_+\}$ of D_+ is supported at one point.

For a proof we refer the reader to [FlZa2], Corollary 3.23.

2.3. We let now $V = \text{Spec } A_0[D_+, D_-]$ be a normal hyperbolic \mathbb{C}^*-surface carrying also a \mathbb{C}_+-action. Using Proposition 2.2 we can assume that $A_0 = \mathbb{C}[t]$ and that, after
interchanging \((D_+, D_-)\) and passing to an equivalent pair, if necessary,
\[
D_+ = \frac{-e_+}{d} [0] \quad \text{with} \quad 0 < e_+ \leq d, \\
D_- = \frac{-e_-}{d} [0] - \frac{1}{k} D_0 \quad \text{with} \quad k > 0, \ e_+ + e_- \geq 0
\]
and an integral effective divisor \(D_0\), where \(D_0(0) = 0\). We choose a polynomial \(Q \in \mathbb{C}[t]\) with \(D_0 = \text{div}(Q)\); so \(Q(0) \neq 0\).

Theorem 2.4. Let \(F\) be the polynomial
\[
F = x^k y - s^{k(e_++e_-)} Q(s^d/z) z^{\deg Q} \in \mathbb{C}[x, y, z, s],
\]
which is weighted homogeneous of degree \(k(e_++e_-)+d \deg Q\) with respect to the weights
\[
deg x = e_+, \quad deg y = ke_- + d \deg Q, \quad deg z = d, \quad deg s = 1.
\]
Then the surface \(V\) as in 2.3 above is equivariantly isomorphic to the normalization of the principal Zariski open subset \(\mathcal{D}_+(z)\) of the hypersurface \(\mathbb{V}_+(F)\) in the weighted projective 3-space
\[
\mathbb{P} = \mathbb{P}(e_+, ke_- + d \deg Q, d, 1).
\]

Proof. With \(s = \sqrt[3]{d}\) the field \(L = \text{Frac}(A)[s]\) is a cyclic extension of \(K = \text{Frac}(A)\). Its Galois group is the group of \(d\)th roots of unity \(E_d\) acting on \(L\) via the identity on \(K\) and by \(\zeta.s = \zeta \cdot s\) if \(\zeta \in E_d\). The normalization \(A'\) of \(A\) in \(L\) is stabilized by the action of \(E_d\) with invariant ring \(A = A'^{E_d}\). According to Proposition 4.12 in [FlZa]
\[
A' = \mathbb{C}[s][D'_+, D'_-] \subseteq \mathbb{C}(s)[u, u^{-1}]
\]
with \(D'_+ = \pi_d^*(D_+)\), where \(\pi_d : \mathbb{A}^1 \to \mathbb{A}^1\) is the covering \(s \mapsto s^d\). Thus

\[
(D'_+, D'_-) = \left(-e_+[0], -e_-[0] - \frac{1}{k} \pi_d^*(D_0) \right) = \left(-e_+[0], -e_-[0] - \frac{1}{k} \text{div}(Q(s^d)) \right).
\]

The element \(x = s^{e_+} u \in A'_1\) is a generator of \(A'_1\) as a \(\mathbb{C}[s]\)-module. According to Example 4.10 in [FlZa] the graded algebra \(A'\) is isomorphic to the normalization of

\[
B = \mathbb{C}[x, y, s]/(x^k y - s^{k(e_++e_-)} Q(s^d)).
\]

More precisely, \(B\) can be considered as the subalgebra of \(L\) generated over \(\mathbb{C}\) by the elements
\[
s, \quad x = s^{e_+} u, \quad \text{and} \quad y = x^{-k} s^{k(e_++e_-)} Q(s^d).
\]

Here the action of \(E_d\) is given by

\[
\zeta.s = \zeta s, \quad \zeta.x = \zeta^{e_+} x, \quad \zeta.y = \zeta^{e_-} y.
\]

