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Abstract. Let V be a normal affine surface which admits a C∗- and a C+-action.
Such surfaces were classified e.g., in [FlZa1, FlZa2], see also the references therein. In
this note we show that in many cases V can be embedded as a principal Zariski open
subset into a hypersurface of a weighted projective space. In particular, we recover a
result of D. Daigle and P. Russell, see Theorem A in [DR]. weighted projective space,
C∗-action, C+-action, affine surface

1. Introduction

If V = Spec A is a normal affine surface equipped with an effective C∗-action, then
its coordinate ring A carries a natural structure of a Z-graded ring A =

⊕
i∈ZAi. As

was shown in [FlZa1], such a C∗-action on V has a hyperbolic fixed point if and only if
C = Spec A0 is a smooth affine curve and A±1 6= 0. The structure of the graded ring
A can be elegantly described in this case in terms of a pair (D+, D−) of Q-divisors on
C with D+ + D− ≤ 0. More precisely, A is the graded subring

A = A0[D+, D−] ⊆ K0[u, u−1] , K0 := Frac A0,

where for i ≥ 0

(1) Ai = {f ∈ K0 | divf + iD+ ≥ 0}ui and A−i = {f ∈ K0 | divf + iD− ≥ 0}u−i .

This presentation of A (or V ) is called in [FlZa1] a DPD-presentation. Furthermore
two pairs (D+, D−) and (D′

+, D′
−) define equivariantly isomorphic surfaces over C if

and only if they are equivalent that is,

D+ = D′
+ + divf and D− = D′

− − divf for some f ∈ K×
0 .

Our main result (Theorem 2.4) states that if such a surface V admits also a C+-action
then it can be C∗-equivariantly embedded (up to normalization) into a weighted pro-
jective space as a hypersurface minus a hyperplane; see also Remark 2.5 and Corollary
2.6 below. In particular we recover the following difficult result of Daigle and Russell
(see [DR, Theorem A]; cf. also Remark 3.4 below).

Theorem 1.1. Let V be a normal Gizatullin surface1 with a finite divisor class group.
Then V can be embedded into a weighted projective plane P(a, b, c) minus a hypersur-
face. More precisely:

(a) If V = Vd,e is toric2 then V is equivariantly isomorphic to the open part3 D+(z)
of the weighted projective plane P(1, e, d) equipped with homogeneous coordinates
(x : y : z) and with the 2-torus action (λ1, λ2).(x : y : z) = (λ1x : λ2y : z).

1That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below.
2See 3.1(a) below.
3We use the standard notation V+(f) = {f = 0} and D+(f) = {f 6= 0}.
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(b) If V is non-toric then V ∼= D+(xy − zm) ⊆ P(a, b, c) for some positive integers
a, b, c satisfying a + b = cm and gcd(a, b) = 1.

2. Embeddings of C∗-surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa1] every normal affine C∗-surface V is equiv-
ariantly isomorphic to the normalization of a weighted homogeneous surface V ′ in A4.
In some cases (described in loc.cit.) V ′ can be chosen to be a hypersurface in A3. Cf.
also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.4 below (see also Remark 2.5) we show that any normal hyperbolic
C∗-surface V with a C+-action is the normalization of a principal Zariski open subset
of some weighted projective hypersurface.

For our purposes it is convenient to consider also weighted projective spaces with
any weights in Z as introduced in [BS]. More precisely, if A is a finitely generated
Z-graded algebra over C then we can form Proj A to be the scheme covered by the
affine pieces D+(f) = Spec A(f), where f ∈ A is homogeneous of non-zero degree and
A(f) = (Af )0. In particular for any d0, . . . , dn ∈ Z we can form a weighted projective
space P(d0, . . . , dn) = ProjC[T0, . . . , Td], where deg Ti = di for i = 0, . . . , d. We note
that this space is in general not complete.

In the proofs we use the following observation from [Fl]; this Proposition was for-
mulated in loc.cit. only for positively graded algebras. We note that this result – with
exactly the same proof – is also valid for Z-graded rings as stated here.

Proposition 2.1. Let R =
⊕

i∈ZRi be a graded R0-algebra of finite type containing
the field of rational numbers Q and the group Ed

∼= Z/dZ of dth roots of unity, where
d > 0. If z ∈ Rd then Ed acts on R and then also on R/(z − 1) via

ζ.a = ζ i · a for a ∈ Ri, ζ ∈ Ed,

with ring of invariants (R/(z − 1))Ed ∼= (R[1/z])0. Consequently

(Spec R/(z − 1))/Ed
∼= D+(z)

is isomorphic to the complement of the hypersurface {z = 0} in Proj(R).

