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We use the theory of lexicographic shellability to provide various
examples in which the rank of the homology of a Rees product of
two partially ordered sets enumerates some set of combinatorial
objects, perhaps according to some natural statistic on the set.
Many of these examples generalize a result of J. Jonsson, which
says that the rank of the unique nontrivial homology group of the
Rees product of a truncated Boolean algebra of degree n and a
chain of length n — 1 is the number of derangements in G,,.
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1. Introduction

Rees products of posets were defined and studied by A. Bjorner and V. Welker
in [7]. While the main results in [7] provide combinatorial analogues of con-
structions in commutative algebra, it has turned out that Rees products
of certain posets are connected with permutation enumeration and permu-
tation statistics. The first indication of this connection is provided by a
conjecture in [7], which says that the reduced Euler characteristic of the or-
der complex of the Rees product of the truncated Boolean algebra B,, \ {0}
and a chain of length n — 1 is the number of derangements in the symmetric
group &,,. This conjecture was proved by J. Jonsson in [12].

As we shall describe below, generalizations of Jonsson’s result, along
with similar results, have been proved. Our purposes in this paper are

1. to give additional examples of Rees products whose order complexes
have reduced Euler characteristics that enumerate certain classes of
combinatorial objects, possibly according to some natural statistic,
and

2. to show how the theory of lexicographic shellability applies to certain
Rees products, in particular relating the homology of the order com-
plex of the Rees product of a lexicographically shellable poset P with
a poset whose Hasse diagram is a rooted t-ary tree to the homology of
the order complexes of some rank-selected subposets of P.

These two purposes are in fact intertwined. We prove all of our results on
reduced Euler characteristics of order complexes of Rees products using
lexicographic shellings.

All posets studied in this paper are finite. We call a poset P semipure if
for each x € P, the lower order ideal P<, := {y € P : y < z} is pure, that
is, any two maximal chains in P<, have the same length. The rank rp(z) of
such an element x is the length of a maximal chain in P<,. Given semipure
posets P, () with respective rank functions rp,rq, the Rees product P x Q) is
the poset whose underlying set is

{(p.q) e PxQ:rp(p) >rqg(q)},

with order relation given by (p1,q1) < (p2,¢2) if and only if all of the condi-
tions

e p1 <p po,
® ¢1 <@ q2, and

o rp(p1) —1p(p2) > r(01) — ro(g2)
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Figure 1: (Bs \ {0}) * Cs.

hold. In other words, (p2,q2) covers (p1,q1) in P * @ if and only if

1. po covers p; in P, and
2. either go = ¢1 or g9 covers ¢ in Q.

In Figure 1, the Rees product of the truncated Boolean algebra Bs\ {0}
and the chain Cy := {0 < 1 < 2} is given. The element (.5, ) is written as
SJ with the set brackets and commas omitted.

For any poset P, the order complex AP is the abstract simplicial complex
whose k-dimensional faces are chains (totally ordered subsets) of length k
from P. A simplicial complex A is Cohen-Macaulay if for each face F € A
(including the empty face), the reduced (integral, simplicial) homology of the
link (kA (F) is trivial in all dimensions except possibly dim(lka(F')). Every
Cohen-Macaulay complex is pure, that is, all maximal faces of a Cohen-
Macaulay complex have the same dimension. A poset is said to be Cohen-
Macaulay if its order complex is Cohen-Macaulay. We will say that a poset
has a particular topological property if its order complex has that property.
The (reduced) homology of P is given by Hy(P) := Hy(AP;Z). For further
information on Cohen-Macaulay posets, see the surveys given in [3, 24, 28].

Bjorner and Welker [7, Corollary 2] prove that the Rees product of any
Cohen-Macaulay poset with any acyclic Cohen-Macaualy poset is Cohen-
Macaulay. It is known that both B, := B, \ {0} and the chain C,, of
length n are Cohen-Macaulay, and C), is acyclic. Thus the result of Jonsson
mentioned above says that, with d,, denoting the number of derangements
in G,,

(1.1) tkHyp—1 (B % Cp_1) = d.

Generalizations of (1.1) appear in the paper [21] of Shareshian and
Wachs. For a poset P with unique minimum element 0, P~ will denote
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P\ {0}. For a prime power ¢ > 1 and a positive integer n, the poset of all
subspaces of an n-dimensional vector space over the g-element field F, will
be denoted by B,(q). Also, D,, will denote the set of all derangements in
Sy, It is shown in [21] that

(12) rkﬁn_l(Bn(q)f * Cn—l) — Z q(g)—maj(d)-‘rexc(o‘)’
o€D,

where maj and exc are, respectively, the major index and the excedance
number, introduced by MacMahon in [15, Vol. I, pp. 135, 186; Vol. 2, p. viii],
[16] in the early part of the 20th century and extensively studied thereafter.

A generalization of (1.2) appears in [21]. For positive integers t, n, let T} ,,
be the poset whose Hasse diagram is a complete t-ary tree of height n with
root at the bottom. To put it more formally, 7} ,, consists of all sequences of
elements of [t] := {1,...,t} that have length at most n, including the empty
sequence. Given two such sequences a = (aq,...,ax) and b = (by,...,b;), we
declare that a < b if k£ <[ and a; = b; for all ¢ € [k]. Note that T} ,, = C,,.

It is shown in [21] that if P is Cohen-Macaulay of length n then so is
P « T, ,,. Equation (1.4) below is proved in [21], and equation (1.3) follows
quickly from (1.4) and [21, Corollary 2.4]. We have

(1.3) rkf[n,l(B (@) *Typ1) =t Z —maj(o)+exc(o) pexc(o)
€D,

and

(14) rkﬁn_l((B ( )*Ttn — ¢ Z maJ(a +exc(o)texc(a)'
oceS,

One can also find in [21] type BC analogues of the results mentioned
above, where B,, and B, (q) are replaced, respectively, by the poset of faces
of the n-crosspolytope and the poset of totally isotropic subspaces of a 2n-
dimensional vector space over F, equipped with a nondegenerate alternating
bilinear form, and D,, is replaced by the set of elements of the Weyl group of
type BC that act as derangements on the set of vertices of the crosspolytope.

n [17], P. Muldoon and M. Readdy prove an analog of (1.1) that involves
the poset of faces of the n-cube.

As was mentioned above, the results of Bjorner and Welker [7] are con-
cerned with Cohen-Macaulayness of Rees products. It turns out that anal-
ogous results for lexicographic shellability can be obtained and utilized to
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obtain enumerative results. Definitions and basic facts about lexicographic
shellability are given in Section 2.

Let P be a pure poset of length n. For S C [0,n] := {0,1,...,n},
the rank-selected subposet Pg is the subposet of P consisting of all x € X
satisfying rp(x) € S. If P is lexicographically shellable then P is Cohen-
Macaulay, as is every rank-selected subposet of P (cf. [2]). Thus, for all
S C [0,n], the homology of Ps is determined by the Betti number

B(Ps) = rkHg_1(Ps).