In particular this action stabilizes \(B\). Assigning to \(x, y, z, s\) the degrees as in (4), \(F\) as in (3) is indeed weighted homogeneous. Since \(F(x, y, 1, s) = x^k y - s^{k(e_++e_-)} Q(s^d)\), the graded algebra

\[
R = \mathbb{C}[x, y, z, s]/(F)
\]
satisfies \(R/(z-1) \cong B\). Applying Proposition 2.1 \(\text{Spec } B^{E_d}\) is isomorphic to \(\mathcal{D}_+(z) \cap \mathbb{V}_+(F)\) in the weighted projective space \(\mathbb{P}\). Thus the normalizations of \(\text{Spec } B^{E_d}\) and \(\mathcal{D}_+(z) \cap \mathbb{V}_+(F)\) are isomorphic as well. As normalization commutes with taking invariants the normalization of \(B^{E_d}\) is just \(A'^{E_d} = A\), proving our result. \(\Box\)
Remark 2.5. In general not all weights of the weighted projective space \(\mathbb{P} \) in (5) are positive. Indeed it can happen that \(ke_- + d \deg Q \leq 0 \). In this case we can choose \(\alpha \in \mathbb{N} \) with \(ke_- + d(\deg Q + \alpha) > 0 \) and consider instead of \(F \) the polynomial
\[
\tilde{F} = x^ky - s^{k(e_+ + e_-)}Q(s^d/z)z^{\deg Q + \alpha} \in \mathbb{C}[x, y, z, s],
\]
which is now weighted homogeneous of degree \(k(e_+ + e_-) + d(\deg Q + \alpha) \) with respect to the positive weights
\[
\text{deg } x = e_+ , \quad \text{deg } y = ke_- + d(\deg Q + \alpha) , \quad \text{deg } z = d , \quad \text{deg } s = 1.
\]
As before \(V = \text{Spec } A \) is isomorphic to the normalization of the principal open subset \(\mathbb{D}_+(z) \) of the hypersurface \(\mathbb{V}_+(F) \) in the weighted projective space
\[
\mathbb{P} = \mathbb{P}(e_+, ke_- + d(\deg Q + \alpha), d, 1).
\]
In certain cases it is unnecessary in Theorem 2.4 to pass to normalization.

Corollary 2.6. Assume that in (2) one of the following conditions is satisfied.

(i) \(k = 1 \);
(ii) \(e_+ + e_- = 0 \), and \(D_0 \) is a reduced divisor.

Then \(V = \text{Spec } A \) is equivariantly isomorphic to the principal open subset \(\mathbb{D}_+(z) \) of the weighted projective hypersurface \(\mathbb{V}_+(F) \) as in (3) in the weighted projective space \(\mathbb{P} \) from (5).

Proof. In case (i) the hypersurface in \(\mathbb{A}^3 \) with equation
\[
F(x, y, 1, s) = xy - s^{e_+ + e_-}Q(s^d) = 0
\]
is normal. In other words, the quotient \(R/(z-1) \) of the graded ring \(R = \mathbb{C}[x, y, z, s]/(F) \) is normal and so is its ring of invariants \((R/(z-1))^{Eq} \). Comparing with Theorem 2.4 the result follows.

Similarly, in case (ii)
\[
F(x, y, 1, s) = x^ky - Q(s^d).
\]
Since the divisor \(D_0 \) is supposed to be reduced and \(D_0(0) = 0 \), the polynomials \(Q(t) \) and then also \(Q(s^d) \) both have simple roots. Hence the hypersurface \(F(x, y, 1, s) = 0 \) in \(\mathbb{A}^3 \) is again normal, and the result follows as before.

Remark 2.7. The surface \(V \) as in 2.3 is smooth if and only if \(D_0 \) is reduced and \(-m_+(D_+(0) + D_-(0)) = 1 \), where \(m_\pm > 0 \) are the denominators in the irreducible representation of \(D_\pm(0) \), see Proposition 4.15 in [FIZa1]. It can happen, however, that \(V \) is smooth but the surface \(\mathbb{V}_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P} \) has non-isolated singularities. For instance, if in 2.3 \(D_0 = 0 \) (and so \(Q = 1 \)), then \(V \) is an affine toric surface\(^4\). In fact, every affine toric surface different from \((\mathbb{A}^1)^2 \) or \(\mathbb{A}^1 \times \mathbb{A}^1 \) appears in this way, see Lemma 4.2(b) in [FKZ4].

