EMBEDDINGS OF \mathbb{C}^* -SURFACES INTO WEIGHTED PROJECTIVE SPACES

HUBERT FLENNER, SHULIM KALIMAN, AND MIKHAIL ZAIDENBERG

ABSTRACT. Let V be a normal affine surface which admits a \mathbb{C}^* - and a \mathbb{C}_+ -action. Such surfaces were classified e.g., in [FlZa₁, FlZa₂], see also the references therein. In this note we show that in many cases V can be embedded as a principal Zariski open subset into a hypersurface of a weighted projective space. In particular, we recover a result of D. Daigle and P. Russell, see Theorem A in [DR]. weighted projective space, \mathbb{C}^* -action, \mathbb{C}_+ -action, affine surface

1. INTRODUCTION

If $V = \operatorname{Spec} A$ is a normal affine surface equipped with an effective \mathbb{C}^* -action, then its coordinate ring A carries a natural structure of a Z-graded ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$. As was shown in [FlZa₁], such a \mathbb{C}^* -action on V has a hyperbolic fixed point if and only if $C = \operatorname{Spec} A_0$ is a smooth affine curve and $A_{\pm 1} \neq 0$. The structure of the graded ring A can be elegantly described in this case in terms of a pair (D_+, D_-) of Q-divisors on C with $D_+ + D_- \leq 0$. More precisely, A is the graded subring

$$A = A_0[D_+, D_-] \subseteq K_0[u, u^{-1}], \quad K_0 := \operatorname{Frac} A_0,$$

where for $i \ge 0$

(1) $A_i = \{f \in K_0 \mid \operatorname{div} f + iD_+ \ge 0\} u^i$ and $A_{-i} = \{f \in K_0 \mid \operatorname{div} f + iD_- \ge 0\} u^{-i}$.

This presentation of A (or V) is called in [FlZa₁] a *DPD-presentation*. Furthermore two pairs (D_+, D_-) and (D'_+, D'_-) define equivariantly isomorphic surfaces over C if and only if they are *equivalent* that is,

$$D_+ = D'_+ + \operatorname{div} f$$
 and $D_- = D'_- - \operatorname{div} f$ for some $f \in K_0^{\times}$.

Our main result (Theorem 2.4) states that if such a surface V admits also a \mathbb{C}_+ -action then it can be \mathbb{C}^* -equivariantly embedded (up to normalization) into a weighted projective space as a hypersurface minus a hyperplane; see also Remark 2.5 and Corollary 2.6 below. In particular we recover the following difficult result of Daigle and Russell (see [DR, Theorem A]; cf. also Remark 3.4 below).

Theorem 1.1. Let V be a normal Gizatullin surface¹ with a finite divisor class group. Then V can be embedded into a weighted projective plane $\mathbb{P}(a, b, c)$ minus a hypersurface. More precisely:

(a) If $V = V_{d,e}$ is toric² then V is equivariantly isomorphic to the open part³ $\mathbb{D}_{+}(z)$ of the weighted projective plane $\mathbb{P}(1, e, d)$ equipped with homogeneous coordinates (x:y:z) and with the 2-torus action $(\lambda_1, \lambda_2).(x:y:z) = (\lambda_1 x: \lambda_2 y:z).$

¹That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below. ²See 3.1(a) below.

³We use the standard notation $\mathbb{V}_+(f) = \{f = 0\}$ and $\mathbb{D}_+(f) = \{f \neq 0\}$.

(b) If V is non-toric then $V \cong \mathbb{D}_+(xy - z^m) \subseteq \mathbb{P}(a, b, c)$ for some positive integers a, b, c satisfying a + b = cm and gcd(a, b) = 1.

2. Embeddings of \mathbb{C}^* -surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa₁] every normal affine \mathbb{C}^* -surface V is equivariantly isomorphic to the normalization of a weighted homogeneous surface V' in \mathbb{A}^4 . In some cases (described in *loc.cit.*) V' can be chosen to be a hypersurface in \mathbb{A}^3 . Cf. also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.4 below (see also Remark 2.5) we show that any normal hyperbolic \mathbb{C}^* -surface V with a \mathbb{C}_+ -action is the normalization of a principal Zariski open subset of some weighted projective hypersurface.

