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We use the theory of lexicographic shellability to provide various

examples in which the rank of the homology of a Rees product of

two partially ordered sets enumerates some set of combinatorial

objects, perhaps according to some natural statistic on the set.

Many of these examples generalize a result of J. Jonsson, which

says that the rank of the unique nontrivial homology group of the

Rees product of a truncated Boolean algebra of degree n and a

chain of length n− 1 is the number of derangements in Sn.
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1. Introduction

Rees products of posets were defined and studied by A. Björner and V. Welker
in [7]. While the main results in [7] provide combinatorial analogues of con-
structions in commutative algebra, it has turned out that Rees products
of certain posets are connected with permutation enumeration and permu-
tation statistics. The first indication of this connection is provided by a
conjecture in [7], which says that the reduced Euler characteristic of the or-
der complex of the Rees product of the truncated Boolean algebra Bn \ {∅}
and a chain of length n−1 is the number of derangements in the symmetric
group Sn. This conjecture was proved by J. Jonsson in [12].

As we shall describe below, generalizations of Jonsson’s result, along
with similar results, have been proved. Our purposes in this paper are

1. to give additional examples of Rees products whose order complexes
have reduced Euler characteristics that enumerate certain classes of
combinatorial objects, possibly according to some natural statistic,
and

2. to show how the theory of lexicographic shellability applies to certain
Rees products, in particular relating the homology of the order com-
plex of the Rees product of a lexicographically shellable poset P with
a poset whose Hasse diagram is a rooted t-ary tree to the homology of
the order complexes of some rank-selected subposets of P .

These two purposes are in fact intertwined. We prove all of our results on
reduced Euler characteristics of order complexes of Rees products using
lexicographic shellings.

All posets studied in this paper are finite. We call a poset P semipure if
for each x ∈ P , the lower order ideal P≤x := {y ∈ P : y ≤ x} is pure, that
is, any two maximal chains in P≤x have the same length. The rank rP (x) of
such an element x is the length of a maximal chain in P≤x. Given semipure
posets P,Q with respective rank functions rP , rQ, the Rees product P ∗Q is
the poset whose underlying set is

{(p, q) ∈ P ×Q : rP (p) ≥ rQ(q)},

with order relation given by (p1, q1) ≤ (p2, q2) if and only if all of the condi-
tions

• p1 ≤P p2,
• q1 ≤Q q2, and
• rP (p1)− rP (p2) ≥ rQ(q1)− rQ(q2)
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Figure 1: (B3 \ {∅}) ∗ C2.

hold. In other words, (p2, q2) covers (p1, q1) in P ∗Q if and only if

1. p2 covers p1 in P , and
2. either q2 = q1 or q2 covers q1 in Q.

In Figure 1, the Rees product of the truncated Boolean algebra B3 \ {∅}
and the chain C2 := {0 < 1 < 2} is given. The element (S, j) is written as
Sj with the set brackets and commas omitted.

For any poset P , the order complexΔP is the abstract simplicial complex
whose k-dimensional faces are chains (totally ordered subsets) of length k
from P . A simplicial complex Δ is Cohen-Macaulay if for each face F ∈ Δ
(including the empty face), the reduced (integral, simplicial) homology of the
link lkΔ(F ) is trivial in all dimensions except possibly dim(lkΔ(F )). Every
Cohen-Macaulay complex is pure, that is, all maximal faces of a Cohen-
Macaulay complex have the same dimension. A poset is said to be Cohen-
Macaulay if its order complex is Cohen-Macaulay. We will say that a poset
has a particular topological property if its order complex has that property.
The (reduced) homology of P is given by H̃k(P ) := H̃k(ΔP ;Z). For further
information on Cohen-Macaulay posets, see the surveys given in [3, 24, 28].

