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Abstract. We consider the poset of weighted partitions Πw
n , in-

troduced by Dotsenko and Khoroshkin in their study of a certain
pair of dual operads. The maximal intervals of Πw

n provide a gen-
eralization of the lattice Πn of partitions, which we show possesses
many of the well-known properties of Πn. In particular, we prove
these intervals are EL-shellable, we show that the Möbius invari-
ant of each maximal interval is given up to sign by the number of
rooted trees on node set {1, 2, . . . , n} having a fixed number of de-
scents, we find combinatorial bases for homology and cohomology,
and we give an explicit sign twisted Sn-module isomorphism from
cohomology to the multilinear component of the free Lie algebra
with two compatible brackets. We also show that the characteris-
tic polynomial of Πw

n has a nice factorization analogous to that of
Πn.
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1. Introduction

We recall some combinatorial, topological and representation theo-
retic properties of the lattice Πn of partitions of the set [n] := {1, 2, . . . , n}
ordered by refinement.1 The Möbius invariant of Πn is given by

µΠn(0̂, 1̂) = (−1)n−1(n− 1)!,

and the characteristic polynomial by

χΠn(x) = (x− 1)(x− 2) . . . (x− n+ 1)

(see [27, Example 3.10.4]). It was proved by Björner [5], using an edge
labeling of Stanley [24], that Πn is EL-shellable; consequently the order
complex ∆(Πn) of the proper part Πn of the partition lattice Πn has
the homotopy type of a wedge of (n− 1)! spheres of dimension n− 3.
Various nice bases for the homology and cohomology of the partition
lattice have been introduced and studied; see [31] for a discussion of
these bases.

The symmetric group Sn acts naturally on Πn and this action in-
duces isomorphic representations of Sn on the unique nonvanishing re-
duced simplicial homology H̃n−3(Πn) of the order complex ∆(Πn) and
on the unique nonvanishing simplicial cohomology H̃n−3(Πn). Joyal
[19] observed that a formula of Stanley and Hanlon (see [25]) for the
character of this representation is a sign twisted version of an earlier
formula of Brandt [9] for the character of the representation of Sn on
the multilinear component Lie(n) of the free Lie algebra on n genera-
tors. Hence the following Sn-module isomorphism holds,

(1.1) H̃n−3(Πn) 'Sn Lie(n)⊗ sgnn,

where sgnn is the sign representation of Sn. Joyal [19] gave a proof
of the isomorphism using his theory of species. The first purely com-
binatorial proof was obtained by Barcelo [2] who provided a bijection
between known bases for the two Sn-modules (Björner’s NBC basis for
H̃n−3(Πn) and the Lyndon basis for Lie(n)) and analyzed the represen-
tation matrices for these bases. Later Wachs [31] gave a more general
combinatorial proof by providing a natural bijection between generat-
ing sets of H̃n−3(Πn) and Lie(n), which revealed the strong connection
between the two Sn-modules.

In this paper we explore analogous properties for a weighted version
of Πn, introduced by Dotsenko and Khoroshkin [11] in their study of
Koszulness of certain quadratic binary operads. A weighted partition of
[n] is a set {Bv1

1 , B
v2
2 , ..., B

vt
t } where {B1, B2, ..., Bt} is a partition of [n]

1The poset terminology used here is defined in Section 2.
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and vi ∈ {0, 1, 2, ..., |Bi| − 1} for all i. The poset of weighted partitions
Πw
n is the set of weighted partitions of [n] with order relation given

by {Aw1
1 , Aw2

2 , ..., Awts } ≤ {B
v1
1 , B

v2
2 , ..., B

vt
t } if the following conditions

hold:

• {A1, A2, ..., As} ≤ {B1, B2, ..., Bt} in Πn

• if Bk = Ai1 ∪ Ai2 ∪ ... ∪ Ail then vk − (wi1 + wi2 + ... + wil) ∈
{0, 1, ..., l − 1}.

Equivalently, we can define the covering relation by

{Aw1
1 , Aw2

2 , ..., Awss }l {B
v1
1 , B

v2
2 , ..., B

vt
t }

if the following conditions hold:

• {A1, A2, . . . , As}l {B1, B2, . . . , Bt} in Πn

• if Bk = Ai ∪ Aj, where i 6= j, then vk − (wi + wj) ∈ {0, 1}
• if Bk = Ai then vk = wi.

In Figure 1 below the set brackets and commas have been omitted.

1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 10|231

Figure 1. Weighted partition poset for n = 3

The poset Πw
n has a minimum element

0̂ := {{1}0, {2}0, . . . , {n}0}
and n maximal elements

{[n]0}, {[n]1}, . . . , {[n]n−1}.
We write each maximal element {[n]i} as [n]i. Note that for all i, the
maximal intervals [0̂, [n]i] and [0̂, [n]n−1−i] are isomorphic to each other,
and the two maximal intervals [0̂, [n]0] and [0̂, [n]n−1] are isomorphic to
Πn.

The basic properties of Πn mentioned above have nice weighted
analogs for the intervals [0̂, [n]i]. For instance, the Sn-module iso-
morphism (1.1) can be generalized. Let Lie2(n) be the multilinear
component of the free Lie algebra on n generators with two compatible
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brackets (defined in Section 4.1) and let Lie2(n, i) be the component
of Lie2(n) generated by bracketed permutations with i brackets of one
type and n − 1 − i brackets of the other type. The symmetric group
acts naturally on each Lie2(n, i) and on each open interval (0̂, [n]i).
It follows from operad theoretic results of Vallette [30] and Dotsenko-
Khoroshkin [12] that the following Sn- module isomorphism holds:

(1.2) H̃n−3((0̂, [n]i)) 'Sn Lie2(n, i)⊗ sgnn .

Note that this reduces to (1.1) when i = 0 or i = n−1. The character of
each Sn-module Lie2(n, i) was computed by Dotsenko and Khoroshkin
[11].

In [20] Liu proves a conjecture of Feigin that dimLie2(n) = nn−1

by constructing a combinatorial basis for Lie2(n) indexed by rooted
trees on node set [n]. An operad theoretic proof of Feigin’s conjecture
was obtained by Dotsenko and Khoroshkin [11], but with a gap pointed
out in [28] and corrected in [12]. In fact, Liu and Dotsenko-Khoroshkin
obtain the following refinement of Feigin’s conjecture

(1.3)
n−1∑
i=0

dimLie2(n, i)ti =
n−1∏
j=1

((n− j) + jt).

Since, as was proved by Drake [13], the right hand side of (1.3) is equal
to the generating function for rooted trees on node set [n] according
to the number of descents of the tree, it follows that for each i, the
dimension of Lie2(n, i) equals the number of rooted trees on node set
[n] with i descents. (Drake’s result is a refinement of the well-known
result that the number of trees on node set [n] is nn−1.)

In this paper we give an alternative proof of (1.2) by presenting
an explicit bijection between natural generating sets of H̃n−3((0̂, [n]i))
and Lie2(n, i), which reveals the connection between these modules
and generalizes the bijection that Wachs [31] used to prove (1.1). With
(1.2), we take a different path to proving the Liu and Dotsenko-Khoroshkin
formula (1.3), one that employs poset theoretic techniques.

We prove that the augmented poset of weighted partitions

Π̂w
n := Πw

n ∪ {1̂}

is EL-shellable by providing an interesting weighted analog of the Björner-
Stanley EL-labeling of Πn. In fact our labeling restricts to the Björner-
Stanley EL-labeling on the intervals [0̂, [n]0] and [0̂, [n]n−1]. A conse-

quence of shellability is that Π̂w
n is Cohen-Macaulay, which implies a

result of Dotsenko and Khoroshkin [12], obtained through operad the-
ory, that all maximal intervals [0̂, [n]i] of Πw

n are Cohen-Macaulay. (Two
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prior attempts [11, 28] to establish Cohen-Macaulayness of [0̂, [n]i] are
discussed in Remark 3.8.) The ascent-free chains of our EL-labeling
provide a generalization of the Lyndon basis for cohomology of Πn (i.e.
the basis for cohomology that corresponds to the classical Lyndon basis
for Lie(n)).

Direct computation of the Möbius function of Πw
n , which exploits the

recursive nature of Πw
n and makes use of the compositional formula,

shows that

(−1)n−1

n−1∑
i=0

µΠwn (0̂, [n]i)ti

equals the right hand side of (1.3). From this computation and the

fact that Π̂w
n is EL-shellable (and thus the maximal intervals of Πw

n are
Cohen-Macaulay), we conclude that

(1.4)
n−1∑
i=0

rank H̃n−3((0̂, [n]i))ti =
n−1∏
j=1

((n− j) + jt).

The Liu and Dotsenko-Khoroshkin formula (1.3) is a consequence of
this and (1.2).

By (1.4) and Drake’s result mentioned above, the rank of H̃n−3((0̂, [n]i))
is equal to the number of rooted trees on [n] with i descents. We
construct a nice combinatorial basis for H̃n−3((0̂, [n]i)) consisting of
fundamental cycles indexed by such rooted trees, which generalizes
Björner’s NBC basis for H̃n−3(Πn). Our proof that these fundamental
cycles form a basis relies on Liu’s [20] generalization for Lie2(n, i) of
the classical Lyndon basis for Lie(n) and our bijective proof of (1.2).
Indeed, our bijection enables us to transfer bases for Lie2(n, i) to bases
for H̃n−3((0̂, [n]i)) and vice verse. We first transfer Liu’s generalization
of the Lyndon basis to H̃n−3((0̂, [n]i)) and then use the natural pairing
between homology and cohomology to prove that our proposed homol-
ogy basis is indeed a basis. (We also obtain an alternative proof that
Liu’s generalization of the Lyndon basis is a basis along the way.) By
transferring the basis for H̃n−3((0̂, [n]i)) that comes from the ascent-free
chains of our EL-labeling to Lie2(n, i), we obtain a different general-
ization of the Lyndon basis that has a somewhat simpler description
than that of Liu’s generalized Lyndon basis.

The paper is organized as follows: In Section 2 we derive basic prop-
erties of the weighted partition lattice, which include the formula for
the Möbius function of Πw

n mentioned above. We also show that the

Möbius invariant of the augmented poset of weighted partitions Π̂w
n is
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given by
µΠ̂wn

(0̂, 1̂) = (−1)n(n− 1)n−1

and the characteristic polynomial factors nicely as

χΠwn (x) = (x− n)n−1.

The Whitney numbers of the first and second kind are also discussed.
Section 3 contains our results on EL-shellability of the augmented

poset of weighted partitions and its topological consequences.
In Section 4 we give a presentation of the cohomology of the maximal

open intervals (0̂, [n]i) in terms of maximal chains associated with la-
beled bicolored binary trees. This presentation enables us to use a nat-
ural bijection between generating sets of H̃n−3((0̂, [n]i)) and Lie2(n, i)
to establish the Sn-module isomorphism (1.2). Bases for cohomology
and for homology of (0̂, [n]i) are discussed in Section 5. We also con-
struct bases for cohomology of the full poset Πw

n \ {0̂}.
By extending the technique of Section 4, we prove in Section 6 that

Whitney homology of Πw
n tensored with the sign representation is iso-

morphic to the multilinear component of the exterior algebra of the
doubly bracketed free Lie algebra on n generators. In Section 7 we
mention related results that will appear in forthcoming papers.

2. Basic properties

For poset terminology not defined here see [27], [33]. For u ≤ v in a
poset P , the open interval {w ∈ P : u < w < v} is denoted by (u, v)
and the closed interval {w ∈ P : u ≤ w ≤ v} by [u, v]. A poset is said
to be bounded if it has a minimum element 0̂ and a maximum element 1̂.
For a bounded poset P , we define the proper part of P as P := P \{0̂, 1̂}.
A poset is said to be pure (or ranked) if all its maximal chains have the
same length, where the length of a chain s0 < s1 < · · · < sn is n. The
length l(P ) of a poset P is the length of its longest chain. For a poset
P with a minimum element 0̂, the rank function ρ : P → N is defined
by ρ(s) = l([0̂, s]). The rank generating function FP (x) is defined by
FP (x) =

∑
u∈P x

ρ(u).

2.1. The rank generating function. It is easy to see that the weighted
partition poset Πw

n is pure of length n − 1 and has minimum element
0̂ = {{1}0, . . . , {n}0}. For each α ∈ Πw

n , we have ρ(α) = n− |α|.
Proposition 2.1. For all n ≥ 1, the rank generating function is given
by

FΠwn (x) =
n−1∑
k=0

(
n

k

)
(n− k)kxk.
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Proof. Let Rn(k) = {α ∈ Πw
n | ρ(α) = k}. We need to show

(2.1) |Rn(k)| =
(

n

n− k

)
(n− k)k.

A weighted partition in Rn(k) can be viewed as a partition of [n] into
n−k blocks, with one element of each block marked (or distinguished).
To choose such a partition, we first choose the n− k marked elements.
There are

(
n

n−k

)
ways to choose these elements and place them in n−k

distinct blocks. To each of the remaining k elements we allocate one
of these n − k blocks. We can do this in (n − k)k ways. Hence (2.1)
holds. �

2.2. The Möbius function. For α = {Aw1
1 , . . . , Awkk } ∈ Πw

n , let w(α) =∑k
i=1wi. The following observations will be used to compute the

Möbius function of the weighted partition poset.

Proposition 2.2. For all α = {Aw1
1 , . . . , Awkk } ∈ Πw

n ,

(1) [α, 1̂] and Π̂w
k are isomorphic posets,

(2) [α, [n]i] and [0̂, [|α|]i−w(α)] are isomorphic posets for w(α) ≤ i ≤
n− 1,

(3) [0̂, α] and [0̂, [|A1|]w1 ]× · · · × [0̂, [|Ak|]wk ] are isomorphic posets.