For our purposes it is convenient to consider also weighted projective spaces with any weights in \mathbb{Z} as introduced in [BS]. More precisely, if A is a finitely generated \mathbb{Z} -graded algebra over \mathbb{C} then we can form $\operatorname{Proj} A$ to be the scheme covered by the affine pieces $D_+(f) = \operatorname{Spec} A_{(f)}$, where $f \in A$ is homogeneous of non-zero degree and $A_{(f)} = (A_f)_0$. In particular for any $d_0, \ldots, d_n \in \mathbb{Z}$ we can form a weighted projective space $\mathbb{P}(d_0, \ldots, d_n) = \operatorname{Proj} \mathbb{C}[T_0, \ldots, T_d]$, where deg $T_i = d_i$ for $i = 0, \ldots, d$. We note that this space is in general not complete.

In the proofs we use the following observation from [Fl]; this Proposition was formulated in *loc.cit.* only for positively graded algebras. We note that this result – with exactly the same proof – is also valid for \mathbb{Z} -graded rings as stated here.

Proposition 2.1. Let $R = \bigoplus_{i \in \mathbb{Z}} R_i$ be a graded R_0 -algebra of finite type containing the field of rational numbers \mathbb{Q} and the group $E_d \cong \mathbb{Z}/d\mathbb{Z}$ of dth roots of unity, where d > 0. If $z \in R_d$ then E_d acts on R and then also on R/(z-1) via

$$\zeta.a = \zeta^i \cdot a \quad for \quad a \in R_i, \, \zeta \in E_d,$$

with ring of invariants $(R/(z-1))^{E_d} \cong (R[1/z])_0$. Consequently

$$(\operatorname{Spec} R/(z-1))/E_d \cong \mathbb{D}_+(z)$$

is isomorphic to the complement of the hypersurface $\{z = 0\}$ in $\operatorname{Proj}(R)$.

We also recall the following result.

Proposition 2.2. Let $V = \operatorname{Spec} A$ be a normal hyperbolic \mathbb{C}^* -surface with DPDpresentation

$$A = A_0[D_+, D_-] \subseteq Frac(A_0)[u, u^{-1}],$$

where (D_+, D_-) is a pair of \mathbb{Q} -divisors on the curve $C = \operatorname{Spec} A_0$ with $D_+ + D_- \leq 0$. Then the following are equivalent.

(a) V carries a \mathbb{C}_+ -action;

(b) $A_0 \cong \mathbb{C}[t]$, and after interchanging (D_+, D_-) , if necessary, the fractional part $\{D_+\}$ of D_+ is supported at one point.

For a proof we refer the reader to [FlZa₂], Corollary 3.23.

2.3. We let now $V = \operatorname{Spec} A_0[D_+, D_-]$ be a normal hyperbolic \mathbb{C}^* -surface carrying also a \mathbb{C}_+ -action. Using Proposition 2.2 we can assume that $A_0 = \mathbb{C}[t]$ and that, after

 $\mathbf{2}$

interchanging (D_+, D_-) and passing to an equivalent pair, if necessary,

(2)
$$D_{+} = -\frac{e_{+}}{d}[0] \quad \text{with} \quad 0 < e_{+} \le d, \\ D_{-} = -\frac{e_{-}}{d}[0] - \frac{1}{k}D_{0} \quad \text{with} \quad k > 0, \ e_{+} + e_{-} \ge 0$$

and an integral effective divisor D_0 , where $D_0(0) = 0$. We choose a polynomial $Q \in \mathbb{C}[t]$ with $D_0 = \operatorname{div}(Q)$; so $Q(0) \neq 0$.