We also recall the following result.

Proposition 2.2. Let V = Spec A be a normal hyperbolic C∗-surface with DPD-
presentation

A = A0[D+, D−] ⊆ Frac(A0)[u, u−1] ,

where (D+, D−) is a pair of Q-divisors on the curve C = Spec A0 with D+ + D− ≤ 0.
Then the following are equivalent.

(a) V carries a C+-action;
(b) A0

∼= C[t], and after interchanging (D+, D−), if necessary, the fractional part
{D+} of D+ is supported at one point.

For a proof we refer the reader to [FlZa2], Corollary 3.23.

2.3. We let now V = Spec A0[D+, D−] be a normal hyperbolic C∗-surface carrying
also a C+-action. Using Proposition 2.2 we can assume that A0 = C[t] and that, after
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interchanging (D+, D−) and passing to an equivalent pair, if necessary,

(2)
D+ = − e+

d
[0] with 0 < e+ ≤ d ,

D− = − e−
d

[0]− 1
k
D0 with k > 0, e+ + e− ≥ 0

and an integral effective divisor D0, where D0(0) = 0. We choose a polynomial Q ∈ C[t]
with D0 = div(Q); so Q(0) 6= 0.

Theorem 2.4. Let F be the polynomial

(3) F = xky − sk(e++e−)Q(sd/z)zdeg Q ∈ C[x, y, z, s] ,

which is weighted homogeneous of degree k(e++e−)+d deg Q with respect to the weights

(4) deg x = e+ , deg y = ke− + d deg Q , deg z = d , deg s = 1 .

Then the surface V as in 2.3 above is equivariantly isomorphic to the normalization
of the principal Zariski open subset D+(z) of the hypersurface V+(F ) in the weighted
projective 3-space

(5) P = P(e+, ke− + d deg Q, d, 1) .

Proof. With s = d
√

t the field L = Frac(A)[s] is a cyclic extension of K = Frac(A). Its
Galois group is the group of dth roots of unity Ed acting on L via the identity on K
and by ζ.s = ζ · s if ζ ∈ Ed. The normalization A′ of A in L is stabilized by the action
of Ed with invariant ring A = A′Ed . According to Proposition 4.12 in [FlZa1]

A′ = C[s][D′
+, D′

−] ⊆ C(s)[u, u−1]

with D′
± = π∗d(D±), where πd : A1 → A1 is the covering s 7→ sd. Thus

(
D′

+, D′
−
)

=

(
−e+[0], −e−[0]− 1

k
π∗d(D0)

)
=

(
−e+[0],−e−[0]− 1

k
div(Q(sd))

)
.

The element x = se+u ∈ A′
1 is a generator of A′

1 as a C[s]-module. According to
Example 4.10 in [FlZa1] the graded algebra A′ is isomorphic to the normalization of

(6) B = C[x, y, s]/(xky − sk(e++e−)Q(sd)) .

More precisely, B can be considered as the subalgebra of L generated over C by the
elements

(7) s, x = se+u, and y = x−ksk(e++e−)Q(sd).

Here the action of Ed is given by

ζ.s = ζs , ζ.x = ζe+x , ζ.y = ζke−y .

In particular this action stabilizes B. Assigning to x, y, z, s the degrees as in (4), F as
in (3) is indeed weighted homogeneous. Since F (x, y, 1, s) = xky − sk(e++e−)Q(sd), the
graded algebra

R = C]x, y, z, s]/(F )

satisfies R/(z − 1) ∼= B. Applying Proposition 2.1 Spec BEd is isomorphic to D+(z) ∩
V+(F ) in the weighted projective space P. Thus the normalizations of Spec BEd and
D+(z)∩V+(F ) are isomorphic as well. As normalization commutes with taking invari-
ants the normalization of BEd is just A′Ed = A, proving our result. ¤
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Remark 2.5. In general not all weights of the weighted projective space P in (5) are
positive. Indeed it can happen that ke− + d deg Q ≤ 0. In this case we can choose
α ∈ N with ke− + d(deg Q + α) > 0 and consider instead of F the polynomial

(8) F̃ = xky − sk(e++e−)Q(sd/z)zdeg Q+α ∈ C[x, y, z, s] ,

which is now weighted homogeneous of degree k(e+ + e−) + d(deg Q + α) with respect
to the positive weights

(9) deg x = e+ , deg y = ke− + d(deg Q + α) , deg z = d , deg s = 1 .