For a bounded poset P , let µP denote its Möbius function. We will
use the recursive definition of the Möbius function and the composi-
tional formula to derive the following result.

Proposition 2.3. For all n ≥ 1,

(2.2)
n−1∑
i=0

µΠwn (0̂, [n]i)ti = (−1)n−1

n−1∏
i=1

((n− i) + it).

Consequently,
n−1∑
i=0

µΠwn (0̂, [n]i) = (−1)n−1nn−1.

Proof. By the recursive definition of the Möbius function we have that

n−1∑
i=0

ti
∑

0̂≤α≤[n]i

µΠwn (α, [n]i) = δn,1.

Proposition 2.2 implies µΠwn (α, [n]i) = µΠw|α|
(0̂, [|α|]j), where j = i −

w(α). Note also that 0̂ ≤ α ≤ [n]i if and only if w(α) ≤ i and i−w(α) ≤
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|α| − 1. Hence,

δn,1 =
∑
α∈Πwn

tw(α)

w(α)+|α|−1∑
i=w(α)

µΠwn (α, [n]i)ti−w(α)

=
∑
α∈Πwn

tw(α)

|α|−1∑
j=0

µΠw|α|
(0̂, [|α|]j)tj

=
∑
π∈Πn

(∏
B∈π

(t|B|−1 + t|B|−2 + · · ·+ 1)

) |π|−1∑
j=0

µΠw|π|
(0̂, [|π|]j)tj

=
∑
π∈Πn

(∏
B∈π

t|B| − 1

t− 1

) |π|−1∑
j=0

µΠw|π|
(0̂, [|π|]j)tj.

This implies by the compositional formula (see [26, Theorem 5.1.4])
that

U(x) =
∑
n≥1

tn − 1

t− 1

xn

n!
=
etx − ex

t− 1

and

W (x) =
∑
n≥1

n−1∑
j=0

µΠwn (0̂, [n]j)tj
xn

n!

are compositional inverses.
It follows from [14, Theorem 5.1] that the compositional inverse of

U(x) is given by ∑
n≥1

(−1)n−1

n−1∏
i=1

((n− i) + it)
xn

n!
.

(See [13, Eq. (10)].) This yields (2.2). �

Let T be a rooted tree on node set [n]. A descent of T is a node
x that has a smaller label than its parent pT (x). We call the edge
{x, pT (x)} a descent edge. We denote by Tn,i the set of rooted trees on
node set [n] with exactly i descents. In [13] Drake proves that

(2.3)
n−1∑
i=0

|Tn,i|ti =
n−1∏
i=1

((n− i) + it).

The following result is a consequence of this and Proposition 2.3.

Corollary 2.4. For all n ≥ 1 and i ∈ {0, 1, . . . , n− 1},
µΠwn (0̂, [n]i) = (−1)n−1|Tn,i|.
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We can use Proposition 2.2 and Corollary 2.4 to compute the Möbius
function on other intervals. A rooted forest on node set [n] is a set of
rooted trees whose node sets form a partition of [n]. We associate a
weighted partition α(F ) with each rooted forest F = {T1, . . . , Tk} on
node set [n], by letting α(F ) = {Aw1

1 , . . . , Awkk } where Ai is the node
set of Ti and wi is the number of descents of Ti. For lower intervals we
obtain the following generalization of Corollary 2.4.

Corollary 2.5. For all α ∈ Πw
n ,

µΠwn (0̂, α) = (−1)n−|α||{F ∈ Fn : α(F ) = α}|,

where Fn is the set of rooted forests on node set [n].

Next we consider the full poset Π̂w
n . To compute its Möbius invariant

we will make use of Abel’s identity (see [26, Ex. 5.31 c]),

(2.4) (x+ y)n =
n∑
k=0

(
n

k

)
x(x− kz)k−1(y + kz)n−k.

Proposition 2.6.

µΠ̂wn
(0̂, 1̂) = (−1)n(n− 1)n−1.

Proof. We proceed by induction on n. If n = 1 then

µΠ̂w1
(0̂, 1̂) = −1 = (−1)1(1− 1)1−1

since Π̂w
1 is the chain of length 1.

Let n ≥ 1 and let α ∈ Πw
n \ {0̂}. Since the interval [α, 1̂] in Π̂w

n is

isomorphic to Π̂w
|α| (cf. Proposition 2.2), we can assume by induction

that

µΠ̂wn
(α, 1̂) = (−1)|α|(|α| − 1)|α|−1.

Hence by the recursive definition of the Möbius function we have,

µΠ̂wn
(0̂, 1̂) = −

∑
α∈Π̂wn \0̂

µΠ̂wn
(α, 1̂)

= −1−
n−1∑
k=1

∑
α∈Πwn
|α|=k

µΠ̂wn
(α, 1̂)

= −1−
n−1∑
k=1

∑
α∈Πwn
|α|=k

(−1)k(k − 1)k−1
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= −1−
n−1∑
k=1

(
n

k

)
kn−k(−1)k(k − 1)k−1 (by (2.1))

= −1 +
n∑
k=0

(
n

k

)
kn−k(1− k)k−1 − (1− n)n−1.(2.5)

By setting x = 1, y = 0, z = 1 in Abel’s identity (2.4), we get

1 =
n∑
k=0

(
n

k

)
(1− k)k−1kn−k.

Substituting this into (2.5) yields the result. �

Remark 2.7. In Section 2.3 we compute the characteristic polynomial
of Πw

n and use it to give a second proof of Proposition 2.6.

2.3. The characteristic polynomial. Recall that the characteristic
polynomial of Πn factors nicely. We prove that the same is true for Πw

n .

Theorem 2.8. For all n ≥ 1, the characteristic polynomial of Πw
n is

given by

χΠwn (x) :=
∑
α∈Πwn

µΠwn (0̂, α)xn−1−ρ(α) = (x− n)n−1.

We will need the following result.

Proposition 2.9 (see [26, Proposition 5.3.2]). Let Fkn be the number
of rooted forests on node set [n] with k rooted trees. Then

|Fkn | =
(
n− 1

k − 1

)
nn−k.

Proof of Theorem 2.8. We have

χΠwn (x) =
∑
α∈Πwn

µ(0̂, α)x|α|−1

=
n∑
k=1

∑
α∈Πwn
|α|=k

µ(0̂, α)xk−1

=
n∑
k=1

(−1)n−k|Fkn |xk−1 (by Corollary 2.5)

=
n∑
k=1

(−1)n−k
(
n− 1

k − 1

)
nn−kxk−1 (by Proposition 2.9)
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=
n−1∑
k=0

(
n− 1

k

)
(−n)n−1−kxk

= (x− n)n−1.

�

Theorem 2.8 yields an easier way to calculate µΠ̂wn
(0̂, 1̂).

Second proof of Proposition 2.6 . By the recursive definition of Möbius
function,

µΠ̂wn
(0̂, 1̂) = −

∑
α∈Πwn

µ(0̂, α)

= −χΠwn (1)

= −(1− n)n−1

= (−1)n(n− 1)n−1.

�

2.4. Whitney numbers and uniformity. Let P be a pure poset of
length n with minimum element 0̂. Recall that the Whitney number
of the first kind wk(P ) is the coefficient of xn−k in the characteristic
polynomial χP (x) and the Whitney number of the second kind Wk(P )
is the coefficient of xk in the rank generating function FP (x); see [27].
It follows from Theorem 2.8 and Proposition 2.1, respectively, that

wk(Π
w
n ) = (−1)k

(
n− 1

k

)
nk(2.6)

Wk(Π
w
n ) =

(
n

k

)
(n− k)k.

For the partition lattice Πn, the Whitney numbers of the first and
second kind are the Stirling numbers of the first and second kind. It is
well-known that the Stirling numbers of the first kind and second kind
form inverse matrices, cf., [27, Proposition 1.9.1 a]. This can be viewed
as a consequence of a property of the partition lattice called uniformity
[27, Ex. 3.130]. We observe in this section that Πw

n is also uniform and
discuss a Whitney number consequence.

A pure poset P of length l with minimum element 0̂ and with rank
function ρ, is said to be uniform if there is a family of posets {Pi : 0 ≤
i ≤ l} such that for all x ∈ P , the upper order ideal Ix := {y ∈ P : x ≤
y} is isomorphic to Pi, where i = l − ρ(x). We refer to (P0, . . . , Pl) as
the associated uniform sequence. It follows from Proposition 2.2 that
P = Πw

n is uniform with Pi = Πw
i+1 for i = 0, . . . , n − 1. We will use
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the following variant of [27, Exercise 3.130(a)] whose proof is left to
the reader. (A weighted version of this is proved in [15].)

Proposition 2.10. Let P be a uniform poset of length l, with associ-
ated uniform sequence (P0, . . . , Pl). Then the matrices [wi−j(Pi)]0≤i,j≤l
and [Wi−j(Pi)]0≤i,j≤l are inverses of each other.

From the uniformity of Πw
n and (2.6), we have the following conse-

quence of Proposition 2.10.

Corollary 2.11. The matrices A = [(−1)i−j
(
i−1
j−1

)
ii−j]1≤i,j≤n and B =

[
(
i
j

)
ji−j]1≤i,j≤n are inverses of each other.

This result is not new and an equivalent dual version (conjugated by
the matrix [(−1)jδi,j]1≤i,j≤n) was already obtained by Sagan in [22], also
by using essentially Proposition 2.10, but with a completely different
poset. So we can consider this to be a new proof of that result (see
also [18]).

Chapoton and Vallette [10] consider another poset that is quite sim-
ilar to the poset of weighted partitions, namely the poset of pointed
partitions. A pointed partition of [n] is a partition of [n] in which one
element of each block is distinguished. The covering relation is given
by

{(A1, a1), (A2, a2), ..., (As, as)}l {(B1, b1), (B2, b2), ..., (Bt, bt)},
where ai is the distinguished element of Ai and bi is the distinguished
element of Bi for each i, if the following conditions hold:

• {A1, A2, . . . , As}l {B1, B2, . . . , Bt} in Πn

• if Bk = Ai ∪ Aj, where i 6= j, then bk ∈ {ai, aj}
• if Bk = Ai then bk = ai.

Let Πp
n be the poset of pointed partitions of [n]. It is easy to see that

there is a rank preserving bijection between Πw
n and Πp

n. It follows that
both posets have the same Whitney numbers of the second kind. Since
both posets are uniform, it follows from Proposition 2.10 that both
posets have the same Whitney numbers of the first kind and thus the
same characteristic polynomial. The following result of Chapoton and
Vallette [10] is therefore equivalent to Theorem 2.8.

Corollary 2.12 (Chapoton and Vallette [10]). For all n ≥ 1, the
characteristic polynomial of Πp

n is given by

(2.7) χΠpn(x) = (x− n)n−1.

Consequently,
µ

Π̂pn
(0̂, 1̂) = (−1)n(n− 1)n−1.
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One can also compute the Möbius function for all intervals of Πp
n

from (2.7). Indeed, since all n maximal intervals are isomorphic to
each other, the Möbius invariant can be obtained from (2.7) by setting
x = 0 and then dividing by n. This yields for all i,

(−1)nµ
Π̂pn

(0̂, ([n], i)) = nn−2,

which is the number of trees on node set [n]. The Möbius function
on other intervals can be computed from this since all intervals of Πp

n

are isomorphic to products of maximal intervals of “smaller” posets of
pointed partitions.

3. Homotopy type of the poset of weighted partitions

In this section we use EL-shellability to determine the homotopy

type of the intervals of Π̂w
n and to show that Π̂w

n is Cohen-Macaulay,
extending a result of Dotsenko and Khoroshkin [12], in which operad
theory is used to prove that all intervals of Πw

n are Cohen-Macaulay.
Some prior attempts to establish shellability of the maximal intervals
are discussed in Remark 3.8.

3.1. EL-shellability. After reviewing some basic facts from the the-
ory of lexicographic shellability (cf. [5], [7], [8], [33]), we will present
our main results on lexicographic shellability of the poset of weighted
partitions.

An edge labeling of a bounded poset P is a map λ : E(P )→ Λ, where
E(P ) is the set of edges of the Hasse diagram of P , i.e., the covering
relations x <· y of P , and Λ is some poset. Given an edge labeling
λ : E(P )→ Λ, one can associate a label word

λ(c) = λ(x0, x1)λ(x1, x2) · · ·λ(xt−1, xt)

with each maximal chain c = (0̂ = x0 <· x1 <· · · · <· xt−1 <· xt = 1̂).
We say that c is increasing if its label word λ(c) is strictly increasing.
That is, c is increasing if

λ(x0, x1) < λ(x1, x2) < · · · < λ(xt−1, xt).

We say that c is ascent-free (or decreasing, falling) if its label word λ(c)
has no ascents, i.e. λ(xi, xi+1) 6< λ(xi+1, xi+2), for all i = 0, . . . , t − 2.
We can partially order the maximal chains lexicographically by using
the lexicographic order on the corresponding label words. Any edge
labeling λ of P restricts to an edge labeling of each closed interval
[x, y] of P . So we may refer to increasing and ascent-free maximal
chains of [x, y], and lexicographic order of maximal chains of [x, y].
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Definition 3.1. Let P be a bounded poset. An edge-lexicographical la-
beling (EL-labeling, for short) of P is an edge labeling such that in each
closed interval [x, y] of P , there is a unique increasing maximal chain,
and this chain lexicographically precedes all other maximal chains of
[x, y]. A poset that admits an EL-labeling is said to be EL-shellable.