Björner and Welker [7, Corollary 2] prove that the Rees product of any
Cohen-Macaulay poset with any acyclic Cohen-Macaualy poset is Cohen-
Macaulay. It is known that both B−

n := Bn \ {∅} and the chain Cn of
length n are Cohen-Macaulay, and Cn is acyclic. Thus the result of Jonsson
mentioned above says that, with dn denoting the number of derangements
in Sn,

(1.1) rkH̃n−1(B
−
n ∗ Cn−1) = dn.

Generalizations of (1.1) appear in the paper [21] of Shareshian and
Wachs. For a poset P with unique minimum element 0̂, P− will denote
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P \ {0̂}. For a prime power q > 1 and a positive integer n, the poset of all

subspaces of an n-dimensional vector space over the q-element field Fq will

be denoted by Bn(q). Also, Dn will denote the set of all derangements in

Sn. It is shown in [21] that

(1.2) rkH̃n−1(Bn(q)
− ∗ Cn−1) =

∑
σ∈Dn

q(
n

2)−maj(σ)+exc(σ),

where maj and exc are, respectively, the major index and the excedance

number, introduced by MacMahon in [15, Vol. I, pp. 135, 186; Vol. 2, p. viii],

[16] in the early part of the 20th century and extensively studied thereafter.

A generalization of (1.2) appears in [21]. For positive integers t, n, let Tt,n

be the poset whose Hasse diagram is a complete t-ary tree of height n with

root at the bottom. To put it more formally, Tt,n consists of all sequences of

elements of [t] := {1, . . . , t} that have length at most n, including the empty

sequence. Given two such sequences a = (a1, . . . , ak) and b = (b1, . . . , bl), we

declare that a ≤ b if k ≤ l and ai = bi for all i ∈ [k]. Note that T1,n = Cn.

It is shown in [21] that if P is Cohen-Macaulay of length n then so is

P ∗ Tt,n. Equation (1.4) below is proved in [21], and equation (1.3) follows

quickly from (1.4) and [21, Corollary 2.4]. We have

rkH̃n−1(Bn(q)
− ∗ Tt,n−1) = t

∑
σ∈Dn

q(
n

2)−maj(σ)+exc(σ)texc(σ)(1.3)

and

rkH̃n−1((Bn(q) ∗ Tt,n)
−) = t

∑
σ∈Sn

q(
n

2)−maj(σ)+exc(σ)texc(σ).(1.4)

One can also find in [21] type BC analogues of the results mentioned

above, where Bn and Bn(q) are replaced, respectively, by the poset of faces

of the n-crosspolytope and the poset of totally isotropic subspaces of a 2n-

dimensional vector space over Fq equipped with a nondegenerate alternating

bilinear form, and Dn is replaced by the set of elements of the Weyl group of

type BC that act as derangements on the set of vertices of the crosspolytope.

In [17], P. Muldoon and M. Readdy prove an analog of (1.1) that involves

the poset of faces of the n-cube.

As was mentioned above, the results of Björner and Welker [7] are con-

cerned with Cohen-Macaulayness of Rees products. It turns out that anal-

ogous results for lexicographic shellability can be obtained and utilized to
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obtain enumerative results. Definitions and basic facts about lexicographic
shellability are given in Section 2.

Let P be a pure poset of length n. For S ⊆ [0, n] := {0, 1, . . . , n},
the rank-selected subposet PS is the subposet of P consisting of all x ∈ X
satisfying rP (x) ∈ S. If P is lexicographically shellable then P is Cohen-
Macaulay, as is every rank-selected subposet of P (cf. [2]). Thus, for all
S ⊆ [0, n], the homology of PS is determined by the Betti number

β(PS) := rkH̃|S|−1(PS).

Let 0̂T be the minimum element of Tt,n. Note that if P has a unique min-
imum element 0̂P then the poset P ∗ Tt,n has a minimum element (0̂P , 0̂T ),
but no maximum element. Write (P ∗ Tt,n)

+ for the poset P ∗ Tt,n with a
maximum element appended. In Section 2 we show that if P is lexicograph-
ically shellable then so is (P ∗ Tt,n)

+ for all t. (In fact, we prove a stronger
result; see Theorem 2.3.)

