TORSION IN THE MATCHING COMPLEX AND
CHESSBOARD COMPLEX

JOHN SHARESHIAN! AND MICHELLE L. WACHS?

ABSTRACT. Topological properties of the matching complex were
first studied by Bouc in connection with Quillen complexes, and
topological properties of the chessboard complex were first stud-
ied by Garst in connection with Tits coset complexes. Bjorner,
Lovész, Vrécica and Zivaljevié established bounds on the connec-
tivity of these complexes and conjectured that these bounds are
sharp. In this paper we show that the conjecture is true by estab-
lishing the nonvanishing of integral homology in the degrees given
by these bounds. Moreover, we show that for sufficiently large n,
the bottom nonvanishing homology of the matching complex M,
is an elementary 3-group, improving a result of Bouc, and that the
bottom nonvanishing homology of the chessboard complex M,, ,
is a 3-group of exponent at most 9. When n = 2 mod 3, the bot-
tom nonvanishing homology of M,, ,, is shown to be Z3z. Our proofs
rely on computer calculations, long exact sequences, representation
theory, and tableau combinatorics.
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2 SHARESHIAN AND WACHS

1. INTRODUCTION

A matching is a graph in which each vertex is contained in at most
one edge. Given a graph G = (V| E), the collection of all subgraphs
(V,F) of G that are matchings forms an abstract simplicial complex
M (G). The vertices of M(G) are the edges of G, and the k-dimensional
faces of M(G) are the edge sets F' of size k + 1 such that (V) F) is a
matching. If G is the complete graph on vertex set [n] := {1,2,...,n},
then we write M,, for M(G). Similarly, if G is the complete bipartite
graph with parts [m] and [n|" := {1’,2,...,n’} then we write M,,,, for
M(G).

The complex M, is called the matching complex and the complex
M, », is called the chessboard complex. A piece of My (taken from [Bo])
is given in Figure 1.1 below. Here and throughout the paper, the vertex
of M(G) labelled ij represents the edge {i,j} of the graph G. Each
k-dimensional face of the chessboard complex M,,, corresponds to a
placement of k£ + 1 nontaking rooks on an m x n chessboard. Indeed, a
rook in the ith row and jth column corresponds to the edge {7, j'} in
the bipartite graph, which corresponds to the vertex ij" in M, ,. It is
for this reason that the name “chessboard complex” is used.

13

15
Figure 1.1: Piece of matching complex M-
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The matching complex, the chessboard complex and variations have
arisen in a variety of fields such as group theory, representation theory,
commutative algebra, Lie theory, computational geometry, and com-
binatorics; see the survey article [Wa] and its references. Topological
properties of the matching complex were first studied by Bouc [Bo],
in connection with the Quillen complex at the prime 2 for the sym-
metric group. Bouc obtains several beautiful results. He considers
the representation of the symmetric group G,, acting on the homology
(over C) of the matching complex M, and obtains a decomposition
into irreducibles. This yields a formula for the Betti numbers in terms
of standard Young tableaux. Bouc also obtains results on torsion in
integral homology, which we improve and extend to the chessboard
complex in this paper.

Prior to Bouc’s study of the matching complex, the chessboard com-
plex was introduced in the 1979 thesis of Garst [Ga] dealing with Tits
coset complexes. Garst shows that for m < n, M,, ,, is Cohen-Macaulay
if and only if 2m — 1 < n. Garst also obtains a decomposition of the
representation of &,, acting on the top homology (over C) of M,,,, into
irreducibles, for m < n. This computation is a precursor of Friedman
and Hanlon’s [FrHa] decomposition of the representation of &, x &,
on each homology of M,, ,, into irreducibles.

Questions on connectivity of the chessboard complex were raised
by Zivaljevié and Vrécica [ZivVr] in connection with some problems
in computational geometry. In response to these questions, Bjorner,
Lovész, Vrécica, Zivaljevié [BLVZ] obtained bounds on connectivity of
the chessboard complex and the matching complex which are given in
the following theorem. The bound for the matching complex is also an
immediate consequence of results in Bouc [Bo].

Theorem 1.1 (Bjérner, Lovész, Vrécica, Zivaljevié¢ [BLVZ], Bouc [Bo]).
For positive integers m,n, let

1 1
"; |=1 and Vm,n:mm{m,n,t%ﬁ—l.

Then the matching complex M, is (v, —1)-connected and the chessboard
complex My, , 1S (Vmn — 1)-connected. Consequently, for all t < v,

vn = |

(1.1) Hy(M,) =0,
and for all t < vy, n,

(1.2) H,(M,,) = 0.

)
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Remark 1.2. Throughout this paper, by homology of a simplicial com-
plex A, we mean reduced simplicial homology H,(A) over the integers,
unless otherwise stated.

It is conjectured in [BLVZ] that the connectivity bounds of Theo-
rem 1.1 are sharp. The n = 0,1 mod 3 cases of the conjecture for
the matching complex had already been established by Bouc [Bo] who
proved the following result.

Theorem 1.3 (Bouc[Bo]).
(i) Let n > 3. Then H, (M,) is finite if and only if n > 7 and
n¢ {8,0,11}.
(ii) If n = 1 mod 3 and n > 7 then H, (M,) = Zs.
(iii) If n = 0 mod 3 and n > 12 then H,, (M,) is a nontrivial 3-
group of exponent at most 9.

Remark 1.4. Statement (i) is not explicitly stated in [Bo], but follows
easily from the formula for the Betti numbers given in [Bo].

One can see the 3-torsion in Hy(My7) by looking at Figure 1.1. The
union of the triangles shown is bounded by 3z where

2= (13,24) + (24,15) + (15, 26) + (26, 13).

Bouc shows that z is not a boundary; so z is a 3-torsion element.

Friedman and Hanlon [FrHa] derive the following analogue of Theo-
rem 1.3 (i), which settles the chessboard complex version of the conjec-
ture in the case that n > 2m — 5, but leaves the conjecture unresolved
in the case that m < n < 2m — 5. Their result is a consequence of
their formula for the Betti numbers of the chessboard complex derived
in [FrHa| (see Theorem 6.1).

Theorem 1.5 (Friedman and Hanlon [FrHa]). Let 1 < m < n and
m +mn > 3. Then the group H,,  (Mpyy) is finite if and only if n <
2m —5 and (m’n> ¢ {(67 6)7 (77 7)7 (87 9)}

In this paper we pick up where Bouc and Friedman-Hanlon left off.
We prove the Bjorner-Lovész-Vrécica-Zivaljevié conjecture in the cases
that were left unresolved in Bouc’s work and Friedman-Hanlon’s work
(see Theorem 3.1). Moreover, we prove the following result which im-
proves Theorem 1.3 by handling the remaining n = 2 mod 3 case and
making the exponent precise in all cases.

Theorem 1.6. Forn = 7,10 or n > 12 (except possibly n = 14)'
H, (M,) is a nontrivial elementary 3-group.

ISee New Developments Section at the end of the paper.
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We also prove the following analogous result for the chessboard com-
plex.

Theorem 1.7. Let m < n.
(i) fm+n=1mod3 andn < 2m —5 then H,,  (My,) = Zs.
(ii) If m+n =0mod 3 and n < 2m — 9 then lf[,,myn(Mmﬁn) is a
nontrivial 3-group of exponent at most 9.
(iii) If m +n = 2mod 3 and n < 2m — 13 then H,,  (M,,) is a
nontrivial 3-group of exponent at most 9.

Bouc proves the 1 mod 3 case of Theorem 1.3 using induction. His
main tool is a long exact sequence which provides the induction step
and also enables him to derive the 0 mod 3 case from the 1 mod 3
case. Bouc’s “hand” calculation of H,.(M7) provides the base step of
the induction. Here we further exploit Bouc’s long exact sequence to
derive the 2 mod 3 case from the 0 mod 3 case, and we use a computer
calculation to provide another base case H,,,(M;z), which enables us
to bring the exponent down to 3 in Theorem 1.6.

The proof of Theorem 1.7, while patterned on the proof of the Theo-
rem 1.6, is much more difficult. An essential ingredient is an interesting
basis for the top homology of the chessboard complex. The construction
of this basis has a surprising reliance on a result in tableau combina-
torics, namely the classical Robinson-Schensted correspondence.

The computer program that we use for computing homology in the
base steps, was first developed by Heckenbach and later improved by
Dumas, Heckenbach, Saunders and Welker [DHSW]. With this soft-
ware and Theorem 1.3 (ii), one can produce the following tables.

0| H,(M) |
2 0

3 7?2

4 7?2

D VA

6 Zlfi

7 ZLs

8 ZIBQ

9 Z2 @78
10 Zs

11 |[ 71188 D Z§15
12 730

13 Zs

14 ?

Table 1.1: Bottom nonvanishing homology H,, (M,)
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m\n2[3[4]5] 6 [ 7 |8 |
2 7| 7 ZS le Z19 Z29 Z41
3 Z4 Z2 Z14 Z47 ZIO4 Z191
4 Zl5 ZQO Z5 Z225 Z641
5 Zg Zl52 ZQ8 Zl4
6 Z25 e Z?l)o Z3 Z1316
7 EOLT | 7

Table 1.2: Bottom nonvanishing homology I:L,mm(Mmm)

Unfortunately we have not been able to get output for n > 14 nor
for m > 7 and n > 8. This is what is responsible for the gap at n = 14
in Theorem 1.62 and the lack of precision with respect to the exponent
in Theorem 1.7. Indeed, in Theorems 5.13 and 5.15, we show that if we
could determine the exponent of the Sylow 3-subgroup of [fL,?’s(Mzg)

or the exponent of H,, ,(Myg) to be 3, then we could conclude that the

exponent of f[,,myn(Mm,n) is 3 for all m, n that satisfy the conditions of
Theorem 1.7.

The paper is organized as follows. In Section 2, notation is estab-
lished and the long exact sequences are derived. In Section 3, we prove
the Bjorner-Lovész- Vrécica-Zivaljevié connectivity conjecture. The tor-
sion result for the matching complex, Theorem 1.6, is proved in Sec-
tion 4.

Sections 5, 6, 7 and 8 are devoted to the chessboard complex. The
proof of Theorem 1.7 is given in Section 5. Partial results on torsion in
the finite groups ﬁym’n(Mmm) not covered by Theorem 1.7 can also be
found in Section 5. The basis for the top homology of the chessboard
complex used in the proof of Theorem 1.7 is constructed in Section 6.

In Section 7, we deal with torsion in the case of infinite H,,, , (Mpn).
Here we use the results of previous sections and Friedman and Hanlon’s
representation theoretic result to show that H,, (M, ) is torsion-free
when n = 2m — 2. This leads to conjectures on higher dimensional
homology.

In Section 8, we discuss the subcomplex of the square chessboard
complex M, ,, obtained by deleting a diagonal from the chessboard.
This complex was shown to be (v9, — 1)-connected by Bjérner and
Welker [BjWe| as a consequence of a more general result of Ziegler
[Zie] on nonrectangular boards. Here we show that the Bjorner-Welker-
Ziegler bound is sharp.

2See New Developments Section at the end of the paper.
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In Section 9, we answer another question of Bjorner, Lovasz, Vrécica,
and Zivaljevi¢ [BLVZ]. Given the connectivity bounds on M, and
M., n, they ask whether the v,-skeleton of M, and the v, ,-skeleton
of M,,, are shellable. Ziegler [Zie|] answers this question affirmatively
for the chessboard complex by establishing vertex decomposability. In
Section 9, we answer the question affirmatively for the matching com-
plex. We remark that in subsequent work, Athanasiadis [At] improves
this result by establishing vertex decomposability.

In Section 10, bounds on the ranks of the finite 3-groups ﬁ,,n (M,,)
and ]:L,m’n(Mm,n) are derived. This extends bounds given by Bouc for
the n = 0,1 mod 3 cases of the matching complex.

