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Abstract. We prove two conjectures of Shareshian and Wachs
about Eulerian quasisymmetric functions and Eulerian polynomi-
als. The first states that the cycle type Eulerian quasisymmetric
function Qλ,j is Schur-positive, and moreover that the sequence
Qλ,j as j varies is Schur-unimodal. The second conjecture, which
we prove using the first, states that the cycle type (q, p)-Eulerian
polynomial Amaj,des,exc

λ (q, p, q−1t) is t-unimodal.

1. Introduction

The Eulerian polynomial An(t) =
∑n−1

j=0 an,jt
j is the enumerator of

permutations in the symmetric group Sn by their number of descents or
their number of excedances. Two well-known and important properties
of the Eulerian polynomials are symmetry and unimodality (see [3,
p. 292]). That is, the sequence of coefficients (an,j)0≤j≤n−1 satisfies

(1.1) an,j = an,n−1−j

and

(1.2) an,0 ≤ an,1 ≤ · · · ≤ an,bn−1
2
c = an,bn

2
c ≥ · · · ≥ an,n−2 ≥ an,n−1.

Brenti [1, Theorem 3.2] showed that the cycle type Eulerian poly-
nomial Aexc

λ (t), which enumerates permutations of fixed cycle type λ
by their number of excedances, is also symmetric and unimodal. More
recently, Shareshian and Wachs [10] proved that the q-Eulerian polyno-
mial Amaj,exc

n (q, q−1t), which is the enumerator for the joint distribution
of the major index and excedance number over permutations in Sn, is
symmetric and unimodal when viewed as a polynomial in t with coef-
ficients in N[q]. They showed that symmetry holds for the cycle type

(q, p)-analog Amaj,des,exc
λ (q, p, q−1t) as a polynomial in t with coefficients
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in N[q, p] and conjectured that unimodality holds as well. (Symmetry
fails for the less refined (q, p)-analog Amaj,des,exc

n (q, p, q−1t), see [10].)
In this paper we prove the unimodality conjecture of Shareshian and

Wachs, by first establishing a symmetric function analog, also conjec-
tured in [10], and then using Gessel’s theory of quasisymmetric func-

tions to deduce the unimodality of Amaj,des,exc
λ (q, p, q−1t).

The symmetric function analog of the unimodality conjecture in-
volves the cycle type refinements Qλ,j of the Eulerian quasisymmetric
functions Qn,j, which were introduced by Shareshian and Wachs [10] as
a tool for studying the q-Eulerian polynomials and the (q, p)-Eulerian
polynomials. Both Qn,j and Qλ,j were shown to be symmetric functions
in [10]. Moreover such properties as p-positivity, Schur-positivity, and
Schur-unimodality were established for Qn,j and conjectured for Qλ,j.

In subsequent work, Sagan, Shareshian and Wachs [9] established
p-positivity of Qλ,j by proving [10, Conjecture 6.5], which gives the
expansion of Qλ,j in the power-sum symmetric function basis. This
was used to obtain a cyclic sieving result for the q-Eulerian polyno-
mials refined by cycle type. Here we continue the study of Eulerian
quasisymmetric functions by establishing Schur-positivity of Qλ,j and
Schur-unimodality of the sequence (Qλ,j)j.

We briefly recall the main concepts involved, referring the reader
to [10] for the background and standard notation. The Eulerian qua-
sisymmetric functions Qn,j in x = (x1, x2, x3, · · · ), for n, j ∈ N, are
defined in [10] by

(1.3) Qn,j(x) :=
∑
σ∈Sn

exc(σ)=j

FDEX(σ),n(x),

where DEX(σ) is the subset of [n−1] := {1, 2, · · · , n−1} defined in [10,
Section 2], and FS,n(x) is the fundamental quasisymmetric function of
degree n associated to S ⊆ [n− 1]. It is immediate from this definition
that Qn,j = 0 unless j ≤ n− 1.