Theorem 2.4. Let F be the polynomial

(3)
$$F = x^k y - s^{k(e_+ + e_-)} Q(s^d/z) z^{\deg Q} \in \mathbb{C}[x, y, z, s]$$

which is weighted homogeneous of degree $k(e_++e_-)+d \deg Q$ with respect to the weights

(4)
$$\deg x = e_+, \quad \deg y = ke_- + d \deg Q, \quad \deg z = d, \quad \deg s = 1.$$

Then the surface V as in 2.3 above is equivariantly isomorphic to the normalization of the principal Zariski open subset $\mathbb{D}_+(z)$ of the hypersurface $\mathbb{V}_+(F)$ in the weighted projective 3-space

(5)
$$\mathbb{P} = \mathbb{P}(e_+, ke_- + d \deg Q, d, 1).$$

Proof. With $s = \sqrt[d]{t}$ the field $L = \operatorname{Frac}(A)[s]$ is a cyclic extension of $K = \operatorname{Frac}(A)$. Its Galois group is the group of dth roots of unity E_d acting on L via the identity on K and by $\zeta . s = \zeta \cdot s$ if $\zeta \in E_d$. The normalization A' of A in L is stabilized by the action of E_d with invariant ring $A = A'^{E_d}$. According to Proposition 4.12 in [FlZa₁]

$$A' = \mathbb{C}[s][D'_+, D'_-] \subseteq \mathbb{C}(s)[u, u^{-1}]$$

with $D'_{\pm} = \pi^*_d(D_{\pm})$, where $\pi_d : \mathbb{A}^1 \to \mathbb{A}^1$ is the covering $s \mapsto s^d$. Thus

$$\left(D'_{+}, D'_{-}\right) = \left(-e_{+}[0], -e_{-}[0] - \frac{1}{k}\pi^{*}_{d}(D_{0})\right) = \left(-e_{+}[0], -e_{-}[0] - \frac{1}{k}\operatorname{div}(Q(s^{d}))\right).$$

The element $x = s^{e_+}u \in A'_1$ is a generator of A'_1 as a $\mathbb{C}[s]$ -module. According to Example 4.10 in [FlZa₁] the graded algebra A' is isomorphic to the normalization of

(6)
$$B = \mathbb{C}[x, y, s] / (x^k y - s^{k(e_+ + e_-)} Q(s^d)).$$

More precisely, B can be considered as the subalgebra of L generated over $\mathbb C$ by the elements

(7)
$$s, \quad x = s^{e_+}u, \quad \text{and} \quad y = x^{-k}s^{k(e_++e_-)}Q(s^d).$$

Here the action of E_d is given by

$$\zeta .s = \zeta s \,, \quad \zeta .x = \zeta^{e_+} x \,, \quad \zeta .y = \zeta^{ke_-} y \,.$$

In particular this action stabilizes *B*. Assigning to x, y, z, s the degrees as in (4), *F* as in (3) is indeed weighted homogeneous. Since $F(x, y, 1, s) = x^k y - s^{k(e_++e_-)}Q(s^d)$, the graded algebra

$$R = \mathbb{C}[x, y, z, s]/(F)$$

satisfies $R/(z-1) \cong B$. Applying Proposition 2.1 Spec B^{E_d} is isomorphic to $\mathbb{D}_+(z) \cap \mathbb{V}_+(F)$ in the weighted projective space \mathbb{P} . Thus the normalizations of Spec B^{E_d} and $\mathbb{D}_+(z) \cap \mathbb{V}_+(F)$ are isomorphic as well. As normalization commutes with taking invariants the normalization of B^{E_d} is just $A'^{E_d} = A$, proving our result. \Box

Remark 2.5. In general not all weights of the weighted projective space \mathbb{P} in (5) are positive. Indeed it can happen that $ke_{-} + d \deg Q \leq 0$. In this case we can choose $\alpha \in \mathbb{N}$ with $ke_{-} + d(\deg Q + \alpha) > 0$ and consider instead of F the polynomial

(8)
$$\tilde{F} = x^k y - s^{k(e_+ + e_-)} Q(s^d/z) z^{\deg Q + \alpha} \in \mathbb{C}[x, y, z, s]$$

which is now weighted homogeneous of degree $k(e_+ + e_-) + d(\deg Q + \alpha)$ with respect to the *positive* weights

(9)
$$\deg x = e_+, \quad \deg y = ke_- + d(\deg Q + \alpha), \quad \deg z = d, \quad \deg s = 1.$$

As before $V = \operatorname{Spec} A$ is isomorphic to the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $\mathbb{V}_+(F)$ in the weighted projective space

$$\mathbb{P} = \mathbb{P}(e_+, ke_- + d(\deg Q + \alpha), d, 1).$$

In certain cases it is unnecessary in Theorem 2.4 to pass to normalization.