2. BoucC’s LONG EXACT SEQUENCE

In [Bo], Bouc produces a long exact sequence which enables him
to prove that H,(M,) = 0 for ¢t < v(n) and to obtain Theorem 1.3.
This sequence is a modification of the long exact sequence of the pair
(M, X,), where X, is the subcomplex of M,, consisting of matchings
in which either the vertices 1 and 2 form an edge or at least one of
these vertices is isolated. As we will see in Section 3, it is easy to use
Bouc’s sequence to show that H,, (M,) # 0 when n = 2 mod 3, thereby
establishing the matching complex case of the Bjorner-Lovasz-Vrécica-
Zivaljevié¢ conjecture. This sequence will also play a role in the proof of
Theorem 1.6 given in Section 4. In this section, we present Bouc’s long
exact sequence and an analogous sequence for the chessboard complex.
The analogous sequence will be used to prove the chessboard complex
version of the Bjorner-Lovész- Vrécica-Zivaljevié conjecture in Section 3,
and to prove Theorem 1.7 in Section 5.

We use standard notation, (C,(A), d) and Z,(A), for the chain com-
plex and the cycle group, respectively, of a simplicial complex A. For
z € Z,(A), we let z denote the homology class of z in H,(A).

2.1. The long exact sequence for M,. In order to state Bouc’s
result in a manner that will be useful to us, we must introduce some
additional notation. For finite set A, let M4 be the matching complex
on the complete graph with vertex set A.

For disjoint subsets A, B C [n], if z; and zy are oriented simplices
of M4 and Mp, respectively, then z; A 2z will denote the oriented
simplex of Mg obtained by concatenating z; and z;. We define a
homomorphism

/\ :Cs 1(My) @ Cy1(Mp) — Csiy—1(Maup)
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by letting z1 ® zo — 27 A 2o for all oriented simplices 21, zo. This induces
a homomorphism

N\ Hooa(Ma) @ Hy(Mp) — Hopro1(Maus),

defined by Z1 A Zg = 21 A 23 for all z; € Z, 1 (Ma) and 23 € Z;_1(Mp).
(We write z1 A 2o instead of (21 ® 22) and Z7 A Z3 instead of A(Z7 ® %)
and note that z; A 23 is a cycle.)
Fora=1,2andi=3,...,n, let
¢a,z‘ : ]:]t—l(M[n]\{l,Q,i}> - ]:—It(Mn)
be the homomorphism defined by
Goi(Z)=ai—12 A Z
This determines the homomorphism
o D HoaMuppes) — HML),

a € {1,2}
€ [n]\{1,2}

defined by letting ¢(Z) = ¢,:(Z) for each Z in each (a,7)-summand.
Fori# j € {3,...,n}, let

Vij o Co(My) — Cro(Mpnp(1,21,5))
be the map defined by letting

() = y if x=1iA2j Ay for some y € Ct_Q(M[n]\{1727i7j}>
i 0 otherwise,

for each oriented simplex x. It is straightforward to show that the
induced map

Yij f{t(Mn) - gt—2(M[n}\{1,2,i,j})
given by v ;(Z) = v, j(2) is a well-defined homomorphism as is the map

(2 ]:-It(Mn) - @ I:It—Q(M[n]\{l,Q,i,j})
i#j€n]\{1,2}
given by (2) = (¢1;(2))-
Fora =1,2, h,z =3,...,n and i # j, define

Oy Hi(Mpn1,2:.5) = Hi(Mip 12,07
by
N zZ if a=1 and h=
(52’2(?) =< —7z if a=2 and h=
0 otherwise,



TORSION 9

for z € Z(Mpnp\11,2,i,53)- Again it is straightforward to show that 5;Jh is
a well-defined homomorphism as is the homomorphism

0: GB ﬁt(M[n]\{l,Zi,j}) - GB ﬁ[t(M[n]\{m,h})
i#j€[n]\{1,2} ae{1,2}

h € [n]\ {1,2}
defined by letting §(Z) = (5;”h (%)) for each z in each (i, j)-summand.
We can now state Bouc’s result. For the sake of completeness, we
will include a proof.

Lemma 2.1 ([Bo, Lemma 9]). The sequence

6 i )
S B Hoa(Myp o) S H(M,) 5

a€{1,2}
he[n]\{1,2}
~ 5 ks o]
@ Hy o(Mppf1,2,53) — @ Hyo(Mpppg12,ny) = -
i#j€[n]\{1,2} a€{1,2}

h e [n]\{1,2}
15 exact.

Proof. For any graph G on vertex set [n], let E(G) denote the edge set
of G, and for v € [n], let Ng(v) denote the set of neighbors of v, that
is,
Ng(v) ={ueV :{u,v} € E(G)}.
Define
X, ={Ge M, :|(Ne(l)UNg(2)\{1,2}| <1}.

Then X, is a subcomplex of M,,, and we examine the standard long
exact sequence

-2 H (X)) 5 Hy(My) ™ Hi(My, Xp) 5 Hia(X,) 5 o
(see [Mu, Theorem 23.3]).

Let P, be the subcomplex of X, consisting of those G € X,, such
that either {1,2} € E(G) or both 1 and 2 are isolated in G. Since P,
is a cone over M, (1,23, it is acyclic. Hence the natural projection of
chain complexes induces an isomorphism

T Hy(X,) — Hy(X,, P,).

For a € {1,2} and h € [n] \ {1,2}, let

o Ol Xn, Pn) = Coot (M f1.2,13)
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be the map defined by letting

tan(z) = y if x = ah Ay for some y € Cy_o(Mn)\(1,2,1})
h 0 otherwise,

for each oriented simplex z. It is straightforward to show that the
induced map

Qo Hi(Xn, Po) — He y(Mip1.2.3)

given by «;;(Z) = «;;(2), is a well-defined homomorphism as is the
map
a: Hi(X,, P) — B  HaMuppon)

a € {1,2}
h € [n]\ {1,2}

given by a(Z) = (aqx(Z)). If we define
Yar : Hit(Mppromy) — Hi(Xo, P,)
by

w— ah AN w

V= @f}’a,h
a,h

is a well-defined inverse for a. We now have an isomorphism

ot H(X) — @ Heo(Muppaw):
a € {1,2}
he nl\ {12}

It is straightforward to show that the map
Bij : Hi(My, Xy) = Hy_o( M (1,2,0.53)

induced by the restriction of ¢ ; to Cy(M,, X,,) is a well-defined homo-
morphism for all 7,7 € [n] \ {1,2} with i # j. Define

ﬁ : ﬁt(MWJXTL) - @ FIt—Q(M[n]\{LQ,i,j})
i,j € [n]\ {1,2}

then

(N
by
Z = (B(2))-
If we define
pig o Hyoo(Mpp1.2,57) — Hi(My, X))
by

W LA2]Aw
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M= @Mm
irj

is an inverse for (3. The result now follows from the fact that the
diagram

S H(X,) S H(M,) IS H(M,, X)) 2

then

5 - - " - 5
- EB t—1 (M {1,2,1}) 2 H(M,) 5 EBHt—Q(M[n]\{m,j}) —
4.

commutes. [l

2.2. The long exact sequence for M,,,. For any subset

Y ={y, 42, -, u} C [0,
let

Y = {y1, 5, -, y.} € [n]".
For X C [m] and Y C [n], let Mxy be the chessboard complex on X
and Y’. In other words, M y is the matching complex on the complete
bipartite graph whose parts are X and Y’. Then My y is a subcomplex
of the matching complex Mxyy, and the chain complex Ci(Mxy) is
embedded in the complex C,(Mxyy).

After appropriate changes in notation, restrictions of the various
functions defined in Section 2.1 will be used to produce a long exact
sequence similar to the one described in Lemma 2.1. In particular, if
X = XXy and Y =Y, Y5 then the restriction of the homomor-
phism /\ defined in Section 2.1 gives a homomorphism

N Hot(Mx, ) @ Heoa(Mxyy,) — Hopioa (Mxy).
In Section 2.1, the graph vertices 1,2 were distinguished in order to
produce the desired long exact sequence. Here, we distinguish the
graph vertices 1,1". For i € [m]\ {1}, define
¢i + Ha(Mpnqrap v 1y) = Hi(Min,n)
by
Z— (11" —il') N Z,
and for j € [n] \ {1}, define
¢+ Hyy (M 1y 1.53) — Hi(Min)
by
Z (1 =157 N Z.
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For ease of notation, we define

(1) = @B HMppaymhi),
Jeln\{1}

(1) = B H(Muppagmoy):
ilm]\{1}

The maps ¢; and ¢ together determine a unique homomorphism
o ]:It—l(ll) SP) ]:—It—l(l) — ]:It(an)
For i € [m]\ {1} and j € [n] \ {1}, define
it C(Mmn) = Coma(Mpmp\ 1.3} [\ (1.5))
by

A y ifx= 1j, A 1'i Ay for some NS Ct,Q(M[m}\{l,i}7[n]\{1’j})
0 otherwise.

As in Section 2.1, v; ; induces a homomorphism, also called 1; ;, from
Ht(Mm,n) to Ht—2(M[m]\{l,i},[n]\{Lj})- We define

Vo H(Mpn) = 6 Hio(Mpp iy 1.33);

i [m]\{1}
j €\ {1}

by
Z = (Yi(Z))-
For i e [m]\ {1} and j € [n] \ {1} define
6"+ Ho(Mpmp\ 1,61\ (17) —
Hy(Mpnp g1y 1) @ H(Mpp 1y, i 1.53)
by
Z— (—2,2).

For ease of notation, we define

(L1 = @ HMppgspnos):

i€ [m]\ {1}
j €]\ {1}

and let
0 Ht<]_, ]_,) — Ht<].,) D Ht<]_)

be the unique homomorphism whose restriction to f[t(M i\ {Le},[n\{1,7})
is 0% for each pair (i, 7).
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Lemma 2.2. The sequence

(2.1)
; ) i
= P Ha M) © D Heor( My n 1)
ie[m]\{1} Jelr\{1}
¢ 7 v A 5
S H(Muy) = @ Heo(Mpp i ) =
i€ m]\ {1}
J€nI\ {1}
~ ~ @
D HoMpppamay) ® @ Heo(Mpmppynog) = -
iem]\{1} jen\{1}
18 exact.

Proof. Define
Xonm :={G € My, : [(Na(1) U Ng(1) \ {1,1'}| < 1}.

Let P,,,, be the subcomplex of X, ,, consisting of those G € X, ,, such
that either {1,1'} € E(G) or both 1 and 1’ are isolated in G. As before,
the natural projection of chain complexes induces an isomorphism

T: ﬁ]t(Xm’n) — I:It(Xm,n, Pon).
For i € [m]\ {1} and j € [n] \ {1}, let
i+ C(Xmn, Povn) = Comt (M (1,63, in\(1})
and
@+ Co(Xomns Bon) = Ot (Mpmp\ 1), f1.47)
be the maps defined by letting

as(z) = 4 ¢ Tx=Tinyforsome y € Cooy (M 1))
' 0 otherwise,

o (z) = ¥ e =17 Ay for some y € Cooa (Mym 1y o 1.51)
0 otherwise,

for each oriented simplex z. It is straightforward to show that the
induced maps,

a;  Hy( Xy Prn) — Hiot(Mpap 14y, (1)

and

o+ Hy( X, Prn) = He—t (M (13, in\ (1.7})
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/

given by a;(2) = a;(z) and a}(2) = o/(z), are well-defined homomor-

phisms, as is the map
(07 ]Z[t(anu Pm,n) - Htfl(ll) ® gtfl(l)
defined by
Z = ((u(2)), (@5(2)))-

The map « has an inverse analogous to the inverse v defined in Sec-
tion 2.1. Therefore, « is an isomorphism.