Let Or be the minimum element of T .. Note that if P has a unique min-
imum element Op then the poset P T, ¢ has a minimum element (@ P, OT),
but no maximum element. Write (P x T} ,,)" for the poset P * T}, with a
maximum element appended. In Section 2 we show that if P is lexicograph-
ically shellable then so is (P x Ty ,)" for all ¢. (In fact, we prove a stronger
result; see Theorem 2.3.)

We call S C N stable if there is no ¢ € N such that {i,i + 1} C S.
For X C N, we write Pgap(X) for the set of all stable S C X. We use the
lexicographic shellings described in Section 2 to prove in Section 3 that, for
pure, lexicographically shellable P of length n,

(1.5) B(P*Tyn)") = Z B(P[n—u\s)tlSHl(l +t)n—2\s|—1_
SEPn([n—2))

In fact, we prove in Section 3 several formulae similar to (1.5) involving either
P~ %T;, or (P*T;,)". (More general versions of these formulae in which
the only requirement on P is that it be pure will appear in a forthcoming
paper.)

In Sections 5, 6, 7 and 8 we apply our results from Sections 2 and 3 to
obtain enumerative results.

The Boolean algebra B,, is the direct product of n copies of the chain
C1. In Section 5 we prove generalizations of the ¢ = 1 cases of (1.3) and
(1.4) in which we replace B,, with an arbitrary product of finite chains. Let
= (p1,..., 1) be a weak composition of n into k parts, that is a k-tuple
of nonnegative integers whose sum is n. The product poset B, := Hle Cl.
is pure of length n. It is well known that B,, is lexicographically shellable.

Let M (p) be the multiset in which each ¢ € [k] appears with multiplicity
pi- A multiset permutation of M (p) is a 2 x n array (a;;) such that

e the multisets {a1; : 7 € [n]} and {ag; : j € [n]} are both equal to

M (),
e a1 <ayjt foraljen—1].
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Let w = (a;;) be a multiset permutation of M (p). We say w is multiset
derangement of M () if

e a1 # ayj, for all j € [n].
We say w is a Smirnov word on M () if
e ayj # ap ;i1 forall j € [n—1].

An excedance of w is any j € [n — 1] such that ag; > a1;. A descent of w
is any j € [n — 1] such that as; > ag ;1. We write EXC(w) for the set
of excedances of w, DES(w) for the set of descents of w, and des(w) and
exc(w), respectively, for [DES(w)| and |EXC(w)].

Our main results in Section 5 say that if MDys,) and SWyy(,) are,
respectively, the sets of multiset derangements and Smirnov words on M ()
then, for all t € P,

(1.6) B(B, *Tin-1) = Z flexc(w)
WEMD ()

and

(1.7) B(BuxTyn) )= > thHdel),
’LUESWJW(#)

When M (u) is the set [n], equation (1.6) is the ¢ = 1 case of (1.3). Since
des and exc are equidistributed on the symmetric group &,,, equation (1.7)
is the ¢ = 1 case of (1.4).

In Section 6 we revisit the Rees products By, (q)* T}, that were studied in
21]. Comparing (1.4) with a formula for rkH,,_1((Bn(q) * Ti.n)~) obtained
using the techniques developed herein, we exhibit a permutation statistic
called aid such that the pair (aid,des) is equidistributed on &,, with the
pair (maj, exc).

In Section 7 we aim for p-analogues of the results in Section 5. Given a
weak composition p = (g1, ..., ux) of n, a natural choice for a p-analogue
to the poset B, is the lattice B,(p) of subgroups of the abelian p-group
@?:1 Z/pti7Z. We examine B,,(p)~ * Ty n—1 and (By(p) * Ty,n)~. Here our
results are less than optimal. We show that there exist statistics s, ss :
P"* — N such that

(1.8) BBup) % Typr) = 3 phlwyitec)
WEMDnr(uy
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and

(19) ﬁ((Bu(p) * ﬂm)*) — Z pSQ(w)tleres(w)'
'LUGSWM(“,)

However, we lack natural combinatorial interpretations for s; and sso.
In Section 8 we consider the lattice NC,, of noncrossing partitions of [n],
which is known to be lexicographically shellable. We show that

n—1
(1.10)  B(NCos1 + Thn) ) = — Z(”f) S e
€[

n+1
t k=0 we[n+1]n—F

and

(1.11)

ﬁ(NC;LJrl * Tt,n—l)

n—1 n—1—r
_(_1\n 1 1\ n+1 n—1-r des(w)+k
L Dt (i B D (i >G[Z plesCw)

r=0 k=0 we[n+1]n—Fk-r

Equation (1.10) reduces to a particularly nice enumerative formula when ¢
is set equal to 1, namely

B((Ncn—i-l * Cn)i) = (n + Q)TL*I.

Proofs of the various identities stated above involve symmetric function
formulae for generating functions for words with no double descent, words
with no double ascent, Smirnov words, and multiset derangements, keep-
ing track of descents, ascents, descents and excedances, respectively. The
formula involving Smirnov words follows from work in [21], while the re-
maining formulae are due to Ira Gessel. We give all of these formulae in
Section 4.

Part 1.
Lexicographical shellability

2. Edge labelings of Rees products

After reviewing some basic facts from the theory of lexicographic shellability
(cf. [2, 4-6, 28]), we will present our main results on lexicographic shellability
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of Rees products. Let P be a bounded poset, i.e., a poset with a unique
minimum element and a unique maximum element, and let Cov(P) be the
set of pairs (x,y) € P x P such that y covers z in P. Let L be another
poset and let W be the set of all finite sequences of elements of L. The given
partial ordering of L induces a lexicographic ordering < on W, which is also
a partial order. An edge labeling of P by L is a function X : Cov(P) — L.
Given such a function A and a saturated chain C' = {z; < -+ < x,,} from
P, we write \(C) for (A(z1,22),..., N(Zm-1,Tm)) € W. An ascent in C is
any i € [m — 1] satisfying Az, xiy1) < AM@it1, Tit2). We say A is weakly
increasing on C' if each i € [m — 1] is an ascent in C. The edge labeling A
is an EL-labeling of P if whenever x < y in P there is a unique maximal
chain C in the interval [z,y] on which A is weakly increasing and for all
other maximal chains D in [z,y] we have A(C') < A(D). A bounded poset
that admits an EL-labeling is said to be EL-shellable.

The notion of EL-shellability for pure posets was introduced by Bjorner
in [2]. A more general concept called CL-shellability, introduced by Bjérner
and Wachs in [4], also associates label sequences with maximal chains of a
poset. We will not define CL-labelings here. Both notions were subsequently
extended to all bounded posets by Bjorner and Wachs in [6]. All of our
results in this section and the next section hold for CL-labelings as well
as EL-labelings. For the sake of simplicity we state and prove them only for
EL-labelings. The proofs for CL-labelings are virtually the same as those
for EL-labelings.

Given an EL-labeling A on P, we call a maximal chain C' from P ascent-
free if its label sequence contains no ascent. The descent set of a maximal
chain xg < x1 < -+ < x, is defined to be the set {i € [n — 1] : AM(zj_1,2;) £
Mz, xi41)}. Thus a maximal chain is ascent-free if and only if its descent
set is [n — 1].