The apparently quasisymmetric functions Qn,j are symmetric func-
tions by [10, Theorem 5.1(1)], and form a symmetric sequence, in the
sense that Qn,j = Qn,n−1−j, by [10, (5.3)]. Moreover, [10, Theorem 1.2]
shows that they have the following generating series:

(1.4)
∑
n,j

Qn,j t
jzn =

(1− t)H(z)

H(zt)− tH(z)
,

where as usual H(z) =
∑

n≥0 hnz
n is the generating series of the com-

plete homogeneous symmetric functions.
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Symmetry and Schur-unimodality of the sequence (Qn,j)0≤j≤n−1 are
consequences of (1.4). Various ways to see this are given in [10]: one
way involves symmetric function manipulations of Stembridge [13] and
another involves geometric considerations based on work of Procesi
[7] and Stanley [11]. Indeed, (1.4) implies that Qn,j is the Frobenius
characteristic of the representation of Sn on the degree-2j cohomology
of the toric variety associated with the Coxeter complex of Sn. Schur-
unimodality then follows from the hard Lefschetz theorem, see [11].
See [10, Section 7] for other occurrences of Qn,j.

The cycle type Eulerian quasisymmetric functions Qλ,j, for λ a par-
tition of n ∈ N and j ∈ N, are a refinement of the above symmetric

functions in the sense that Qn,j =
∑
λ`n

Qλ,j. The definition in [10] is

(1.5) Qλ,j(x) :=
∑
σ∈Sn

exc(σ)=j
λ(σ)=λ

FDEX(σ),n(x),

where λ(σ) denotes the cycle type of σ. It is immediate from this
definition that Qλ,j = 0 unless j ≤ n− k, where k is the multiplicity of
1 as a part of λ.

The quasisymmetric functions Qλ,j are symmetric functions by [10,
Theorem 5.8], and satisfy

(1.6) Qλ,j = Qλ,n−k−j

by [10, Theorem 5.9]. These functions may all be obtained from those
where λ has a single part, using the operation of plethysm which we
denote by [ ]. Explicitly, [10, Corollary 6.1] states that if mi denotes
the multiplicity of i as a part of λ, then

(1.7)
∑
j

Qλ,j t
j =

∏
i≥1

hmi
[
∑
j

Q(i),j t
j].

The following consequence of (1.7) is also part of [10, Corollary 6.1]:

(1.8)
∑
n,j

Qn,j t
jzn =

∑
n

hn[
∑
i,j

Q(i),j t
jzi].

Note that (1.4),(1.7),(1.8) effectively provide an alternative definition
of Qλ,j. In this paper we will use only these equations, not the definition
of Qλ,j in terms of quasisymmetric functions.

The first result of this paper appeared as [10, Conjecture 5.11].

Theorem 1.1. The symmetric function Qλ,j is Schur-positive. More-
over, if k is the multiplicity of 1 in λ then the symmetric sequence

Qλ,0, Qλ,1, · · · , Qλ,n−k−1, Qλ,n−k
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is Schur-unimodal in the sense that Qλ,j −Qλ,j−1 is Schur-positive for
1 ≤ j ≤ n−k

2
.

The proof will be given in Section 2; it involves constructing an explicit
Sn-representation Vλ,j whose Frobenius characteristic is Qλ,j.

We recall some basic permutation statistics. Let σ ∈ Sn. The
excedance number of σ is given by

exc(σ) := |{i ∈ [n− 1] : σ(i) > i}|.
The descent set of σ is given by

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i+ 1)}
and the descent number and major index are

des(σ) := |DES(σ)| and maj(σ) :=
∑

i∈DES(σ)

i.

The cycle type (q, p)-Eulerian polynomial is defined in [10] by

Amaj,des,exc
λ (q, p, q−1t) :=

∑
σ∈Sn
λ(σ)=λ

qmaj(σ)−exc(σ)pdes(σ)texc(σ).

This records the joint distribution of the statistics (maj, des, exc) over

permutations of cycle type λ. We write amaj′,des
λ,j (q, p) for the coefficient

of tj, which is an element of N[q, p].