We call S ⊆ N stable if there is no i ∈ N such that {i, i + 1} ⊆ S.
For X ⊆ N, we write Pstab(X) for the set of all stable S ⊆ X. We use the
lexicographic shellings described in Section 2 to prove in Section 3 that, for
pure, lexicographically shellable P of length n,

(1.5) β((P ∗ Tt,n)
−) =

∑
S∈Pstab([n−2])

β(P[n−1]\S)t
|S|+1(1 + t)n−2|S|−1.

In fact, we prove in Section 3 several formulae similar to (1.5) involving either
P− ∗ Tt,n or (P ∗ Tt,n)

−. (More general versions of these formulae in which
the only requirement on P is that it be pure will appear in a forthcoming
paper.)

In Sections 5, 6, 7 and 8 we apply our results from Sections 2 and 3 to
obtain enumerative results.

The Boolean algebra Bn is the direct product of n copies of the chain
C1. In Section 5 we prove generalizations of the q = 1 cases of (1.3) and
(1.4) in which we replace Bn with an arbitrary product of finite chains. Let
μ = (μ1, . . . , μk) be a weak composition of n into k parts, that is a k-tuple
of nonnegative integers whose sum is n. The product poset Bμ :=

∏k
i=1Cμi

is pure of length n. It is well known that Bμ is lexicographically shellable.
Let M(μ) be the multiset in which each i ∈ [k] appears with multiplicity

μi. A multiset permutation of M(μ) is a 2× n array (aij) such that

• the multisets {a1j : j ∈ [n]} and {a2j : j ∈ [n]} are both equal to
M(μ),

• a1,j ≤ a1,j+1 for all j ∈ [n− 1].
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Let w = (aij) be a multiset permutation of M(μ). We say w is multiset
derangement of M(μ) if

• a1j �= a2j , for all j ∈ [n].

We say w is a Smirnov word on M(μ) if

• a2j �= a2,j+1 for all j ∈ [n− 1].

An excedance of w is any j ∈ [n − 1] such that a2j > a1j . A descent of w
is any j ∈ [n − 1] such that a2j > a2,j+1. We write EXC(w) for the set
of excedances of w, DES(w) for the set of descents of w, and des(w) and
exc(w), respectively, for |DES(w)| and |EXC(w)|.

Our main results in Section 5 say that if MDM(μ) and SWM(μ) are,
respectively, the sets of multiset derangements and Smirnov words on M(μ)
then, for all t ∈ P,

(1.6) β(B−
μ ∗ Tt,n−1) =

∑
w∈MDM(μ)

t1+exc(w),

and

(1.7) β((Bμ ∗ Tt,n)
−) =

∑
w∈SWM(μ)

t1+des(w).

When M(μ) is the set [n], equation (1.6) is the q = 1 case of (1.3). Since
des and exc are equidistributed on the symmetric group Sn, equation (1.7)
is the q = 1 case of (1.4).

In Section 6 we revisit the Rees products Bn(q)∗Tt,n that were studied in
[21]. Comparing (1.4) with a formula for rkH̃n−1((Bn(q) ∗ Tt,n)

−) obtained
using the techniques developed herein, we exhibit a permutation statistic
called aid such that the pair (aid, des) is equidistributed on Sn with the
pair (maj, exc).

In Section 7 we aim for p-analogues of the results in Section 5. Given a
weak composition μ = (μ1, . . . , μk) of n, a natural choice for a p-analogue
to the poset Bμ is the lattice Bμ(p) of subgroups of the abelian p-group⊕k

j=1 Z/p
μjZ. We examine Bμ(p)

− ∗ Tt,n−1 and (Bμ(p) ∗ Tt,n)
−. Here our

results are less than optimal. We show that there exist statistics s1, s2 :
Pn → N such that

(1.8) β(Bμ(p)
− ∗ Tt,n−1) =

∑
w∈MDM(μ)

ps1(w)t1+exc(w),
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and

(1.9) β((Bμ(p) ∗ Tt,n)
−) =

∑
w∈SWM(μ)

ps2(w)t1+des(w).