One of the main results in the theory of lexicographic shellability is the
following result.

Theorem 2.1. (Bjorner and Wachs [6]) Let A be an EL-labeling of a bounded
poset P with minimum 0 and mazimum 1. Then P\ {0,1} is homotopy
equivalent to a wedge of spheres, where for each k € N the number of spheres
of dimension (k—2) is the number of ascent-free maximal chains of length k.

We will also need the following basic result. Given a pure poset P of
length n and a set S C [0,n], recall that the rank selected subposet is
defined by

Ps:={x € P:rp(x) € S}.
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Theorem 2.2. (Bjorner [2]) Let A be an EL-labeling of a bounded pure poset
P of length n. For S C [n—1], let ¢(S) be the number of mazimal chains in
P having descent set S with respect to A\. Then Ps has the homotopy type of
a wedge of ¢(S) spheres of dimension |S|— 1.

Given a poset P, by P we mean the poset P with a new minimum
element 0 and a new maximum element 1 attached even if P already has
such elements. Given a poset P with a minimum element 0, we say that
an edge labeling A : Cov(P) — L is a semi-EL-labeling if [0,m] is an EL-
labeling for each maximal element m of P. Note if P is bounded then A is a
semi-EL-labeling if and only if it is an EL-labeling. Recall that we defined
T}, to be the poset whose Hasse diagram is the complete ¢-ary tree of height
n with the root at the bottom. The edge labeling in which all the edges in
Cov(T; ) are labeled with 1 is clearly a semi-EL-labeling of 77 ,,.

Theorem 2.3. Let Py and P> be semipure posets of the same length. Assume
also that Py has a minimum element Oy. Let Ay : Cov(Pl) — Ly be an EL-
labeling of Py and let \y : Cov(Py) — Lo be a semi-EL-labeling of Py. Let 04
denote the minimum element of 151 and let 11 denote the maximum element.
Let (01,02) denote the minimum element of @2 and let 1 denote the
mazximum element. Define the edge labeling

A COV(.Pl/rPQ) — Ly x (Lyw{0r,})

(. ), (y.1)) = {Eiigzigi(fm ;Z - |
for (y,1) < 1, and

(k). 1) = O, 1), 01,):
Then X is an EL-labeling of Py % Ps.

Proof. Case 1: (x,k) < (y,1) < 1in Py« Py. Then z < yin Py and k <[ in
P,. Tt follows that there is a unique maximal chain {x = uy < -+ < Uy, =
y} in [z,y] on which \; is weakly increasing and a unique maximal chain
{k=co<- - <cr@y—r) =1} in [k, ] on which Ap is weakly increasing. Let

k for 0 <i<m+r(k)—r()
€; =
Cicm—r(k)4r@) for m+1r(k) —7r(l) <i<m.
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The labeling A is weakly increasing on the maximal chain

C = {(uo,eo) < (ul,el) << (Um7€m)}v

of the interval I := [(z, k), (y,1)].

To establish uniqueness of the maximal chain with weakly increasing
labels, suppose that A is weakly increasing on the maximal chain D =
{(vo, fo) < -+ < (Um, fm)} in the interval I. Then \; is weakly increasing
on the chain {vg < --- < v, }, which implies that v; = u; for all 0 < ¢ < m.
Moreover, if A(D) = ((ay,d1), ..., (am,dm)) then we must have d; = 0, for
1<i<m+r(k)—r()and d; < d;y1 in Ly for m+r(k)—r(l) <i<m-—1.
If d; = Op, then f;_1 = f;, and if d; € Lo then fj_; is covered by f; in Py
and d; = A\ao(fi—1, fi). It follows that if j = m + r(k) — r(l) then

k=fo=fi==Ff;

and
{fi<fir1<-<fm}

is the unique maximal chain of the interval [k, (] in P, for which Ay is weakly
increasing. Thererfore f; = e; for all i.

Next we show that the maximal chain C of I has a label sequence that
lexicographically precedes the label sequences of all maximal chains of I.
Let D = {(vo, fo) < -+ < (Um, fm)} be another maximal chain in I. Assume
that (u;,e;) = (v;, fi) for 0 < i < t but (u,er) # (v, fr). We need to
show that

(2.1) AM(ut—1,e1-1), (ug, er)) < AM((ve-1, fi-1), (vt, ft))

in Ly x (Lyw {01,})
First we handle the case in which 1 < ¢ < m + r(k) — r(I). In this case
we have e;_1 = e; = k, which implies

A~

(22) A((’U,t_l,et_l), (ut,et)) = (Al(ut_l,ut),OLz).

If uy = v; then f; # e;, which implies that f; covers fi_; = k in P. Since
Xo(fi—1, fr) > O, and

AM(ve—1, fi—1)s (ves fr)) = (M (ve—1,0¢), A2 (fi-1, f2)),
(2.1) holds. Now assume u; # v;. We have

(2.3) At(ue—1,ur) < Ar(ve—1,0t)
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in Ly. Indeed, it is a basic property of EL-labelings that if P is a poset with
EL-labeling A then for each interval [z, y], if @ covers x in the unique maximal
chain of [z, y] with weakly increasing labels and b is an atom of [z, y] other
than a, then A\(x,a) < A(z,b) (cf. [2, Proposition 2.5], [6, Lemma 5.3]). Since
M(ve_1, fr-1), (ve, £1)) = (A (ve—1, 1), d), for some d € Lo w0y, the desired
inequality (2.1) follows from (2.2) and (2.3).

Now assume m + r(k) — r(l) < t < m. In this case u; and v; cover
Up_1 = Vy4_1 N ]51, and e; and f; cover e;_1 = f;_1 in Ps. It now follows from
the basic property of EL-labelings mentioned in the previous paragraph that
either (2.3) and Aa(er—1,€t) < Aa(fi—1, fr) or Ap(ue—1,ur) < Ai(ve—1,v¢) and
Xo(er—1,er) < Aa(fi—1, fi) hold, which yields the desired conclusion (2.1).

Case 2: (z,k) < 1in Pl/>;<732. Then z < 11 in ]51 and there is a unique
maximal chain {z = ug < --- < uy, < 11} in [z,11] on which \; is weakly
increasing. The labeling A is weakly increasing on the maximal chain

C = {(ug, k) <+ < (um, k) <1}

of the interval [(z, k), 1]. To establish uniqueness of the maximal chain with
weakly increasing labels, note that the top label of every maximal chain of
[(x,k),1] is of the form (A;(v,11),0z,), where v is a maximal element of
Py. Hence if D = {(vo, fo) < -+ < (U, frr) < 1} is a maximal chain of
[(x, k), 1] with weakly increasing labels then

)‘(D) = {(CLl,OLQ)v R (am’+1,OL2)}a

where a1 <--- < A/ 41 in L;. It follows that f; = k for alli =1,...,m’ and
{vo < -+ < vy < 11} is the umque maximal chain of [z, 1] Wlth weakly
increasmg labels. Hence m = m’ and v; = u; foralli =1,...,m.