Corollary 2.6. Assume that in (2) one of the following conditions is satisfied.

(*i*) k = 1;

(ii) $e_+ + e_- = 0$, and D_0 is a reduced divisor.

Then V = Spec A is equivariantly isomorphic to the principal open subset $\mathbb{D}_+(z)$ of the weighted projective hypersurface $\mathbb{V}_+(F)$ as in (3) in the weighted projective space \mathbb{P} from (5).

Proof. In case (i) the hypersurface in \mathbb{A}^3 with equation

$$F(x, y, 1, s) = xy - s^{e_+ + e_-}Q(s^d) = 0$$

is normal. In other words, the quotient R/(z-1) of the graded ring $R = \mathbb{C}[x, y, z, s]/(F)$ is normal and so is its ring of invariants $(R/(z-1))^{E_d}$. Comparing with Theorem 2.4 the result follows.

Similarly, in case (ii)

$$F(x, y, 1, s) = x^k y - Q(s^d).$$

Since the divisor D_0 is supposed to be reduced and $D_0(0) = 0$, the polynomials Q(t) and then also $Q(s^d)$ both have simple roots. Hence the hypersurface F(x, y, 1, s) = 0 in \mathbb{A}^3 is again normal, and the result follows as before.

Remark 2.7. The surface V as in 2.3 is smooth if and only if D_0 is reduced and $-m_+m_-(D_+(0) + D_-(0)) = 1$, where $m_{\pm} > 0$ are the denominators in the irreducible representation of $D_{\pm}(0)$, see Proposition 4.15 in [FlZa₁]. It can happen, however, that V is smooth but the surface $\mathbb{V}_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P}$ has non-isolated singularities. For instance, if in 2.3 $D_0 = 0$ (and so Q = 1), then V is an affine toric surface⁴. In fact, every affine toric surface different from $(\mathbb{A}^1_*)^2$ or $\mathbb{A}^1 \times \mathbb{A}^1_*$ appears in this way, see Lemma 4.2(b) in [FKZ_1].

In this case the integer k > 0 can be chosen arbitrarily. For any k > 1, the affine hypersurface $V_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P}$ with equation $x^k y - s^{k(e_++e_-)} = 0$ has non-isolated singularities and hence is non-normal. Its normalization V = Spec A can be given as the Zariski open part $\mathbb{D}_+(z)$ of the hypersurface $V_+(xy'-s^{e_++e_-})$ in $\mathbb{P}' = \mathbb{P}(e_+, e_-, d, 1)$ (which corresponds to the choice k = 1). Indeed, the element $y' = s^{e_++e_-}/x \in K$ with $y'^k = y$ is integral over A. However cf. Theorem 1.1(a).

⁴See 3.1(a) below.

Example 2.8. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin surface V(n) of index n is the complement to a section S in a Hirzebruch surface Σ_d , where $S^2 = n > d$. By a remarkable result of Danilov and Gizatullin [DaGi, Theorem 5.8.1] up to an isomorphism such a surface only depends on n and neither on d nor on the choice of the section S; see also [CNR], [FKZ₃] for alternative proofs.

According to [FKZ₁, §5], up to conjugation V(n) carries exactly (n-1) different \mathbb{C}^* -actions. They admit DPD-presentations with $A_0 = \mathbb{C}[t]$ and

$$(D_+, D_-) = \left(-\frac{1}{d}[0], -\frac{1}{n-d}[1]\right), \text{ where } d = 1, \dots, n-1.$$

Applying Theorem 2.4 with $e_+ = 1$, $e_- = 0$, and k = n - d, the \mathbb{C}^* -surface V(n) is the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $\mathbb{V}_+(F_{n,d}) \subseteq \mathbb{P}(1, d, d, 1)$ of degree n, where

$$F_{n,d}(x, y, z, s) = x^{n-d}y - s^{n-d}(s^d - z)$$

Taking here d = 1 it follows that V(n) is isomorphic to the normalization of the hypersurface $x^{n-1}y - (s-1)s^{n-1} = 0$ in \mathbb{A}^3 .