The polynomial amaj′,des
λ,j (q, p) may be obtained from the cycle type

Eulerian quasisymmetric functions by a suitable specialization. Explic-
itly, [10, Lemma 2.4] shows that if λ has the form (µ, 1k), where µ is a
partition of n− k with no parts equal to 1, then

(1.9) amaj′,des
λ,j (q, p) = (p; q)n+1

∑
m≥0

pm
k∑
i=0

qim psm(Q(µ,1k−i),j),

where as usual (p; q)i denotes (1 − p)(1 − pq) · · · (1 − pqi−1), and psm
is the principal specialization of order m. In [10, Theorem 5.13], this

is used to show that Amaj,des,exc
λ (q, p, q−1t) is t-symmetric with center of

symmetry n−k
2

, in the sense that

(1.10) amaj′,des
λ,j (q, p) = amaj′,des

λ,n−k−j(q, p).

The second result of this paper appeared as [10, Conjecture 5.14].

Theorem 1.2. The t-symmetric polynomial Amaj,des,exc
λ (q, p, q−1t) is t-

unimodal in the sense that

amaj′,des
λ,j (q, p)− amaj′,des

λ,j−1 (q, p) ∈ N[q, p]
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for 1 ≤ j ≤ n−k
2

, where k is the multiplicity of 1 in the partition λ.

The proof will be given in Section 3; it makes use of Theorem 1.1 and
(1.9).

2. Proof of Theorem 1.1

For any positive integer n, we define a symmetric function `n by

(2.1) `n =
1

n

∑
d|n

µ(d)p
n/d
d ,

where µ(d) is the usual Möbius function. It is well known [6, Ch. 4,
Proposition 4] that `n is the Frobenius characteristic of the Lie rep-
resentation Lien of Sn, which is by definition the degree-(1, 1, · · · , 1)
multihomogeneous component of the free Lie algebra on n generators.
Here and subsequently, all representations and other vector spaces are
over C (any field of characteristic 0 would do equally well).

For us, a convenient construction of Lien is as the vector space gen-
erated by binary trees with leaf set [n], subject to relations which cor-
respond to the skew-symmetry and Jacobi identity of the Lie bracket.
These relations are

(T1 ∧ T2) + (T2 ∧ T1) = 0 and

((T1 ∧ T2) ∧ T3) + ((T2 ∧ T3) ∧ T1) + ((T3 ∧ T1) ∧ T2) = 0,
(2.2)

where A ∧B denotes the binary tree whose left subtree is A and right
subtree is B, and in both cases the relation applies not just to the tree
as a whole but to the subtree descending from any vertex (it being
understood that the other parts of the tree are the same in all terms).
The Sn-action is the obvious one by permuting the labels of the leaves.
It is well known that Lien has a basis given by the trees of the form
(· · · ((s1 ∧ s2)∧ s3) · · · ∧ sn) where s1, s2, · · · , sn is a permutation of [n]
such that s1 = 1.

A famous result of Cadogan [2] is that the plethystic inverse of∑
n≥1 hn is

∑
n≥1(−1)n−1ω(`n). A slight variant of this result is the

following (compare [6, Ch. 4, Proposition 1]).

Lemma 2.1. We have an equality of symmetric functions:∑
n≥0

hn[
∑
m≥1

`m] = (1− h1)−1.

Proof. Using the well-known identity

(2.3)
∑
n≥0

hn = exp(
∑
i≥1

1

i
pi),
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the left-hand side of our desired equality becomes

exp(
∑
i≥1

1

i
pi[
∑
m≥1

`m]) = exp(
∑
i≥1

1

i
pi[
∑
d,e≥1

1

de
µ(d)ped])

= exp(
∑
i,d,e≥1

1

ide
µ(d)peid)

= exp(
∑
j,e≥1

∑
d|j

1

je
µ(d)pej)

= exp(
∑
e≥1

1

e
pe1)

= exp(− log(1− p1)),

which equals the right-hand side. �

We deduce a new expression for the symmetric functions Q(n),j.

Proposition 2.2. The symmetric functions Q(n),j have the generating
series:

∑
n≥1,j≥0

Q(n),j t
jzn = h1z +

∑
m≥1

`m[
∑
r≥2

(t+ t2 + · · ·+ tr−1)hrz
r].

Proof. Let A and B denote the left-hand and right-hand sides of the
equation. We know from (1.4) and (1.8) that

∑
n≥0

hn[A] =
(1− t)H(z)

H(zt)− tH(z)
.