For i € [m]\ {1}, and j € [n] \ {1}, the map

Bij t He( My Xinn) — Hyoa(Migp (1,33 i (1,5))

induced by the restriction of 1;; to Cy(My ., Xpmpn) is a well-defined
homomorphism. Define

B Hi(Myy Xonn) = D Heoa(Mpnp iy i 1.51)

i€ [m]\{1}
J e n]\ {1}

by
Z = (8i;(2))-
As in Section 2.1, ( is a well-defined isomorphism.
The diagram
o % ﬁt(Xm,n) L) gt(Mm,n) L) ﬁt(Mm,na Xm,n) %) T
iar lid iﬁ
) e Ho () S H(M,,) -5 Heo(1,1) -

commutes, which yields the result. U

2.3. The tail end. For our purposes, we need only the tail end of each

long exact sequence. Recall that

n—+1
3

|-1.

Vn:L

Lemma 2.3. Let ¢ and ¢ be as in Lemma 2.1.

(i) If n=0,1mod 3 then the following is an exact sequence

B A (Muppes) % H,, (M,)—0.

a € {1,2}
1€{3,...,n}
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(ii) If n = 2 mod 3 then the following is an exact sequence

~ ¢ ~
@ Hy, o (Mpp1,2.4y) — Ho, (My)
a€{1,2}
i€{3,...,n}

W .
S D A My ain) = 0

Proof. First note that v, 3 = v, — 1 for all n. Hence the sequence of
(i) is a piece of the long exact sequence of Lemma 2.1, provided that

H,, _2(M,_4) = 0. This follows from (1.1), since v,, =2 < v, — 1 = 1,4
when n = 0,1 mod 3.

If n = 2 mod 3, we have that v,_4 = v, — 2. Hence the sequence of
(ii) is a piece of the long exact sequence of Lemma 2.1, by (1.1) and
the fact that v, — 2 < v,,_3. O

Now recall that,

1
Vmn = min{m7 n, L%J} - L

Note that if m < n then

(2.2)

|7l -1 ifn<2m—1
Vmn =
m—1 ifn>2m—1,

and if n < 2m — 1 then

(2.3) Umn <m — 1.

Lemma 2.4. Suppose m < n < 2m — 1. Let ¢ and ¥ be as in Lemma
2.2.

(i) If m+n=0,1mod 3 then

DB Hooroos Mppippngy) © B Hoporo My (153
ie[m]\{1} JEMN{1}

4, i, (Muy,)—0

VUm,n

18 exact.
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(ii) If m+n =2 mod 3 then

D Hooro . Mpppiypngy) @ B Horo (M) v 11.7)

iem]\{1} J€[n\{1}
[N P r
S Hypo M) = D Huas (M 1,7 o 11,53) — 0
i€ [m]\ {1}
€ [n]\ {1}
18 exact.

Proof. Note that for all m,n such that m <n <2m — 1,

(24) Vm—2n-1 = Vm—-1n—-2 = Vmn — 17

and

m+n
3

It follows that if m +n = 0,1 mod 3 then

m+n+1
(2.5) Um—2n—2 = LT

= Umn— L

| 2.

Vm—2n-2 = L

| -2

Hence by (1.2), we have H,, , —o( M (14y.p\(1,43) = 0, which together
with (2.4) implies that the sequence in (i) is a piece of the long exact
sequence of Lemma 2.2.
If m+n =2 mod 3 then
m+n+1
3

= VUmn — 2.

|1-3

Vm—o2n-2 = L

It follows from this, (1.2), and (2.4) that the sequence in (ii) is a piece
of the long exact sequence of Lemma 2.2. U

Lemma 2.3 (resp., 2.4) will be used to decompose generators of

H,,(M,) (vesp., H,, . (M,.,)) into wedge products of smaller cycles.
An easy instance of this is given in the next lemma.

Lemma 2.5. Suppose n = 0,1 mod 3. Then H,, (M,) is generated by
elements of the form

(c(D)o(2) —a(1)a(3)) A (c(4)o(5) —a(4)a(6)) A ...
AN (o(N—=2)o(N—1)—0c(N —2)o(N)),
where 0 € &, and N = 3|z ].

Proof. This follows from Lemma 2.3 (i) by induction on n. O



TORSION 17

3. PROOF OF THE BLVZ CONJECTURE

The exact sequence given in Part (i) of Lemma 2.3 is one of the main
tools of Bouc’s proof of the n = 0,1 mod 3 cases of the conjecture of
Bjorner, Lovész, Vrécica and Zilvaljevi¢ that H,, (M,) does not vanish.
Bouc uses this exact sequence to establish nonvanishing homology in
the most difficult case, the n = 1 mod 3 case. He then observes that
the tail end of another long exact sequence, which is given in (10.1),
enables one to deduce the n = 0 mod 3 case from the n = 1 mod 3 case.
Although not explicitly mentioned by Bouc, one can use Lemma 2.3
to deduce the remaining 2 mod 3 case from the 1 mod 3 case. Indeed,
consider the surjective map ¢ of Lemma 2.3 (ii). Since n —4 = 1 mod
3, the range of ¢y does not vanish. Hence neither does the domain
H, (M,).

We now prove the conjecture for the chessboard complex.

Theorem 3.1 (Bjorner-Lovész-Vrécica-Zilvaljevié¢ Conjecture).
Forn > 3,

(3.1) H,, (M,) # 0,
and form+n > 3,

Proof of (3.2). If n > 2m—1, then the result follows from Theorem 1.5.
So assume that m <n < 2m — 1.

We will begin with the case that m+n = 0 mod 3. The argument for
m~+n = 1 mod 3 is similar and will be left to the reader. We will use the
fact that H,,,, (Mp4n) does not vanish to prove that H,,, , (My,,) does
not vanish. Since the chessboard complex M, ,, is a subcomplex of the
matching complex Mj, [y, any cycle z of M,y that is in the chain
space of M,,, must be a cycle in M,,,. Moreover, if z is a boundary
in the subcomplex M,, ,, then it is also a boundary in M) -

Let k = Z”T_m It follows from m+n = 0 mod 3, that k is an integer.
The cycle

2 =11 =12) A (23 =24)A ... AN(KER2k—1) =Kk (2k)") A
(2k+1)(k4+1)— 2k+ 1) (E+2)A ... A(n (m—1)—n"m)

of Miyjump 1s not a boundary since it is one of the generators given by
Lemma 2.5. Indeed, if any one of the cycles given by Lemma 2.5 is a
boundary, they all are, which is impossible since H,,,, . (Mpnsmy) 7 0.

The cycle z is clearly in the (™52 — 1)-chain space of My, ,. So it



18 SHARESHIAN AND WACHS

m-+n

is a (™3* — 1)-cycle of M,,,, that is not a boundary. Since by (2.2),
Vi = Vintn = m;" — 1, we have lf[l,m’n(Mm,n) £ 0.

Now suppose m + n = 2mod 3. Just as for the matching com-
plex, the 2 mod 3 case is a consequence of the 1 mod 3 case. We use
Lemma 2.4 (ii). Since m+mn —4 =1 mod 3, we have that the range of
the surjection ¢ does not vanish, by the 1 mod 3 case. Hence, neither
does the domain, H,,, , (Mp»)- O

4. TORSION IN THE MATCHING COMPLEX

In this section we prove Theorem 1.6. We begin with the following
lemma.

Lemma 4.1. Suppose n = 2mod 3 and n > 5. Then H,, (M,) is
generated by elements of the form ~v A p, where v € Hy(Msg), p €
Hynfs(M[n}_S), and |S| =3.

Proof. The proof is by induction on n. The base step n = 5 is trivial.
Let n > 8. For distinct elements i, j € [n], recall the map

Wij H,, (M) — Hy (M g12,57)

defined in Section 2.1. Since n—4 = 1 mod 3, it follows from Lemma 2.5
that

F[Vn—‘l(M[n}\{leivj}) = <ﬁ : p e ZVn—5<M[n}\{1a27i’j’T}>7r e [n] \ {17 27 7/7-7}>
Therefore if ¢ € H,, (M,) then
(41) wl,](c) = Z ﬁi,j,’f‘?

ren]\{1,2,i,5}

for some Pijr € Z,,n75 (M[n]\{l,Q,i,j,r})-
For distinct elements a,b,r € [n] \ {1,2}, let 7,4, be the cycle

(la A 2b) + (20 Ara) + (ra A12) + (12 Arb) + (rb A 1a)
in Z1(Mg2.ap,3)- Clearly Yop,r A papr € 2y, (M) and

Pig,r if (Z7j) = ((l, b)
0 otherwise.

(4.2) Vi i (Yabr N Papr) = {
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It follows from (4.1) and (4.2) that

¢i,j(< - Z Z Ya,b,r A pa,b,r)
a#ben]\{1,2}  ren]\{1,2,a,b}
= ¥i;(¢) — Z Pij.r
re[n]\{1,2,i,5}

= 0.

Hence, by Lemma 2.3 (ii), we have

(43) ¢— ) D Tabr APapy € ker() = im(¢).
abe[m\1,2} reln\{1,2,0,6}

Clearly im(¢) is generated by elements of the form o A 7, where o €
Ho(My), 7 € H,, ,(Mjy_7), and |T| = 3. By induction H,, (M)
is generated by elements of the form v A w, where v € ﬁl(Ms), w E
H,, (My)_7_s), and |S| = 5. Tt follows that im(¢) is generated by
elements of the form o Ay A w, where o € Hy(My), v € Hy(Ms),
w € H, (My_r_s), |T| =3, and |S| = 5. Tt now follows from (4.3)
that ¢ is an integral combination of elements of the form v A p, where
v € Hy(Ms), p € H,, .(M,_s) and |S| = 5. Since ¢ was arbitrary,
H, (M,) is generated by elements of this form. O

We are now ready to prove Theorem 1.6 which is restated here.

Theorem 1.6. For n > 12 (except possibly n = 14)° |H, (M,) is a
nontrivial elementary 3-group.

Proof. By Theorem 1.3, we need only prove the result for n = 0,2 mod
3. We prove the n = 0 mod 3 case by induction on n. Table 1.1
provides the base step,

]Z[Vm <M12) = Zgﬁ

The induction step follows from Lemma 2.3 (i) and Theorem 3.1, since
the homomorphic image of a nontrivial elementary 3-group is either
trivial or is a nontrivial elementary 3-group.

Now let n» = 2mod 3 and n > 17. By Lemma 4.1, H, (M,) is
generated by elements of the form v A p where v € lfll(MS), p €
H,, .(Mp_s), and |S| = 5. Since n— |S| > 12 and n — |S| = 0 mod 3,

by the 0 mod 3 case,
3(yAp) =7 A3p=0.

3See New Developments Section at the end of the paper.



20 SHARESHIAN AND WACHS

Hence H,, (M,) has exponent at most 3. The result now follows from
Theorem 3.1. U

We conjecture that the result holds for n = 14 as well.* In principle,
one need only check this on the computer. However, at the present time
the computer, using the software of [DHSW], produces results only up
to n = 12. We have the following partial result for n = 14.

Theorem 4.2. H, (M) is a finite group whose Sylow 3-subgroup is
nontrivial.

Proof. By Theorem 1.3(i), we have that H,,, (M) is finite.

Let n = 17. Tt follows from Lemma 4.1, that H,, (M,) is generated
by elements of the form y A p where v € Hy(Ms), p € ]:Iyn_5(M[n],S),
and |S| = 5. By Lemma 2.5, ]:.Tl,%S(M[n]_S) is generated by elements of
the form o A w where a € Hy(My), p € H,, ((Mpy_s_7), and |T| = 3.
It follows that [, (M,) is generated by elements of the form a A 7
where o € Hy(My), 7 € H,, ,(My_7), and |T| = 3. By (3.1), at least
one of these generators, say « A 7, is nonzero.