However, we lack natural combinatorial interpretations for s1 and s2.
In Section 8 we consider the lattice NCn of noncrossing partitions of [n],

which is known to be lexicographically shellable. We show that

(1.10) β((NCn+1 ∗ Tt,n)
−) =

1

n+ 1

n−1∑
k=0

(
n− 1

k

) ∑
w∈[n+1]n−k

tdes(w)+k,

and

β(NC−
n+1 ∗ Tt,n−1)

(1.11)

= (−1)n +
1

n+ 1

n−1∑
r=0

(−1)r
(
n+ 1

r

)n−1−r∑
k=0

(
n− 1− r

k

) ∑
w∈[n+1]n−k−r

tdes(w)+k.

Equation (1.10) reduces to a particularly nice enumerative formula when t
is set equal to 1, namely

β((NCn+1 ∗ Cn)
−) = (n+ 2)n−1.

Proofs of the various identities stated above involve symmetric function
formulae for generating functions for words with no double descent, words
with no double ascent, Smirnov words, and multiset derangements, keep-
ing track of descents, ascents, descents and excedances, respectively. The
formula involving Smirnov words follows from work in [21], while the re-
maining formulae are due to Ira Gessel. We give all of these formulae in
Section 4.

Part I.

Lexicographical shellability

2. Edge labelings of Rees products

After reviewing some basic facts from the theory of lexicographic shellability
(cf. [2, 4–6, 28]), we will present our main results on lexicographic shellability
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of Rees products. Let P be a bounded poset, i.e., a poset with a unique
minimum element and a unique maximum element, and let Cov(P ) be the
set of pairs (x, y) ∈ P × P such that y covers x in P . Let L be another
poset and let W be the set of all finite sequences of elements of L. The given
partial ordering of L induces a lexicographic ordering 
 on W , which is also
a partial order. An edge labeling of P by L is a function λ : Cov(P ) → L.
Given such a function λ and a saturated chain C = {x1 < · · · < xm} from
P , we write λ(C) for (λ(x1, x2), . . . , λ(xm−1, xm)) ∈ W . An ascent in C is
any i ∈ [m − 1] satisfying λ(xi, xi+1) ≤ λ(xi+1, xi+2). We say λ is weakly
increasing on C if each i ∈ [m − 1] is an ascent in C. The edge labeling λ
is an EL-labeling of P if whenever x < y in P there is a unique maximal
chain C in the interval [x, y] on which λ is weakly increasing and for all
other maximal chains D in [x, y] we have λ(C) ≺ λ(D). A bounded poset
that admits an EL-labeling is said to be EL-shellable.

The notion of EL-shellability for pure posets was introduced by Björner
in [2]. A more general concept called CL-shellability, introduced by Björner
and Wachs in [4], also associates label sequences with maximal chains of a
poset. We will not define CL-labelings here. Both notions were subsequently
extended to all bounded posets by Björner and Wachs in [6]. All of our
results in this section and the next section hold for CL-labelings as well
as EL-labelings. For the sake of simplicity we state and prove them only for
EL-labelings. The proofs for CL-labelings are virtually the same as those
for EL-labelings.

Given an EL-labeling λ on P , we call a maximal chain C from P ascent-
free if its label sequence contains no ascent. The descent set of a maximal
chain x0 < x1 < · · · < xn is defined to be the set {i ∈ [n− 1] : λ(xi−1, xi) �≤
λ(xi, xi+1)}. Thus a maximal chain is ascent-free if and only if its descent
set is [n− 1].