In this case the integer \(k > 0 \) can be chosen arbitrarily. For any \(k > 1 \), the affine hypersurface \(\mathbb{V}_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P} \) with equation \(x^ky - s^{k(e_+ + e_-)} = 0 \) has non-isolated singularities and hence is non-normal. Its normalization \(V = \text{Spec } A \) can be given as the Zariski open part \(\mathbb{D}_+(z) \) of the hypersurface \(\mathbb{V}_+(x^{y'} - s^{e_+ + e_-}) \) in \(\mathbb{P}' = \mathbb{P}(e_+, e_-, d, 1) \) (which corresponds to the choice \(k = 1 \)). Indeed, the element \(y' = s^{e_+ + e_-}/x \in K \) with \(y'^k = y \) is integral over \(A \). However cf. Theorem 1.1(a).

\(^4\)See 3.1(a) below.
Example 2.8. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin surface $V(n)$ of index n is the complement to a section S in a Hirzebruch surface Σ_d, where $S^2 = n > d$. By a remarkable result of Danilov and Gizatullin [DaGi, Theorem 5.8.1] up to an isomorphism such a surface only depends on n and neither on d nor on the choice of the section S; see also [CNR], [FKZ$_3$] for alternative proofs.

According to [FKZ$_1$, §5], up to conjugation $V(n)$ carries exactly $(n - 1)$ different \mathbb{C}^*-actions. They admit DPD-presentations with $A_0 = \mathbb{C}[t]$ and

$$(D_+, D_-) = \left(-\frac{1}{d}[0], -\frac{1}{n - d}[1] \right), \quad \text{where} \quad d = 1, \ldots, n - 1.$$ Applying Theorem 2.4 with $e_+ = 1$, $e_- = 0$, and $k = n - d$, the \mathbb{C}^*-surface $V(n)$ is the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $V_+(F_{n,d}) \subseteq \mathbb{P}(1,d,d,1)$ of degree n, where

$$F_{n,d}(x,y,z,s) = x^{n-d}y - s^{n-d}(s^d - z).$$ Taking here $d = 1$ it follows that $V(n)$ is isomorphic to the normalization of the hypersurface $x^{n-1}y - (s - 1)s^{n-1} = 0$ in \mathbb{A}^3.

As our next example, let us consider yet another remarkable class of surfaces. These were studied from different viewpoints e.g., in [MM, Theorem 1.1], [FKZ$_3$, Theorem 1.1(iii)], [GMMR, 3.8-3.9], [KK, Theorem 1.1. and Example 1], [Za, Theorem 1(b) and Lemma 7]. Collecting results from loc.cit. and from this section, we obtain the following equivalent characterizations.

Theorem 2.9. For a smooth affine surface V, the following conditions are equivalent.

(i) V is not Gizatullin and admits an effective \mathbb{C}^*-action and an \mathbb{A}^1-fibration $V \to \mathbb{A}^1$ with exactly one degenerate fiber, which is irreducible5.
(ii) V is \mathbb{Q}-acyclic, $\bar{k}(V) = -\infty$ 6 and V carries a curve $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \geq 0$.
(iii) V is \mathbb{Q}-acyclic and admits an effective \mathbb{C}^*- and \mathbb{C}_+-actions. Furthermore, the \mathbb{C}^*-action possesses an orbit closure $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \geq 0$.
(iv) The universal cover $\tilde{V} \to V$ is isomorphic to a surface $x^k y - (s^d - 1) = 0$ in \mathbb{A}^3, with the Galois group $\pi_1(V) \cong E_d$ acting via $\zeta_1(x,y,s) = (\zeta x, \zeta^{-k} y, \zeta^e s)$, where $k > 1$ and $\gcd(e,d) = 1$.
(v) V is isomorphic to the \mathbb{C}^*-surface with DPD presentation $\text{Spec} \mathbb{C}[t][D_+, D_-]$, where