As our next example, let us consider yet another remarkable class of surfaces. These were studied from different viewpoints e.g., in [MM, Theorem 1.1], [FlZa₃, Theorem 1.1(iii)], [GMMR, 3.8-3.9], [KK, Theorem 1.1. and Example 1], [Za, Theorem 1(b) and Lemma 7]. Collecting results from *loc.cit*. and from this section, we obtain the following equivalent characterizations.

Theorem 2.9. For a smooth affine surface V, the following conditions are equivalent.

- (i) V is not Gizatullin and admits an effective \mathbb{C}^* -action and an \mathbb{A}^1 -fibration $V \to \mathbb{A}^1$ with exactly one degenerate fiber, which is irreducible⁵.
- (ii) V is Q-acyclic, $\bar{k}(V) = -\infty^6$ and V carries a curve $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \ge 0$.
- (iii) V is Q-acyclic and admits an effective \mathbb{C}^* and \mathbb{C}_+ -actions. Furthermore, the \mathbb{C}^* -action possesses an orbit closure $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \ge 0$.
- (iv) The universal cover $\tilde{V} \to V$ is isomorphic to a surface $x^k y (s^d 1) = 0$ in \mathbb{A}^3 , with the Galois group $\pi_1(V) \cong E_d$ acting via $\zeta.(x, y, s) = (\zeta x, \zeta^{-k} y, \zeta^e s)$, where k > 1 and gcd(e, d) = 1.
- (v) V is isomorphic to the \mathbb{C}^* -surface with DPD presentation $\operatorname{Spec} \mathbb{C}[t][D_+, D_-]$, where

$$(D_+, D_-) = \left(-\frac{e}{d}[0], \ \frac{e}{d}[0] - \frac{1}{k}[1]\right) \quad with \quad 0 < e \le d, \ \gcd(e, d) = 1, \quad and \quad k > 1.$$

(vi) V is isomorphic to the Zariski open subset 7

$$\mathbb{D}_+(x^ky - s^d) \subseteq \mathbb{P}(e, d - ke, 1), \quad where \quad 0 < e \le d, \ \gcd(e, d) = 1, \quad and \quad k > 1.$$

In view of the references cited above it remains to show that the surfaces in (v) and (vi) are isomorphic. By Corollary 2.6(ii) with $e_{+} = -e_{-} = e$, the surface V as in (v) is

⁵Since V is not Gizatullin there is actually a unique \mathbb{A}^1 -fibration $V \to \mathbb{A}^1$. A surface V as in (i) is necessarily a \mathbb{Q} -homology plane (or \mathbb{Q} -acyclic) that is, all higher Betti numbers of V vanish.

⁶As usual, \bar{k} stands for the logarithmic Kodaira dimension.

⁷In the case where d - ke < 0, see Remark 2.5.

isomorphic to the principal open subset $\mathbb{D}_+(z)$ in the weighted projective hypersurface

$$V_+(x^ky - (s^d - z)) \subseteq \mathbb{P}(e, d - ke, d, 1)$$

Eliminating z from the equation $x^k y - (s^d - z) = 0$ yields (vi).

These surfaces admit as well a constructive description in terms of a blowup process starting from a Hirzebruch surface, see [GMMR, 3.8] and [KK, Example 1].

An affine line $\Gamma \cong \mathbb{A}^1$ on V as in (*ii*) is distinguished because it cannot be a fiber of any \mathbb{A}^1 -fibration of V. There is always a family of such affine lines on V, see [Za].

Some of the surfaces as in Theorem 2.9 can be properly embedded in \mathbb{A}^3 as *Bertin* surfaces $x^e y - x - s^d = 0$, see [FlZa₂, Example 5.5] or [Za, Example 1].

3. GIZATULLIN SURFACES WITH A FINITE DIVISOR CLASS GROUP

A *Gizatullin surface* is a normal affine surface completed by a zigzag i.e., a linear chain of smooth rational curves. By a theorem of Gizatullin [Gi] such a surface can be characterized by the property that it admits two \mathbb{C}_+ -actions with different general orbits, unless it is isomorphic to $\mathbb{A}^1 \times \mathbb{A}^1_*$.