We have

e(aNT)=aANer =0,

where e is the exponent of H,,,(My4). Since a A T # 0, it follows from
Theorem 1.6 that 3 divides e, which implies that there is 3-torsion in

H, ,(My). U

Corollary 4.3. The Sylow 3-subgroup of ﬁyn (M,,) is nontrivial for all
n such that H, (M,) is finite.

5. TORSION IN THE CHESSBOARD COMPLEX

In this section we prove Theorem 1.7. The general idea is patterned
on the proof of the analogous result for the matching complex, given in
the previous section. However there is a significant complication. Just
as for the matching complex, the tail end of the long exact sequence
will be used to decompose generators into smaller cycles, but this works
only if n is sufficiently close to m. When n is not sufficiently close to
m, it is necessary to understand the top homology of the chessboard
complex in order to decompose the generators. A study of top homol-
ogy is conducted in Section 6, where an essential decomposition result,
Corollary 6.5, is obtained. This decomposition result and the tail end of

4See New Developments Section at the end of the paper.
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the long exact sequence will enable us to prove the key decomposition

result:
For all m <n < 2m—2 except (m,n) = (4,4), the group

H,, .(M,y,) is generated by elements of the form
(ij" — k") A p,
where 1 € [m], j, ke [n], and p e ﬁymilynﬁ (M[m]\{i},[n]\{j,k}>-

We divide the proof of Theorem 1.7 into three cases which are han-
dled in three separate subsections. An approach to determining torsion
for all finite H,,, , (M, ), not covered by Theorem 1.7, is discussed in

Vm,n

the final subsection.

5.1. The 1 mod 3 case. For i,j € [m]| and k,[ € [n], let
Qg jr = ik —il € ﬁO(M{i},{k,l});

and

ﬁi,j,k’ =ik — jk‘, € FIO(M{iJ}y{k}).
We refer to the fundamental cycle o i » as an a-cycle and the funda-
mental cycle 3; 1 as a 3-cycle. We also need to view these fundamental
cycles as elements of fIO(M{i,ij’l}).

Lemma 5.1. In ﬁO(M{i,j},{k,l}) we have

Qi = =iy = —Bijr = Biju-

Proof. The first equation follows from
(k" A jl'y — (Gl A GE")) = (iK' —dl') + (jK' — j1').
The second equation follows from
oGl N Ky = (il — k") + (ik" — jK).
The third equation follows from
(k' A jU') + (3" A gE)) = (iK' — jE") + (il" — 51').
O

Iiemma 5.2. Suppose m+n =1mod 3 and m <n < 2m — 2. Then
H,, .(My,,) is generated by elements of the form

(51) QG 57 k! N P
where 1 € [m], j, ke [n], and p e ﬁym—l,n72(M[m]\{i},[n}\{j,k})'
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Proof. First note that it follows from Lemma 2.4 (i) that H,, (M.,
is generated by elements of the form given in (5.1) and elements of the
form

(5.2) Biik N\ p,

where 7,7 € [m], ke [n], and JS Hum_z,n_1(M[m]\{i,j},[n}\{k})-

We will show by induction on m that the elements of the form given
in (5.2) can be expressed as integral combinations of elements of the
form given in (5.1). The base step, m = n = 2, follows from Lemma 5.1.
Now suppose m > 2.

Case 1. Say n < 2m — 2. Then n —1 < 2(m — 2) — 2 and we apply
the induction hypothesis to ]:Iym72m71(M[m]\{m},[n}\{k}). By replacing p
in (5.2) by an integral combination of wedge products each of which
contains an a-cycle, we are able to express §; ; /A p as an integral
combination of wedge products each of which contains an a-cycle.

Case 2. Say n =2m — 2. Then n—1 > 2(m —2) — 2 and it follows
from (2.2) that

Vm—2n—-1 =M — 37
so we can apply Corollary 6.5 to I:Iym%nfl(M[m]\{m},[n]\{k}), which im-

plies that the elements p of the generators [3; ;i A p given in (5.2) can
be expressed as integral combinations of elements of the form

puv NT,
where U C [m]\{laj}7 VC [n]\{k}7 |U| = |V|_17 puyv € ]:I|U|*1(MU,V)>
and
T € Hypsju| (M ({3,5300) )\ ({E}uV) ) -

This implies that the generators of (5.2) can be expressed as integral
combinations of elements of the form

(5.3) puyv N7,

where U C [m], V C [n], [U| = |V| =1, puv € Hy-1(Myyv), and

Y € Hyp 0 (Mimp\ v )-
We will show that if |U] > 1 then

from which it follows that the wedge product in (5.3) is 0. From this it

follows that the generators in given in (5.2) can be expressed as integral

combinations of generators given in (5.1), since pyy is an a-cycle when
|U| = 1.
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Since n = 2m—2 and m > 2, we have n > m. Thus n—|V| > m—|U|.
It follows that

. m—|Ul+n—|V|+1
Vi = min(m — U], 2RV

Suppose |U| > 1. We will use (1.2) of Theorem 1.1 to prove (5.4).
From (2.3) we have

(5.5) Vmn — U] <m —|U| — 1.
We also need to check that
m—|U|+n—|V]|+1

(5.6) Umn — U] < | 3 | -1
By (2.2), we have
-1
v — U] = o),
3

The right side of (5.6) equals

m—|Ul+n—|U—1+1 m+n—1  =2|U|+1

—1= — 1.

L . J e

So (5.6) is equivalent to
—2)U|+1
—|U| < LTJ,

which clearly holds when |U| > 2. Hence by (1.2), equation (5.4)
holds. O

Lemma 5.3. Suppose m +n =1mod 3 and m <n < 2m — 2. Then
H,, .(My,,) is generated by elements of the form

(5.7) Qo(1),7(1),7(2) N Qo (2)7(3) @y N = Aoty r(2t—1) 7 (2t) N

Bo(t+1),0(t+2),72t41) N Bo(t43),0(t+4),r@2t+2) N+ A Bo(m—2),0(m-1),7(n) »

where 0 € S, T € &, and t = 2=

Proof. We use induction on m. When m = 2, the result is immediate
from Lemma 5.2. When 2 < m < n the result follows from Lemma 5.2
and the induction hypothesis applied to H,,, _, . (Mpap (it )\ {5k} ) -
When 2 < m = n, we also use Lemma 5.2 and apply the induction
hypothesis to ﬁum,l,n,g(M[m]\{z‘},[n]\{m}) However there is an addi-
tional step. Since m +n = 1 mod 3, we have 5 < m = n. Hence
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n—2<m-—1<2(n—2)—2. This allows us to apply the induction hy-
pothesis with the role of the a-cycles and the §-cycles switched. Hence
we have that H,,,  (Mp,) is generated by elements of the form
Oo(1),7(1) 7 (2) N\ Oo(2)7(3) r(4) N N () r(2t—1) 2ty
Bo(t+1),0t+2),72t41) N Bo(t+3),0(t+4),r2t+2y N+ A Bo(m=1),0(m),r(n-1) »

where 0 € G6,,, T € G,,, and t = % — 1. To complete the proof,
we use Lemma 5.1 to change one of the 3-cycles to an a-cycle. 0

Theorem 5.4. Suppose m+n =1mod 3 and m <n < 2m—>5. Then
H,,. . (Myny) is a cyclic group of order 3 generated by
(5.8) @i Aagzar Ao Aoy iy ey N

Bit1t42,2t41) A Begspa,2e42) N - A Bm—2m—1n/ 5

2n—m+1

where t = 3

Proof. We use the relations of Lemma 5.1 to show that the generators
of Lemma 5.3 are all equal up to sign. It suffices to show that

(5.9)
apy N s Ny 1y A B,y A A Breo 1
= 5gn(0) Ag) 2 A A Qo) 2t—1) (2t
A Bo(t+1),0t+2),2t41) N A Bo(m—2),0(m—1).n/ 5
and
(5.10)
ar o\ e Nag i1y 20 A Beatira, @y A A Beome 1
= sgn(7) arrayr@y A A Q1) (2t
A Bittit2,r@i+1y A A Bm—2m—1,7(n)

forallc € G, and 7 € G,,.

For the sake of ease of notation and getting to the heart of the
argument, we prove (5.9) and (5.10) for m = n = 5. The general
argument is essentially the same. To prove

(5.11)
a1 Aoy ar A Paay =8gn(0) o),z A Oo2)3 .47 N Bo(3),0(4),5

for all o, it suffices to prove this for o in the set of transpositions
{(1,5),(2,5),(1,3),(1,4)}, which generates Ss.
Case 1. 0 = (1,5). By Lemma 5.1, o1 1/ = —a51/,2. Hence

apy Naogyw N B3asy = —as 10 A Qoga A B3as.
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Case 2. 0 = (2,5). This is similar to Case 1.
Case 3. 0 = (1,3). By repeated applications of Lemma 5.1, we
have

ajr Nooya A Bsay = ar A Bassy NP3y
= o112 ABasy Aoy
= —ag1r2 APy Nogay
= —azvo APaszy NPy
= —og1ry Aoz a A Biay

Case 4. 0 = (1,4). This is similar to Case 3.
To show

(5.12)
a1 Aoy N P3as = 8gn(T) a1 -1y r2y N Qar@y sy A B3ar(s)y

for all 7 € &5, we use Lemma 5.1 to exchange an a-cycle for a (-cycle.
That is, by Lemma 5.1, equation (5.12) is equivalent to

ary e A Pasy A Bsas =Sgn(T) a1 -1y -2y A Bosr@y A Bsars)y-

This is equivalent to (5.11) with the role of the a-cycles and [-cycles
switched.

It is straightforward to extend the argument for m = n = 5 to general
m < n < 2m — 5 since G,, is generated by the set of transpositions
{(1,m)...(t,m),(1,t+1),...,(1,m—1)}, and the expressions on each
side of (5.9) and (5.10) contain at least two a-cycles and at least one
[B-cycle. .

We now show that the order of the cyclic group H,,, (M) is 3 by
induction on m. The base step IjIVE,’s(M5,5) = Zs is given in Table 1.2.
Let m > 6. The generator given in (5.8) can be expressed as

IR RAY

where p € gvm,nfl(M[m]\{l},[n}\{lﬂ})- If m < n then clearly m — 1 <
n—2<2m-—1)—5 If m =n then m = n > 8 which implies
n—2<m-—1<2(n—2)—>5. In either case, vy, — 1 = Vp—1 -2, and
we can apply the induction hypothesis to Hum,n—l(M[m]\{l},[n]\{m}) to
obtain

3(CY171’,2’ A P) = 172 N 3p =0.
Since, by Theorem 3.1, ]:L,mm (M, ) is nonvanishing, it has order 3. [J
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5.2. The 0 mod 3 case.

Lemma 5.5. Suppose m +n =0 mod 3 and m <n < 2m — 3. Then
H,,. .(My,) is generated by elements of the form

(513) Q51 k! A P,
where 1 € [m], j, ke [n], and p < ﬁym—l,n72(M[m]\{i},[n}\{j,k})'

Proof. The proof, although similar to the proof of Lemma 5.2, requires
an additional step. By Lemma 2.4 (i), we have that H,,  (My,,) is
generated by elements of the form given in (5.13) and elements of the
form

(5.14) Bijwr N P

where 4,j € [m], k € [n], and p € H,, . (Mg x})- 1t follows
from this that FL,&?) (Ms33) is generated by elements of the form oy, jr i A
Biy.is.j;, Which takes care of the base step of an induction proof. Now
assume m > 3.

Case 1. Say n < 2m — 3. Then n — 1 < 2(m — 2) — 3. By applying
the induction hypothesis to ﬁymflnfl (M) fi 3} [n)\(k})» We have that the
generators given in (5.14) can be expressed as integral combinations of
generators given in (5.13).