Using the well-known fact

(2.4)
∑
n≥0

hn[X + Y ] = (
∑
n≥0

hn[X])(
∑
n≥0

hn[Y ])
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as well as Lemma 2.1, we calculate∑
n≥0

hn[B] = (
∑
n≥0

hn[h1z])
∑
n≥0

hn[
∑
m≥1

`m[
∑
r≥2

(t+ t2 + · · ·+ tr−1)hrz
r]]

= (
∑
n≥0

hn z
n)(
∑
n≥0

hn[
∑
m≥1

`m])[
∑
r≥2

(t+ t2 + · · ·+ tr−1)hrz
r]

= (
∑
n≥0

hn z
n)(1−

∑
r≥2

(t+ t2 + · · ·+ tr−1)hrz
r)−1

= H(z)(1 +
∑
r≥1

tr − t
1− t

hrz
r)−1

= H(z)

(
H(zt)− tH(z)

1− t

)−1

=
(1− t)H(z)

H(zt)− tH(z)
.

We conclude that
∑

n≥1 hn[A] =
∑

n≥1 hn[B]. By applying the plethys-
tic inverse of

∑
n≥1 hn to both sides of this equation we obtain A = B

as claimed. �

Proposition 2.2 allows us to construct an Sn-representation V(n),j

whose Frobenius characteristic is Q(n),j. We define a marked set to be
a finite set S such that |S| ≥ 2, together with an integer j ∈ [|S| − 1]
called the mark (cf. [13]). For n ≥ 2, let V(n),j be the vector space
generated by binary trees whose leaves are marked sets which form a
partition of [n] (when the marks are ignored) and whose marks add up
to j, subject to the relations (2.2). The Sn-action is by permuting the
letters in the leaves.

Example 2.3. V(6),3 is spanned by the following trees and their S6-
translates, where the superscript on a leaf indicates the mark:

{1, 2, 3, 4, 5, 6}(3),

({1, 2, 3, 4}(2) ∧ {5, 6}(1)),

({1, 2, 3}(2) ∧ {4, 5, 6}(1)),

(({1, 2}(1) ∧ {3, 4}(1)) ∧ {5, 6}(1)).

The resulting expression for V(6),3 as a representation of S6 is

1⊕ IndS6
S4×S2

(1)⊕ IndS6
S3×S3

(1)⊕ IndS6
S2oS3

(Lie3),

where 1 denotes the trivial representation of a group, and Lie3 is re-
garded as a representation of the wreath product S2 oS3 via the natural
homomorphism to S3.
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Proposition 2.4. For n ≥ 2 and any j, Q(n),j = chV(n),j, where ch
denotes the Frobenius characteristic.

Proof. We want to apply to Proposition 2.2 the representation-theoretic
interpretation of plethysm given by Joyal in [6]. If we take the definition
of Lien in terms of binary trees and replace the set [n] with an arbitrary
finite set I, we obtain a vector space Lie(I). This defines a functor Lie
from the category of finite sets, with bijections as the morphisms, to
the category of vector spaces; such a functor is called an S-module
(or a tensor species, in the terminology of [6, Ch. 4]). The character
ch(Lie) is by definition

∑
m≥1 ch Liem =

∑
m≥1 `m.

We also define a graded S-module W (that is, a functor from the
category of finite sets with bijections to the category of N-graded vector
spaces) by letting W (I) be the graded vector space with

W (I)a =

{
C, if 1 ≤ a < |I|,
0, otherwise,

where the grading-preserving linear map W (I) → W (J) induced by a
bijection I → J is the trivial one using only the identity map C→ C.
The character cht(W ), where we use the indeterminate t to keep track
of the grading in the obvious way, is clearly

∑
r≥2(t+ t2 + · · ·+ tr−1)hr.

We can then define a graded S-module Lie ◦W , the partitional com-
position of Lie and W , by

(Lie ◦W )(I) :=
⊕
π∈Π(I)

Lie(π)⊗
⊗
J∈π

W (J),

where Π(I) denotes the set of partitions of the set I, and we identify a
partition π with its set of blocks. The grading on the tensor product of
graded vector spaces is as usual, with Lie(π) considered as being homo-
geneous of degree zero. By [5, Corollary 7.6], which is an extension of
Joyal’s result [6, 4.4] to the graded setting, this operation of partitional
composition corresponds to plethysm of the characters. So we have

(2.5) cht(Lie ◦W ) =
∑
m≥1

`m[
∑
r≥2

(t+ t2 + · · ·+ tr−1)hr].