$$(D_+, D_-) = \left(-\frac{e}{d}[0], \frac{e}{d}[0] - \frac{1}{k}[1] \right) \quad \text{with} \quad 0 < e \leq d, \quad \gcd(e,d) = 1, \quad \text{and} \quad k > 1.$$ (vi) V is isomorphic to the Zariski open subset7

$$\mathbb{D}_+(x^k y - s^d) \subseteq \mathbb{P}(e, d - ke, 1), \quad \text{where} \quad 0 < e \leq d, \quad \gcd(e,d) = 1, \quad \text{and} \quad k > 1.$$ In view of the references cited above it remains to show that the surfaces in (v) and (vi) are isomorphic. By Corollary 2.6(ii) with $e_+ = -e_- = e$, the surface V as in (v) is

5Since V is not Gizatullin there is actually a unique \mathbb{A}^1-fibration $V \to \mathbb{A}^1$. A surface V as in (i) is necessarily a \mathbb{Q}-homology plane (or \mathbb{Q}-acyclic) that is, all higher Betti numbers of V vanish.

6As usual, \bar{k} stands for the logarithmic Kodaira dimension.

7In the case where $d - ke < 0$, see Remark 2.5.
isomorphic to the principal open subset $\mathbb{D}_+(z)$ in the weighted projective hypersurface

$$V_+(x^k y - (s^d - z)) \subseteq \mathbb{P}(e, d - ke, d, 1).$$

Eliminating z from the equation $x^k y - (s^d - z) = 0$ yields (vi).

These surfaces admit as well a constructive description in terms of a blowup process starting from a Hirzebruch surface, see [GMMR, 3.8] and [KK, Example 1].

An affine line $\Gamma \cong \mathbb{A}^1$ on V as in (ii) is distinguished because it cannot be a fiber of any \mathbb{A}^1-fibration of V. There is always a family of such affine lines on V, see [Za].

Some of the surfaces as in Theorem 2.9 can be properly embedded in \mathbb{A}^3 as Bertin surfaces $x^e y - x - s^d = 0$, see [FlZa2, Example 5.5] or [Za, Example 1].

3. Gizatullin surfaces with a finite divisor class group

A Gizatullin surface is a normal affine surface completed by a zigzag i.e., a linear chain of smooth rational curves. By a theorem of Gizatullin [Gi] such a surface can be characterized by the property that it admits two \mathbb{C}^*-actions with different general orbits, unless it is isomorphic to $\mathbb{A}^1 \times \mathbb{A}^1$.

In this section we give an alternative proof of the Daigle-Russell Theorem 1.1 cited in the Introduction. It will be deduced from the following result proven in [FKZ2, Corollary 5.16].

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is isomorphic to one of the following surfaces.

(a) The toric surfaces $V_{d,e} = \mathbb{A}^2 / E_d$, where the group $E_d \cong \mathbb{Z}/d\mathbb{Z}$ of d-th roots of unity acts on \mathbb{A}^2 via

$$\zeta.(x, y) = (\zeta x, \zeta^e y).$$

(b) The non-toric \mathbb{C}^*-surfaces $V = \text{Spec} \mathbb{C}[t][D_+, D_-]$, where

$$(10) \quad (D_+, D_-) = \left(\frac{e}{m}[p], \frac{e}{m}[p] - c[q]\right) \quad \text{with} \quad c \geq 1, \quad p, q \in \mathbb{A}^1, \quad p \neq q,$$

and with coprime integers e, m such that $1 \leq e < m$.

Conversely, any normal affine \mathbb{C}^*-surface V as in (a) or (b) is a Gizatullin surface with a finite divisor class group.

Let us now deduce Theorem 1.1.

3.2. Proof of Theorem 1.1

To prove (a), we note that according to 2.1 the cyclic group E_d acts on the ring $\mathbb{C}[x,y,z]/(z-1) \cong \mathbb{C}[x,y]$ via $\zeta.x = \zeta x$, $\zeta.y = \zeta^e y$, and $\zeta.z = z$, where

$$\deg x = 1, \quad \deg y = e, \quad \text{and} \quad \deg z = d.$$

Hence $\mathbb{D}_+(z) = \text{Spec} \mathbb{C}[x,y]^{E_d} = V_{d,e}$, as required in (a).