Case 2. Sayn = 2m —3. Thenn—-1 > 2(m —2) — 1, so
by (2.3), we have vy,_2,-1 = m — 3. By applying Corollary 6.5 to
Hy, oo (M gigy 0\ (ky)s We see that generators given in (5.14) can
be expressed as integral combinations of elements of the form

(5.15) puyv N,
where |U| = |V|—1, puyv € H‘U|,1(MU7V>,~aHd’7 S Hum,nf\Ul(M[m]\U,[n]\V»

One can show that if |U| > 2 then H,,, . _ju|(Mpmpuppnv) = 0 by
using an argument similar to the one that was used to prove (5.4).
We leave the straightforward details to the reader. This allows us to
conclude that H,,, (M, ,) is generated by elements given in (5.13) and
(5.15), where 2 = |U| = |V| — 1.

We now show that any generator of the form given in (5.15), where
(|U],|V]) = (2,3), can be expressed as integral combination of gener-
ators given in (5.13), which will complete the proof. Since m > 3 and
n =2m — 3, we have m < n. Thus

m—2<n-—3<2(m-—2)—2.
By (2.2), we have vp,, — |U| = Vp_ju|n-jv|- It therefore follows from

Lemma 5.2, that H,,, , —ju|(Mpp\v,m)\v) is generated by wedge products
that contain an a-cycle. 0
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The next result follows easily from Lemma 5.5 by induction.

Iiemma 5.6. Suppose m+n =0mod 3 and m <n < 2m — 3. Then
H,, (M) is generated by elements of the form

Vm,n

(5.16) Wiy 1.5 N Binsis,gy N &

where 1y, 13,13 € [m], j1,J2, js € [n] and

§ € Hy,, o2 (M) {ir iz is b o]\ [ ia-is })-

For distinct i1, 49,13 € [m| and distinct jq, ja, j3 € [n], let
Wiy ig,j1.55.95 *=
iy Aoy + oy vy + i1y Aoy +iady Airjy+injy Ndafh +iay A
and
Uiy jiniz 51,05 *=
i1y Aoy +izfy Nisgy +dsgy Advga +iijy Adagy +dady Adsgy +izjy Adrgy.
When it suits our purposes, we shall view u;, ;,

and v;,, as

. 7]1»]&:]:’3 i2»i37jivjé
clements of H,, (M{iy g sisd {iioia}) @8 well as of Hy, . (M, o} i jasis})
and H,, , (M, is.is},0js.j2} ) Tespectively.

Lemma 5.7. In fll(ngg) we have,

3(061,1',2’ A 52,3,3') = —U231/23 — V12312 — 2(?11,2,3,2/,3' + U1,2,1',2/,3')-

Proof. 1t is straightforward to verify that
O(11"N22" N33+ 12 N23" A 31+ 12" A 21" A 33"+ 11" A 32 A 23')
=gz 123 + V12312 — a1y ABagsy — 2(aze 3y A Biay).
Consequently, in ]:[1(M3,3),
a1 A Baga =Usz s + V12312 — 2(az2z ABiLa).
By symmetry (exchanging a with 3, u with v, and ¢ with '),
Broy ANasyy =viggyy + Uiy — 2(B233 Aar ).
By substituting the second equation into the first equation, we get
arro N Pogz =
Ugz oy + Vigsry +2(Viesyy Uiy — 2(Bazy Aare)),
which implies that
3<061,1',2' A 52,3,3/) = —U23,12,3 — V1,23,1",2 — 2(?11,2,3,2',3/ + U1,2,1/,2',3/)-

U
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'I~‘he0rem 5.8. Suppose m+n =0mod 3 andm <n <2m—9. Then
H,, .(My,,) is a nontrivial 3-group of exponent at most 9.

Proof. 1t follows from Lemmas 5.6 and 5.7, that 31':Iymyn (M., ) is gen-
erated by elements of the form

puyv N w,

with {|U|, |V|} = {2,3}, puy € Hi(Myy) andw € H,, o Mppuppv)-
We can show that

(517) 3<pU,V VAN w) = puv AN3w =10

by applying Theorem 5.4, if we first check that m — |U| and n — |V/|
satisfy the hypothesis of the theorem. Clearly m — |U| +n — |V| =
m+n—>5=1mod 3. We leave it to the reader to check the inequalities
in each of the three cases:
(1) m <n and (|U],|V]) = (2,3)
(2) m =mn and (|U], |V]) = (2,3)
(3) m <mnand (|U|,|V]) = (3,2).
It follows from (5.17) that ]:Iymln(Mm,n) has exponent at most 9, and
from Theorem 3.1 that the group is nontrivial. U

(2,

5.3. The 2 mod 3 case.

Lemm~a 5.9. Suppose m+n =2mod 3 and 4 < m <n < 2m — 4.
Then H,,, ,(My,.,) is generated by elements of the form

Vm,n

(5.18) Qi i N\ P,

where i € [m], j,k € [n], and p € H,,_, . _,(Mp)\qy,m)\Goky), and
elements of the form

(5.19) Bijx N p,
where i,j € [m], ke [n], and JRS Hum_g,n_l(M[m}\{i,j},[n]\{k})-

Proof. We claim that P, ; I:IVm_27n_2 (Mpnp\(1,i3,[n)\{1,5}) 15 generated by
elements of the form ¢ (a,. ¢ ¢ Ap), where 1 is the surjection of Lemma 2.4 (ii),
and

e rcm|\ {1}
e s, € [n]\ {1}
® € Hypy o (Mpm\ e} )\ f5,13)-
We prove this claim by first using Lemma 5.2 to observe that

Hyp s (M1, 1m0\ 1.5))
is generated by elements of the form «, ¢ A 7, where
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o rc[m|\{1,i}

o st € [n]\{1,j}

e 7€ H,, 4. (Mpnp {1} )\ {1s.})-
The map

O Hy s (Mg i s) = 6D s (M {10 1o\ (13.54))
i,J
is surjective by Lemma 2.4 (ii). Hence for
TE€Hy, s (M (L n)\ [Ls,t})

we can let p € ﬁl/mfl,n72(M[m]\{T},[n}\{s,t}) be such that ¥ (p) = 7. It
follows directly from the definition of ¢ that

w<05r,s’,t/ A P) = Oy gt/ AT,

which proves our claim.
Let v € Hy,, ,(My, ). We express 1(y) as an integral combination
of generators:

@ZJ(’Y) = Z Cr,s,t,p¢(ar,s’,t’ A P) — @ZJ (Z Cr,s,t,p(ar,s’,t’ A\ p)) s

758,850 7,85t,0

for some ¢, 5, € Z. 1t follows from Lemma 2.4 (ii) that

Y= D Crsaplang s Ap) € im.
T,S,t,p
Hence v can be expressed as an integral combination of elements of the
form given in the statement of the lemma. U

Next we show that the elements given in (5.19) can be removed from
the generating set.

Lemma 5.10. Suppose m +n =2mod 3 and 5 < m <n < 2m — 4.
Then H,,, (M) is generated by elements of the form

(5.20) Qg0 k! A P
where 1 € [m], j, k¢ [n], and p e ﬁ[Vm_Ln_z(M[m}\{i},[n}\{j,k})-

Proof. The proof is similar to the proofs of Lemmas 5.2 and 5.5. We
use induction on m. The base step, (m,n) = (5,6), is part of Case 2
below, which does not require the induction hypothesis.

We will show that generators given in (5.19) can be expressed as
integral combinations of generators given in (5.20).

Case 1. Say n <2m —4. Then 5 <mand n—1 < 2(m —2) — 4.
Moreover, m # 6 because otherwise n — 1 < 4. Hence, 5 < m — 2 <
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n—1 < 2(m—2)—4, which enables us to apply the induction hypothesis
60 Hup s (Mg [l (8))-

Case 2. Say n = 2m — 4. Since m > 5, it follows that n > m.

By Corollary 6.5 applied to ]j[um,gn,l(M[m}\{i,j},[n]\{k}), the genera-
tors given in (5.19) can be expressed as integral combinations of ele-
ments of the form

(521) PU vV /\’7,

with ‘U’ = |V|—1, puyv € H|U|71(MU,V) and vy € Hum,nf|U|(M[m]\U,[n]\V)-
An argument similar to the one used in the proof of Lemma 5.2 shows
that if |[U| > 4, then the wedge product in (5.21) is 0. From this it
follows that the generators given in (5.19) can be expressed as integral
combinations of generators of the form given in (5.21) where

(|U‘7 |V|) = (172)7 (273) or (374)'

As in the proof of Lemma 5.5, we will show that each of these gener-
ators pyyv /A7y can be written as an integral combination of generators
given in (5.20), which will complete the proof.

If (|U|,|V|) = (1,2) then we are done. If (|U|,|V|) = (2,3) then we
apply Lemma 5.6 since m —2+n—3 = 0 mod 3. Since m < n, we have
m—2<mn-—3<2(m-—2)—3. Hence by Lemma 5.6, we have that
. —jo/(Mppumpv) is generated by wedge products containing a-
cycles. It follows that 7, and hence py v A7, is an integral combination
of wedge products containing a-cycles.

Now suppose (|U|,|V]|) = (3,4). Since m < n, we have m — 3 <
n—4 < 2(m—3) —2. We can therefore apply Lemma 5.2 since m — 3+
n —4 =1 mod 3. Hence, H,,m’n,|U|(M[m]\U,[n]\V) is generated by wedge
products which contain a-cycles. It follows that 7, and hence pyy A7,
is an integral combination of wedge products containing a-cycles. [

The next result follows readily from Lemma 5.10 by induction.

Iiemma 5.11. Suppose m+n=2mod 3 and m <n <2m —4. Then

H,,. .(My,,) is generated by elements of the form
w A7,
where
weH, ,(Myy), v€H, . .(Mup\vmv)
and

4=U|= V]

Theorem 5.12. Suppose m +n = 2mod 3 and m < n < 2m — 13.
Then H,,, (M, ) is a nontrivial 3-group of exponent at most 9.

Vm,n
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Proof. Since m—4+n—4=0mod 3and m—4 <n—4 <2(m—4)-9,
the result follows from Lemma 5.11 and Theorem 5.8. J

This completes the proof of Theorem 1.7. We conjecture that the
exponent in Theorem 1.7 is 3. The following result shows that this
conjecture need only be verified for m =n = 9.

Theorem 5.13. For all m,n that satisfy the hypothesis of Theorem 1.7,
the exponent of I:L,mm(Mm,n) divides the exponent of ]:L,Q’Q(ngg). Con-
sequently if H,, ,(Myyg) is an elementary 3-group then so is H,,, (M.,
for all m,n that satisfy the hypothesis of Theorem 1.7.

Proof. The proof is similar to that of Theorem 5.12. It follows from
Lemmas 5.11 and 5.5. 0

5.4. Finite homology. This subsection contains some partial results
on the finite H,,, , (M) not covered by Theorem 1.7. We start with
an analog of Corollary 4.3.

Theorem 5.14. The Sylow 3-subgroup of ﬁ,,m,n(Mm,n) is nontrivial
for all m,n such that H,,  (Myy,) is finite.

Proof. The proof is similar to that of (3.2). Assume m < n and
}N[me (M, ) is finite with exponent e.

Case 1. m +n = 1 mod 3. It follows from Theorem 1.5, that this
case is covered by Theorem 1.7 (i).

Case 2. m+n = Omod 3. Consider the cycle z in the proof
of (3.2). Recall that z cannot be a boundary in M, upy. Since ez
is a boundary in M,y,,, it is also a boundary in Mjyy},y. Since by
Theorem 1.5, 7 < m < n < 2m—06, we have that m+n > 15. Therefore
Theorem 1.6 implies that 3 divides e, which means that H,,, , (M)
has 3-torsion.