Comparing this equation with Proposition 2.2, we see that for n ≥ 2,
Q(n),j is the Frobenius characteristic of the representation of Sn on the
degree-j homogeneous component of (Lie ◦W )[n]. It is easy to see that
this is equivalent to the representation V(n),j defined above. �

Remark 2.5. Equation (2.5) can also be obtained from an easy modifi-
cation of [14, Theorem 5.5].



UNIMODALITY OF EULERIAN QUASISYMMETRIC FUNCTIONS 9

Remark 2.6. Proposition 2.4 is analogous to Stembridge’s result [13,
Proposition 4.1], which realizes Qn,j as the Frobenius characteristic of
the permutation representation of Sn on what he calls codes of length
n and index j. In our terminology, these codes are the (possibly empty)
sequences (S1, S2, · · · , Sm) of marked sets, whose underlying sets are
disjoint subsets of [n], and whose marks add up to j. So the marked sets
appear in both contexts, but his result for Qn,j uses a representation
with a basis consisting of sequences of marked sets, whereas our result
for Q(n),j uses a representation spanned by binary trees of marked sets,
which are subject to linear relations. The difference springs from the
fact that the generating function (1.4) for Qn,j effectively has hm1 in
place of the `m in Proposition 2.2. Since Q(n),j is not h-positive (see
[10, (5.4)]), it cannot be the Frobenius characteristic of a permutation
representation.

We now define an Sn-representation Vλ,j for any partition λ ` n.
This is the vector space generated by forests {T1, · · · , Tm}, where each
Ti is either a binary tree whose leaves are marked sets, or a single-
vertex tree whose leaf is a singleton set with no mark. There are further
conditions: for each tree Ti, the leaves (ignoring the marks) must form
a partition of a set Li, and in turn, L1, · · · , Lm must form a partition
of [n]; the sizes |L1|, · · · , |Lm| must be the parts of the partition λ, in
some order; and the sum of the marks must be j. These forests are once
again subject to the relations (2.2). Note that if n ≥ 2 and λ = (n),
this agrees with our earlier definition of V(n),j.

Example 2.7. V(4,3,3,1),4 is spanned by the following three forests and
their S11-translates:

{1, 2, 3, 4}(1) {5, 6, 7}(2) {8, 9, 10}(1) {11},
{1, 2, 3, 4}(2) {5, 6, 7}(1) {8, 9, 10}(1) {11},

({1, 2}(1) ∧ {3, 4}(1)) {5, 6, 7}(1) {8, 9, 10}(1) {11}.

Proposition 2.8. For any λ and j, Qλ,j = chVλ,j.

Proof. This follows by interpreting (1.7) along the lines of the proof of
Proposition 2.4, using the result of Proposition 2.4 and the fact that
Q(1),0 = h1. �

From this description of Qλ,j, Schur-positivity is immediate. We can
also deduce the stronger Schur-unimodality statement of Theorem 1.1.

Proof of Theorem 1.1. For 1 ≤ j ≤ n−k
2

, define a linear map φ :
Vλ,j−1 → Vλ,j which takes a forest F = {T1, · · · , Tm} to the sum of all
forests obtained from F by adding 1 to the mark of one of the marked
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sets (for this to give an allowable forest, the original mark must be at
most the size of its set minus 2). It is clear that φ is still well-defined
when one takes (2.2) into account, and that φ commutes with the ac-
tion of Sn. By Proposition 2.8, in order to prove that Qλ,j − Qλ,j−1

is Schur-positive, we need only show that φ is injective (since then
Qλ,j −Qλ,j−1 is the Frobenius characteristic of the cokernel of φ).

Now there is some collection F of unmarked forests, depending on
λ but not on j, such that the marked forests as defined above whose
underlying unmarked forest lies in F form a basis of Vλ,j. For example,
if λ = (n), we can take F to consist of all binary trees of the form
(· · · ((S1∧S2)∧S3) · · ·∧St) where S1, S2, · · · , St form a partition of [n]
and 1 ∈ S1. Since φ only changes the marking, it is enough to prove
the injectivity when we have fixed the underlying unmarked forest to
be some element F of F .