Now let D = {(vo, fo) < --+ < (vms, fmr) < 1} be a maximal chain in
[(x,k),1] that is different from C. We show that the label sequence of C
is lexicographically less than that of D. Assume that (u;, k) = (v, fi) for
1 <i <t but (us, k) # (vt, fr). We need to show that

(24) )‘((ut—la k;)a (utv k)) < A((/Ut—la ft—l)u (Uh ft))
in L1 x (Ly W {OLZ}). If uz = v then f; covers f;_1 = k in P,. We have
)\((ut—l, k), (ur, k) = ()‘1 (ut—h ut), OLz)
= (A1 (ve-1,v1),01,)

(Ar(ve—1,v8), A2 (fe—1, ft))
= M(vi—1, fi—1), (ve, f2))-

A
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If uy # v, then by the basic property of EL-labelings mentioned above,
A (ug—1,up) < A\p(ve—1,v¢). It follows that

A((utflvk)v(uh )) (Al(ut 1aut) OLz)
(A1 (ve—1,vp), )\Q(ft 1, ft)
A(ve—1, fr—1),s (v, fr))- O

<

3. Ascent-free chains of P % T},

Let P be a semipure poset of length n. Let Ap : Cov(P) — Lp be an
EL-labeling of P and let A1 be the semi-EL-labeling of 7}, in which each
edge has label 1. In this section we count the ascent-free maximal chains of
P« Ty, under the EL-labeling A : Cov(P # Ty.,,) — (Lp x {0 < 1}) described
in Theorem 2.3.

For j =0,...,m, let Sp,; be the set of sequences (dl, ooy dm )€ {0,1}™
such that )", d = 4. Given any maximal chain D = {(0p,07) < (z0, fo) <

- < (Tony frn) < 1} of P/*?m, we have that {z¢g < z; < -+ <z} is a
maximal chain of P and (r(f1) —r(fo),r(f2) —r(f1),. .. ,r(fm) —r(fm-1)) €

Sm,j, for some j. Conversely, given any maximal chain C' = {zy < 21 <
-+ < Ty, } of P and any d € S, ;, there is a maximal chain D = {(0p,07) <

(zo, fo) < -+ < (T, fm) < i} of P/*T\m such that r(f;) — r(fi—1) = d; for

all i € [m]. Let [C,d] be the set of all such maximal chains of P x T} ,,.
The following propositions clearly hold.

Proposition 3.1. The sets [C,d], where C is a maximal chain of P of
length m and d € Sy, j for j = 0,...,m, partition the set of mazimal chains

of P/*-ﬁn. Moreover if d € Sy, ; then |[C,d]| = /.
Proposition 3.2. Let

Ci= {20 < < &)

be a mazimal chain of P and let d := (dy,...,dy) € {0 < 1}"™. Then for
each mazimal chain D € [(C,d)] we have

)\(D) = (()\p(@p,xo),()), ()\p(xo,xl), dl), ey
AP (Zm—1,Zm),dm), Ap(xm,1p),0)).

Consequently, D is ascent-free if and only if A\p(Op,z0) £ Ap(xo,z1) and
(3.1) Vi € [m], )\p(xi_l,l‘i) < )\p(mi,xiﬂ) — d; =1 and di+1 =0

holds. Here we have set xy,11 := ip and dy,+1 := 0.
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Given a word w = wy - - - w, over a partially ordered alphabet A, we say
i € [n — 1] is an ascent of w if w; < w;41 and that ¢ € [n — 2] is a double
ascent if w; < w41 < wiyo. Let asc(w) denote the number of ascents of w
and

NDA,,(A) := {w € A" : w has no double ascents}.

We are now ready to count the ascent-free maximal chains. We begin
with the case in which the semipure poset P has a unique maximum element.
In this case P must necessarily be a pure poset of length n. All maximal
chains of P have length n 4+ 2 and must have an ascent at m + 1 under
the EL-labeling. We leave it to the reader to observe that Propositions 3.1
and 3.2 imply the following result.

Theorem 3.3. If P has a unique mazximum element then the number of
ascent-free mazximal chains of P * Ty, of length n+ 2 under the EL-labeling
of Theorem 2.3 is given by

Z c(w)tasc(w)+1(1 + t)n—l—?asc(w)7
wENDA 41 (Lp)

w1 g’wz
Wn, $w71+1

where c(w) is the number of mazimal chains of Pw0p with label sequence w.

In the general case in which it is not assumed that P has a unique
maximum element, we have the following result, which also is a consequence
of Propositions 3.1 and 3.2.

Theorem 3.4. Let m € N. Then the number ascent-free maximal chains of
P xT,, of length m + 2 under the EL-labeling of Theorem 2.3 is given by

Z C(w)tasc(w)(l + t)m—Qasc(w)

wENDA,, 42(Lp)
w1 ﬁ’UJQ
Wm+1 ﬁwm+2

+ Z C(w)tasc(w)(l + t)m+1—2asc(w)7

WENDA,,42(Lp)
w1 Lws
W41 SWap 42

where c(w) is the number of mazximal chains offD of length m + 2 with label
sequence w.
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Note that if P has a unique minimum element then P x T} ;, has unique
minimum element, which implies that P x T}, is contractible. Hence the
number of ascent-free maximal chains of P/*T\,;n has to be 0. This is cor-
roborated by c¢(w) = 0 if w; £ wa, which follows from the fact that there
is only one maximal chain in each interval [0,a] of P, where a is an atom
of P. Therefore in the case that P has a unique minimum element, it is
more interesting to consider the number of ascent-free chains of the interval
(PxTy )" of P/*?t,n. The following results also follow from Propositions 3.1
and 3.2.

Theorem 3.5. If P has both a unique minimum element and a unique
mazximum element then the number of ascent-free maximal chains of (P
Tyn)" under the EL-labeling of Theorem 2.3 is given by

Z C(w)tasc(w)Jrl(l + t)nflansc(w)’

’LUEIV])zAﬂL (LP)
Wn—1 LW

where c(w) is the number of maximal chains of P with label sequence w.

Theorem 3.6. Let m € N. If P has a unique minimum element then the
number of ascent-free mazimal chains of (P xT;,)" of length m + 1 under
the EL-labeling of Theorem 2.3 is given by

Z C(w)tasc(w)(l + t)measc(w)

weNDA7n+1 (LP)
Wm AWm+1

+ Z C(w)tasc(w) (1 + t)m+1—2asc(w)’

wENDA7n+1 (LP)
Wm SwnL+1

where c(w) is the number of mazimal chains of P of length m+1 with label
sequence w.

For pure P we can restate the above results by applying Theorem 2.2.
We need to recall the following terminology and notation. A set of integers
is stable if it contains no two consecutive integers. For X C Z, the set of
all stable subsets of X is denoted by Peap(X). For i < j € N, let [4,j] :=
{i,i+1,...,7} and [j] :== [1,7]. If P is a poset of length n let
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If P has a unique minimum element 0 let
P~ =P\ {0}.