One of the main results in the theory of lexicographic shellability is the
following result.

Theorem 2.1. (Björner andWachs [6]) Let λ be an EL-labeling of a bounded
poset P with minimum 0̂ and maximum 1̂. Then P \ {0̂, 1̂} is homotopy
equivalent to a wedge of spheres, where for each k ∈ N the number of spheres
of dimension (k−2) is the number of ascent-free maximal chains of length k.

We will also need the following basic result. Given a pure poset P of
length n and a set S ⊆ [0, n], recall that the rank selected subposet is
defined by

PS := {x ∈ P : rP (x) ∈ S}.
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Theorem 2.2. (Björner [2]) Let λ be an EL-labeling of a bounded pure poset

P of length n. For S ⊆ [n− 1], let c(S) be the number of maximal chains in

P having descent set S with respect to λ. Then PS has the homotopy type of

a wedge of c(S) spheres of dimension |S| − 1.

Given a poset P , by P̂ we mean the poset P with a new minimum

element 0̂ and a new maximum element 1̂ attached even if P already has

such elements. Given a poset P with a minimum element 0̂, we say that

an edge labeling λ : Cov(P ) → L is a semi-EL-labeling if [0̂,m] is an EL-

labeling for each maximal element m of P . Note if P is bounded then λ is a

semi-EL-labeling if and only if it is an EL-labeling. Recall that we defined

Tt,n to be the poset whose Hasse diagram is the complete t-ary tree of height

n with the root at the bottom. The edge labeling in which all the edges in

Cov(Tt,n) are labeled with 1 is clearly a semi-EL-labeling of Tt,n.

Theorem 2.3. Let P1 and P2 be semipure posets of the same length. Assume

also that P2 has a minimum element 0̂2. Let λ1 : Cov(P̂1) → L1 be an EL-

labeling of P̂1 and let λ2 : Cov(P2) → L2 be a semi-EL-labeling of P2. Let 0̂1
denote the minimum element of P̂1 and let 1̂1 denote the maximum element.

Let (0̂1, 0̂2) denote the minimum element of P̂1 ∗ P2 and let 1̂ denote the

maximum element. Define the edge labeling

λ : Cov(P̂1 ∗ P2) → L1 × (L2 � {0̂L2
})

by

λ((x, k), (y, l)) =

{
(λ1(x, y), λ2(k, l)) if k <P2

l

(λ1(x, y), 0̂L2
) if k = l

for (y, l) < 1̂, and

λ((x, k), 1̂) = (λ1(x, 1̂1), 0̂L2
).

Then λ is an EL-labeling of P̂1 ∗ P2.

Proof. Case 1: (x, k) < (y, l) < 1̂ in P̂1 ∗ P2. Then x < y in P̂1 and k ≤ l in

P2. It follows that there is a unique maximal chain {x = u0 < · · · < um =

y} in [x, y] on which λ1 is weakly increasing and a unique maximal chain

{k = c0 < · · · < cr(l)−r(k) = l} in [k, l] on which λ2 is weakly increasing. Let

ei =

{
k for 0 ≤ i ≤ m+ r(k)− r(l)

ci−m−r(k)+r(l) for m+ r(k)− r(l) < i ≤ m.
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The labeling λ is weakly increasing on the maximal chain

C := {(u0, e0) < (u1, e1) < · · · < (um, em)},

of the interval I := [(x, k), (y, l)].
To establish uniqueness of the maximal chain with weakly increasing

labels, suppose that λ is weakly increasing on the maximal chain D =
{(v0, f0) < · · · < (vm, fm)} in the interval I. Then λ1 is weakly increasing
on the chain {v0 < · · · < vm}, which implies that vi = ui for all 0 ≤ i ≤ m.
Moreover, if λ(D) = ((a1, d1), . . . , (am, dm)) then we must have di = 0̂L2

for
1 ≤ i ≤ m+ r(k)− r(l) and di ≤ di+1 in L2 for m+ r(k)− r(l) < i ≤ m− 1.
If di = 0̂L2

then fi−1 = fi, and if di ∈ L2 then fi−1 is covered by fi in P2

and di = λ2(fi−1, fi). It follows that if j = m+ r(k)− r(l) then

k = f0 = f1 = · · · = fj

and

{fj < fj+1 < · · · < fm}
is the unique maximal chain of the interval [k, l] in P2 for which λ2 is weakly
increasing. Thererfore fi = ei for all i.