Case 3. m +n = 2mod 3. By Theorem 1.5, we have 9 < m <
n < 2m — 7. Consider the surjection ¢ of Lemma 2.4 (ii). Since
m+n—4=1mod3and b <m—2<n-—2<2(m-—2)—05, the range
of ¥ has 3-torsion by Theorem 1.7 (i). Since the domain is finite, the
domain must also have 3-torsion. ]

We have not yet been able to eliminate p-torsion in finite H,,, , (M, )
for primes p # 3 except in the cases covered by Theorem 1.7. However,
the lemmas of the previous subsections provide an approach to doing
so as well as to reducing the exponent in Theorem 1.7 to 3. This ap-
proach, which depends only on anticipated improvements in computer
efficiency, is demonstrated by the following result.
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Theorem 5.15.
(i) Ifm+n=0mod 3 and 7 <m <n < 2m—6 then H,,, (M)
is finite and its exponent divides the exponent of H,, ,(Mzyg).
(ii)) If m+n = 2mod3 and 11 < m < n < 2m — 10 then
lflymm(Mmm) is finite and its exponent divides the exponent of
HV7,8 (M7,8)'
(iii) If m4+n=2mod3 and 9 < m <n < 2m —17 and (m,n) #
(10,10) then H,, (M., is finite and its exponent divides the

Vm,n

exponent of Hy,,, (Mg 11).

Consequently if the Sylow 3-subgroup of ﬁ,,778(]\/[778) is elementary then
H,,,  .(Myy) is an elementary 3-group for all m,n that satisfies the
hypothesis of Theorem 1.7.

Proof. Finiteness of the homology groups follow from Theorem 1.5.

(i) We prove this by induction on m. The base case, (m,n) =
(7,8), is trivial. Now assume m > 7. By Lemma 5.5, the expo-
nent of Hl,m‘n(Mmm) divides the exponent of ﬁVnz—l,n—Q(Mm*Ln*Q) if
ﬁym_lm_Q(Mm_l’n_Q) is finite. If m < nthen7<m—-1<n—-2<2(m—
1) —6. Hence by induction, H,,, , . ,(My_1,_2) is finite and the expo-
nent of H,. (Myg) is divisible by the exponent of H,, . (M 1, 2)
which is divisible by the exponent of }NL,m’n(Mm,n). If m = n then
7T<n—-2<m-1<2(n-2)—6. So we can apply the induction
hypothesis in this case as well.

(ii) By Lemma 5.11, Ijlymyn(Mmm) divides the exponent of
ﬁl/m—4,n—4 (Mmf4,n74) if Hum_47n_4<Mmf4,nf4> 1S ﬁnite. Since 7 S m—4 S
n—4<2(m—4)—6, we can apply (i).

(iii) This is similar to the proof of (i) and is left to the reader. [

Remark 5.16. We conjecture that there is some my, such that if ng =
2my — 6 or ng = 2my — 7 then H,, . (My,n,) is an elementary 3-

0-10 ’
group. If this is so, then an argument like the one used in the proof
of Theorem 5.15 would yield the conclusion that H,,, (M) is an
elementary 3-group for all but a finite number of pairs (m, n) satisfying

m <n<2m—>5. (Recall H,,  (My,.,) is infinite when n > 2m — 5.)

Vm,n

6. TOP HOMOLOGY OF THE CHESSBOARD COMPLEX

In this section we construct bases for the top homology and coho-
mology of the chessboard complex. The basis for homology yields the
decomposition result used in proving the torsion results of Section 5.
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Two important ingredients in the construction of our homology basis
are the classical Robinson-Schensted correspondence of tableaux com-
binatorics and the fact that the complex M, ,, is an orientable pseu-
domanifold. The basis elements are expressed as wedge products of
fundamental cycles of copies of the orientable pseudomanifolds Mj,_4 j
that result from applying the Robinson-Schensted correspondence to
pairs of tableaux. These pairs of tableaux arise in Garst’s [Ga] and
Friedman and Hanlon’s [FrHa] study of the representation of the sym-
metric group on the top homology of the chessboard complex.

We assume familiarity with the representation theory of the sym-
metric group &,, and tableaux combinatorics, cf., [Sal, [St], [Fu]. The
Specht module (or irreducible representation of &,, ) over C indexed
by the partition A F n, is denoted by S*. Recall that the dimension of
S* is the number f* of standard Young tableaux of shape \.

The direct product &,, x &,, acts on the chessboard complex M,, ,
by relabelling the graph vertices in [m] and [n]’, and this induces a rep-
resentation of 6,, x &,, on lf[*(Mmm; C). The following result enables
one to express the Betti numbers in terms of the number of pairs of
standard Young tableaux of certain shapes.

Theorem 6.1 (Friedman and Hanlon [FrHal]). For all p,m,n € Z,
where m,n > 1, the following isomorphism of (&,, X &,)-modules
holds: 3
Hy (Myn;C) Ss,0e, P S¥ 05"
(A u)ER(m,n,p)

where R(m,n,p) is the set of all pairs of partitions (A b m,u F n)
that can be obtained in the following way. Take a partition v = p that
contains an (m — p) X (n — p) rectangle but contains no (m —p+1) X
x(n —p+ 1) rectangle. Add a column of size m — p to v to obtain A
and add a row of size n — p to v to obtain p. See Figure 6.1.
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<~—np—>

-3 —»
o
_I_I_

A m Wn

Figure 6.1

Corollary 6.2 (Garst|Gal). For all m < n, the following isomorphism
of &,,-modules holds

ﬁm—l(Mm,n; (C) an @ f)\ SA*?
AEm
M<n—m

where \* is the partition obtained from X by adding a part of size n—m.

It follows immediately from Corollary 6.2 that the rank of the top
homology F[m,l(Mm,n) of the chessboard complex M,, ,, is the number
of pairs of standard Young tableaux (S,T') such that S has m cells, T
has n cells and the shape of S is the same as the shape of T" minus the
first row. Let P, be the set of such pairs of standard tableaux. We
construct for each (S,T) € Ppn, a cycle (S, T) € Hp1(My.,), and
show that these cycles form a basis for homology.

In order to prove that the n(S,T) form a basis for homology, we con-
struct cocycles (S, T) which form a basis for cohomology. Since our
complex is finitely generated we can view the cohomology group as a
subquotient of the chain group, just as is done for the homology group.

Indeed, for any finite simplicial complex A on vertex set {xy,..., 2},
let ( , ) be the bilinear form on Cj_;(A) for which the oriented sim-
plices (xiy,...,x;), 91 < --+ < i, form an orthonormal basis. The

coboundary map 0y, : C(A) — Cii1(A) is the adjoint of the boundary

map. That is
<U’7 576('0)) - <ak+1 (u)a U>7
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for all u € Cri1(A) and v € Cx(A). The kth cohomology group is
defined to be the quotient of the cocycle group Z*(A) := ker & by the
coboundary group B*(A) := imd;_;.

We construct the cycles and cocycles using the Robinson-Schensted
correspondence. We begin with the cocycles. Let (S,T") € Py pn. First
add a cell with entry oo to the bottom of each of the first n—m columns
(some may be empty) of S to obtain a semistandard tableau S* of the
same shape as T'. (Here oo represents a number larger than m.) See
Figure 6.2. The inverse of the Robinson-Schensted bijection applied to
(S*,T) produces a permutation o of the multiset {1,2,...,m, 00" ™},
The multiset permutation o corresponds naturally to the oriented sim-
plex of M,,, given by

(6.1) 7(0) := (0 (iy)iy, o(ia)iy, - . ., 0 (im)il,) s
where o(i1)o (i) - -0 (i) is the subword of o = o(1)o(2)---o(n) ob-
tained by removing the oo’s. This oriented simplex is clearly a cocy-
cle since it is in the top dimension. Let v(S,T) be the coset of the
coboundary group B™ *(M,,,) that contains this oriented simplex.

We demonstrate the procedure for constructing (S,7T") by letting
(S,T) be the pair of tableaux given in Figure 6.2. After applying the
inverse of Robinson-Schensted to (S*,T") we have the multiset permu-
tation

ooo020040031.

The oriented simplex that corresponds to this multiset permutation is
(23',45',37',18").

Hence, (S, T) is the coset of B*(M,g) that contains the oriented sim-

plex (23,4537, 18").

1]2]4]6] 1[3]eofeo]  [2]2][4]6]
1/3] 3|5 2] 3|5
|2 | | 7 | 4 na
4] 8] oo B
S T s* T

Figure 6.2

The construction of the cycles is a bit more involved. Recall that in
the inverse Robinson-Schensted procedure, an entry “pops” from a cell
in the top row of the left tableau when an entry is “crossed out” of the
right tableau. For each top cell, we must keep track of the entries of
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S* that are popped and the corresponding entries of T" that are crossed
out. For each i = 1,2,...,n — m, let A7 be the multiset of entries
that are popped from the ith cell of the top row of S* and let B; be
the corresponding set of entries that are crossed out of 7. One can
easily see that A} is actually a set and oo € A} for all ¢. Now let
A; = Af\ {oo}. So |A;| = |Bi| — 1. It is easily observed that My p is
an orientable pseudomanifold whenever |A| = |B| — 1, which implies
that its top homology is cyclic. The fundamental cycle of M, 5 (that
is, generator of top homology, which is unique up to sign) is explicitly
given by

(6.2) PAB = Z sgn(o)7(o).
€S AU o0}
Now define
77(57 T) = pAi,Bi /\ T /\ pAn—m:Bn—m'

We demonstrate the procedure for constructing n(S, T") on the tableaux
S, T of Figure 6.2. Refer to Figure 6.3. First entry 8 is crossed out of
T and entry 1 is popped from the first cell of the first row of S*. So 1
is placed in A} and 8 is placed in B;. Next entry 7 is crossed out and

entry 3 is popped from the second cell. So 3 is placed in A} and 7 is
placed in Bs. We eventually end up with

AT ={1,2,00}, A5 = {3,4, 0}, A5 = A} = {0},
Bl - {1,3,8}, BQ - {2,5,7}, Bg — {4}, B4 - {6}

Hence
Al - {1,2}, A2 = {3,4}, A3 - A4 - @
Now
n(S,T) = pg1,2y,11,38) N P{3.43,{2,5,7}-
3
4
00 00 00
L
| 2|46
5

Figure 6.3

Theorem 6.3. Let m < n. Then
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o {(n(S.T):(S,T) € Pun} is a basis for F[mq(Mm,n),
o {7(S.T): (5, T) € Py} is a basis for a free subgroup of maz-
imal rank in H™ 1 (M,,.,,).

We need some general theory in order to prove this result. For any
abelian group G, let G, denote the subgroup of G consisting of torsion
elements of G

Proposition 6.4. Let A be a simplicial complex. Suppose
r= fank(Hk( )/He(A)or),

uy, , Uy € Zk( )

v, .., € ZF(A),

the matriz ((u;,v;))ij=1..r is invertible over Z.

Then {ﬁl,; .. ,ﬁr}Nz’s a basis for ﬁk(A)/ﬁk(A)wr and {ﬁl,; LU0t as a

basis for H*(A)/H*(A)tor, where & denotes the coset of H*(A)¢or or

Hy(A)tor containing T.

Proof. The invertibility of the matrix A := ((u;,v;)); j=1.» implies that
U1, ..., U, are independent in ]:Ik(A,Q). Since 7 = dim I:Ik(A,Q), we
have that @y, . .., @, also spans Hy(A, Q).