We are now in a familiar situation. We have a collection of disjoint
sets A1, A2, · · · , As (the nonsingleton leaves of F ) such that |Ai| ≥ 2
for all i and |A1| + |A2| + · · · + |As| = n − k. We are considering a
vector space V with basis [|A1|−1]×· · ·× [|As|−1], to which we give a

grading V =
⊕n−k−s

j=s Vj by the rule that (b1, · · · , bs) ∈ Vb1+···+bs for any

bi ∈ [|Ai|−1]. We must show that for any j such that s+ 1 ≤ j ≤ n−k
2

,
the linear map φ : Vj−1 → Vj defined by

φ(b1, · · · , bs) =
∑

1≤i≤s
bi≤|Ai|−2

(b1, · · · , bi + 1, · · · , bs)

is injective. This is a well-known fact, a special case of a far more
general result on raising operators in posets [8]. �

3. Proof of Theorem 1.2

The p = 1 case of Theorem 1.2 follows immediately from Theo-

rem 1.1 and the observation from [10, eq. (2.13)] that amaj′,des
λ,j (q, 1) =

(q; q)nps(Qλ,j), where ps denotes the stable principal specialization
(see [10, Lemma 5.2]). The proof for general p makes use of the (non-
stable) principal specialization as in (1.9) and is much more involved.

Given a set S = {s1, s2, . . . , sk} of positive integers, where s1 < s2 <
· · · < sk, we view a permutation α ∈ SS as a word α(s1)α(s2) · · ·α(sk).
For permutations α ∈ SS and β ∈ ST on disjoint sets S, T with union
[n], let sh(α, β) denote the set of shuffles of α and β. That is,

sh(α, β) := {σ ∈ Sn : α and β are subwords of σ}.
We define

sh∗(α, β) := {σ ∈ sh(α, β) : σ(1) ∈ S}.
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Some care is needed with this definition in the case that S is empty,
when α is the empty word ∅. We have sh(∅, β) = {β} and sh∗(∅, β)
is empty unless β = ∅ also, in which case we set sh∗(∅,∅) = {∅}.

For i, j ∈ N with i ≤ j + 1, let εji denote the word i, i + 1, · · · , j
(which means the empty word ∅ if i = j + 1).

Lemma 3.1. Let m, k, r ∈ N with r ≤ k. Then for all α ∈ Sm,

k∑
i=r

(pqr; q)i−r
∑

σ∈sh(α,εm+k−i
m+1 )

(pqi)des(σ)+1qmaj(σ)

=
k∑
i=r

∑
σ∈sh∗(α,εm+k−i

m+1 )

(pqi)des(σ)+1qmaj(σ).

Proof. We use induction on k − r. The case r = k is trivial because
both sides have only one term, namely (pqk)des(α)+1qmaj(α).

Now suppose r < k, and that we know the result when r is replaced
by r + 1. Then the left-hand side of our desired equation equals∑

σ∈sh(α,εm+k−r
m+1 )

(pqr)des(σ)+1qmaj(σ)

+ (1− pqr)
k∑

i=r+1

(pqr+1; q)i−r−1

∑
σ∈sh(α,εm+k−i

m+1 )

(pqi)des(σ)+1qmaj(σ)

=
∑

σ∈sh(α,εm+k−r
m+1 )

(pqr)des(σ)+1qmaj(σ)

+ (1− pqr)
k∑

i=r+1

∑
σ∈sh∗(α,εm+k−i

m+1 )

(pqi)des(σ)+1qmaj(σ).

To complete the proof we need only show that∑
τ∈sh(α,εm+k−r

m+1 )\sh∗(α,εm+k−r
m+1 )

(pqr)des(τ)+1qmaj(τ)

= pqr
k∑

i=r+1

∑
σ∈sh∗(α,εm+k−i

m+1 )

(pqi)des(σ)+1qmaj(σ).