As before V = Spec A is isomorphic to the normalization of the principal open subset
D+(z) of the hypersurface V+(F ) in the weighted projective space

P = P(e+, ke− + d(deg Q + α), d, 1) .

In certain cases it is unnecessary in Theorem 2.4 to pass to normalization.

Corollary 2.6. Assume that in (2) one of the following conditions is satisfied.

(i) k = 1;
(ii) e+ + e− = 0, and D0 is a reduced divisor.

Then V = Spec A is equivariantly isomorphic to the principal open subset D+(z) of
the weighted projective hypersurface V+(F ) as in (3) in the weighted projective space P
from (5).

Proof. In case (i) the hypersurface in A3 with equation

F (x, y, 1, s) = xy − se++e−Q(sd) = 0

is normal. In other words, the quotient R/(z−1) of the graded ring R = C[x, y, z, s]/(F )

is normal and so is its ring of invariants (R/(z − 1))Ed . Comparing with Theorem 2.4
the result follows.

Similarly, in case (ii)
F (x, y, 1, s) = xky −Q(sd) .

Since the divisor D0 is supposed to be reduced and D0(0) = 0, the polynomials Q(t)
and then also Q(sd) both have simple roots. Hence the hypersurface F (x, y, 1, s) = 0
in A3 is again normal, and the result follows as before. ¤
Remark 2.7. The surface V as in 2.3 is smooth if and only if D0 is reduced and
−m+m−(D+(0) + D−(0)) = 1, where m± > 0 are the denominators in the irreducible
representation of D±(0), see Proposition 4.15 in [FlZa1]. It can happen, however, that
V is smooth but the surface V+(F ) ∩ D+(z) ⊆ P has non-isolated singularities. For
instance, if in 2.3 D0 = 0 (and so Q = 1), then V is an affine toric surface4. In fact,
every affine toric surface different from (A1

∗)
2 or A1×A1

∗ appears in this way, see Lemma
4.2(b) in [FKZ1].

In this case the integer k > 0 can be chosen arbitrarily. For any k > 1, the affine
hypersurface V+(F ) ∩ D+(z) ⊆ P with equation xky − sk(e++e−) = 0 has non-isolated
singularities and hence is non-normal. Its normalization V = Spec A can be given as
the Zariski open part D+(z) of the hypersurface V+(xy′−se++e−) in P′ = P(e+, e−, d, 1)
(which corresponds to the choice k = 1). Indeed, the element y′ = se++e−/x ∈ K with
y′k = y is integral over A. However cf. Theorem 1.1(a).

4See 3.1(a) below.
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Example 2.8. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin sur-
face V (n) of index n is the complement to a section S in a Hirzebruch surface Σd,
where S2 = n > d. By a remarkable result of Danilov and Gizatullin [DaGi, Theorem
5.8.1] up to an isomorphism such a surface only depends on n and neither on d nor on
the choice of the section S; see also [CNR], [FKZ3] for alternative proofs.

According to [FKZ1, §5], up to conjugation V (n) carries exactly (n − 1) different
C∗-actions. They admit DPD-presentations with A0 = C[t] and

(D+, D−) =

(
−1

d
[0], − 1

n− d
[1]

)
, where d = 1, . . . , n− 1 .

Applying Theorem 2.4 with e+ = 1, e− = 0, and k = n − d, the C∗-surface V (n) is
the normalization of the principal open subset D+(z) of the hypersurface V+(Fn,d) ⊆
P(1, d, d, 1) of degree n, where

Fn,d(x, y, z, s) = xn−dy − sn−d(sd − z) .

Taking here d = 1 it follows that V (n) is isomorphic to the normalization of the
hypersurface xn−1y − (s− 1)sn−1 = 0 in A3.

As our next example, let us consider yet another remarkable class of surfaces. These
were studied from different viewpoints e.g., in [MM, Theorem 1.1], [FlZa3, Theorem
1.1(iii)], [GMMR, 3.8-3.9], [KK, Theorem 1.1. and Example 1], [Za, Theorem 1(b)
and Lemma 7]. Collecting results from loc.cit. and from this section, we obtain the
following equivalent characterizations.

Theorem 2.9. For a smooth affine surface V , the following conditions are equivalent.