Let u € Zp(A). Then u € Z,(A,Q). So

.,
U = E ¢, ¢ e€Q

=1

in Hy(A,Q). This means

T

U—Zciuiza(y)

=1

for some y € C’kH(A Q). For each j, we have

(u,v5) Zcz ui, v;) = (9(y), v;) = (v, 0(vy)) = 0,

since v; is a Cocycle. It follows that

(u,vy) ¢
: =Al ],
(u, v, cr
which implies
c (u,vy)
=A" VA
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Let t € Z' be such that ty € Cy,1(A). Since

t(u — Zczul) = 0(t
i=1

we have @ — Y7, ¢ii; € Hy(A)iop- It follows that

”
= E cill;
i=1

in Hy(A)/Hy(A Jtor- Hence dy,..., 4, generates Hi(A) ) Hi(A)gor-
Since 7 = rank(Hy(A)/Hy(A)tor), these elements form a basis for

Hi(A)/ ( Jtor- Similarly we have that 0y,...,0, forms a basis for
H*(A)/HH(A)gor U

Proof of Theorem 6.3. For (S,T) € Ppn, let
v(S,T) = 7(RS™(S*,T)) € Cpo1 (M),

where RS™! denotes the inverse of the Robinson-Schensted map and 7
is the map defined in (6.1). Let

u(S,T) = > sgn(w) 7(RS™HS*, T)w) € Coy (M),
WGGBl X"'XGBn,m

where By, ..., B,_,, are the sets defined in the construction of n(S,T).
For all (S,T) € Py,n, we have
(6.3 +(S,T) = 05,7,

where T denotes the cohomology class of x in ﬁmfl(Mm’n). It is not
hard to see that

(6.4) n(S,T) =sgn(By,...,Bn_m) u(S,T),

where sgn(By, ..., B, ) is the sign of the permutation obtained by
concatenating the words obtained by writing each B; in decreasing
order.

Next we claim that for all (S1,71), (S2,1%) € Prmns

(6.5)
<U(51,T1>,U(52,T2>> # 0 = RS_1<S;,T2) Slex RS_l(ST,Tl)
where <), denotes lexicographical order. Note that the subword of

RS™!(S*,T) obtained by restricting to the positions in B;, is decreas-
ing for each ¢ = 1,...,n — m. Hence any rearrangement of letters
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of RS™'(S*, T) occupying positions in B;, produces a lexicographically
smaller word. Hence for each w € &p, X --- x &g, —{e},
RS™H(S*, T)w ex RS™H(S*,T).

The claim (6.5) follows from this. We also have that
(6.6) (u(S,T),0(5,T)) =1
for all (S,T") € Pop-

Now order the pairs of standard tableaux

(S1,Th),- -, (S, 1)

in Pp, so that RS™(S7, T;) <jex RSTH(S), T)) if i < j. It follows from
(6.5) and (6.6) that the matrix

((u(Si, T5), v(S;, T5))ij=1....
is unitriangular. There is no torsion in the top homology, and by

Corollary 6.2, |Ppn| = rankﬁm_l(Mmm). Hence the result follows
from (6.3), (6.4) and Proposition 6.4. O

Corollary 6.5. Let m < n. Then ﬁm_l(van) 18 generated by cycles
of the form
pPABNT,
where
e ACm|, BCn]and 1< |A|=|B|-1
® pap s a fundamental cycle of the pseudomanifold My g
o 7€ Hy1oja(Mpm)-afn-B)-

7. INFINITE HOMOLOGY OF THE CHESSBOARD COMPLEX

In this section we study torsion in infinite ﬁym’n (M) Recall from
Theorem 1.5 that for m < n, the homology group H, o (M) 18
infinite if and only if n > 2m — 4 or (m,n) € {(6, 6),(7 7),(8,9)}.
From Table 1.2, we see that there is 3-torsion if (m,n) = (6,6) or
(7,7). We expect that there is 3-torsion for (m,n) = (8,9) as Well but
have not yet been able to verify this by computer.

Conjecture 7.1. Let m < n. Then ﬁl,m’n (M) is free if and only if
n > 2m — 4.

The conjecture clearly holds in the case that n > 2m — 1, since in
this case vy, ,, = m—1, which means that H,,m (M, ) is top homology.

The conjecture for n = 2m — 2 is proved in the following result. The
cases n = 2m — 3 and n = 2m — 4 are left open.
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Theorem 7.2. If n =2m — 2 then
H

VUm,n

(M) = 27,

where ¢, 1s the Catalan number m#H(QnT)

Proof. Theorem 6.1 applied to H,, , (M 2m-2;C) yields a particu-
larly nice formula. First note that v, 9,2 = m — 2. Next observe
that the set R(m,2m —2,m — 1) consists of a single pair of partitions;
namely the pair ((m), (m — 1)?). Hence Theorem 6.1 yields,

q

Vm,2m—2

(Mm,meQ;(c) 26 S(m_l)z'

n

m—1)2
)

It follows that the degree v, 2,,,—2 Betti number of M,, 9y,—2 is f (
the number of standard Young tableaux of shape (m — 1)%. Hence

(7.1)
rank (gl/m,Qm—Q(Mm72m*2)/]’:[l’m,2m—2 (Mm,2m72)t0r ) = f(mil)z'

Since the number of standard Young tableaux of shape (m — 1)? is the
Catalan number c,,_1, we need only show that ﬁym72m72(Mm72m,2) is
free.

Given a partition A, let S3 denote the Specht module indexed by A
with integer coefficients. It is well-known that S3 is a free group of
rank f*, which is isomorphic to the group generated by the A-tableaux
subject to the column relations and the Garnir relations. For A =
(m — 1), these relations can be described as follows:

Clj + bj
b |- e lay
a;_1 | a; B a; | aj—1 n a; | b1
b]—l : bj—l aj—1 :
. aj DR o PR . a] e + DY . b]
bi1| bj | s by [ by | o lay [ b

Let ¢ : Sém_l)z — H,, 5. »(My2m—2) be the homomorphism defined
on generators by

ap | Az | - | QGmpm—1
¢( by [ by |- = QLo A Q2agpn A A Qmeval, b

m—1"
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To verify that this map is well defined we need only check that the
three relations for the Specht module given above are mapped to 0 in

Hy oo My om—2). For the first relation we have
A P R I
¢( bj T ajj ) = - Aaga gy a ) A

which is clearly 0.
For the second relation, we have

¢ ... aj—l a] DY DY a‘] a/J—l DY —"_ DY aj bj—l
b | - | b | - | —aga | -

= ... A ((O‘j—l,a;_l,b}_l A Ozj’a;_’b;) — (aj_17a97b3_1 VAN aj@;__l’b;_)

+ (O(j—lﬂl;aa;-_l /\aj,b;._l,b;.)) VAN

We will show that this cycle, which we denote by p, is a boundary.
After cancelling terms we get

p= ... N ((Oéjfl,agil,bg.il /\ja;) — (O‘jfl,a;-,b;,l /\ja}fl)
+ (Oéjfl,a;,a;;l A ]bgfl)) A ey

which is an element of the chain group C,—2(Mm—1},2m—2)\{,})- Hence
mb; A p € Crm—1(Mp2m—2). Since a(mb;- A p) = p, the second relation
maps to 0. By symmetry the third relation maps to 0 as well. Hence
¢ is a well defined homomorphism. .

We claim that ¢ is surjective. Indeed, by Lemma 5.3, H,,, ,.._, (M 2m—2)
is generated by elements of the form

Qo(1),a,,b4 N Qo(2),a,by N N Qg(m—1),al, b -

m—1
It follows from Lemma 5.1 that o can be taken to be the identity
permutation, which means that H,,, ,,._,(Mp 2m—2) is generated by the

images of the (m — 1)*-tableaux.
Let

™ ﬁVm,2m—2 (Mm,2m72) - F[Vm,2m—2 (Mm72m*2)/[':[’/m,2m—2 (Mm72m72>t0r )

be the projection map. The composition

m—1)2 ~ -
™o Cb : Sé Y - HVm,2m72 (Mm,Qm—2)/HVm,2m72(Mm,ﬂm—Q)tOI‘ )

is a surjective homomorphism between free groups. Since these groups
have equal rank by (7.1), the composition 7 o ¢ is an isomorphism,
which implies that the surjection ¢ is an isomorphism as well. We can
now conclude that [:Ium,Qm_z(MQO_g) is free. O
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Corollary 7.3. The set
{¢(T) : T a standard tableau of shape (m — 1)*}

is a basis for 1’:11,7,1’%,2 (M 2m—2)-

In [BBLSW, Section 9.1], it is observed that when m = n, the com-
plex M,,, collapses to an (n — 2)-dimensional complex. Hence for
m = n, the homology group F[Z(an) is free whenever i > m — 2.
The same is true for n = m + 1, since in this case M,,, is an ori-
entable psuedomanifold. Theorem 7.2 implies that the same is also
true for n = 2m — 2. This and the computer data suggest the following
conjecture, which implies Conjecture 7.1.

Conjecture 7.4. Let m < n and i > V. Then ]:IZ(an) is free if
and only if i > m — 2.5

8. SUBCOMPLEXES OF THE CHESSBOARD COMPLEX

Our goal in this section is to establish sharpness of a connectivity
bound for the simplicial complex of nontaking rooks on an n x n chess-
board with a diagonal removed. This bound was obtained by Bjorner
and Welker [BjWe| as a consequence of a more general result of Ziegler
[Zie] on nonrectangular boards.

For any subset A of the set of positions on an m x n chessboard, let
M(A) be the simplicial complex of nontaking rooks on A. That is, for
A C [m] x [n], the simplicial complex M (A) has vertex set A and faces
{(is, 71), (2, 72),s - - -, (ik, Jk) } € A such that is # i, and js # j; for all
s #t. Let

D, = [n] x [n]\ {(1,1),(2,2), ..., (n,n)}.

Theorem 8.1 (Bjorner and Welker [BjWe]). For all n > 2, the sim-
plicial complex M (D,,) is (va, — 1)-connected.

Bjorner and Welker [BjWe] use computer calculations to obtain the
following table which establishes sharpness of their connectivity bound
for 3 < n < 7. We will use results of the previous sections to establish
sharpness for n > 7.

n 2131415 6 7
H,, (D,) | 0|7*|72*|Z 22469Z§ Z‘“E’@Zéf’

Table 8.1

5See New Developments Section at the end of the paper.
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Forn>3andi=0,...,[5] —1, let
Si={Bi+1,3i+1),(3i +1,3i +2),(3t +2,3i + 3), (3i + 3,3i + 3) },
and let

B,=(H5) v R,
i=0
where
”T_?’ if n =0mod 3
N = ”T_5 if n=2mod 3
"TJ ifn=1mod3
and
0 if n=0mod 3
R,=<{(n—=1,n—-1),(n—1,n)} if n =2 mod 3

{n-=3n-2n—-—1n}x{n-3n—-2n—-1n} ifn=1mod3.

Lemma 8.2. For alln > 3, if A is a subset of [n] x [n] that contains
B, then H,, (M(A)) # 0.

Proof. For n =0 mod 3, let

p=arry N\Bazzy Nagays NBsee N N -2y (-1 N\ Bn-1nn5
and for n = 2 mod 3, let

p=caryN\Pazzy Nagas N Bsee N+ N1 (1) n-

In both cases p is a cycle in C,, (M (A)), but not a boundary. Indeed,
if p were a boundary in C,, (M(A)) then it would be a boundary in
Cy,..(M, ), which would imply that all the generators of F[,,nyn(]\/[nm)
given in Lemmas 5.6 and 5.3 are boundaries. This is impossible since
by Theorem 3.1, ]:Iyn’n(ann) + 0. Hence, H,, (M(A)) # 0.