Note that if P is EL-shellable then so is every closed interval of P .
A classical EL-labeling for the partition lattice Πn is obtained as

follows. Let Λ = {(i, j) ∈ [n − 1] × [n] : i < j} with lexicographic
order as the order relation on Λ. If x l y in Πn then y is obtained
from x by merging two blocks A and B, where minA < minB. Let
λ(x, y) = (minA,minB). This defines a map λ : E(Πn) → Λ. By
viewing Λ as the set of atoms of Πn, one sees that this labeling is
a special case of an edge labeling for geometric lattices, which first
appeared in Stanley [24] and was one of Björner’s [5] initial examples
of an EL-labeling.

We now generalize the Björner-Stanley EL-labeling of Πn to the
weighted partition lattice. For each a ∈ [n], let Γa := {(a, b)u : a < b ≤
n + 1, u ∈ {0, 1}}. We partially order Γa by letting (a, b)u ≤ (a, c)v if
b ≤ c and u ≤ v. Note that Γa is isomorphic to the direct product of
the chain a+ 1 < a+ 2 < · · · < n+ 1 and the chain 0 < 1. Now define
Λn to be the ordinal sum Λn := Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γn. (See Figure 2b.)

If x l y in Πw
n then y is obtained from x by merging two blocks A

and B, where minA < minB, and assigning weight u+wA+wB to the
resulting block A∪B, where u ∈ {0, 1}, and wA, wB are the respective
weights of A and B in the weighted partition x. Let

λ(xl y) = (minA,minB)u.

This defines a map λ : E(Πw
n ) → Λn. We extend this map to λ :

E(Π̂w
n )→ Λn by letting λ([n]il 1̂) = (1, n+ 1)0, for all i = 0, . . . , n−1.

(See Figure 2a.) Note that when λ is restricted to the intervals [0̂, [n]0]
and [0̂, [n]n−1], which are both isomorphic to Πn, the labeling reduces
to the Björner-Stanley EL-labeling of Πn.

Theorem 3.2. The labeling λ : E(Π̂w
n ) → Λn defined above is an EL-

labeling of Π̂w
n .

Proof. We need to show that in every closed interval of Π̂w
n there is

a unique increasing chain (from bottom to top), which is also lexico-

graphically first. Let ρ denote the rank function of Π̂w
n . We divide the

proof into 4 cases:
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1̂

1232

130|20

10|20|30

1231

120|30 131|20

1230

10|230 121|30 231|10

(1, 2)0 (1, 3)0 (2, 3)0 (1, 2)1 (1, 3)1 (2, 3)1

(1, 3)0

(1, 2)0 (1, 2)0

(1, 3)1 (1, 2)1 (1, 2)1 (1, 3)0 (1, 2)0 (1, 2)0

(1, 2)1

(1, 2)1(1, 3)1

(1, 4)0 (1, 4)0 (1, 4)0

(a) Labeling λ

(1, 2)0

(1, 3)0

(1, 4)0

(1, 2)1

(1, 3)1

(1, 4)1

(2, 3)0

(2, 4)0 (2, 3)1

(2, 4)1

(3, 4)0

(3, 4)1

(b) Λ3

Figure 2. EL-labeling of the poset Π̂w
3

(1) Intervals of the form [0̂, [n]r]. Since, from bottom to top, the
last step of merging two blocks includes a block that contains 1,
all of the maximal chains have a final label of the form (1,m)u,
and so any increasing maximal chain has to have label word
(1, 2)u1(1, 3)u2 · · · (1, n)un−1 with ui = 0 for i ≤ n − 1 − r and
ui = 1 for i > n − 1 − r. This label word is lexicographically
first and the only chain with this label word is (listing only the
nonsingleton blocks)

0̂ l 12u1 l 123u1+u2 l · · ·l 123 · · ·nr.
(2) Intervals of the form [0̂, α] for ρ(α) < n − 1. Let Au11 , . . . , A

uk
k

be the weighted blocks of α, where minAi < minAj if i < j.
For each i, let mi = minAi. By the previous case, in each of the
posets [0̂, Auii ] there is only one increasing manner of merging
the blocks, and the labels of the increasing chain belong to the
label set Γmi . The increasing chain is also lexicographically first.
Consider the maximal chain of [0̂, α] obtained by first merging
the blocks of the increasing chain in [0̂, Au11 ], then the ones in
the increasing chain in [0̂, Au22 ], and so on. The constructed
chain is still increasing since the labels in Γmi are less than the
labels in Γmi+1

for each i = 1, . . . , k − 1. It is not difficult to

see that this is the only increasing chain of [0̂, α] and that it is
lexicographically first.

(3) The interval [0̂, 1̂]. An increasing chain c of this interval must
be of the form c′ ∪{1̂}, where c′ is the unique increasing chain
of some interval [0̂, [n]r]. By Case 1, the label word of c′ ends
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in (1, n)u for some u. For c to be increasing, u must be 0. But
u = 0 only in the interval [0̂, [n]0]. Hence the unique increasing
chain of [0̂, [n]0] concatenated with 1̂ is the only increasing chain
of [0̂, 1̂]. It is clearly lexicographically first.

(4) Intervals of the form [α, β] for α 6= 0̂. We extend the definition
of Πw

n to Πw
S , where S is an arbitrary finite set of positive in-

tegers, by considering partitions of S rather than [n]. We also

extend the definition of the labeling λ to Π̂w
S . Now we can iden-

tify the interval [α, 1̂] with Π̂w
S , where S is the set of minimum

elements of the blocks of α, by replacing each block A of α by
its minimum element and subtracting the weight of A from the
weight of the block containing A in each weighted partition of
[α, 1̂]. This isomorphism preserves the labeling and so the three
previous cases show that there is a unique increasing chain in
[α, β] that is also lexicographically first.

�

3.2. Topological consequences. When we attribute a topological
property to a poset P , we are really attributing the property to the or-
der complex ∆(P ), which is defined to be the simplicial complex whose
faces are the chains of P . For instance, by H̃r(P ; k) and H̃r(P ; k) we
mean, respectively, reduced simplicial homology and cohomology of the
order complex ∆(P ), taken over k, where k is an arbitrary field or the
ring of integers Z. (We will usually omit the k and write just H̃r(P )
and H̃r(P ).) For a brief review of the homology and cohomology of
posets, see the appendix (Section A).

The fundamental link between lexicographic shellability and topol-
ogy is given is the following result. Recall that the proper part P of a
bounded poset P is defined by P := P \{0̂, 1̂}. Hence, if c is a maximal
chain of P then c̄ denotes the maximal chain of P given by c \ {0̂, 1̂}.

Theorem 3.3 (Björner and Wachs [8]). Let λ be an EL-labeling of a
bounded poset P . Then for all x < y in P ,

(1) the open interval (x, y) is homotopy equivalent to a wedge of
spheres, where for each r ∈ N the number of spheres of dimen-
sion r is the number of ascent-free maximal chains of the closed
interval [x, y] of length r + 2.

(2) the set

{c̄ : c is an ascent-free maximal chain of [x, y] of length r + 2}

forms a basis for cohomology H̃r((x, y)), for all r.
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Since the Möbius invariant of a bounded poset P equals the reduced
Euler characteristic of the order complex of P , the Euler-Poincaré for-
mula implies the following corollary.

Corollary 3.4. Let P be a pure EL-shellable poset of length n. Then

(1) P has the homotopy type of a wedge of spheres all of dimension
n− 2, where the number of spheres is |µP (0̂, 1̂)|.

(2) P is Cohen-Macaulay, which means that H̃i((x, y)) = 0 for all
x < y in P and i < l([x, y])− 2.

In [12] Dotsenko and Khoroshkin use operad theory to prove that all
intervals of Πw

n are Cohen-Macaulay. The following extension of their
result is a consequence of Theorem 3.2.

Corollary 3.5. The poset Π̂w
n is Cohen-Macaulay.

Now by Theorem 3.2, Proposition 2.6 and Corollary 2.4 we have,

Theorem 3.6. For all n ≥ 1,

(1) Πw
n \{0̂} has the homotopy type of a wedge of (n−1)n−1 spheres

of dimension n− 2,
(2) (0̂, [n]i) has the homotopy type of a wedge of |Tn,i| spheres of

dimension n− 3 for all i ∈ {0, 1, . . . , n− 1}.
It follows from Theorem 3.6 (and Proposition A.1 in the appen-

dix) that top cohomology H̃n−2(Πw
n \ 0̂) and H̃n−3((0̂, [n]i)) are free

k-modules, which are isomorphic to the corresponding top homology
modules, that is

H̃n−2(Πw
n \ 0̂) ' H̃n−2(Πw

n \ 0̂)

and
H̃n−3((0̂, [n]i)) ' H̃n−3((0̂, [n]i))

for 0 ≤ i ≤ n− 1. Moreover, we have the following result.

Corollary 3.7. For 0 ≤ i ≤ n− 1,

rank H̃n−2(Πw
n \ 0̂) = (n− 1)n−1

rank H̃n−3((0̂, [n]i)) = |Tn,i|

rank
n−1⊕
i=0

H̃n−3((0̂, [n]i)) = nn−1.

Remark 3.8. In a prior attempt to establish Cohen-Macaulayness of
each maximal interval [0̂, [n]i] of Πw

n , it is argued in [11] that the inter-
vals are totally semimodular and hence CL-shellable2. In [28] it is noted

2CL-shellability is a property more general the EL-shellability, which also implies
Cohen-Macaulaynes; see [7], [8] or [33]
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that this is not the case and a proposed recursive atom ordering3 of each
maximal interval [0̂, [n]i] is given in order to establish CL-shellability.
In [28, Proof of Proposition 3.9] it is claimed that given any linear or-
dering {i1, j1}, {i2, j2}, · · · , {im, jm} of the atoms of Πn (the singleton
blocks have been omitted), the linear ordering

(3.1) {i1, j1}0, {i1, j1}1, {i2, j2}0, {i2, j2}1 · · · {im, jm}0, {im, jm}1

satisfies the criteria for being a recursive atom ordering of [0̂, [n]i], where
1 ≤ i ≤ n − 2. We note here that one of the requisite conditions in
the definition of recursive atom ordering fails to hold when n = 4 and
i = 2. Indeed, assume (without loss of generality) that the first two
atoms in the atom ordering of [0̂, [4]2] given in (3.1) are {1, 2}0 and
{1, 2}1. Then the atoms of the interval [{1, 2}1, [4]2] that cover {1, 2}0

are {1, 2, 3}1 and {1, 2, 4}1. So by the definition of recursive atom
ordering one of these covers must come first in any recursive atom
ordering of [{1, 2}1, [4]2] and the other must come second. But this
contradicts the form of (3.1) applied to the interval [{1, 2}1, [4]2] which
requires the atom {1, 2, 3}2 to immediately follow the atom {1, 2, 3}1

and the atom {1, 2, 4}2 to immediately follow the atom {1, 2, 4}1. The
proof of Proposition 3.9 of [28] breaks down in the second from last
paragraph.

4. Connection with the doubly bracketed free Lie
algebra

4.1. The doubly bracketed free Lie algebra. In this section k
denotes an arbitrary field. Recall that a Lie bracket on a vector space
V is a bilinear binary product [·, ·] : V × V → V such that for all
x, y, z ∈ V ,

[x, y] = −[y, x] (Antisymmetry)(4.1)

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity).(4.2)

The free Lie algebra on [n] (over the field k) is the k-vector space gen-
erated by the elements of [n] and all the possible bracketings involving
these elements subject only to the relations (4.1) and (4.2). Let Lie(n)
denote the multilinear component of the free Lie algebra on [n], i.e.,
the subspace generated by bracketings that contain each element of
[n] exactly once. For example [[2, 3], 1] is an element of Lie(3), while
[[2, 3], 2] is not.

3See [7], [8] or [33] for the definition of recursive atom ordering. The property
of admitting a recursive atom ordering is equivalent to that of being CL-shellable.
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Now let V be a vector space equipped with two Lie brackets [·, ·] and
〈·, ·〉. The brackets are said to be compatible if any linear combination
of them is a Lie bracket. As pointed out in [11, 20], compatibility is
equivalent to the mixed Jacobi condition: for all x, y, z ∈ V ,

[x, 〈y, z〉] + [z, 〈x, y〉] + [y, 〈z, x〉] + 〈x, [y, z]〉+ 〈z, [x, y]〉+ 〈y, [z, x]〉 = 0.
(4.3)

Let Lie2(n) denote the multilinear component of the free Lie algebra on
[n] with two compatible brackets [·, ·] and 〈·, ·〉, that is, the multilinear
component of the k-vector space generated by (mixed) bracketings of
elements of [n] subject only to the five relations given by (4.1) and
(4.2), for each bracket, and (4.3). We will call the bracketed words
that generate Lie2(n) bracketed permutations.

It will be convenient to refer to the bracket [·, ·] as the blue bracket
and the bracket 〈·, ·〉 as the red bracket. For each i, let Lie2(n, i) be the
subspace of Lie2(n) generated by bracketed permutations with exactly
i red brackets and n− 1− i blue brackets.

A permutation τ ∈ Sn acts on the bracketed permutations by re-
placing each letter i by τ(i). For example (1, 2) 〈[〈3, 5〉, [2, 4]], 1〉 =
〈[〈3, 5〉, [1, 4]], 2〉. Since this action respects the five relations, it induces
a representation of Sn on Lie2(n). Since this action also preserves the
number of red and blue brackets, we have the following decomposition
into Sn-submodules: Lie2(n) = ⊕n−1

i=0 Lie2(n, i). Note that by replacing
red brackets with blue brackets and vice verce, we get the Sn-module
isomorphism,

Lie2(n, i) 'Sn Lie2(n, n− 1− i)
for all i. Also note that

Lie2(n, 0) 'Sn Lie2(n, n− 1) 'Sn Lie(n).