(i) V is not Gizatullin and admits an effective C∗-action and an A1-fibration V → A1

with exactly one degenerate fiber, which is irreducible5.
(ii) V is Q-acyclic, k̄(V ) = −∞ 6 and V carries a curve Γ ∼= A1 with k̄(V \ Γ) ≥ 0.
(iii) V is Q-acyclic and admits an effective C∗- and C+-actions. Furthermore, the

C∗-action possesses an orbit closure Γ ∼= A1 with k̄(V \ Γ) ≥ 0.
(iv) The universal cover Ṽ → V is isomorphic to a surface xky − (sd − 1) = 0 in A3,

with the Galois group π1(V ) ∼= Ed acting via ζ.(x, y, s) = (ζx, ζ−ky, ζes), where
k > 1 and gcd(e, d) = 1.

(v) V is isomorphic to the C∗-surface with DPD presentation SpecC[t][D+, D−],
where

(D+, D−) =

(
−e

d
[0],

e

d
[0]− 1

k
[1]

)
with 0 < e ≤ d, gcd(e, d) = 1, and k > 1 .

(vi) V is isomorphic to the Zariski open subset 7

D+(xky − sd) ⊆ P(e, d− ke, 1), where 0 < e ≤ d, gcd(e, d) = 1, and k > 1 .

In view of the references cited above it remains to show that the surfaces in (v) and
(vi) are isomorphic. By Corollary 2.6(ii) with e+ = −e− = e, the surface V as in (v) is

5Since V is not Gizatullin there is actually a unique A1-fibration V → A1. A surface V as in (i) is
necessarily a Q-homology plane (or Q-acyclic) that is, all higher Betti numbers of V vanish.

6As usual, k̄ stands for the logarithmic Kodaira dimension.
7In the case where d− ke < 0, see Remark 2.5.
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isomorphic to the principal open subset D+(z) in the weighted projective hypersurface

V+(xky − (sd − z)) ⊆ P(e, d− ke, d, 1) .

Eliminating z from the equation xky − (sd − z) = 0 yields (vi).
These surfaces admit as well a constructive description in terms of a blowup process

starting from a Hirzebruch surface, see [GMMR, 3.8] and [KK, Example 1].
An affine line Γ ∼= A1 on V as in (ii) is distinguished because it cannot be a fiber of

any A1-fibration of V . There is always a family of such affine lines on V , see [Za].
Some of the surfaces as in Theorem 2.9 can be properly embedded in A3 as Bertin

surfaces xey − x− sd = 0, see [FlZa2, Example 5.5] or [Za, Example 1].

3. Gizatullin surfaces with a finite divisor class group

A Gizatullin surface is a normal affine surface completed by a zigzag i.e., a linear
chain of smooth rational curves. By a theorem of Gizatullin [Gi] such a surface can
be characterized by the property that it admits two C+-actions with different general
orbits, unless it is isomorphic to A1 × A1

∗.
In this section we give an alternative proof of the Daigle-Russell Theorem 1.1 cited

in the Introduction. It will be deduced from the following result proven in [FKZ2,
Corollary 5.16].

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is
isomorphic to one of the following surfaces.

(a) The toric surfaces Vd,e = A2/Ed, where the group Ed
∼= Z/dZ of d-th roots of unity

acts on A2 via
ζ.(x, y) = (ζx, ζey) .

(b) The non-toric C∗-surfaces V = SpecC[t][D+, D−], where

(10) (D+, D−) =
(
− e

m
[p],

e

m
[p]− c[q]

)
with c ≥ 1, p, q ∈ A1, p 6= q ,

and with coprime integers e, m such that 1 ≤ e < m.

Conversely, any normal affine C∗-surface V as in (a) or (b) is a Gizatullin surface
with a finite divisor class group.

Let us now deduce Theorem 1.1.

3.2. Proof of Theorem 1.1. To prove (a), we note that according to 2.1 the cyclic
group Ed acts on the ring C[x, y, z]/(z − 1) ∼= C[x, y] via ζ.x = ζx, ζ.y = ζey, and
ζ.z = z, where

deg x = 1 , deg y = e, and deg z = d .

Hence D+(z) = SpecC[x, y]Ed = Vd,e, as required in (a).
To show (b) we consider V = Spec A as in 3.1(b), where

A = C[t][D+, D−] ⊆ C(t)[u, u−1] .

By definition (see (1)) the homogeneous pieces A±1 of A are generated as C[t]-modules
by the elements

u+ = tu and u− = (t− 1)cu−1 ,

and similarly A±m by

v+ = teum and v− = t−e(t− 1)cmu−m .
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Thus

um
+ = tm−ev+, um

− = tev−, and u+u− = t(t− 1)c .

The algebra A is the integral closure of the subalgebra generated by u±, v± and t.
Consider now the normalization A′ of A in the field L = Frac(A)[u′+], where

(11) u′+ = d
√

v+ with d = cm .