Next we show that the maximal chain C of I has a label sequence that
lexicographically precedes the label sequences of all maximal chains of I.
Let D = {(v0, f0) < · · · < (vm, fm)} be another maximal chain in I. Assume
that (ui, ei) = (vi, fi) for 0 ≤ i < t but (ut, et) �= (vt, ft). We need to
show that

(2.1) λ((ut−1, et−1), (ut, et)) < λ((vt−1, ft−1), (vt, ft))

in L1 × (L2 � {0̂L2
})

First we handle the case in which 1 ≤ t ≤ m + r(k) − r(l). In this case
we have et−1 = et = k, which implies

(2.2) λ((ut−1, et−1), (ut, et)) = (λ1(ut−1, ut), 0̂L2
).

If ut = vt then ft �= et, which implies that ft covers ft−1 = k in P2. Since
λ2(ft−1, ft) > 0̂L2

and

λ((vt−1, ft−1), (vt, ft)) = (λ1(vt−1, vt), λ2(ft−1, ft)),

(2.1) holds. Now assume ut �= vt. We have

(2.3) λ1(ut−1, ut) < λ1(vt−1, vt)
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in L1. Indeed, it is a basic property of EL-labelings that if P is a poset with
EL-labeling λ then for each interval [x, y], if a covers x in the unique maximal
chain of [x, y] with weakly increasing labels and b is an atom of [x, y] other
than a, then λ(x, a) < λ(x, b) (cf. [2, Proposition 2.5], [6, Lemma 5.3]). Since
λ((vt−1, ft−1), (vt, ft)) = (λ1(vt−1, vt), d), for some d ∈ L2 � 0̂L2

, the desired
inequality (2.1) follows from (2.2) and (2.3).

Now assume m + r(k) − r(l) < t ≤ m. In this case ut and vt cover
ut−1 = vt−1 in P̂1, and et and ft cover et−1 = ft−1 in P2. It now follows from
the basic property of EL-labelings mentioned in the previous paragraph that
either (2.3) and λ2(et−1, et) ≤ λ2(ft−1, ft) or λ1(ut−1, ut) ≤ λ1(vt−1, vt) and
λ2(et−1, et) < λ2(ft−1, ft) hold, which yields the desired conclusion (2.1).

Case 2: (x, k) < 1̂ in P̂1 ∗ P2. Then x ≤ 1̂1 in P̂1 and there is a unique
maximal chain {x = u0 < · · · < um < 1̂1} in [x, 1̂1] on which λ1 is weakly
increasing. The labeling λ is weakly increasing on the maximal chain

C := {(u0, k) < · · · < (um, k) < 1̂}

of the interval [(x, k), 1̂]. To establish uniqueness of the maximal chain with
weakly increasing labels, note that the top label of every maximal chain of
[(x, k), 1̂] is of the form (λ1(v, 1̂1), 0̂L2

), where v is a maximal element of
P1. Hence if D = {(v0, f0) < · · · < (vm′ , fm′) < 1̂} is a maximal chain of
[(x, k), 1̂] with weakly increasing labels then

λ(D) = {(a1, 0̂L2
), . . . , (am′+1, 0̂L2

)},

where a1 ≤ · · · ≤ am′+1 in L1. It follows that fi = k for all i = 1, . . . ,m′ and
{v0 < · · · < vm′ < 1̂1} is the unique maximal chain of [x, 1̂1] with weakly
increasing labels. Hence m = m′ and vi = ui for all i = 1, . . . ,m.