A bicolored binary tree is a complete binary tree (i.e., every internal
node has a left and a right child) for which each internal node has been
colored red or blue. For a bicolored binary tree T with n leaves and
σ ∈ Sn, define the labeled bicolored binary tree (T, σ) to be the tree
T whose jth leaf from left to right has been labeled σ(j). We denote
by BT n the set of labeled bicolored binary trees with n leaves and by
BT n,i the set of labeled bicolored binary trees with n nodes and i red
internal nodes.

It will also be convenient to consider labeled bicolored trees whose
label set is more general than [n]. For a finite set A, let BT A be the
set of bicolored binary trees whose leaves are labeled by a permutation
of A and BT A,i be the subset of BT A consisting of trees with i red
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Red
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1

23 4

56

7

8

9

〈[〈[3, 4], 6〉, [1, 5]], 〈〈[2, 7], 9〉, 8〉〉

Figure 3. Example of a tree (T, 346152798) ∈ BT 9,4

and [T, 346152798] ∈ Lie2(9, 4)

internal nodes. If (S, α) ∈ BT A and (T, β) ∈ BT B, where A and B are
disjoint finite sets, and col ∈ {red, blue} then (S, α)col

∧ (S, β) denotes
the tree in BT A∪B whose left subtree is (S, α), right subtree is (T, β),
and root color is col.

We can represent the bracketed permutations that generate Lie2(n)
with labeled bicolored binary trees. More precisely, let (T1, σ1) and
(T2, σ2) be the left and right labeled subtrees of the root r of (T, σ).
Then define recursively

(4.4) [T, σ] =

 [[T1, σ1], [T2, σ2]] if r is blue and n > 1
〈[T1, σ1], [T2, σ2]〉 if r is red and n > 1
σ if n = 1.

Clearly (T, σ) ∈ BT n,i if and only if [T, σ] is a bracketed permutation
of Lie2(n, i). See Figure 3.

4.2. A generating set for H̃n−3((0̂, [n]i)). In this section the ring of
coefficients k for cohomology is either Z or an arbitrary field.

The top dimensional cohomology of a pure poset P , say of length
`, has a particularly simple description (see Appendix A). Let M(P )
denote the set of maximal chains of P and let M′(P ) denote the set
of chains of length ` − 1. We view the coboundary map δ as a map
from the chain space of P to itself, which takes chains of length d to
chains of length d + 1 for all d. Since the image of δ on the top chain
space (i.e. the space spanned by M(P )) is 0, the kernel is the entire
top chain space. Hence top cohomology is the quotient of the space
spanned by M(P ) by the image of the space spanned by M′(P ). The
image of M′(P ) is what we call the coboundary relations. We thus
have the following presentation of the top cohomology

H̃`(P ) = 〈M(P )| coboundary relations〉.
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(a) (T, σ) ∈ BT 9

10|20|30|40|50|60|70|80|90

10|20|340|50|60|70|80|90

10|20|3461|50|70|80|90

150|20|3461|70|80|90

134561|20|70|80|90

134561|270|80|90

134561|2791|80

134561|27892

1234567894

(b) c(T, σ)

Figure 4. Example of postorder (internal nodes) of the
binary tree T of Figure 3 and the chain c(T, σ)

Recall that the postorder listing of the internal nodes of a binary
tree T is defined recursively as follows: first list the internal nodes of
the left subtree in postorder, then list the internal nodes of the right
subtree in postorder, and finally list the root. The postorder listing of
the internal nodes of the binary tree of Figure 3 is illustrated in Figure
4a.

Given k blocks Aw1
1 , Aw2

2 , . . . , Awkk in a weighted partition α and u ∈
{0, . . . , k − 1}, by u-merge these blocks we mean remove them from α
and replace them by the block (

⋃
Ai)

∑
wi+u. Given col ∈ {blue, red},

let

u(col) =

{
0 if col = blue

1 if col = red.

For (T, σ) ∈ BT A,i, let π(T, σ) = Ai.

Definition 4.1. For (T, σ) ∈ BT n and k ∈ [n − 1], let Tk = Lkcolk
∧ Rk

be the subtree of (T, σ) rooted at the kth node listed in postorder. The
chain c(T, σ) ∈ M(Πw

n ) is the one whose rank k weighted partition is
obtained from the rank k−1 weighted partition by u(colk)-merging the
blocks π(Lk) and π(Rk). See Figure 4.

Not all maximal chains in M(Πw
n ) can be described as c(T, σ). For

some maximal chains postordering of the internal nodes is not enough
to describe the process of merging the blocks. We need a more flexible
construction in terms of linear extensions (cf. [31]). Let v1, . . . , vn be
the postorder listing of the internal nodes of T . A listing vτ(1), vτ(2), ..., vτ(n−1)

of the internal nodes such that each node precedes its parent is said
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to be a linear extension of T . We will say that the permutation τ in-
duces the linear extension. In particular, the identity permutation ε
induces postorder which is a linear extension. Denote by E(T ) the set
of permutations that induce linear extensions of the internal nodes of
T . So we extend the construction of c(T, σ) by letting c(T, σ, τ) be the
chain inM(Πw

n ) whose rank k weighted partition is obtained from the
rank k− 1 weighted partition by u(colτ(k))-merging the blocks π(Lτ(k))
and π(Rτ(k)), where Licoli

∧ Ri is the subtree rooted at vi. In particular,
c(T, σ) = c(T, σ, ε). From each maximal chain we can easily construct
a binary tree and a linear extension that encodes the merging instruc-
tions along the chain. So it follows that any maximal chain can be
obtained in this form.

Lemma 4.2 ([31, Lemma 5.1]). Let T be a binary tree. Then

(1) ε ∈ E(T )
(2) If τ ∈ E(T ) and τ(i) > τ(i+ 1) then τ(i, i+ 1) ∈ E(T ),

where τ(i, i+1) denotes the product of τ and the transposition (i, i+1)
in the symmetric group.

Proof. Postorder ε is a linear extension since in postorder we list chil-
dren before parents. Now, τ(i) > τ(i + 1) means that vτ(i+1) is listed
in postorder before vτ(i), and so vτ(i+1) cannot be an ancestor of vτ(i).
This implies that τ(i, i+ 1) is also a linear extension. �

The number of inversions of a permutation τ ∈ Sn is defined by
inv(τ) := |{(i, j) : 1 ≤ i < j ≤ n, τ(i) > τ(j)}| and the sign of
τ is defined by sgn(τ) := (−1)inv(τ). For T ∈ BT n,i, σ ∈ Sn, and

τ ∈ E(T ), write c̄(T, σ, τ) for c(T, σ, τ) := c(T, σ, τ) \ {0̂, [n]i} and

c̄(T, σ) for c(T, σ) := c(T, σ) \ {0̂, [n]i}.

Lemma 4.3 (cf. [31, Lemma 5.2]). Let T ∈ BT n,i, σ ∈ Sn, τ ∈ E(T ).

Then in H̃n−3((0̂, [n]i))

c̄(T, σ, τ) = sgn(τ)c̄(T, σ).

Proof. We proceed by induction on inv(τ). If inv(τ) = 0 then τ = ε
and the result is trivial. If inv(τ) ≥ 1, then there is some descent
τ(i) > τ(i+ 1) and by Lemma 4.2, τ(i, i+ 1) ∈ E(T ). Since inv(τ(i, i+
1)) = inv(τ)− 1, by induction we have,

c̄(T, σ, τ(i, i+ 1)) = sgn(τ(i, i+ 1))c̄(T, σ) = − sgn(τ)c̄(T, σ).

We have to show then that

c̄(T, σ, τ) = −c̄(T, σ, τ(i, i+ 1)).
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By the proof of Lemma 4.2 we know that the internal nodes vτ(i)

and vτ(i+1) are unrelated in T and so π(Lτ(i)), π(Rτ(i)), π(Lτ(i+1)) and
π(Rτ(i+1)) are pairwise disjoint sets which are all blocks of the rank
i − 1 partition in both c̄(T, σ, τ) and c̄(T, σ, τ(i, i + 1)). The blocks
π(Lτ(i) ∧ Rτ(i)) and π(Lτ(i+1) ∧ Rτ(i+1)) are blocks of the rank i + 1
partition in both c̄(T, σ, τ) and c̄(T, σ, τ(i, i+ 1)). Hence the maximal
chains c̄(T, σ, τ) and c̄(T, σ, τ(i, i + 1)) only differ at rank i. So if we
denote by c either of these maximal chains with the rank i partition
removed we get, using equation (A.1), a cohomology relation given by

δ(c) = (−1)i(c̄(T, σ, τ) + c̄(T, σ, τ(i, i+ 1)))

as desired. �

We conclude that in cohomology any maximal chain c ∈ M(Πw
n ) is

cohomology equivalent to a chain of the form c(T, σ), more precisely,
in cohomology c̄ = ±c̄(T, σ).

We will make further use of the elementary cohomology relations that
are obtained by setting the coboundary (given in (A.1)) of a codimen-
sion 1 chain in (0̂, [n]i) equal to 0. There are three types of codimension
1 chains, which correspond to the three types of intervals of length 2
(see Figure 5). Indeed, if c̄ is a codimension 1 chain of (0̂, [n]i) then
c = c̄∪ {0̂, [n]i} is unrefinable except between one pair of adjacent ele-
ments x < y, where [x, y] is an interval of length 2. If the open interval
(x, y) = {z1, . . . , zk} then it follows from (A.1) that

δ(c̄) = ±(c̄ ∪ {z1}+ · · ·+ c̄ ∪ {zk}).
By setting δ(c̄) = 0 we obtain the elementary cohomology relation

(c̄ ∪ {z1}) + · · ·+ (c̄ ∪ {zk}) = 0.

Type I: Two pairs of distinct blocks of x are merged to get y. The
open interval (x, y) equals {z1, z2}, where z1 is obtained by u1-
merging the first pair of blocks and z2 is obtained by u2-merging
the second pair of blocks for some u1, u2 ∈ {0, 1}. Hence the
Type I elementary cohomology relation is

c̄ ∪ {z1} = −(c̄ ∪ {z2}).
Type II: Three distinct blocks of x are 2u-merged to get y, where u ∈

{0, 1}. The open interval (x, y) equals {z1, z2, z3}, where each
weighted partition zi is obtained from x by u-merging two of
the three blocks. Hence the Type II elementary cohomology
relation is

(c̄ ∪ {z1}) + (c̄ ∪ {z2}) + (c̄ ∪ {z3}) = 0.
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Aa|Bb|Cc|Dd

ABa+b+u1|CDc+d+u2

ABa+b+u1|Cc|Dd Aa|Bb|CDc+d+u2

(a) Type I

Aa|Bb|Cc

ABCa+b+c+2u

ABa+b+u|Cc Aa|BCb+c+uACa+c+u|Bb

(b) Type II

Aa|Bb|Cc

ABCa+b+c+1

ABa+b|Cc ACa+c|Bb Aa|BCb+c ABa+b+1|Cc ACa+c+1|Bb Aa|BCb+c+1

(c) Type III

Figure 5. Intervals of length 2

Type III: Three distinct blocks of x are 1-merged to get y. The open
interval (x, y) equals {z1, z2, z3, z4, z5, z6}, where each weighted
partition zi is obtained from x by either 0-merging or 1-merging
two of the three blocks. Hence the Type III elementary coho-
mology relation is

(c̄∪{z1})+(c̄∪{z2})+(c̄∪{z3})+(c̄∪{z4})+(c̄∪{z5})+(c̄∪{z6}) = 0.

Let I(Υ) denote the set of internal nodes of the labeled bicolored
binary tree Υ. Recall that Υ1

col
∧Υ2 denotes the labeled bicolored binary
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tree whose left subtree is Υ1, right subtree is Υ2 and root color is col,
where col ∈ {blue, red}. If Υ is a labeled bicolored binary tree then
α(Υ)β denotes a labeled bicolored binary tree with Υ as a subtree. The
following result generalizes [31, Theorem 5.3].

Theorem 4.4. The set {c̄(T, σ) : (T, σ) ∈ BT n,i} is a generating set

for H̃n−3((0̂, [n]i)), subject only to the relations

(4.5) c̄(α(Υ1
col
∧Υ2)β) = (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2

col
∧Υ1)β),

(4.6)

c̄(α(Υ1
col
∧ (Υ2

col
∧Υ3))β) + (−1)|I(Υ3)|c̄(α((Υ1

col
∧Υ2)

col
∧Υ3)β)

+ (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2
col
∧ (Υ1

col
∧Υ3))β),

= 0,

where col ∈ {blue, red}, and

c̄(α(Υ1
red
∧ (Υ2

blue
∧ Υ3))β) + c̄(α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β)(4.7)

+ (−1)|I(Υ3)|
(

c̄(α((Υ1
red
∧ Υ2)blue

∧ Υ3)β) + c̄(α((Υ1
blue
∧ Υ2)red

∧ Υ3)β)
)

+ (−1)|I(Υ1)||I(Υ2)|
(

c̄(α(Υ2
red
∧ (Υ1

blue
∧ Υ3))β) + c̄(α(Υ2

blue
∧ (Υ1

red
∧ Υ3))β)

)
= 0.

Proof. It is an immediate consequence of Lemma 4.3 that {c̄(Υ)|Υ ∈
BT n,i} generates Hn−3((0̂, [n]i)).

Relation (4.5): This is also a consequence of Lemma 4.3. Indeed,
first note that

c(α(Υ2
col
∧Υ1)β) = c(α(Υ1

col
∧Υ2)β, τ),

where τ is the permutation that induces the linear extension that is
just like postorder except that the internal nodes of Υ2 are listed before
those of Υ1. Since inv(τ) = |I(Υ1)||I(Υ2)|, relation (4.5) follows from
Lemma 4.3. (Note that since Lemma 4.3 is a consequence only of the
Type I cohomology relation, one can view (4.5) as a consequence only
of the Type I cohomology relation.)