In this section we give an alternative proof of the Daigle-Russell Theorem 1.1 cited in the Introduction. It will be deduced from the following result proven in $[FKZ_2, Corollary 5.16]$.

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is isomorphic to one of the following surfaces.

(a) The toric surfaces $V_{d,e} = \mathbb{A}^2/E_d$, where the group $E_d \cong \mathbb{Z}/d\mathbb{Z}$ of d-th roots of unity acts on \mathbb{A}^2 via

$$\zeta.(x,y) = (\zeta x, \zeta^e y)$$

- (b) The non-toric \mathbb{C}^* -surfaces $V = \operatorname{Spec} \mathbb{C}[t][D_+, D_-]$, where
- (10) $(D_+, D_-) = \left(-\frac{e}{m}[p], \frac{e}{m}[p] c[q]\right) \quad with \quad c \ge 1, \ p, q \in \mathbb{A}^1, \ p \neq q,$

and with coprime integers e, m such that $1 \leq e < m$.

Conversely, any normal affine \mathbb{C}^* -surface V as in (a) or (b) is a Gizatullin surface with a finite divisor class group.

Let us now deduce Theorem 1.1.

3.2. Proof of Theorem 1.1. To prove (a), we note that according to 2.1 the cyclic group E_d acts on the ring $\mathbb{C}[x, y, z]/(z - 1) \cong \mathbb{C}[x, y]$ via $\zeta . x = \zeta x, \ \zeta . y = \zeta^e y$, and $\zeta . z = z$, where

 $\deg x = 1$, $\deg y = e$, and $\deg z = d$.

Hence $\mathbb{D}_+(z) = \operatorname{Spec} \mathbb{C}[x, y]^{E_d} = V_{d,e}$, as required in (a).

To show (b) we consider $V = \operatorname{Spec} A$ as in 3.1(b), where

$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].$$

By definition (see (1)) the homogeneous pieces $A_{\pm 1}$ of A are generated as $\mathbb{C}[t]$ -modules by the elements

 $u_{+} = tu$ and $u_{-} = (t-1)^{c} u^{-1}$,

and similarly $A_{\pm m}$ by

$$v_{+} = t^{e}u^{m}$$
 and $v_{-} = t^{-e}(t-1)^{cm}u^{-m}$.

Thus

$$u_{+}^{m} = t^{m-e}v_{+}, \quad u_{-}^{m} = t^{e}v_{-}, \text{ and } u_{+}u_{-} = t(t-1)^{c}.$$

The algebra A is the integral closure of the subalgebra generated by u_{\pm} , v_{\pm} and t.

Consider now the normalization A' of A in the field $L = \operatorname{Frac}(A)[u'_+]$, where

(11)
$$u'_{+} = \sqrt[d]{v_{+}}$$
 with $d = cm$.

Clearly the elements $\sqrt[m]{v_+} = t^{\frac{e-m}{m}} u_+$ and then also $t^{\frac{e-m}{m}}$ both belong to L. Since e and m are coprime we can choose $\alpha, \beta \in \mathbb{Z}$ with $\alpha(e-m) + \beta m = 1$. It follows that the element $\tau := t^{\frac{1}{m}} = t^{\alpha \frac{e-m}{m}} t^{\beta}$ is as well in L whence being integral over A we have $\tau \in A'$.

The element u'_+ as in (11) and then also $u'_- := \sqrt[d]{v_-} = (t-1)(\sqrt[d]{v_+})^{-1}$ belongs to A'. Now $v_+v_- = (t-1)^{cm}$, so taking dth roots we get for a suitable choice of the root u'_- , (12)