Corollary 3.7. Let P be a pure poset of length n such that P is EL-shellable.
Assume that P has a unique mazximum element. Then

(3.2) B(PxTpn) = Z B(Prom_1ps) 8151 (¢ + 1) 2811,
SEPean([n—2])

If P also has a unique minimum element then

(3.3) B(P*Tyn)") = Z ﬁ(p[n_l]\s)tlé‘l—l—l(t + 1)n—2‘S|—1.
SEPun([n—2))

Corollary 3.8. Let P be a pure poset of length n such that P is EL-shellable.
Then
ﬁ(P * Tt,n)

= Y BPoaps)t®l(t+ 1)
SEPsan([n—1])

+ Z 5(P[07n—1]\s>t|s‘+l(t+ 1)n_2|5|_1'
SEPaab([n—2])

If P has a unique minimum element then

B(P*Tyn)™)
= Y BPtPlE+ 1)

SE€Pyap([n—1])

D BBt )
SE€Psab([n—2])

Part II.
Applications

4. Symmetric function preliminaries

Let hy = hyp(x1,x2,...) denote the complete homogenous symmetric func-
tion of degree n in indeterminants x := x1,x9,... and e, = e,(x1,x2,...)
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denote the elementary symmetric function of degree n in indeterminants x.
That is

hn(x) := Z i oz, and  en(x) = Z Ty X,
1<, <-<in 1<, <<y
Also let
Nl :=1+t 4 +t" L

In this section we will discuss various combinatorial interpretations of vari-
ations of the symmetric function

ZiZO hi?!
L =27 tli — 1thiz"

which play a key role in the proofs of the results in the subsequent sections.
These and other interpretations are discussed in [20, Section 7].

Let w = wy - - - w, € P". Recall that we say ¢ € [n — 1] is an ascent of w
if w; < w;41 and that ¢ € [n — 2] is a double ascent if w; < wit1 < wjto.
Recall that asc(w) denotes the number of ascents of w and

NDA,, := NDA,,(P) = {w € P" : w has no double ascents}.

Similarly, ¢ € [n—1] is a descent of w if w; > w;y; and ¢ € [n—2] is a double
descent if w; > w;y1 > wiyo. Let des(w) denote the number of descents of
w and

NDD,, := NDD,,(P) = {w € P" : w has no double descents}.

We write x,, for zy, -+ Ty, -

We begin by presenting the following interpretations due to Gessel, see
Theorem 7.3 of [20]. (Gessel’s original proofs will appear in [11].)

1
(41) 1+) 2" gaselwl(q 4 gyn—2-2scluly, = : .
nz>:1 we%;A Y 1= g i ezt
- Wy >ws
Wp—1>Wn
Yizo €i#'
(42) 1+ pe tasc(w)(1+t)n7172asc(w)x _ 20 -
nzzjl we%;An Y=Y tli- ezt

Wp—1>Wn,
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1
(4.3) 1+ pa tdes(w)(1+t>n—2—2des(w)x _ . iy
nz>:1 we%;n Y= Y tli e
a wi <ws
wnflswn
Dizo hi?’
(44) 14+ g tdes(w)(1+t)nflf2des(w)x _ 20 N
7; we%Dn 1= sy i1
T wnaSw,

Next we present an interpretation due to Shareshian and Wachs [20].
A barred word of length n over alphabet A is an element of (A x {0,1})".
We visualize barred words as words over A in which some of the letters are
barred; (a,1) is a barred letter and (a,0) is an unbarred letter. If w is a
barred word then |w| denotes the word w with the bars removed. Similarly,
let |a| = |a| = a. If a is a barred or unbarred letter, we refer to |a| as the
absolute value of a. For a barred word w, let bar(w) denote the number of
barred letters of w. Let W,, be the set of barred words w = wy ---w, of
length n over P satisfying

1. w, is unbarred
2. for all i € [n — 1], if |w;| < |wiy1| then w; is unbarred
3. for all i € [n — 1], if |w;| > |w;4+1| then w; is barred.

Elements of W, are called banners in [20, Section 3|, where it is shown that

n ar(w Zl hizi
(4.5) 1+ ZZ Z tb ( )X|w‘ = 20

>l wew, 1 =3 tfi — thizt

We will also need an interpretation due to Askey and Ismail [1] and one
due to Stanley (personal communication, see Theorem 7.2 of [20]). Given a
finite multiset M over P, let &;; denote the set of multiset permutations of
M. Recall that we can write w € &) in two-line notation as a 2 x | M| array
(w;,;) whose top row is a weakly increasing arrangement of the multiset M
and whose bottom row is an arbitrary arrangement of M. By supressing
the top row, we write w in one-line notation as the word, wy - - - wys|, where
w; = wo;. If w € &) we say that w has length [M|. An excedance of a
multiset permutation w = (wj ;), written in two-line notation, is a column
j such that wy ; < ws ;. Let exc(w) be the number of excedances of w.

Recall that w = (w; ;) € G is a multiset derangement if each of the
columns of w have distinct entries, i.e., wy; # wy; for all j = 1,...,|M].
For example, if
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1112
w= 1

3 4
3 2 3 1

3
4 1
then w is a multiset derangement in &y 5 32 43 and exc(w) = 4.

Now let MD,, be the set of all multiset derangements of length n. Askey
and Ismail [1] (see also [13]) proved the following ¢-analog of MacMahon’s
[15, Sec. III, Ch. III] result on multiset derangements

1
4. n exc(w) _ -

n>0 weMD,,

Recall from Section 1 that a multiset permutation w = wy --- wy, € G
is called a Smirnov word if it has no adjacent repeats, i.e. w; # w;; 1 for
all i = 1,...,n — 1. Let SW,, be the set of all Smirnov words of length
n. Stanley (see Theorem 7.2 and (7.7) of [20]) observed that the following
t-analog of a result of Carlitz, Scoville and Vaughan [9]

(47) Z 2N Z tdes(w)xw _ — ZiZO 67;ZZ

n>0  weSW, Dizatli — iz’
is equivalent to (4.5) by P-partition reciprocity [25, Section 4.5].
5. Chain product analog of B,

In this section we generalize the ¢ = 1 case of (1.3) and (1.4) by utilizing the
results of the previous section. Given a weak composition p := (u1, ..., fik)
of n, let B,, denote the product of chains C,,, x --- x C,,,. Recall that M (1)
denotes the multiset {1#*,... k**}. Given a multiset M, let MDjy; be the
set of multiset derangements of the multiset M and let SWj; be the set of
Smirnov words that are multiset permutations of M.

Theorem 5.1. Let pu be a composition of n. Then B, 1,1 and (Bu*Tyn)~
have the homotopy type of a wedge of (n—1)-spheres. The numbers of spheres
in these wedges are, respectively,

(5.1) 5(3;*1}’”71): Z pexe(w)+1
wEMDM(“)

and

(5.2) B((BuxTim)™) =y tdstrd

wWESWn (1)
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Proof. We begin by applying Theorem 3.3 to P := B,,, which has length
n — 1. Let k = l(n). There is a well known EL-labeling of B, in which the
edge

(1, oy @iy ey )y (1, .oy + 1,000 xg))
is labeled by i. Here Lp is the totally ordered set {1 < 2 < --- < k}.