Relation (4.6): Note that the following relation is a Type II elemen-
tary cohomology relation:

c̄(α(Υ1
col
∧ (Υ2

col
∧Υ3))β) + c̄(α((Υ1

col
∧Υ2)

col
∧Υ3)β, τ1)

+ c̄(α(Υ2
col
∧ (Υ1

col
∧Υ3))β, τ2) = 0,
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where τ1 is the permutation that induces the linear extension that is like
postorder but that lists the internal nodes of Υ3 before listing the root
of Υ1∧Υ2, and τ2 is the permutation that induces the linear extension
that is like postorder but lists the internal nodes of Υ1 before listing
the internal nodes of Υ2. So then inv(τ1) = |I(Υ3)| and inv(τ2) =
|I(Υ1)||I(Υ2)|, and using Lemma 4.3 we obtain relation (4.6).

Relation (4.7): Note that the following relation is a Type III elemen-
tary cohomology relation:

c̄(α(Υ1
red
∧ (Υ2

blue
∧ Υ3))β) + c̄(α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β)

+ c̄(α((Υ1
red
∧ Υ2)blue

∧ Υ3)β, τ1) + c̄(α((Υ1
blue
∧ Υ2)red

∧ Υ3)β, τ1)

+ c̄(α(Υ2
red
∧ (Υ1

blue
∧ Υ3))β, τ2) + c̄(α(Υ2

blue
∧ (Υ1

red
∧ Υ3))β, τ2)

= 0,

where as in the previous case, τ1 is the permutation that induces the
linear extension that is like postorder but that lists the internal nodes
of Υ3 before listing the root of Υ1 ∧ Υ2, and τ2 is the permutation
that induces the linear extension that is like postorder but lists the
internal nodes of Υ1 before listing the internal nodes of Υ2. So then
inv(τ1) = |I(Υ3)| and inv(τ2) = |I(Υ1)||I(Υ2)|, and using Lemma 4.3
we obtain relation (4.7).

To complete the proof, we need to show that these relations gen-
erate all the cohomology relations. In other words, we need to show
that H̃n−3((0̂, [n]i)) = M/R, where M is the free k-module with ba-
sis {c̄(T, σ) : (T, σ) ∈ BT n,i} and R is the submodule spanned by
elements given in the relations (4.5), (4.6), (4.7). We have already
shown that rank H̃n−3((0̂, [n]i)) ≤ rankM/R. To complete the proof
we need to establish the reverse inequality. This is postponed to Sec-
tion 5.1. We will prove there, that a certain set S of maximal chains
of (0̂, [n]i) whose cardinality equals rank H̃n−3((0̂, [n]i)) generates M/R
by showing that there is a straightening algorithm, which using only
the relations (4.5),(4.6),(4.7), enables us to express every generator
c̄(T, σ) as a linear combination of the elements of S. It follows that
rankM/R ≤ |S| = rank H̃n−3((0̂, [n]i)). See Remark 5.4. �

4.3. The isomorphism. In this section homology and cohomology
are taken over an arbitrary field k, as is Lie2(n, i).

The symmetric group Sn acts naturally on Πw
n . Indeed, let σ ∈ Sn

act on the weighted blocks of π ∈ Πw
n by replacing each element x of

each weighted block of π with σ(x). Since the maximal elements of
Πw
n are fixed by each σ ∈ Sn and the order is preserved, each open
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interval (0̂, [n]i) is a Sn-poset. Hence by (A.2) we have the Sn-module
isomorphism,

H̃n−3((0̂, [n]i)) 'Sn H̃
n−3((0̂, [n]i)).

The symmetric group Sn also acts naturally on Lie2(n). Indeed, let
σ ∈ Sn act by replacing letter x of a bracketed permutation with
σ(x). Since this action preserves the number of brackets of each type,
Lie2(n, i) is an Sn-module for each i. In this section we obtain an ex-
plicit sign-twisted isomorphism between the Sn-modules H̃n−3((0̂, [n]i))
and Lie2(n, i).

Define the sign of a binary tree T recursively by

sgn(T ) =

{
1 if I(T ) = ∅
(−1)|I(T2)| sgn(T1) sgn(T2) if T = T1 ∧ T2

where I(T ) is the set of internal nodes of the binary tree T . The sign
of a bicolored binary tree is defined to be the sign of the binary tree
obtained by removing the colors.

Theorem 4.5. For each i ∈ {0, 1, . . . , n − 1}, there is an Sn-module
isomorphism φ : Lie2(n, i)→ H̃n−3((0̂, [n]i))⊗ sgnn determined by

φ([T, σ]) = sgn(σ) sgn(T )c̄(T, σ),

for all (T, σ) ∈ BT n,i.

Before proving the theorem we make a few preliminary observations.
The following lemma, which is implicit in [31, Proof of Theorem 5.4],
is easy to prove. For a binary tree T , let a(T )b denote a binary tree
with T as a subtree.

Lemma 4.6. For all binary trees T1, T2, T3,

(1) sgn(a(T1 ∧ T2)b) = (−1)|I(T1)|+|I(T2)| sgn(a(T2 ∧ T1)b)

(2) sgn(a((T1 ∧ T2) ∧ T3)b) = (−1)|I(T3)|+1 sgn(a(T1 ∧ (T2 ∧ T3))b)

(3) sgn(a(T2∧(T1∧T3))b)=(−1)|I(T1)|+|I(T2)| sgn(a(T1∧(T2∧T3))b).

For a word w denote by l(w) the length or number of letters in w.
We also have the following easy relation, which we state as a lemma.

Lemma 4.7. For uw1w2v ∈ Sn, where u ,w1 , w2 , v are subwords,

sgn(uw1w2v) = (−1)l(w1)l(w2) sgn(uw2w1v).

We give a presentation of Lie2(n, i) in terms of labeled bicolored
binary trees and a slightly modified, but clearly equivalent, form of the
relations (4.1), (4.2) and (4.3) in the following proposition.
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Proposition 4.8. The set {[T, σ] : (T, σ) ∈ BT n,i} is a generating set
for Lie2(n, i), subject only to the relations

(4.8) [α(Υ1
col
∧Υ2)β] = −[α(Υ2

col
∧Υ1)β]

[α(Υ1
col
∧ (Υ2

col
∧Υ3))β] − [α((Υ1

col
∧Υ2)

col
∧Υ3)β](4.9)

− [α(Υ2
col
∧ (Υ1

col
∧Υ3))β]

= 0

[α(Υ1
red
∧ (Υ2

blue
∧ Υ3))β] + [α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β](4.10)

− [α((Υ1
red
∧ Υ2)blue

∧ Υ3)β] − [α((Υ1
blue
∧ Υ2)red

∧ Υ3)β]

− [α(Υ2
red
∧ (Υ1

blue
∧ Υ3))β] − [α(Υ2

blue
∧ (Υ1

red
∧ Υ3))β]

= 0.

Proof of Theorem 4.5. The map φ maps generators onto generators
and clearly respects the Sn action. We will prove that the map φ ex-
tends to a well defined homomorphism by showing that the relations in
Lie2(n, i) of the generators in Proposition 4.8 map onto to the relations
in Theorem 4.4. Since by Theorem 4.4 (whose proof will be completed
in Section 5.1), the relations in Theorem 4.4 span all the relations in
cohomology, this also implies that the map is an isomorphism.

For each Υj in the relations of Proposition 4.8, let wj and Tj be such
that Υj = (Tj, wj). Let u be the permutation labeling the portion a of
the tree corresponding to the preamble α, and let v be the permutation
labeling the portion b of the tree corresponding to the tail β. Using
Lemmas 4.6 and 4.7 we have the following.

Relation (4.8): Let ∧ ∈ {blue
∧ ,

red
∧ }. Then

φ([α(Υ2 ∧Υ1)β]) = sgn(uw2w1v) sgn(a(T2 ∧ T1)b)c̄(α(Υ2 ∧Υ1)β)

= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

· (−1)l(w1)l(w2)+|I(T1)|+|I(T2)|c̄(α(Υ2 ∧Υ1)β)

= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

· (−1)(|I(T1)|+1)(|I(T2)|+1)+|I(T1)|+|I(T2)|c̄(α(Υ2 ∧Υ1)β)

= sgn(uw1w2v) sgn(a(T1 ∧ T2)b)
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· (−1)|I(T1)||I(T2)|+1c̄(α(Υ2 ∧Υ1)β).

Hence,

φ([α(Υ1 ∧Υ2)β]) + φ([α(Υ2 ∧Υ1)β]) = sgn(uw1w2v) sgn(a(T1 ∧ T2)b)

·
(
c̄(α(Υ1 ∧Υ2)β)− (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2 ∧Υ1)β)

)
.

We conclude that relation (4.8) maps to relation (4.5).
Relations (4.9) and (4.10): Let ∧, ∧̃ ∈ {blue

∧ ,
red
∧ }. Then

φ([α((Υ1 ∧Υ2)∧̃Υ3)β]) = sgn(uw1w2w3v) sgn(a((T1 ∧ T2) ∧ T3)b)

· c̄(α((Υ1 ∧Υ2)∧̃Υ3)β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)|I(T3)|+1c̄(α((Υ1 ∧Υ2)∧̃Υ3)β).

φ([α(Υ2 ∧ (Υ1∧̃Υ3))β]) = sgn(uw2w1w3v) sgn(a(T2 ∧ (T1 ∧ T3))b)

· c̄(α(Υ2 ∧ (Υ1∧̃Υ3))β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)l(w1)l(w2)+|I(T1)|+|I(T2)|c̄(α(Υ2 ∧ (Υ1∧̃Υ3))β)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

· (−1)|I(T1)||I(T2)|+1c̄(α(Υ2 ∧ (Υ1∧̃Υ3))β).

Hence,

φ([α(Υ1∧(Υ2∧̃Υ3))β])− φ([α((Υ1 ∧Υ2)∧̃Υ3)β])− φ([α(Υ2 ∧ (Υ1∧̃Υ3))β])

(4.11)

= sgn(uw1w2w3v) sgn(a(T1 ∧ (T2 ∧ T3))b)

·
(

c̄(α(Υ1 ∧ (Υ2∧̃Υ3))β) + (−1)|I(T3)|c̄(α((Υ1 ∧Υ2)∧̃Υ3)β)

+ (−1)|I(Υ1)||I(Υ2)|c̄(α(Υ2 ∧ (Υ1∧̃Υ3))β)
)
.

By setting ∧ = ∧̃ in (4.11) we conclude that relation (4.9) maps to

relation (4.6). By adding (4.11) with ∧ =
blue
∧ and ∧̃ =

red
∧ to (4.11)

with ∧ =
red
∧ and ∧̃ =

blue
∧ , we are also able to conclude that relation

(4.10) maps to relation (4.7). �
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Theorem 4.5 and Corollary 3.7 yield the following result.

Corollary 4.9 (Liu [20], Dotsenko and Khoroshkin [12]). For 0 ≤ i ≤
n− 1, dimLie2(n, i) = |Tn,i|.

5. Combinatorial bases

Throughout this section we take homology and cohomology over the
integers or over an arbitrary field k. We present three bases for co-
homology and one for homology of each interval (0̂, [n]i). Two of the
three cohomology bases correspond to known bases for Lie2(n, i) and
one appears to be new. The homology basis also appears to be new.
We also present two new bases for cohomology of the full weighted
partition poset Πw

n \ {0̂}.
We say that a labeled binary tree is normalized if the leftmost leaf

of each subtree has the smallest label in the subtree. Using cohomol-
ogy relation (4.5), we see that H̃n−3((0̂, [n]i)) is generated by maximal
chains of the form c̄(T, σ), where (T, σ) is a normalized binary tree in
BT n,i. The first two bases for H̃n−3((0̂, [n]i)) presented here are subsets
of this set of maximal chains.

5.1. A bicolored comb basis for H̃n−3((0̂, [n]i)) and Lie2(n, i). In
this section we present a generalization of a classical basis for H̃n−3(Πn)
and a corresponding generalization of a classical basis for Lie(n); the
classical bases are sometimes referred to as comb bases (see [31, Section
4]). The generalization for Lie2(n) is due to Bershtein, Dotsenko and
Khoroshkin (see [4] and [11, Theorem 4]).

A bicolored comb is a normalized bicolored binary tree that satisfies
the following coloring restriction: for each internal node x whose right
child y is not a leaf, x is colored red and y is colored blue. Let Comb2

n

be the set of bicolored combs in BT n and let Comb2
n,i be the set of

bicolored combs in BT n,i The set of bicolored combs for n = 3 is
depicted in Figure 6.

We refer to such trees as bicolored combs because the monochromatic
ones are the usual left combs in the sense of [31]; indeed if a bicolored
comb is monochromatic then the right child of every internal node is a
leaf and the left-most leaf label of the tree is the smallest label. In this
case we get the usual left comb, which has the form,
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Red
Blue

1 2

3 1 2

3

1 2

3

1 2

3

1 3

2

1 3

2

1 3

2 1 3

2

2 3

1

Figure 6. Set of bicolored combs for n = 3

m l2

l3

lk−1

lk

where m and all the lj are leaves, and m is the smallest label usually
1.

Bershtein, Dotsenko and Khoroshkin [4, Lemma 5.2] present the re-
sults that {[T, σ] : (T, σ) ∈ Comb2

n,i} spans Lie2(n, i) and |Comb2
n| =

nn−1. Since it was already known from [20] and [11] that dimLie2(n) =
nn−1, they conclude that {[T, σ] : (T, σ) ∈ Comb2

n,i} is a basis for
Lie2(n, i). For the sake of completeness we give a detailed proof that
the corresponding set {c̄(T, σ) : (T, σ) ∈ Comb2

n,i} spans cohomology

and we give an alternative proof of |Comb2
n| = nn−1.