(12)
$$u'_{+}u'_{-} = \tau^{m} - 1.$$

We note that u_{\pm} , v_{\pm} and t are contained in the subalgebra $B = \mathbb{C}[u'_+, u'_-, \tau] \subseteq A'$. The equation (12) defines a smooth surface in \mathbb{A}^3 . Hence B is normal and so

$$A' = B \cong \mathbb{C}[u'_+, u'_-, \tau] / (u'_+ u'_- - (\tau^m - 1)) \,.$$

By Lemma 3.3 below, for a suitable $\gamma \in \mathbb{Z}$ the integers $a = e - \gamma m$ and d are coprime. We may assume as well that $1 \leq a < d$. We let E_d act on A' via $\zeta . u'_+ = \zeta^a u'_+$ and $\zeta | A = \mathrm{id}_A$. Since $\mathrm{gcd}(a, d) = 1$, A is the invariant ring of this action. We claim that the action of E_d on (u'_+, u'_-, τ) is given by

(13)
$$\zeta . u'_{+} = \zeta^{a} u'_{+}, \quad \zeta . u'_{-} = \zeta^{-a} u'_{-} = \zeta^{b} u'_{-} \quad \text{and} \quad \zeta . \tau = \zeta^{c} \tau ,$$

where b = d - a. Indeed, the equality $u_{+}^{\prime c} = t^{\frac{e-m}{m}} u_{+} = \tau^{e-m} u_{+}$ implies that $\zeta \cdot \tau^{e-m} = \zeta^{ac} \tau^{e-m}$. Since $\tau = \tau^{\alpha(e-m)} t^{\beta}$ the element $\zeta \in E_d$ acts on τ via $\zeta \cdot \tau = \zeta^{\alpha ca} \tau$. In view of the congruence $\alpha a \equiv 1 \mod m$ the last expression equals $\zeta^c \tau$. Now the last equality in (13) follows. In the equation $u_{+}^{\prime} u_{-}^{\prime} = \tau^m - 1$ the term on the right is invariant under E_d . Hence also the term on the left is. This provides the second equality in (13).

The algebra $B = \mathbb{C}[u'_+, u'_-, \tau]$ is naturally graded via

$$\deg u'_{+} = a, \quad \deg u'_{-} = b, \quad \text{and} \quad \deg \tau = c$$

According to Proposition 2.1 Spec $A = \text{Spec } A'^{E_d}$ is the complement of the hypersurface $\mathbb{V}_+(f)$ of degree d = a + b in the weighted projective plane

$$\mathbb{P}(a, b, c)$$
, where $f = u'_+ u'_- - \tau^m$,

proving (b).

To complete the proof we still have to show the following elementary lemma.

Lemma 3.3. Assume that $e, m \in \mathbb{Z}$ are coprime. Then for every $c \geq 2$ there exists $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c are coprime.

Proof. Write c = c'd such that c' and m are coprime and every prime factor of d divides m. Then for any $\gamma \in \mathbb{Z}$ the integers $\gamma m - e$ and d are coprime. Hence it is enough to establish the existence of $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c' are coprime. However, the latter is evident since the residue classes of γm , $\gamma \in \mathbb{Z}$, in $\mathbb{Z}/c'\mathbb{Z}$ cover this group. \Box

Remark 3.4. We can also recover the criterion given in Theorem A(3) in [DR] for when two surfaces as in Theorem 1.1 are isomorphic. More precisely we can argue in the cases (a) and (b) of this theorem as follows.

(a) It is a classical fact that two toric surfaces $V_{d,e}$ and $V_{d',e'}$ are isomorphic if and only if (d, e) = (d', e') or d = d' and $ee' \equiv 1 \mod d$, see e.g. [FlZa₁, Remark 2.5]. Hence two triples (1, e, d) and (1, e', d') as in Theorem 1.1(a) define isomorphic surfaces if and only if (d, e) = (d', e') or d = d' and $ee' \equiv 1 \mod d$. We note that here the abstract isomorphism type and equivariant isomorphism type amount to the same.

(b) As follows from Theorem 0.2 in [FKZ₂], the integers c, m in Theorem 1.1(b) are invariants of the (abstract) isomorphism type of V. Indeed, the fractional parts of both divisors D_{\pm} as in (10) being nonzero and concentrated at the same point, there is a unique DPD presentation for V up to interchanging D_{+} and D_{-} , passing to an equivalent pair and applying an automorphism of the affine line $\mathbb{A}^{1} = \operatorname{Spec} \mathbb{C}[t]$.