Clearly the elements m
√

v+ = t
e−m

m u+ and then also t
e−m

m both belong to L. Since e
and m are coprime we can choose α, β ∈ Z with α(e −m) + βm = 1. It follows that

the element τ := t
1
m = tα

e−m
m tβ is as well in L whence being integral over A we have

τ ∈ A′.
The element u′+ as in (11) and then also u′− := d

√
v− = (t−1)( d

√
v+)−1 belongs to A′.

Now v+v− = (t− 1)cm, so taking dth roots we get for a suitable choice of the root u′−,

(12) u′+u′− = τm − 1 .

We note that u±, v± and t are contained in the subalgebra B = C[u′+, u′−, τ ] ⊆ A′. The
equation (12) defines a smooth surface in A3. Hence B is normal and so

A′ = B ∼= C[u′+, u′−, τ ]/(u′+u′− − (τm − 1)) .

By Lemma 3.3 below, for a suitable γ ∈ Z the integers a = e− γm and d are coprime.
We may assume as well that 1 ≤ a < d. We let Ed act on A′ via ζ.u′+ = ζau′+ and
ζ|A = idA. Since gcd(a, d) = 1, A is the invariant ring of this action. We claim that
the action of Ed on (u′+, u′−, τ) is given by

(13) ζ.u′+ = ζau′+, ζ.u′− = ζ−au′− = ζbu′− and ζ.τ = ζcτ ,

where b = d − a. Indeed, the equality u′c+ = t
e−m

m u+ = τ e−mu+ implies that ζ.τ e−m =

ζacτ e−m. Since τ = τα(e−m)tβ the element ζ ∈ Ed acts on τ via ζ.τ = ζαcaτ . In view of
the congruence αa ≡ 1 mod m the last expression equals ζcτ . Now the last equality
in (13) follows. In the equation u′+u′− = τm−1 the term on the right is invariant under
Ed. Hence also the term on the left is. This provides the second equality in (13).

The algebra B = C[u′+, u′−, τ ] is naturally graded via

deg u′+ = a, deg u′− = b, and deg τ = c .

According to Proposition 2.1 Spec A = Spec A′Ed is the complement of the hypersurface
V+(f) of degree d = a + b in the weighted projective plane

P(a, b, c), where f = u′+u′− − τm ,

proving (b).

To complete the proof we still have to show the following elementary lemma.

Lemma 3.3. Assume that e, m ∈ Z are coprime. Then for every c ≥ 2 there exists
γ ∈ Z such that γm− e and c are coprime.

Proof. Write c = c′d such that c′ and m are coprime and every prime factor of d divides
m. Then for any γ ∈ Z the integers γm− e and d are coprime. Hence it is enough to
establish the existence of γ ∈ Z such that γm − e and c′ are coprime. However, the
latter is evident since the residue classes of γm, γ ∈ Z, in Z/c′Z cover this group. ¤
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Remark 3.4. We can also recover the criterion given in Theorem A(3) in [DR] for
when two surfaces as in Theorem 1.1 are isomorphic. More precisely we can argue in
the cases (a) and (b) of this theorem as follows.

(a) It is a classical fact that two toric surfaces Vd,e and Vd′,e′ are isomorphic if and
only if (d, e) = (d′, e′) or d = d′ and ee′ ≡ 1 mod d, see e.g. [FlZa1, Remark 2.5]. Hence
two triples (1, e, d) and (1, e′, d′) as in Theorem 1.1(a) define isomorphic surfaces if and
only if (d, e) = (d′, e′) or d = d′ and ee′ ≡ 1 mod d. We note that here the abstract
isomorphism type and equivariant isomorphism type amount to the same.

(b) As follows from Theorem 0.2 in [FKZ2], the integers c,m in Theorem 1.1(b) are
invariants of the (abstract) isomorphism type of V . Indeed, the fractional parts of
both divisors D± as in (10) being nonzero and concentrated at the same point, there
is a unique DPD presentation for V up to interchanging D+ and D−, passing to an
equivalent pair and applying an automorphism of the affine line A1 = SpecC[t].

Furthermore, from the proof of Theorem 1.1 one can easily derive that

a ≡ e mod m and b = mc− a ≡ −e mod m.

Therefore also the pair (a, b) is uniquely determined by the (abstract) isomorphism
type of V up to a transposition and up to replacing (a, b) by (a′, b′) = (a−sm, b+sm),
while keeping gcd(a′, b′) = 1.
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