(3.1)

Now every τ ∈ sh(α, εm+k−r
m+1 ) \ sh∗(α, εm+k−r

m+1 ) can be written uniquely

in the form εm+i−r
m+1 σ′ where r < i ≤ k and σ′ ∈ sh∗(α, εm+k−r

m+i−r+1).
Subtracting i− r from every letter of σ′ that exceeds m, we obtain an
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element σ ∈ sh∗(α, εm+k−i
m+1 ). This gives a bijection

sh(α, εm+k−r
m+1 ) \ sh∗(α, εm+k−r

m+1 )↔
k⊎

i=r+1

sh∗(α, εm+k−i
m+1 )

τ 7→ σ.

It is easy to see that

des(τ) = des(σ) + 1,

maj(τ) = maj(σ) + (i− r)(des(σ) + 1).

We thus have ∑
τ∈sh(α,εm+k−r

m+1 )\sh∗(α,εm+k−r
m+1 )

(pqr)des(τ)+1qmaj(τ)

=
k∑

i=r+1

∑
σ∈sh∗(α,εm+k−i

m+1 )

(pqr)des(σ)+2qmaj(σ)+(i−r)(des(σ)+1)

= pqr
k∑

i=r+1

∑
σ∈sh∗(α,εm+k−i

m+1 )

(pqi)des(σ)+1qmaj(σ),

which establishes (3.1). �

We deduce a result about the principal specialization of order m.

Proposition 3.2. Let k, n ∈ N with k ≤ n. For any subset S of
[n− k − 1],

(p; q)n+1

∑
m≥0

pm
k∑
i=0

qimpsm(FS,n−khk−i) ∈ N[q, p].

More precisely, this expression equals

k∑
i=0

∑
σ∈sh∗(α,εn−i

n−k+1)

(pqi)des(σ)+1qmaj(σ),

where α is any fixed permutation in Sn−k with descent set S.

Proof. Let α ∈ Sn−k have descent set S. Note that hk−i = F∅,k−i. As a
special case of the general rule for multiplying fundamental quasisym-
metric functions (see [12, Exercise 7.93]), we have

(3.2) FS,n−khk−i =
∑

σ∈sh(α,εn−i
n−k+1)

FDES(σ),n−i.
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Hence

(p; q)n+1

∑
m≥0

pm
k∑
i=0

qimpsm(FS,n−khk−i)

= (p; q)n+1

k∑
i=0

∑
σ∈sh(α,εn−i

n−k+1)

∑
m≥0

(pqi)mpsm(FDES(σ),n−i)

= (p; q)n+1

k∑
i=0

∑
σ∈sh(α,εn−i

n−k+1)

(pqi)des(σ)+1qmaj(σ)

(pqi; q)n−i+1

=
k∑
i=0

(p; q)i
∑

σ∈sh(α,εn−i
n−k+1)

(pqi)des(σ)+1qmaj(σ)

=
k∑
i=0

∑
σ∈sh∗(α,εn−i

n−k+1)

(pqi)des(σ)+1qmaj(σ),

with the second equation following from [4, Lemma 5.2] and the fourth
equation following from the r = 0,m = n− k case of Lemma 3.1. �

We can now deduce Theorem 1.2.

Proof of Theorem 1.2. Recall (1.9) that we can express amaj′,des
λ,j (q, p) in

terms of psm(Q(µ,1k−i),j), where λ = (µ, 1k) and µ ` n− k has no parts
equal to 1. It is clear from (1.7) that Q(µ,1k−i),j = Qµ,jhk−i. So (1.9)
can be rewritten

(3.3) amaj′,des
λ,j (q, p) = (p; q)n+1

∑
m≥0

pm
k∑
i=0

qim psm(Qµ,jhk−i).

For any j such that 1 ≤ j ≤ n−k
2

, we therefore have

amaj′,des
λ,j (q, p)− amaj′,des

λ,j−1 (q, p)

= (p; q)n+1

∑
m≥0

pm
k∑
i=0

qim psm((Qµ,j −Qµ,j−1)hk−i).
(3.4)

Now by Theorem 1.1, Qµ,j − Qµ,j−1 is a nonnegative integer linear
combination of Schur functions sρ for ρ ` n − k. By [12, Theorem
7.19.7], each sρ is in turn a nonnegative integer linear combination of
fundamental quasisymmetric functions FS,n−k for S ⊆ [n − k − 1]. So
(3.4) belongs to N[q, p] by Proposition 3.2. �
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