Furthermore, from the proof of Theorem 1.1 one can easily derive that

 $a \equiv e \mod m$ and $b = mc - a \equiv -e \mod m$.

Therefore also the pair (a, b) is uniquely determined by the (abstract) isomorphism type of V up to a transposition and up to replacing (a, b) by (a', b') = (a - sm, b + sm), while keeping gcd(a', b') = 1.

References

- [BS] H. Brenner, S. Schröer: Ample families, multihomogeneous spectra, and algebraization of formal schemes. Pacific J. Math. 208 (2003), 209-230.
- [CNR] P. Cassou-Noguès, P. Russell: Birational morphisms $\mathbb{C}^2 \to \mathbb{C}^2$ and affine ruled surfaces, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 57–106. Osaka Univ. Press, Osaka 2007.
- [DR] D. Daigle, P. Russell: On log Q-homology planes and weighted projective planes. Can. J. Math. 56 (2004), 1145–1189.
- [DaGi] V. I. Danilov, M. H. Gizatullin: Automorphisms of affine surfaces. II. Math. USSR Izv. 11 (1977), 51–98.
- [Du] A. Dubouloz: *Embeddings of Danielewski surfaces in affine spaces*. Comment. Math. Helv. 81 (2006), 49–73.
- [Fl] H. Flenner: Rationale quasihomogene Singularitten, Arch. Math. 36 (1981), 35–44.
- [FKZ₁] H. Flenner, S. Kaliman, M. Zaidenberg: Completions of C^{*}-surfaces, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 149-200. Osaka Univ. Press, Osaka 2007.
- [FKZ₂] H. Flenner, S. Kaliman, M. Zaidenberg: Uniqueness of C^{*}- and C₊-actions on Gizatullin surfaces. Transformation Groups 13:2 (2008), 305–354.
- [FKZ₃] H. Flenner, S. Kaliman, M. Zaidenberg: On the Danilov-Gizatullin Isomorphism Theorem. arXiv:0808.0459, Enseignement Mathématiques, 9p. (to appear).
- [FKZ₄] H. Flenner, S. Kaliman, M. Zaidenberg, Smooth Gizatullin surfaces with non-unique C^{*}actions, arXiv:0809.0651., J. of Algebraic Geometry, 57p. (to appear).
- [FlZa1] H. Flenner, M. Zaidenberg: Normal affine surfaces with C^{*}-actions, Osaka J. Math. 40, 2003, 981–1009.
- [FlZa₂] H. Flenner, M. Zaidenberg: Locally nilpotent derivations on affine surfaces with a C^{*}-action. Osaka J. Math. 42, 2005, 931–974.
- [FlZa₃] H. Flenner, M. Zaidenberg: On a result of Miyanishi-Masuda. Arch. Math. 87 (2006), 15–18.
- [Gi] M.H. Gizatullin: Quasihomogeneous affine surfaces. (in Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1047–1071.
- [GMMR] R.V. Gurjar, K. Masuda, M. Miyanishi, P. Russell: Affine lines on affine surfaces and the Makar-Limanov invariant. Canad. J. Math. 60 (2008), 109–139.

- [KK] T. Kishimoto, H. Kojima: Affine lines on Q-homology planes with logarithmic Kodaira dimension −∞, Transform. Groups 11 (2006), 659–672; ibid. 13:1 (2008), 211-213.
- [MM] M. Miyanishi, K. Masuda: Affine Pseudo-planes with torus actions. Transform. Groups 11 (2006), 249–267.
- [Za] M. Zaidenberg: Affine lines on Q-homology planes and group actions. Transform. Groups 11 (2006), 725–735.

FAKULTÄT FÜR MATHEMATIK, RUHR UNIVERSITÄT BOCHUM, GEB. NA2/72, UNIVERSITÄTSSTR. 150, 44780 BOCHUM, GERMANY

E-mail address: Hubert.Flenner@ruhr-uni-bochum.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FL 33124, U.S.A. *E-mail address*: kaliman@math.miami.edu

UNIVERSITÉ GRENOBLE I, INSTITUT FOURIER, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d'Hères cédex, France

E-mail address: zaidenbe@ujf-grenoble.fr