To show (b) we consider $V = \text{Spec} A$ as in 3.1(b), where

$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].$$

By definition (see (1)) the homogeneous pieces $A_{\pm 1}$ of A are generated as $\mathbb{C}[t]$-modules by the elements

$$u_+ = tu \quad \text{and} \quad u_- = (t-1)^e u^{-1},$$

and similarly $A_{\pm m}$ by

$$v_+ = t^e u^m \quad \text{and} \quad v_- = t^{-e}(t-1)^m u^{-m}.$$
Thus
\[u^m_+ = t^{m-e}v_+, \quad u^m_- = t^ev_-, \quad \text{and} \quad u_+u_- = t(t-1)^e. \]
The algebra \(A \) is the integral closure of the subalgebra generated by \(u_+, v_+ \) and \(t \).

Consider now the normalization \(A' \) of \(A \) in the field \(L = \text{Frac}(A)[u'_+] \), where
\begin{equation}
(11) \quad u'_+ = \sqrt[d]{ v_+ } \quad \text{with} \quad d = cm. \end{equation}
Clearly the elements \(\sqrt[d]{ v_+ } = t^{ \frac{ e }{ m } } u_+ \) and also \(t^{ \frac{ e }{ m } } \) both belong to \(L \). Since \(e \) and \(m \) are coprime we can choose \(\alpha, \beta \in \mathbb{Z} \) with \(\alpha(e - m) + \beta m = 1 \). It follows that the element \(\tau := t^{ \frac{ m }{ d } } = t^{ \alpha \frac{ e }{ m } - \beta e } \) is as well in \(L \) whence being integral over \(A \) we have \(\tau \in A' \).

The element \(u'_+ \) as in \((11) \) and then also \(u'_- := \sqrt[d]{ v_- } = (t-1)(\sqrt[d]{ v_+ })^{-1} \) belongs to \(A' \). Now \(v_+v_- = (t-1)^cm \), so taking \(d \)th roots we get for a suitable choice of the root \(u'_- \),
\begin{equation}
(12) \quad u'_+u'_- = \tau^m - 1. \end{equation}
We note that \(u_+, v_+ \) and \(t \) are contained in the subalgebra \(B = \mathbb{C}[u'_+, u'_-, \tau] \subseteq A' \). The equation \((12) \) defines a smooth surface in \(A^3 \). Hence \(B \) is normal and so
\[A' = B \cong \mathbb{C}[u'_+, u'_-, \tau] / (u'_+u'_- - (\tau^m - 1)). \]

By Lemma 3.3 below, for a suitable \(\gamma \in \mathbb{Z} \) the integers \(a = e - \gamma m \) and \(d \) are coprime. We may assume as well that \(1 \leq a < d \). We let \(E_d \) act on \(A' \) via \(\zeta.u'_+ = \zeta^a u'_+ \) and \(\zeta.A = \text{id}_A \). Since \(\gcd(a, d) = 1 \), \(A \) is the invariant ring of this action. We claim that the action of \(E_d \) on \((u'_+, u'_-, \tau)\) is given by
\begin{equation}
(13) \quad \zeta.u'_+ = \zeta^a u'_+, \quad \zeta.u'_- = \zeta^{-a} u'_-, \quad \zeta.\tau = \zeta^c \tau, \end{equation}
where \(b = d - a \). Indeed, the equality \(u'_+ = t^{ \frac{ e }{ m } } u_+ = \tau^{e-m} u_+ \) implies that \(\zeta.\tau^{e-m} = \zeta^{ac} \tau^{e-m} \). Since \(\tau = \tau^{a(e - m)} t^\beta \) the element \(\zeta \in E_d \) acts on \(\tau \) via \(\zeta.\tau = \zeta^{a\alpha} \tau \). In view of the congruence \(\alpha \equiv 1 \mod m \) the last expression equals \(\zeta^c \tau \). Now the last equality in \((13) \) follows. In the equation \(u'_+u'_- = \tau^m - 1 \) the term on the right is invariant under \(E_d \). Hence also the term on the left is. This provides the second equality in \((13) \).