Proposition 5.1. The set {c̄(T, σ) : (T, σ) ∈ Comb2
n,i} spans H̃n−3((0̂, [n]i)),

for all 0 ≤ i ≤ n− 1.

Proof. We prove this result by “straightening” via the relations in The-
orem 4.4. Define the weight w(T ) of a bicolored binary tree T to be

w(T ) =
∑
x∈I(T )

r(x),

where I(T ) is the set of internal nodes of T and r(x) is the number
of internal nodes in the right subtree of x. We say a node y of T is a
right descendent of a node x if y can be reached from x along a path of
right edges. Next we define an inversion of T to be a pair of internal
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nodes (x, y) of T such that x is blue and y is a red right descendent of
x. Let inv(T ) be the number of inversions of T . The weight-inversion
pair of T is (w(T ), inv(T )). We order these pairs lexicographically,
that is we say (w(T ), inv(T )) < (w(T ′), inv(T ′)) if either w(T ) < w(T ′)
or w(T ) = w(T ′) and inv(T ) < inv(T ′). For Υ = (T, σ) ∈ BTn, let
w(Υ) := w(T ) and inv(Υ) := inv(T ). Also define the weight-inversion
pair of Υ to be that of T .

It follows from (4.5) that the chains of the form c̄(Υ), where Υ
is a normalized bicolored binary tree in BT n,i, span H̃n−3((0̂, [n]i)).
Hence to prove the result we need only show that if Υ ∈ BT n,i is
a normalized bicolored binary tree that is not a bicolored comb then
c̄(Υ) can be expressed as a linear combination of chains of the form
c̄(Υ′), where Υ′ is a normalized bicolored binary tree in BT n,i such
that (w(Υ′), inv(Υ′)) < (w(Υ), inv(Υ)) in lexicographic order. It will
then follow by induction on the weight-inversion pair that c̄(Υ) can be
expressed as a linear combination of chains of the form c̄(Υ′), where
Υ′ ∈ Comb2

n,i.
Now let Υ ∈ BT n,i be a normalized bicolored binary tree that is

not a bicolored comb. Then Υ must have a subtree of one of the
following forms: Υ1

blue
∧ (Υ2

blue
∧ Υ3), Υ1

red
∧ (Υ2

red
∧ Υ3), or Υ1

blue
∧ (Υ2

red
∧ Υ3).

We will show that in all three cases c̄(Υ) can be expressed as a linear
combination of chains with a smaller weight-inversion pair.
Case 1: Υ has a subtree of the form Υ1

blue
∧ (Υ2

blue
∧ Υ3). We can therefore

express Υ as α(Υ1
blue
∧ (Υ2

blue
∧ Υ3))β. Using relation (4.6) (and relation

(4.5)) we have that

c̄(α(Υ1
blue
∧ (Υ2

blue
∧ Υ3))β) = ±c̄(α((Υ1

blue
∧ Υ2)blue

∧ Υ3)β)±c̄(α((Υ1
blue
∧ Υ3)blue

∧ Υ2)β).

(The signs in the relations of Theorem 4.4 are not relevant here and
have therefore been suppressed.)

It is easy to see that

w(α((Υ1
blue
∧ Υ2)blue

∧ Υ3)β) = w(α((Υ1
blue
∧ Υ3)blue

∧ Υ2)β)

= w(α(Υ1
blue
∧ (Υ2

blue
∧ Υ3))β)− |I(Υ3)| − 1.

Hence c̄(Υ) can be expressed as a linear combination of chains of smaller
weight, and therefore of smaller weight-inversion pair.
Case 2: Υ has a subtree of the form Υ1

red
∧ (Υ2

red
∧ Υ3). An argument

analogous to that of Case 1 shows that c̄(Υ) can be expressed as a
linear combination of chains of smaller weight-inversion pair.
Case 3: Υ has a subtree of the form Υ1

blue
∧ (Υ2

red
∧ Υ3). Using relation

(4.7) (and relation (4.5)) we have that
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c̄(α(Υ1
blue
∧ (Υ2

red
∧ Υ3))β) = ±c̄(α(Υ1

red
∧ (Υ2

blue
∧ Υ3))β)

±c̄(α((Υ1
blue
∧ Υ2)red

∧ Υ3)β)

±c̄(α((Υ1
red
∧ Υ2)blue

∧ Υ3)β)

±c̄(α((Υ1
blue
∧ Υ3)red

∧ Υ2)β)

±c̄(α((Υ1
red
∧ Υ3)blue

∧ Υ2)β).

Just as in Case 1, all the labeled bicolored trees on the right hand side
of the equation, except for the first, have weight smaller than that of
α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β. The first labeled bicolored tree α(Υ1

red
∧ (Υ2

blue
∧ Υ3))β

has the same weight as that of α(Υ1
blue
∧ (Υ2

red
∧ Υ3))β. However the in-

version number is reduced, that is

inv(α(Υ1
red
∧ (Υ2

blue
∧ Υ3))β) = inv(α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β)− 1.

Hence the weight-inversion pair for the first bicolored labeled tree is
less than that of Υ := α(Υ1

blue
∧ (Υ2

red
∧ Υ3))β just as it is for the other

bicolored labeled trees on the right hand side of the equation. We
conclude that c̄(Υ) can be expressed as a linear combination of chains
of smaller weight-inversion pair. �

Proposition 5.2 (Bershtein, Dotsenko and Khoroshkin [4]). Let n ≥
1. Then |Comb2

n| = nn−1.

Proof. We present a different proof than that of [4]. Our proof is by
induction on n. The cases |Comb2

1| = 1 and |Comb2
2| = 2 are trivially

verified. For n ≥ 3 assume that |Comb2
k| = kk−1 for any k < n. We

claim that

(5.1) |Comb2
n| = (n− 1)n−1 +

n−1∑
k=1

(
n− 1

k

)
(n− k)n−k−1(k − 1)k−1.

To prove the claim we show that the term that precedes the summa-
tion counts blue-rooted bicolored combs and the kth term of the sum
counts red-rooted bicolored combs whose right subtree has k leaves.
To construct a blue-rooted bicolored comb T ∈ Comb2

n, we can choose
the right subtree, which is a leaf, in n − 1 different ways, and the left
subtree, which is a bicolored comb, in (n − 1)n−2 different ways, by
induction. Hence there are (n− 1)n−1 blue-rooted bicolored combs. To
construct a red-rooted bicolored comb T ∈ Comb2

n whose right subtree
has k leaves, first choose k labels for the right subtree in

(
n−1
k

)
different

ways. Then choose a right subtree that uses these labels. Since the
right subtree must be a blue-rooted bicolored comb, there are (k−1)k−1

ways to choose such a subtree by the previous case. Now choose the
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left subtree, which is a bicolored comb, in (n− k)n−k−1 different ways
by induction.

By setting x, z := −1, y := n and n := n − 1 in Abel’s polynomial
identity (2.4), we have

(n− 1)n−1 = −
n−1∑
k=0

(
n− 1

k

)
(n− k)n−k−1(k − 1)k−1

= nn−1 −
n−1∑
k=1

(
n− 1

k

)
(n− k)n−k−1(k − 1)k−1.

It therefore follows from (5.1) that |Comb2
n| = nn−1. �

Theorem 5.3. The set {c̄(T, σ) : (T, σ) ∈ Comb2
n,i} is a basis for

H̃n−3((0̂, [n]i)).

Proof. It follows from Propositions 5.1 and 5.2 that {c̄(T, σ) : (T, σ) ∈
Comb2

n} spans ⊕n−1
i=0 H̃

n−3((0̂, [n]i)) and is of cardinality nn−1. Since, by

Corollary 3.7, rank⊕n−1
i=0 H̃

n−3((0̂, [n]i)) = nn−1, the result holds. �

Remark 5.4. Since the only relations used in the straightening algo-
rithm of Proposition 5.1 are the relations of the presentation given in
Theorem 4.4, it follows from Theorem 5.3 that these relations are the
only relations needed to present H̃n−3((0̂, [n]i)). Thus the final step of
the proof of Theorem 4.4 is now complete.

Remark 5.5. Note that by switching left and right, small and large,
blue and red, we get 8 different variations of bicolored comb bases.

5.2. A bicolored Lyndon basis for H̃n−3((0̂, [n]i)) and Lie2(n, i).
In this section, we describe the ascent-free chains of the EL-labeling
of [0̂, [n]i] given in Theorem 3.2. Recall from Theorem 3.3 that these
yield a basis for Hn−3((0̂, [n]i)). By applying the isomorphism of The-
orem 4.5, one gets a corresponding basis for Lie2(n, i), which is the
classical Lyndon basis for Lie(n) when i = 0, n− 1.

We begin by recalling the Lyndon basis for Lie(n). A Lyndon tree is
a labeled binary tree (T, σ) such that for each internal node x of T the
smallest leaf label of the subtree Tx rooted at x is in the left subtree of
Tx and the second smallest label is in the right subtree of Tx. Let Lynn
be the set of Lyndon trees whose leaf labels form the set [n]. The set
{[T, σ] : (T, σ) ∈ Lynn} is the classical Lyndon basis for Lie(n).

For each internal node x of a binary tree let L(x) denote the left child
of x and R(x) denote the right child. For each node x of a bicolored
labeled binary tree (T, σ) define its valency v(x) to be the smallest
leaf label of the subtree rooted at x. A Lyndon tree is depicted in
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Figure 7 illustrating the valencies of the internal nodes. The following
alternative characterization of Lyndon tree is easy to verify.

Proposition 5.6. Let (T, σ) be a labeled binary tree. Then (T, σ) is a
Lyndon tree if and only if it is normalized and for every internal node
x of T we have

(5.2) v(R(L(x)) > v(R(x)).

1

2

2

2

1

31

1

3

21 6

54

9

7

8

Figure 7. Example of a Lyndon tree. The numbers
above the lines correspond to the valencies of the internal
nodes

We will say that an internal node x of a labeled binary tree (T, σ) is
a Lyndon node if (5.2) holds. Hence Proposition 5.6 says that (T, σ) is
a Lyndon tree if and only if it is normalized and all its internal nodes
are Lyndon nodes.

A bicolored Lyndon tree is a normalized bicolored binary tree that
satisfies the following coloring restriction: for each internal node x that
is not a Lyndon node, x is colored blue and its left child is colored red.
The set of bicolored Lyndon trees for n = 3 is depicted in Figure 8.

Clearly if a bicolored Lyndon tree is monochromatic then all its nodes
are Lyndon nodes. Hence the monochromatic ones are the classical
Lyndon trees.

Let Lyn2
n,i be the set of bicolored Lyndon trees in BT n,i. We will

show that the ascent-free chains of the EL-labeling of [0̂, [n]i] given in
Theorem 3.2 are of the form c(T, σ, τ), where (T, σ) ∈ Lyn2

n,i and τ is
a certain linear extension of the internal nodes of T , which we now
describe. It is easy to see that there is a unique linear extension of
the internal notes of (T, σ) ∈ BT n,i in which the valencies of the nodes
weakly decrease. Let τT,σ denote the permutation that induces this
linear extension.
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Red
Blue

2 3

1 2 3

1

2 3

1

2 3

1

1 3

2

1 3

2

1 3

2 1 3

2

1 2

3

Figure 8. Set of bicolored Lyndon trees for n = 3

Theorem 5.7. The set {c(T, σ, τT,σ) : (T, σ) ∈ Lyn2
n,i} is the set of

ascent-free maximal chains of the EL-labeling of [0̂, [n]i] given in The-
orem 3.2.

Proof. We begin by showing that c := c(T, σ, τ) is ascent-free whenever
(T, σ) ∈ Lyn2

n,i and τ = τT,σ . Let xi be the ith internal node of T in
postorder. Then by the definition of τ := τT,σ,

(5.3) v(xτ(1)) ≥ v(xτ(2)) ≥ · · · ≥ v(xτ(n−1)),

where v is the valency. For each i, the ith letter of the label word λ(c)
is given by

λi(c) = (v(L(xτ(i))), v(R(xτ(i))))
ui = (v(xτ(i)), v(R(xτ(i))))

ui ,

where ui = 0 if xτ(i) is blue and is 1 if xτ(i) is red. Note that since
(T, σ) is normalized, v(R(xτ(i))) 6= v(R(xτ(i+1))) for all i ∈ [n − 1].
Now suppose the word λ(c) has an ascent at i. Then it follows from
(5.3) that
(5.4)
v(xτ(i)) = v(xτ(i+1)), v(R(xτ(i))) < v(R(xτ(i+1))), and ui ≤ ui+1.

The equality of valencies implies that xτ(i) = L(xτ(i+1)) since (T, σ) is
normalized. Hence by (5.4),

v(R(L(xτ(i+1)))) < v(R(xτ(i+1))).

It follows that xτ(i+1) is not a Lyndon node. So by the coloring restric-
tion on bicolored Lyndon trees, xτ(i+1) must be colored blue and its
left child xτ(i) must be colored red. This implies ui = 1 and ui+1 = 0,
which contradicts (5.4). Hence the chain c is ascent-free.
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Conversely, assume c is an ascent-free maximal chain of [0̂, [n]i]. Then
c = c(T, σ, τ) for some bicolored labeled tree (T, σ) and some permu-
tation τ ∈ Sn−1. We can assume without loss of generality that (T, σ)
is normalized. Since c is ascent-free, (5.3) holds. This implies that τ
is the unique permutation that induces the valency-decreasing linear
extension, namely τT,σ.

If all internal nodes of (T, σ) are Lyndon nodes we are done. So let
i ∈ [n− 1] be such that xτ(i) is not a Lyndon node. That is

v(R(L(xτ(i)))) < v(R(xτ(i))).