Hence B, *T;,—1 has an EL-labeling as described in Theorem 2.3. The
label sequence of each maximal chain of P w {0} = B,, is a permutation of
the multiset M (u). Moreover each mulitset permutation occurs exactly once
as the label sequence of a maximal chain. So c(w) = 1 if w € &,y and
c(w) = 0if w € [k]" — &y(y)- It follows from Theorem 3.3 that the number

o —

of ascent-free maximal chains of B, * T} 1 under the given labeling is

Z tasc(w)+1(1 + t)anansc(w)
wWENDA,, NS pr(y)

w1 >wWs2
Wp—1>Wn

Similarly by Theorems 2.3 and 3.5 with P = B,,, the poset (B, T} ,)" has
an EL-labeling for which the number of ascent-free maximal chains is

Z tasc(w)+1(1 + t)n—l—Qasc(w).

weNDAnOGMM
W —1>Wn

Hence by Theorem 2.1, the posets B; % Ty 1 and (B, * T;,,)~ have the
homotopy type of a wedge of (n — 1)-spheres and the top Betti numbers are
given by

ﬁ(B; * Tt,n—l) = Z tasc(w)Jrl(l + t)n7272asc(w)7
wENDA, NG sy

w1 >wa
Wp—1>Wn

and

5((BM * ﬂ,n)_) = Z tasC(w)+l(1 + t)n—l—Zasc(w).

’LUGNDA,LQGM(H)
Wy —1>Wn

By combining (4.6) and (4.1) we obtain

(5.3) Z gexe(w) _ z tausc(w)(l_1_15)71—2—2asc(w)7

wWEMD weNDA, NSy,
w1 >Wa
Wn—1>Wn
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and by combining (4.7) and (4.2) we obtain

(5.4) Z pdes(w) _ Z taSC(w)(l_i_t)n*lanSc(w)’

’LUESW]M ’LUENDAWOGJ\/[
Wn—1>Wn,

for all multisets M on P of size n. Equations (5.1) and (5.2) now follow from
(5.3) and (5.4), respectively. O

Remark 5.2. When M = {1"}, equation (5.4) reduces to a result of Foata
and Schiitzenberger [10], which is used to show that the Eulerian polynomials
are palindromic and unimodal. We see from (5.3) and (5.4), respectively, that
the polynomials > \p.. texe@) and 3~ o SWas tdes(®) are palindromic and
unimodal for all multisets M.

6. g-analog of B,

The lattice By, (q) of subspaces of an n-dimensional vector space over the
finite field I, is bounded and pure of length n. It is well known that By, (q)
is EL-shellable (see [28]). Using (3.3) to compute S((By(q) * T;,)”) and
equating the resulting formula with the formula given in (1.4), we obtain a
new Mahonian permutation statistic, which we call aid, and we show that
the pairs (aid,des) and (maj, exc) are equidistributed on &,,.

Let o € &,,. Recall that an inversion of o is a pair (o(i),o(j)) such that
1<i<j<nando(i)>o(j). An admissible inversion of ¢ is an inversion
(0(i),0(7)) that satisfies either

e l<iando(i—1)<o(i)or
e there is some k such that i < k < j and o(i) < o (k).

We write inv(o) for the number of inversions of ¢ and ai(o) for the
number of admissible inversions of ¢. For example, if ¢ = 6431275 then there
are 11 inversions, but only (6,5) and (7,5) are admissible. So inv(c) = 11
and ai(o) = 2.

Now let

aid(o) := ai(o) + des(o).

It turns out that aid is equidistributed with the Mahonian permutation
statistics inv and maj on &,,. We give a short combinatorial proof of this
in Proposition 6.3 below. First we prove the following more general joint
distribution result.
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Theorem 6.1. For alln > 0,

aid(o)des(o) _ maj(o) rexc(o)
Z q t Z q t .

€S, €S,

Proof. 1t is well known (see [27, Theorem 3.12.3]) that for all S C [n — 1],
B(Bn(g)s) = > ¢™.

ceS,,
DES(0)=S

Hence by (3.3) we have
/8<(BTL(Q> * ,Tt,n)i) = Z Z qinv(a)t|S|+1(t + 1)n7172\5\

SEPgan ([1,n—2]) 0eG,
DES(o)=[1,n—1]\S

(6.1) _ Z qinv(a)tasc(a)—i—l(l + t)n_l_QaSC(U).

ceS,NNDA,,
Op—1>0n

We will rewrite the expression (6.1) as the enumerator of barred per-
mutations. Given a set X of size n, a barred permutation of X is a word
wiws - - - wy, with n distinct letters in X, in which some of the letters are
barred. Let |w;| denote the letter w; with the bar removed if there is one
and let |w| = |w]|-- - |wy,| € Sx, where &x is the set of ordinary permuta-
tions of X. Let bar(w) denote the number of bars of w. Let Wx be the set
of barred permutations w of X satisfying

(A) wy is barred
(B) ifi € [n—1] and |w;| < |wj41| then w; is barred and w;11 is not barred.

It is not hard to see that the expression (6.1) equals
Z qinv(|w|)tbar(w)

wGW[n]

which by Lemma 6.2 below equals
Z q<g>—ai(a)tdes(a')+l'

0'6611
Hence

(6.2) B((Bu(q) # Trn) ) = Y qle)meil@)gdes(@)+1,

ceS,

The result now follows from (1.4). O
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Given barred permutations o € Wy and 8 € Wpg, where A and B are
disjoint sets, let « - 8 denote the barred permutation in Wawp obtained by
concatenating the words a and 5. Also let 6 denote the empty word. We
define a map

@ : L—ﬂ Wx — L‘I_‘J Gx,
XCP XCP
| X|<o0 | X|<o0
recursively as follows. If w is in the domain of ¢ and m is the maximum
letter of |w| then

0 ifw=2~0
p(w) = qm- () ifw=m-p
o(B) -m-p(a) fw=a-m-Band B #6.

Lemma 6.2. The map ¢ is a well-defined bijection which satisfies

1. p(Wx) =6x,
2. des(p(w)) + 1 = bar(w),
3. ai(p(w)) = () — inv(jw))

for all finite nonempty subsets X of P and all w € Wx.

Proof. By (B) of the definition of Wx, if letter m is barred in the word
w € Wy then it is the first letter of w. By (A), if m is unbarred it cannot
be the last letter. Hence the three cases of the definition of ¢ cover all
possibilities. It is also clear from the definition of Wy that if «-m -8 € Wx
and 8 # 0 then a € Wy and 8 € Wx\(au{m}) for some subset A C X.
Hence by induction on |X| we have that ¢ is a well-defined map that takes
elements of Wx to Gx.

To show that ¢ is a bijection satisfying (1) we construct its inverse.
Define

¢: H—J Gx — L—H Wx,

XCP XCP
| X|<o0 | X|<o0
recursively by
0 ifo=40
P(o) =< m-1(0) ifo=m-9
Y(6)-m-P(y) ifo=v-m-dandy#0,
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where m is the maximum letter of o. Let v-m -6 € &x. One can see that
conditions (A) and (B) of the definition of Wy hold for ¢ (v-m-§) whenever
they hold for () and ¢(§). Hence by induction on | X|, ¥ is a well-defined
map. One can easily also show by induction that ¢ and @ are inverses of
each other.