The algebra \(B = \mathbb{C}[u'_+, u'_-, \tau] \) is naturally graded via
\[\deg u'_+ = a, \quad \deg u'_- = b, \quad \text{and} \quad \deg \tau = c. \]
According to Proposition 2.1 \(\text{Spec } A = \text{Spec } A^{E_d} \) is the complement of the hypersurface \(\mathbb{V}_+(f) \) of degree \(d = a + b \) in the weighted projective plane
\[\mathbb{P}(a, b, c) , \quad \text{where} \quad f = u'_+u'_- - \tau^m , \]
proving (b).

To complete the proof we still have to show the following elementary lemma.

Lemma 3.3. Assume that \(e, m \in \mathbb{Z} \) are coprime. Then for every \(c \geq 2 \) there exists \(\gamma \in \mathbb{Z} \) such that \(\gamma m - e \) and \(c \) are coprime.

Proof. Write \(c = c'd \) such that \(c' \) and \(m \) are coprime and every prime factor of \(d \) divides \(m \). Then for any \(\gamma \in \mathbb{Z} \) the integers \(\gamma m - e \) and \(d \) are coprime. Hence it is enough to establish the existence of \(\gamma \in \mathbb{Z} \) such that \(\gamma m - e \) and \(c' \) are coprime. However, the latter is evident since the residue classes of \(\gamma m, \gamma \in \mathbb{Z} \), in \(\mathbb{Z}/c'\mathbb{Z} \) cover this group. \(\square \)
Remark 3.4. We can also recover the criterion given in Theorem A(3) in [DR] for when two surfaces as in Theorem 1.1 are isomorphic. More precisely we can argue in the cases (a) and (b) of this theorem as follows.

(a) It is a classical fact that two toric surfaces \(V_{d,e}^d\) and \(V_{d',e'}^{d'}\) are isomorphic if and only if \((d,e) = (d',e')\) or \(d = d'\) and \(ee' \equiv 1 \mod d\), see e.g. [FlZa1, Remark 2.5]. Hence two triples \((1,e,d)\) and \((1,e',d')\) as in Theorem 1.1(a) define isomorphic surfaces if and only if \((d,e) = (d',e')\) or \(d = d'\) and \(ee' \equiv 1 \mod d\). We note that here the abstract isomorphism type and equivariant isomorphism type amount to the same.

(b) As follows from Theorem 0.2 in [FKZ2], the integers \(c, m\) in Theorem 1.1(b) are invariants of the (abstract) isomorphism type of \(V\). Indeed, the fractional parts of both divisors \(D^\pm\) as in (10) being nonzero and concentrated at the same point, there is a unique DPD presentation for \(V\) up to interchanging \(D^+\) and \(D^-\), passing to an equivalent pair and applying an automorphism of the affine line \(A^1 = \text{Spec} \mathbb{C}[t]\).

Furthermore, from the proof of Theorem 1.1 one can easily derive that

\[
a \equiv e \mod m \quad \text{and} \quad b = mc - a \equiv -e \mod m .
\]

Therefore also the pair \((a,b)\) is uniquely determined by the (abstract) isomorphism type of \(V\) up to a transposition and up to replacing \((a,b)\) by \((a',b') = (a-sm, b+sm)\), while keeping \(\gcd(a',b') = 1\).

References

Fakultät für Mathematik, Ruhr Universität Bochum, Geb. NA 2/72, Universitätsstr. 150, 44780 Bochum, Germany

E-mail address: Hubert.Flenner@ruhr-uni-bochum.de

Department of Mathematics, University of Miami, Coral Gables, FL 33124, U.S.A.

E-mail address: kaliman@math.miami.edu

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France

E-mail address: zaidenbe@ujf-grenoble.fr