Since (T, σ) is normalized and (5.3) holds, L(xτ(i)) = xτ(i−1). Hence,
v(R(xτ(i−1))) < v(R(xτ(i))). Since (T, σ) is normalized we also have
v(L(xτ(i−1))) = v(L(xτ(i))). Hence to avoid an ascent at i− 1 in c, we
must color xτ(i−1) red and xτ(i) blue, which is precisely what we need
to conclude that (T, σ) is a bicolored Lyndon tree. �

From Theorem 3.3, Lemma 4.3 and Theorem 4.5 we have the follow-
ing corollary.

Corollary 5.8. The set {c̄(T, σ) : (T, σ) ∈ Lyn2
n,i} is a basis for

H̃n−3((0̂, [n]i)) and the set {[T, σ] : (T, σ) ∈ Lyn2
n,i} is a basis for

Lie2(n, i).

Remark 5.9. Note that by switching left and right, small and large,
blue and red, we get 8 different variations of bicolored Lyndon bases.

5.3. Liu’s bicolored Lyndon basis. In this section we describe a
different generalization of the Lyndon basis due to Liu [20]. The basis
we present is actually a twisted version of the one in [20] and has an
easier description. The two bases are related by a simple bijection.
In Section 5.4 we will use this basis to prove that a certain naturally
constructed set of fundamental cycles is a basis for homology of the
interval (0̂, [n]i) .

We need to define a different valency from that of the previous sec-
tion. This valency is referred to in [20] as the graphical root. Recall
that given an internal node x of a binary tree, L(x) denotes the left
child of x and R(x) denotes the right child. For each node x of a bi-
colored labeled binary tree (T, σ), define its valency v(x) recursively as
follows:

v(x) =


label of x if x is a leaf

min{v(L(x)), v(R(x))} if x is a blue internal node

max{v(L(x)), v(R(x))} if x is a red internal node.
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A Liu-Lyndon tree is a bicolored labeled binary tree (T, σ) such that
for each internal node x of T ,

(1) v(L(x)) = v(x)
(2) if x is blue and L(x) is blue then

v(R(L(x))) > v(R(x))

(3) if x is red then L(x) is red or is a leaf; in the former case,

v(R(L(x))) < v(R(x)).

Note that condition (1) is equivalent to the condition that v(L(x)) <
v(R(x)) if x is blue and v(L(x)) > v(R(x)) if x is red. Note also that
every subtree of a Liu-Lyndon tree is a Liu-Lyndon tree. The set of
Liu-Lyndon trees for n = 3 is depicted in Figure 9.

Red
Blue

2 3

1 3 2

1

1 3

2

2 1

3

1 3

2

2 1

3

3 1

2 3 1

2

1 2

3

Figure 9. Set of Liu-Lyndon trees for n = 3

Let Liu2
n,i be the set of Liu-Lyndon trees in BT n,i. When i = 0, all

internal nodes are blue and it follows from the definition that Liu2
n,0

is the set of Lyndon trees on n leaves. When i = n − 1, all internal
nodes are red and it follows from the definition that Liu2

n,n−1 consists
of labeled binary trees obtained from Lyndon trees by replacing each
label j by label n− j.

In [20] Liu proves that {[T, σ] : (T, σ) ∈ Liu2
n,i} is a basis for Lien,i

by using a perfect pairing between Lien,i and another module that she
constructs. In the next section, we will use the natural pairing between
cohomology and homology of (0̂, [n]i) to prove this result.

We will need a bijection of Liu [20]. Let A be a finite subset of the
positive integers and let 0 ≤ i ≤ |A| − 1. Extend the definitions of
Tn,i and Liu2

n,i by letting TA,i be the set of rooted trees on node set A

with i descents and Liu2
A,i be the set of Liu-Lyndon trees with leaf label
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set A and i red internal nodes. Define ψ : TA,i → Liu2
A,i recursively as

follows: if |A| = 1, let ψ(T ) be the labeled binary tree whose single
leaf is labeled with the sole element of A. Now suppose |A| > 1 and
rT ∈ A is the root of T . Let x be the smallest child of rT that is larger
than rT . If no such node exists let x be the largest child of rT . Let
Tx be the subtree of T rooted at x and let T \ Tx be the subtree of T
obtained by removing Tx from T . Now let

ψ(T ) = ψ(T \ Tx) col
∧ ψ(Tx),

where

col =

{
blue if x > rT
red if x < rT .

It will be convenient to refer to descent edges of T (i.e., edges
{x, pT (x)}, where x < pT (x)) as red edges, and nondescent edges (i.e.,
edges {x, pT (x)}, where x > pT (x)) as blue edges. Hence ψ takes blue
edges to blue internal nodes and red edges to red internal nodes. Con-
sequently ψ(T ) ∈ BT A,i if T ∈ TA,i. By induction we see that the
valuation of the root of ψ(T ) is equal to the root of T . It follows from
this that ψ(T ) ∈ Liu2

A,i. It is not difficult to describe the inverse of ψ
and thereby prove the following result.

Proposition 5.10 ([20]). For all finite sets A and 0 ≤ i ≤ |A|, the
map

ψ : TA,i → Liu2
A,i

is a well-defined bijection.

Remark 5.11. It follows from Corollary 3.7, Theorem 5.3, Corol-
lary 5.8 and Proposition 5.10 that

|Tn,i| = |Comb2
n,i| = |Lyn2

n,i| = |Liu2
n,i|.

It would be desirable to find nice bijections between the given sets like
that of Proposition 5.10. In [16] González D’León constructs such a
bijection between Comb2

n,i and Lyn2
n,i. We leave open the problem of

finding a bijection between Tn,i and Comb2
n,i or Lyn2

n,i.

5.4. The tree basis for homology. We now present a generalization
of Björner’s NBC basis for homology of Πn (see [6, Proposition 2.2]).
Recall that in Section 2.1, we associated a weighted partition α(F )
with each forest F = {T1, . . . , Tk} on node set [n], by letting

α(F ) = {Aw1
1 , . . . , Awkk },

where Ai is the node set of Ti and wi is the number of descents of Ti.
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Let T be a rooted tree on node set [n]. For each subset E of the
edge set E(T ) of T , let TE be the subgraph of T with node set [n]
and edge set E. Clearly TE is a forest on [n]. We define ΠT to be
the induced subposet of Πw

n on the set {α(TE) : E ∈ E(T )}. See
Figure 10 for an example of ΠT . The poset ΠT is clearly isomorphic to
the boolean algebra Bn−1. Hence ∆(ΠT ) is the barycentric subdivision
of the boundary of the (n−2)-simplex. We let ρT denote a fundamental
cycle of the spherical complex ∆(ΠT ), that is, a generator of the unique
nonvanishing integral simplicial homology of ∆(ΠT ). Note that ρT =∑

c∈M(ΠT )±c̄.

3

4 1

2

(a) T

12342

131|241 1341|20 10|2341

131|20|40 10|241|30 10|20|340

10|20|30|40

(b) ΠT

Figure 10. Example of a tree T with two descent edges
(red edges) and the corresponding poset ΠT

The set {ρT : T ∈ Tn,0} is precisely the interpretation of the Björner
NBC basis for homology of Πn given in [31, Proposition 2.2], and the
set {ρT : T ∈ Tn,n−1} is a variation of this basis. Björner’s NBC basis
is dual to the Lyndon basis {c̄(Υ) : Υ ∈ Lynn} for cohomology of Πn

(using the natural pairing between homology and cohomology). While
it is not true in general that {ρT : T ∈ Tn,i} is dual to any of the
generalizations of the bases given in the previous sections, we are able
to prove that it is a basis by pairing it with the Liu-Lyndon basis for
cohomology.

Theorem 5.12. The set {ρT : T ∈ Tn,i} is a basis for H̃n−3((0̂, [n]i))

and the set {c̄(Υ) : Υ ∈ Liu2
n,i} is a basis for H̃n−3((0̂, [n]i)).

Our main tool in proving this theorem is Proposition A.2 (of the Ap-
pendix), which involves the bilinear form 〈, 〉 defined in Appendix A.
In order to apply Proposition A.2 we need total orderings of the sets
Tn,i and Liu2

n,i. Recall Liu’s bijection ψ : Tn,i → Liu2
n,i given in Proposi-

tion 5.10. We will show that any linear extension {T1, T2, . . . , T|Tn,i|} of
a certain partial ordering on Tn,i provided by Liu [20] yields a matrix
〈ρTj , c̄(ψ(Tk))〉1≤j,k≤|Tn,i| that is upper-triangular with diagonal entries
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equal to ±1. Theorem 5.12 will then follow from Proposition A.2 and
Theorem 3.6 (2).

We define Liu’s partial ordering ≤Liu of TA,i recursively. For |A| ≤ 2,
the set TA,i has only one element. So assume that |A| ≥ 3 and that
≤Liu has been defined for all TB,j where |B| < |A|. Let T, T ′ ∈ TA,i.
We say that T � T ′ if there exist edges e of T and e′ of T ′ such that
the following conditions hold

• e and e′ have the same color,
• e′ contains the root of T ′,
• α(TE(T )\{e}) = α(T ′E(T ′)\{e′})

• T1 ≤Liu T
′
1,

• T2 ≤Liu T
′
2,

where T1 and T2 are the connected components (trees) of the forest
obtained by removing e from T , and T ′1 and T ′2 are the corresponding
connected components (trees) of the forest obtained by removing e′

from T ′.
Now define ≤Liu to be the transitive closure of the relation � on TA,i.

It follows from [20, Lemma 8.12] that this relation is the same as the
relation ≤op that was defined in [20, Definition 7.11] and was proved
to be a partial order in [20, Lemma 7.13].

Lemma 5.13. Let T, T ′ ∈ Tn,i and let ψ : Tn,i → Liu2
n,i be the bijection

of Proposition 5.10. If c(ψ(T ′)) ∈M(ΠT ) then T ≤Liu T
′.

Proof. First note that if Υ1
col
∧Υ2 is a bicolored labeled binary tree such

that c(Υ1
col
∧Υ2) is a maximal chain in ΠT then there is an edge e of T

whose color equals col and whose removal from T yields a forest whose
connected components (trees) T1 and T2 satisfy: c(Υ1) is a maximal
chain in ΠT1 and c(Υ2) is a maximal chain in ΠT2 .

Now recalling the definition of ψ, let x be the child of the root rT ′
of T ′, for which

ψ(T ′) = ψ(T ′ \ T ′x) col
∧ ψ(T ′x),

where col equals the color of the edge {x, rT ′}. Let e be the edge of T
whose removal yields the subtrees T1 and T2 such that c(ψ(T ′ \ T ′x)) ∈
M(ΠT1) and c(ψ(T ′x)) ∈ M(ΠT2). Then the color of e is the same as
that of the edge {x, rT ′}. By induction we can assume that

T1 ≤Liu T
′ \ T ′x and T2 ≤Liu T

′
x.

Since e and e′ := {x, rT ′} satisfy the conditions of the definition of �,
we have T � T ′, which implies the result. �
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Proof of Theorem 5.12. Let T1, . . . , Tm be any linear extension of ≤Liu

on Tn,i, where m = |Tn,i|. It follows from Lemma 5.13 that the matrix

M := 〈ρTj , c̄(ψ(Tk))〉1≤j,k≤m
is upper-triangular, where 〈, 〉 is the bilinear form defined in Appen-
dix A. Since c(ψ(T )) is a maximal chain of ΠT for all T ∈ Tn,i, the
diagonal entries of M are equal to ±1. Hence M is invertible over Z or
any field. The result now follows from Propositions 5.10 and A.2 and
Theorem 3.6 (2). �

Remark 5.14. Theorems 4.5 and 5.12 yield an alternative proof of
Liu’s result that {[T, σ] : (T, σ) ∈ Liu2

n,i} is a basis for Lien,i.
5.5. Bases for cohomology of the full weighted partition poset.
In this section we use bicolored combs and bicolored Lyndon trees to
construct bases for H̃n−2(Πw

n \ {0̂}).
For a chain c in Πw

n , let

c̆ := c \ {0̂}.
The codimension 1 chains of Πw

n \ {0̂} are of the form c̆, where c is
either

(1) unrefinable in some maximal interval [0̂, [n]i] except between
one pair of adjacent elements x < y, where [x, y] is an interval
of length 2 in [0̂, [n]i], or

(2) unrefinable in [0̂, x], where x is a weighted partition of [n] con-
sisting of exactly two blocks.

The former case yields the cohomology relations of Types I, II and III
given in Section 4.2, with c̄ replaced by c̆. The latter case yields the
additional cohomology relation:

Type IV: The two blocks of x are either 0-merged to get a single-block
partition z1 or 1-merged to get a single-block partition z2. The
open interval (x, 1̂) is equal to {z1, z2}, see Figure 11. Hence
the Type IV elementary cohomology relation is

(c̆ ∪ {z1}) + (c̆ ∪ {z2}) = 0.

The reader can verify, using the cohomology relations of Type I
(with c̄ replaced by, c̆), that the proof of Lemma 4.3 goes through
for H̃n−2(Πw

n \ {0̂}). Hence H̃n−2(Πw
n \ {0̂}) is generated by chains

of the form c̆(Υ) where Υ ∈ BT n. The reader can also check, using
the relations of Types I, II, and III, that the relations in Theorem 4.4
hold (with c̄ replaced by c̆). It follows from the cohomology relation of
Type IV that

(5.5) c̆(Υ1
red
∧ Υ2) = −c̆(Υ1

blue
∧ Υ2),
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Aa|Bb

1̂

ABa+b ABa+b+1

Figure 11. Type IV cohomology relation

for all Υ1
red
∧ Υ2 ∈ BT n.