We also prove (2) by induction on | X|, with the base case | X| = 0 being
trivial. We do the third case of the definition of ¢ and leave the second to
the reader. Let w = a-m - 5 € Wx with g # 6. If o # 6 then

bar(w) = bar(a) + bar(8) = des(i2(a)) + des(i2(8)) + 2.

by the induction hypothesis. Since m is the largest element of X and is not
the last letter of ¢(w), we have

des(p(w)) = des(i2(8)) + 1 + des(io(a)).

Hence (2) holds in this case.

Our proof of (3) proceeds by induction on n = | X|, the case n = 0 being
trivial.

If w=m- 8 then

ai(p(w)) = ai(m - ¢(3))
= ai(p(f))

= ("3 ") - mvas

~(5) - (g +n-)

= (5) - mv(im- 5.

Indeed, the first two equalities follow immediately from the definitions and
the third follows from our inductive hypothesis.

Next, say w = «a-m - with @« € Wy and 8 € Wpg, where |B| > 0.
Set inv(A, B) := |[{(a,b) : a € A,b € B,a > b} It follows quickly from the
inductive hypothesis and the definitions that
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al(p(w)) = ai(e(8) - m - ¢(a))
= ai(p(B)) + |A] + ai(p()) + inv(B, A)

_ (“29') —inv(|8)) +n—1—|B|

+ <|1;1|> —inv(|a|) 4+ |A||B| — inv(A, B).

Now
inv(Ja-m - B]) = inv(|a]) + |B] + inv(|8]) + inv(A, B)

and a straightforward calculation shows that
|B| | Al n
-1 Al|B| = .
< R P s | Al B 5

ai(p(w)) = <Z> ~inv(ja-m-5))

as desired. O

Hence

We pose the question of whether there is an enlightening direct bijective
proof of Theorem 6.1. Our proof of Theorem 6.1 relies on (1.4), whose proof,
in turn, relies on a g-analog of Euler’s formula for the Eulerian polynomials
derived by Shareshian and Wachs in [20]. A considerable amount of work in
symmetric function theory and bijective combinatorics went into the proof of
this g-analog of Euler’s formula. Since the steps in deriving Theorem 6.1 from
the g-analog of Euler’s formula are reversible, a nice direct combinatorial
proof of Theorem 6.1 would provide an interesting alternative proof of the
g-analog of Euler’s formula. Here we give a simple combinatorial proof that
aid is Mahonian.

Proposition 6.3. Let Fi,(q) =), cq. ¢*90) . Then F,(q) satisfies the fol-
lowing recurrence for all n > 2,

Fo(q) = (14 q)Fo-1(q) + z_: { ?:i } ¢ Fj-1(9)Fnj(q)-

j=2

Consequently Fy(q) = [n]4!.
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Proof. The terms on the right side of the recurrence g-count permutations
according to the position of n in the permutation. That is for each j,

n—1 . o .
(7] b -2
q

Z qaid(a) _ o
a(n—j+1)=n qFn.-1(q) if j =n.

It is easy to see that [n],! also satisfies the same recurrence relation. [

A more natural Mahonian permutation statistic whose joint distribution
with des is the same as that of aid is discussed in [22, 23|. This statistic is
a member of a family of Mahonian statistics introduced by Rawlings [18].

7. p-analog of chain product analog of B,

Given a prime p and a weak composition p = (p1,...,u;) of n, let B,(p)
denote the lattice of subgroups of the abelian p-group Z/p" Z x - - - X Z/ p'* 7.
The poset B, (p) is a natural p-analog of B,,. It is pure and bounded of length
n. Moreover, it provides the following p-analog of Theorem 5.1.

Theorem 7.1. Let u be a weak composition of n and let p be a prime. Then
B,(p)” * Ty n—1 and (B,(p) * Ty,n)~ have the homotopy type of a wedge of
(n — 1)-spheres. The numbers of spheres in these wedges are, respectively,

(7.1) BBu(p) Thnot) = 3 phr@lexc)sl
WEMD ()

and

(72) ﬁ((B/,L(p) * Tt’n)_) = z psz(w)tdes(w)+1’
wESWM(M)

where s1, 82 : P* — N are statistics on words over P.

Proof. 1t is well known that B, (p) is EL-shellable. Hence by Theorem 2.3,
Bn(q)” * Ty -1 and (By(q) * Ty )~ are EL-shellable. It is also known (see
[8, (1.30)]) that for all S C [n — 1],

3 (BM (p) S) — Z pcocharge(w) ’
WES n(p)
DES(w)=S8
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where cocharge is a statistic on words introduced by Lascoux and Schiitzen-
berger for the purpose of showing that the Kostka polynomials have nonneg-
ative integer coefficients. (We will not need the precise definition of cocharge
here.)

Now by (3.2) we have

B(Bu(p)” * Tin-1)
_ Z Z pcocharge(w)t\5\+1(t+ 1)n7272|S|.

Sepstab([2,n—2]) wEGM(M)
DES(w)=[1,n—1]\S

Hence
(7-3) ﬂ(Bu(p)_ * Tt,n—l) - Z fi(p)ti,
i=1

where fi(p) € N[p]. By (5.3),
fi(1) = {w € MDDy : exc(w) =i — 1}].

Since f;(1) is the sum of the coefficients of f;(p), we can assign a nonnegative
integer s1(w) to each word w in MDDy, so that

filp) = Z por (@),

wWeMD ()
exc(w)=i—1

By plugging this into (7.3), we obtain the desired result (7.1).
The proof of (7.2) follows along the lines of that of (7.1) with (3.3) and
(5.4) used instead of (3.2) and (5.3). O

Problem. It would be interesting to find nice combinatorial descriptions
of the coefficients of the polynomials (B, (p)~ * Tyn—1) and S((Bu(p) *
Tin)”). That is, find natural statistics s; and sy for which (7.1) and (7.2)
hold. When w € & y(ny, we see from (1.3) that s1(w) can be defined to be
(5) — maj(w) + exc and from (6.2) that so(w) can be defined to be (5) — ai.

8. The noncrossing partition lattice

A set partition 7 is said to be noncrossing if for all a < b < ¢ < d, whenever
a,c are in a block B of m and b, d are in a block B’ of w then B = B’. Let NC,,
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be the poset of noncrossing partitions of [n] ordered by reverse refinement.
This poset, known as the noncrossing partition lattice, was first introduced
by Kreweras [14], who showed that it is a pure lattice with Mobius invariant
equal to the signed Catalan number (—1)"*1%(2:__12). Bjorner and Edelman
(cf. [2]) gave the first EL labeling of NC,, and later Stanley [26] gave a
different EL-labeling in which the maximal chains are labeled with parking
functions.