For n = 1 mod 3, let

p=ar12 ABazzy N Nn_6(n-6),n-5 N Bnsn—a,(n—ay-

By Theorem 3.1 and Lemmas 5.11 and 5.6, there is a cycle w in
Cs(M(R,,)) such that the cycle p Aw is not a boundary in C,,, (M)

So pAw is not a boundary in C,, (M (A)). Hence H,, (M(A))#0. O

Theorem 8.3. Forn >3, H,, (M(D,)) # 0.
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Proof. We claim that an isomorphic copy of D, contains B, for all
n > 3 except forn = 4, 7. Indeed, if n = 0,2 mod 3 then the isomorphic
copy of D, is

n] x [n]\ {(G,i+2):i=1,....n =2} U{(n—1,1),(n,2)}).
If n =1 mod 3 and n > 10 then the isomorphic copy of D,, is
n] x [n)\({(4,i+4):i=1,...,n—4}U{(i+n—4,7) :i=1,2,3,4}).
The result now follows from Lemma 8.2 and Table 8.1. U

Table 8.1 and the torsion results of Section 5 suggest the following
conjecture.

Conjecture 8.4. There exists an integer ng > 8 such that if n > ny
then H,,,(M(D,)) is an elementary 3-group. Moreover, if n > ng and
n =2 mod 3 then H,, (M(D,)) = Zs.

Bjorner and Welker’s connectivity result is a consequence of a more
general result of Ziegler. Indeed, Bjorner and Welker [BjWe] observe
that an isomorphic copy of D, contains the set I'(n,2vo, + 1 — n)
described in the following theorem.

Theorem 8.5 (Ziegler [Zie]). For 0 <k <mn—1, let
[(n, k) ={(i,4) € [n] x [n] - [7 — 1] <k}

Let A be a subset of [n] x [n] that contains I'(n,2ve, + 1 —n). Then
M(A) is (va, — 1)-connected.

Note that B, C I'(n,2v9, + 1 —n) if n = 6 or n > 8. It therefore
follows from Lemma 8.2 that Ziegler’s connectivity bound is sharp for
n=6and n > 8. Whenn =3 orb5, M(I'(n, 2ve, +1—n)) is a simplex,
which is contractible. Hence Ziegler’s bound is not sharp in these cases.

9. SHELLABILITY OF THE v,-SKELETON OF M,

In this section we describe a shelling of the v,-skeleton of M,, along
with a discrete Morse function on M, that is closely related to our
shelling. We assume that the reader is familiar with the basic defi-
nitions from shellability theory (see for example [BjWa]) and discrete
Morse theory (see [Fo]). Before presenting our results, we remark that
in [At], Athanasiadis has shown that the v,-skeleton of M,, is vertex
decomposable, which implies that it is shellable. In light of this fact,
we will not provide a proof that our ordering of the facets of the v,-
skeleton is in fact a shelling.
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Our shelling and Morse function are determined with use of the fol-
lowing recursive algorithm, which gives, for any graph G € M,,, an or-
dered partition p(G) = (G, ..., G,) of G into subgraphs G; = (V;, E;).
We begin with Gy = (0, 0). Having defined G, for all j < 4, we define
G, as follows.

o If Uj<i\/j = [n], stop.

o If U, Vi =[]\ {t}, set G; = ({t},0).

o If [U;.; Vil < n—1, let a,b be the two smallest elements of
]\ U;.; Vj- Set Vi = {a,b} U Ng(a) U Ng(b) and define E; to
be the set of all edges in GG that have both vertices in V;.

For example, if n = 10 and E(G) = {17,38,45} then our algo-
rithm will give G; = ({1,2,7},{17}), G2 = ({3,4,5,8},{38,45}),
G5 = ({6,9},0) and G4 = ({10},0).

It follows immediately from the definition of our partition that |V;| <
4 for alli € [r] and that |V;| > 1ifi < r. Moreover, we have | E;| = L“g—llj
whenever |V;| # 2. We now partially order the set of all graphs G =
(V, E) such that V' C [n] by setting (V, E) < (V', E') if either |[V| < |V
or we have V.=V’ = {i,j} and E = {ij} while E' = (). The partial
order =< gives rise to a lexicographic partial order <; on M,,. That is,
it G, H € M,, with p(G) = (Gy,...,G,) and p(H) = (Hy,..., Hs), we
set G =X, H if either G; = H; for all i € [r] or, for some i < r, we have
G; = Hj for all j <iand G; < H;.

Theorem 9.1. Let F; < Fy, < ... < F; be any linear extension of

the restriction of =; to the set of v,-dimensional faces of M,. Then
Fy, Fy, ... F, is a shelling of the v,-skeleton of M,,.

To a shelling Fi, ..., F; of any complex A, one can associate a dis-
crete Morse function (actually, many such functions) as follows. For
each nonhomology facet F; of the shelling, let R; C F; be the restriction
face of Fj, that is, the unique minimal new face obtained when F; is
added to the complex built from {F} : j < i}. The interval [R;, F}] in
the face poset of A is isomorphic to the face poset of a simplex (of di-
mension at least one), and if we fix an isomorphism between these two
posets then any simplicial collapse of the simplex to a point gives rise
to a pairing M; of the faces in [R;, F;]. The union of all such pairings
M, determines (the gradient flow of) a discrete Morse function on A
whose critical cells are the homology facets of the given shelling.

A discrete Morse function associated to the shelling of Theorem 9.1
is quite easy to describe. For G € M,, with p(G) = (G4, ...,G,), define

(@) = 00 if no V; has size two,
a ~ | min{é:|V;| =2} otherwise.
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Let X, be the set of all G € M, such that p(G) # oo and E, ¢y # 0.
For G € X, let G~ be the graph obtained from G by removing the
unique edge in B, ). The next result is straightforward to prove using
standard techniques from discrete Morse theory.

Theorem 9.2. The set {(G,G™) : G € X,,} determines the gradient
flow of a discrete Morse function on M, whose critical cells are those
G € M, such that u(G) = oc.

One can show that the shelling of Theorem 9.1 gives rise to the
restriction of the Morse function of Theorem 9.2 to the v,-skeleton of
M,

10. BOUNDS ON THE RANK OF H,

In this section we give upper and lower bounds on the rank (that
is, smallest size of a generating set) of H,, (M,) when n = 0,2 mod 3.
(Note that the case n =1 mod 3 is settled by Theorem 1.3 and that
our lower bound in the case n = 0 mod 3 is given in [Bo].) We do the
same for }N]me(Mm’n), although we need conditions on m, n similar to
those found in Theorem 1.7 for the lower bounds.

Set N

rn :=rank(H,, (M,)).
We can get upper bounds on 7, using the Morse function of Section 9.
If we let ¢, be the size of the set C, of graphs G € M, with v,, edges

such that p(G) = oo, then by [Fo, Corollary 3.7(i)], we have
Ty < Cp.

For G € M, with p(G) = (G4,...,G,), let A(G) be the partition of n
such that the number of parts of size m in A(G) is the number of V;
of size m. Straightforward calculation shows that for G € M,, we have
G € C, if and only if

(3,...,3) n = 0 mod 3,
AMG)=14¢ (3,...,3,1) n=1mod3,
(4,3,...,3,1) n=2mod 3.

Now further calculation gives

Qn/3njfi(n_3j+1) n =0 mod 3,

Cp = 9(n—1)/3 HE‘ZWBW —3j+1) n =1 mod 3,
n— n—2)/3 k . n—2)/3 . _

9(n—5)/3 Zl(czl )/ [1 i (n—3j+1) ngk 3(n—35) n=2mod 3.

Of course when n = 1 mod 3 and n > 7, we know that r, = 1 and our
upper bound is both useless and horribly inaccurate. It turns out that
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one can improve the upper bound on 7, in the case n = 2 mod 3 using
the long exact sequence of Lemma 2.3. Indeed, if n = 0 mod 3, the tail
end B B

P How s (Mip1,201) = Ho (M) — 0

a,h
of the sequence gives

rn < 2(n—2)r,_3,

and one simply reobtains the bound r, < ¢, using induction. However,
if n =2mod 3 and n > 11, the tail end of the sequence is

@ ﬁunfl(M[n}\{l,Q,h}) - ﬁun(Mn> - @Zi’) - 07
a,h N

from which we obtain
rn < 2(n—2)r,_3+ (n—2)(n—3).

This recursive formula leads to a somewhat better upper bound than
that given by c,. However, as we shall see momentarily, all the bounds
we have found so far are so distant from the known lower bounds on
r, that differences between them are insignificant. Before going on to
lower bounds, we examine upper bounds for chessboard complexes. Set

Tm,n = rank(f]l’m,n<Mmyn>>
Using the long exact sequence of Lemma 2.4 as we used that of Lemma
2.3 for the matching complexes, we get

< (m—Drm—omn—1+ (n—1)rpm_1,-2 m +n = 0 mod 3,
fmn = (m — Drm—on1+m—1)rm1,2+(m—1)(n—-1) m+n=2mod 3.

Now we examine lower bounds. In [Bo], Bouc gets a lower bound for r,
when n = 0 mod 3 using the standard long exact sequence associated
to the pair (M, M,,_1), where we consider M, _; as the subcomplex
of M, consisting of all matchings in which vertex n is isolated. It
is straightforward to show that the quotient complex M, /M, _; has
the homotopy type of a wedge of n — 1 complexes, each homotopy
equivalent to the suspension of M,,_,, from which it follows that the
sequence under discussion is
~ ~ n—l ~
s Hy(My_y) — Hy(M,) — @ Hi1(Mz) — ...
i=1

When n = 0 mod 3, the tail end of this sequence is

n—1
(10'1) ﬁVn(MN) - @ﬁVn72(Mn_2) — 0,
=1
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from which Bouc obtains
r, >n— 1.

When n = 2 mod 3 and n > 8, the tail end of the sequence is
n—1
ﬁVn<Mn) B @ ﬁVn_Q(MTL—Q) — Z3 — 07
i=1

from which we obtain
> (n—1rp,o—1>Mnm-1)(n—-3)—1

We can obtain similar results for the chessboard complexes using the
long exact sequence for the pair (M, ,,, My—1,), Where we consider
M,,—1., to be the subcomplex of M,,, consisting of all matchings in
which vertex m is isolated. We get

n m-+n=0mod 3 and m <n < 2m — 3,
Tmn = nn—1)—1 m+n=2mod3 and m <n <2m—7.

Certainly the distance between the upper and lower bounds we have
provided is unsatisfactory in all cases.

11. NEw DEVELOPEMENTS

In this section, we mention some important recent work of Jonsson,
which was done after the first version of this paper was submitted
and extends the results of this paper. In a surprising developement,
Jonsson [J2] has shown that H,,,(My4) has 5-torsion. So 14 is the only
value of n for which H,, (M,) has torsion other than 3-torsion. Also
Jonsson [J4] gives a proof of ]:.11,575(M575) = Z3 that doesn’t involve the
computer.

Jonsson [J1, J3, J4] is also able to use our results on 3-torsion in the
bottom nonvanishing homology of the matching complex and the chess-
board complex to establish 3-torsion in higher dimensional homology
groups. He shows that if v, < ¢ < [25%] then H;(M,,) also has 3-torsion
and conjectures that the same is true for v, <i= |22|. (Apart from
v, < i < |"%52], the only other value of ¢ for which H,(M,) # 0 is given
by i = L”T’SJ when n > 3. This is a consequence of a representation
theoretic result of Bouc [Bo| analogous to Theorem 6.1. It follows from
elementary considerations that H;(M,,) is torsion-free for this value of

In [J1, J4] Jonsson shows that H;(M,,,) also has 3-torsion for all 4
such that v, <% < m — 3 when n > m + 1, and for all 7 such that
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Umn <1 < m —4 when n = m. Hence the only cases of Conjecture 7.4
that remain open are

e n=m > 8 and i = m — 3 (conjectured to have 3-torsion).

e (m,n) = (8,9) and i = m — 3 (conjectured to have 3-torsion).

e 9<m+2<n<2m-—3andi=m— 2 (conjectured to be
torsion-free).

Jonsson [J3, J4] also derives upper bounds on the rank of the 3-
torsion in the homology groups of both the matching complex and the
chessboard complex.
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