Recall Comb2
n =

⋃n−1
i=0 Comb2

n,i and let Lyn2
n =

⋃n−1
i=0 Lyn2

n,i.

Theorem 5.15. The sets

{c̆(T, σ) : (T, σ) ∈ Comb2
n, col(root(T )) = blue}

and
{c̆(T, σ) : (T, σ) ∈ Lyn2

n, col(root(T )) = red}
are bases for H̃n−2(Πw

n \ {0̂}).

Proof. The Comb Basis: We prove, by induction on the size r(Υ) of the
right subtree of Υ, that if Υ is a normalized tree in BT n then c̆(Υ) can
be expressed as a linear combination of chains of the form c̆(Υ′), where
Υ′ is a blue-rooted bicolored comb. Since the relations in Theorem 4.4
hold (with c̄ replaced by c̆), we can use the straightening algorithm in
the proof of Proposition 5.1 to express c̆(Υ) as a linear combination of
chains of the form c̆(Υ′), where Υ′ is a bicolored comb whose right sub-
tree has size at most r(Υ). If Υ′ is red-rooted we can use relation (5.5)
to change the root color to blue. The only way that the modified blue-
rooted Υ′ will fail to be a bicolored comb is if the right child of its root is
blue, in which case we can apply Case 1 of the straightening algorithm
to Υ′. We thus have that c̆(Υ′) is a linear combination of two chains
c̆(Υ1) and c̆(Υ2), where each Υi ∈ BT n and r(Υi) < r(Υ′) ≤ r(Υ).
By induction, each c̆(Υi) is a linear combination of chains associated
with blue-rooted bicolored combs. The same is thus true for each c̆(Υ′)
and for c̆(Υ). Hence {c̆(T, σ) : (T, σ) ∈ Comb2

n, col(root(T )) = blue}
spans. We conclude that this set is a basis by the step in the proof of
Proposition 5.2 that shows that there are (n−1)n−1 blue-rooted combs
and Corollary 3.7.

The Lyndon Basis: From the EL-labeling of Theorem 3.2 we have

that all the maximal chains of Π̂w
n have last label (1, n + 1)0. Then

for a maximal chain to be ascent-free it must have a second to last
label of the form (1, a)1 for a ∈ [n]. By Theorem 5.7, we see that the
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ascent-free chains correspond to red-rooted bicolored Lyndon trees. It
therefore follows from Theorem 3.3 and Lemma 4.3 (with c̄ replaced by
c̆) that the second set is a basis for H̃n−2(Πw

n \ {0̂}). �

Since the comb basis was shown to span H̃n−3(Πw
n \ {0̂}) by using

only the relations of Theorem 4.4 and relation (5.5) we can conclude
that these are the only relations in a presentation of H̃n−3(Πw

n \ {0̂}).
We summarize with the following result.

Theorem 5.16. The set {c̆(Υ) : Υ ∈ BT n} is a generating set for
H̃n−3(Πw

n \ {0̂}), subject only to the relations of Theorem 4.4 (with c̄
replaced by c̆) and relation (5.5).

6. Whitney cohomology

Whitney cohomology (over the field k) of a poset P with a minimum
element 0̂ is defined for each integer r as follows

WHr(P ) := ⊕x∈P H̃r−2((0̂, x); k).

Whitney (co)homology was introduced in [1] and further studied in
[29, 32]. It is shown in [21] that if P is a geometric lattice then there is a
vector space isomorphism between ⊕rWHr(P ) and the Orlik-Solomon
algebra of P that becomes a graded G-module isomorphism when G
is a group acting on P . The symmetric group Sn acts naturally on
WHr(Πn) and on the multilinear component ∧rLie(n), of the rth ex-
terior power of the free Lie algebra on [n]. In [3] Barcelo and Bergeron,
working with the Orlik-Solomon algebra, establish the following Sn-
module isomorphism

WHn−r(Πn) 'Sn ∧rLie(n)⊗ sgnn .

In [31] Wachs shows that an extension of her correspondence between
generating sets of H̃n−3(Πn) and Lie(n) ⊗ sgnn can be used to prove
this result.

Let ∧rLie2(n) be the multilinear component of the exterior algebra
of the free Lie algebra on [n] with two compatible brackets. A bicolored
binary forest is a sequence of bicolored binary trees. Given a bicolored
binary forest F with n leaves and σ ∈ Sn, let (F, σ) denote the labeled
bicolored binary forest whose ith leaf from left to right has label σ(i).
Let BFn,r be the set of labeled bicolored binary forests with n leaves
and r trees. If the jth labeled bicolored binary tree of (F, σ) is (Tj, σj)
for each j = 1, . . . r then define

[F, σ] := [T1, σ1] ∧ · · · ∧ [Tr, σr],
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where now ∧ denotes the wedge product operation in the exterior alge-
bra. The set {[F, σ] : (F, σ) ∈ BFn,r} is a generating set for ∧rLie2(n).

The set BFn,r also provides a natural generating set for WHn−r(Πw
n ).

For (F, σ) ∈ BFn,r, let c(F, σ) be the unrefinable chain of Πw
n whose

rank i partition is obtained from its rank i−1 partition by coli-merging
the blocks Li and Ri, where coli is the color of the ith postorder internal
node vi of F , and Li and Ri are the respective sets of leaf labels in the
left and right subtrees of vi.

The symmetric group Sn acts naturally on ∧rLie2(n) and onWHr(Πw
n )

for each r. We have the following generalization of Theorem 4.5 and
[31, Theorem 7.2]. The proof is similar to that of Theorem 4.5 and is
left to the reader.

Theorem 6.1. For each r, there is an Sn-module isomorphism

φ : ∧rLie2(n)→ WHn−r(Πw
n )⊗ sgnn

determined by

φ([F, σ]) = sgn(σ) sgn(F )c̄(F, σ), (F, σ) ∈ BFn,r,
where if F is the sequence T1, . . . , Tr of bicolored binary trees then

sgn(F ) := (−1)I(T2)+I(T4)+···+I(T2br/2c) sgn(T1) sgn(T2) . . . sgn(Tr).

Corollary 6.2. For 0 ≤ r ≤ n− 1,

dim∧n−rLie2(n) = dimWHr(Πw
n ) =

(
n− 1

r

)
nr.

Moreover if ∧Lie2(n) is the multilinear component of the exterior alge-
bra of the free Lie algebra on n generators and WH(Πw

n ) = ⊕r≥0WHr(Πw
n )

then
dim∧Lie2(n) = dimWH(Πw

n ) = (n+ 1)n−1.

Proof. Since dimWHr(Πw
n ) equals the signless rth Whitney number of

the first kind |wr(Πw
n )|, the result follows from Theorem 6.1, equation

(2.6), and the binomial formula. �

For a result that is closely related to Corollary 6.2, see [4, Theorem 2].

7. Related work

In [15] González D’León considers a more general version of Πw
n and

uses it to study Liek(n), the multilinear component of the free Lie
algebra with k compatible brackets, where k is an arbitrary positive
integer. In particular, he uses an EL-labeling of the generalized version
of Πw

n to obtain a combinatorial description of the dimension of Liek(n).
This answers a question posed by Liu [20] on how to generalize Lie(n)



46 R. S. GONZÁLEZ D’LEÓN AND M. L. WACHS

further and to find the right combinatorial objects to compute the
dimensions. The comb basis and the Lyndon basis are also further
generalized in this paper to multicolored versions.

By Theorem 5.3 and Corollary 5.8 we conclude that the set of bi-
colored combs and bicolored Lyndon trees are equinumerous (cf. Re-
mark 5.11). In [15] González D’León presents bijections between the
multicolored combs, multicolored Lyndon trees and a certain class of
permutations, which generalize the classical bijections between the sets
of combs, Lyndon trees and permutations in Sn−1.

It can be concluded from equation (2.3) that the generating poly-
nomial of rooted trees enumerated by number of descents

∑n−1
i=0 |Tn,i|ti

has only negative real roots. Since the polynomial is also palindromic
(or symmetric), this implies it can be written using nonnegative co-

efficients in the basis {ti(1 + t)n−1−2i}b
n−1
2
c

i=0 , a property known as γ-
positivity. In [17] the γ-positivity property is discussed further and
generalized. In particular, formulas and combinatorial interpretations
of the γ-coefficients in terms of sets of normalized labeled binary trees
are provided.

In a forthcoming paper we will study a more general weighted parti-
tion poset obtained by associating weights to the bonds of an arbitrary
graph on n-vertices.
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Appendix A. Homology and Cohomology of a Poset

We give a brief review of poset (co)homology with group actions.
For further information see [33].

Let P be a finite poset of length `. The reduced simplicial (co)homology
of P is defined to be the reduced simplicial (co)homology of its order
complex ∆(P ), where ∆(P ) is the simplicial complex whose faces are
the chains of P . We will review the definition here by dealing directly
with the chains of P , and not resorting to the order complex of P .

Let k be an arbitrary field or the ring of integers Z. The (reduced)
chain and cochain complexes

· · ·
∂r+1−−→←−−
δr

Cr(P )
∂r−−→←−−
δr−1

Cr−1(P )
∂r−1−−→←−−
δr−2

· · ·

are defined by letting Cr(P ) be the k-module generated by the chains
of length r in P , for each integer r, and letting the boundary maps
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∂r : Cr(P )→ Cr−1(P ) be defined on chains by

∂r(α0 < α1 < · · · < αr) =
r∑
i=0

(−1)i(α0 < · · · < α̂i < · · · < αr),

where α̂i means that the element αi is omitted from the chain. Note
that C−1(P ) is generated by the empty chain and Cr(P ) = (0) if r < −1
or r > `.

Let 〈, 〉 be the bilinear form on
⊕`

r=−1Cr(P ) for which the chains of
P form an orthonormal basis. This allows us to define the coboundary
map δr : Cr(P )→ Cr+1(P ) by

〈δr(c), c′〉 = 〈c, ∂r+1(c′)〉.
Equivalently,
(A.1)

δr(α0 < · · · < αr) =
r+1∑
i=0

(−1)i
∑

α∈(αi−1,αi)

(α0 < · · · < αi−1 < α < αi < · · · < αr),

for all chains α0 < · · · < αr, where α−1 = 0̂ and αr+1 = 1̂ of the
augmented poset P̂ in which a minimum element 0̂ and a maximum
element 1̂ have been adjoined to P .

Let r ∈ Z. Define the cycle space Zr(P ) := ker ∂r and the boundary
space Br(P ) := im ∂r+1. Homology of the poset P in dimension r is
defined by

H̃r(P ) := Zr(P )/Br(P ).

Define the cocycle space Zr(P ) := ker δr and the coboundary space
Br(P ) := im δr−1. Cohomology of the poset P in dimension r is defined
by

H̃r(P ) := Zr(P )/Br(P ).

For x ≤ y consider the open interval (x, y) of P . Note that if y
covers x then (x, y) is the empty poset whose only chain is the empty
chain. Therefore H̃r((x, y)) = H̃r((x, y)) = 0 unless r = −1, in which
case H̃r((x, y)) = H̃r((x, y)) = k. If y = x then we adapt the con-
vention that H̃r((x, y)) = H̃r((x, y)) = 0 unless r = −2, in which case
H̃r((x, y)) = H̃r((x, y)) = k.

Proposition A.1. Let P be a finite poset of length ` whose order
complex has the homotopy type of a wedge of m spheres of dimension
` − 2. Then H̃`−2(P ) and H̃`−2(P ) are isomorphic free k-modules of
rank m.

The following proposition gives a useful tool for identifying bases for
top homology and top cohomology.
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Proposition A.2 (see [33, Theorem 1.5.1], [23, Proposition 6.4]). Let
P be a finite poset of length ` whose order complex has the homotopy
type of a wedge of m spheres of dimension `− 2. Let {ρ1, ρ2, ..., ρm} ⊆
Z`−2(P ) and {γ1, γ2, ..., γm} ⊆ Z`−2(P ). If the matrix (< ρi, γj >)i,j∈[m]

is invertible over k then the sets {ρ1, ρ2, ..., ρm} and {γ1, γ2, ..., γm} are
bases for H̃`−2(P ; k) and H̃`−2(P ; k) respectively.

Let G be a finite group. A G-poset is a poset P together with a G-
action on its elements that preserves the partial order; i.e., x < y =⇒
gx < gy in P .

Now assume that k is a field. Let P be a G-poset and let 0 ≤ r ≤ `.
Since g ∈ G takes r-chains to r-chains, g acts as a linear map on the
chain space Cr(P ) (over k). It is easy to see that for all g ∈ G and
c ∈ Cr(P ),

g∂r(c) = ∂r(gc) and gδr(c) = δr(gc).

Hence g acts as a linear map on the vector spaces H̃r(P ) and on H̃r(P ).
This implies that whenever P is a G-poset, H̃r(P ) and H̃r(P ) are G-
modules. The bilinear form 〈, 〉, induces a pairing between H̃r(P ) and
Hr(P ), which allows one to view them as dual G-modules. For G = Sn

we have the Sn-module isomorphism

(A.2) H̃r(P ) 'Sn H̃
r(P )

since dual Sn-modules are isomorphic.
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4:361–371, 1974.

[25] R.P. Stanley. Some aspects of groups acting on finite posets. J. Combin. Theory
Ser. A, 32(2):132–161, 1982.

[26] R.P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.

[27] R.P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
second edition, 2012.

[28] H. Strohmayer. Operads of compatible structures and weighted partitions. J.
Pure Appl. Algebra, 212(11):2522–2534, 2008.

[29] S. Sundaram. The homology representations of the symmetric group on Cohen-
Macaulay subposets of the partition lattice. Adv. Math., 104(2):225–296, 1994.

[30] B. Vallette. Homology of generalized partition posets. J. Pure Appl. Algebra,
208(2):699–725, 2007.
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