A word w € P" is said to be a parking function of length n if its weakly
increasing rearrangement u satisfies u; < i for all i € [n]. Let PF,, be the set
of parking functions of length n. Recall that for w = wy, ..., w, € P",

DES(w):={i€[n—1]:w; > wi+1} and des(w):=|DES(w)|.
Stanley uses his EL-labeling to prove that for all S C [n — 1],
(81)  B(NCup1)pos) = |{w € PF, : DES(w) = 5}
Theorem 8.1. For alln,t € P, the posets (NCp 15T )" and NC, 1 +T} 51

have the homotopy type of a wedge of (n—1)-spheres. The numbers of spheres
in these wedges are, respectively,

n—1
(82)  B((NCpiy #Thn)") = — Z("?) S g

k= weEn41]n—*

(8.3)

ﬁ(NC;—i-l * Tt,n—l)

= (-1)" + nle 1%:1(_1)7" (ni— 1)“3:_7" (n _; — r) e Z pdes(w)+h

r=0 k=0 we[n+1)r—k-r

By a straightforward computation involving the binomial theorem, The-
orem 8.1 reduces to the following result when ¢t = 1.

Corollary 8.2. For alln € P, the posets (NC,+1xCy)~ and NC, 1 xCph
have the homotopy type of a wedge of (n—1)-spheres. The numbers of spheres
in these wedges are, respectively,

ﬁ((NCn-‘ﬂ * Cn)_) = (n + 2)n—1
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and
(n+ 1" + (=1)"(n + 3)
(n+2)2
Proof of Theorem 8.1. Since NC,, 11 is EL-shellable it follows from Theo-
rem 2.3 that NC;+1 % T} p—1 and (NCp4q % T3 5,)~ have the homotopy type
of a wedge of (n — 1)-spheres.
Proof of (8.2). By substituting (8.1) into (3.3) we obtain

5(NC;+1 *Cpo1) =

(84) B((NCpyr*Tin)”)

= Z [{w € PF,, : DES(w) = S}[tIS1+1 (¢t + 1)n~25171
SEPuab([1,n—2])

_ Z 75des(w)—i—1 (t + 1)n—2des(w)—l'

wePF,NNDD,,
Wn—1 Swn

Let WComp,, ;, be the set of all weak compositions of n into k parts. It

is straightforward to show that w € PF,, if and only if w € &(,, for some

©)
p € WComp,, ,, such that 25:1 wi > g forall j =1,...,n. We will call a
weak composition of n into n parts that satisfies this condition a parking
composition of n, and let PC,, be the set of all parking compositions of n. It
now follows from (8.4) that

nePC,, weS p(,)NNDD,,
Wp—1 Swn

Note that every parking composition u of n can be viewed as an element
of WComp,, ,,;1 by adjoining a 0 to the end of . For u, " € WComp,, , 11,
we say that p and p/ are cyclically equivalent if p/ can be obtained by
cyclically rotating the parts of u. Since all elements of WComp,, ,,;, are
primitive words, i.e., they are not equal to a power of a shorter word, the
equivalence classes of WComp,, ,, ;1 under cyclic equivalence all have size
equal to n + 1. Moreover, each equivalence class has exactly one parking
composition p, i.e. = (1, ..., ln,0) where (u1,...,u,) € PC,.

Given a weak composition p of n, let

FM = Z tdes(w)Jrl (t + 1)n72des(w)71

’LUEGM(,L)PINDDTL
Wy —1 SWy,
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and let

woo_ WML PR
xt =z ",

for w = (p1,...,pr). It follows from (4.4) that ZuEWCompan
polynomial in ¢ whose coefficients are symmetric polynomials in the variables
1,...,Tnt+1. Hence

Fxt, is a

F, = Fy

whenever 1 is a rearrangement of y; so F), is constant on cyclic equivalence
classes of WComp,, ,, .. We can therefore choose a representative of each
cyclic equivalence class of WComp,, ,, .1 to compute the sum of F, over the
weak compositions y in WComp,, ,, 1. By letting the parking compositions
be the chosen representatives, we arrive at

> Fu=(n+1) ) F.

peWComp,, . 1y nebC,

It now follows from (8.5) that

(8.6) B(NCpg1 *Typn)” ) = 1 Z F,.

peWComp,, .,y

By combining (4.4) and (4.5) we have that for all m,n € P and p €

VVCornpmm7
F“ _ Z tbar(w) ,

U)EWn
|w|€S nr(p)

which implies that

(8.7) Yoo Fu= Y el

ueWComp,, . weW,
[w|€[m]™

We claim that for all m and n,

n—1
(5.8) S e 3 <”;1>tk Y st

weWw,, k=0 u€lm]n—*
|w|€[m]"

To prove this claim first note that there are two types of barred letters in
w € W,,. The type I barred letters are those that are followed by a letter
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equal to it in absolute value and the type II barred letters are those that are
followed by a letter that is smaller than it in absolute value. The summand
on the right side of the equation enumerates banners that have exactly k
barred letters of the first type. To obtain such a banner first choose the k
positions from the first n — 1 positions in which the type I barred letters are
to appear and leave them blank, then fill in the remaining n — k positions
with an arbitrary word w in [m]"*, then fill in the k barred positions that
were left blank from right to left so that the letter equals its successor in
absolute value, and finally put bars over the descent positions of the resulting
word, the number of which is clearly equal to des(u).

By combining (8.7) and (8.8) we obtain

n—1

(8.9) Y R=Y (n ; 1) YT ),

peWComp,, ., k=0 we[m|r—F

Now set m = n + 1 and plug this equation into (8.6) to obtain the desired
result (8.2).
Proof of (8.3). It follows from (8.1) and (3.2) that

BNC, 1 * Tin—1) = Z G,

nePC,
where
G/L — § : tdes(w)+1<t+ 1)n72des(w)72.
wEGM(,,L)I'_\INDD71
Wn—1 SWh,
w1 <wa

Using a similar argument to that which was used to derive (8.6) (with (4.3)
now playing the role of (4.4)) we obtain

B 1
(8.10) BINC, 4y # Tin1) = > Gu
n+1
uw€WComp,, ., 4,

For n > 1, let

F, = Z tdes(w)(l + t)nfldees(w)Xw

weNDD,,
Wy, —1<Wy,
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and

G, = Z 7tdes(w)(l + t)n—2—2des(w)xw.

weNDD,,
w1 <wo
Wy —1<Wy,

Also let Fy = Gy = 1. By (4.4) and (4.3) we have

Z F.2" = Z Gpz" Z hp2™.

n>0 n>0 n>0

Hence

Z Gpz" = Z F,z" Z(—l)ienz”.

n>0 n>0 n>0

Equating coefficients of 2" yields
n
(8.11) Gn=> (~1) e Fr.
r=0

By applying to (8.11), the specialization that sets

1 ifie[n+1]
Ti =
‘ 0 otherwise,

we obtain
n—1 n+ 1
> Gy (")
pEWComp,, , r=0

By plugging (8.9) into this equation we obtain

n—r—1
k=0

n—1
Yo Gu=(-D"n+ 1)+ (-1 (”j 1>
r=0

neWComp,, ., 1y
« § : tdes(w).

wE[n+1)r—r-k

The desired result (8.3) follows from this and (8.10).

pE€WComp,, _, .11

273

F,.

n—r—1\ .
t
< k >
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