Now let D = {(v0, f0) < · · · < (vm′ , fm′) < 1̂} be a maximal chain in
[(x, k), 1̂] that is different from C. We show that the label sequence of C
is lexicographically less than that of D. Assume that (ui, k) = (vi, fi) for
1 ≤ i < t but (ut, k) �= (vt, ft). We need to show that

(2.4) λ((ut−1, k), (ut, k)) < λ((vt−1, ft−1), (vt, ft))

in L1 × (L2 � {0̂L2
}). If ut = vt then ft covers ft−1 = k in P2. We have

λ((ut−1, k), (ut, k)) = (λ1(ut−1, ut), 0̂L2
)

= (λ1(vt−1, vt), 0̂L2
)

< (λ1(vt−1, vt), λ2(ft−1, ft))

= λ((vt−1, ft−1), (vt, ft)).
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If ut �= vt then by the basic property of EL-labelings mentioned above,
λ1(ut−1, ut) < λ1(vt−1, vt). It follows that

λ((ut−1, k), (ut, k)) = (λ1(ut−1, ut), 0̂L2
)

< (λ1(vt−1, vt), λ2(ft−1, ft))

= λ((vt−1, ft−1), (vt, ft)).

3. Ascent-free chains of P ∗ Tt,n

Let P be a semipure poset of length n. Let λP : Cov(P̂ ) → LP be an
EL-labeling of P̂ and let λT be the semi-EL-labeling of Tt,n in which each
edge has label 1. In this section we count the ascent-free maximal chains of

P̂ ∗ Tt,n under the EL-labeling λ : Cov(P̂ ∗ Tt,n) → (LP ×{0 < 1}) described
in Theorem 2.3.

For j = 0, . . . ,m, let Sm,j be the set of sequences (d1, . . . , dm) ∈ {0, 1}m
such that

∑m
i=1 di = j. Given any maximal chain D = {(0̂P , 0̂T ) < (x0, f0) <

· · · < (xm, fm) < 1̂} of P̂ ∗ Tt,n, we have that {x0 < x1 < · · · < xm} is a
maximal chain of P and (r(f1)−r(f0), r(f2)−r(f1), . . . , r(fm)−r(fm−1)) ∈
Sm,j , for some j. Conversely, given any maximal chain C = {x0 < x1 <
· · · < xm} of P and any d ∈ Sm,j , there is a maximal chain D = {(0̂P , 0̂T ) <
(x0, f0) < · · · < (xm, fm) < 1̂} of P̂ ∗ Tt,n such that r(fi)− r(fi−1) = di for

all i ∈ [m]. Let [C, d] be the set of all such maximal chains of P̂ ∗ Tt,n.
The following propositions clearly hold.

Proposition 3.1. The sets [C, d], where C is a maximal chain of P of
length m and d ∈ Sm,j for j = 0, . . . ,m, partition the set of maximal chains

of P̂ ∗ Tt,n. Moreover if d ∈ Sm,j then |[C, d]| = tj.

Proposition 3.2. Let

C := {x0 < · · · < xm}

be a maximal chain of P and let d := (d1, . . . , dm) ∈ {0 < 1}m. Then for
each maximal chain D ∈ [(C, d)] we have

λ(D) = ((λP (0̂P , x0), 0), (λP (x0, x1), d1), . . . ,

(λP (xm−1, xm), dm), (λP (xm, 1̂P ), 0)).

Consequently, D is ascent-free if and only if λP (0̂P , x0) �≤ λP (x0, x1) and

(3.1) ∀i ∈ [m], λP (xi−1, xi) ≤ λP (xi, xi+1) =⇒ di = 1 and di+1 = 0

holds. Here we have set xm+1 := 1̂P and dm+1 := 0.
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Given a word w = w1 · · ·wn over a partially ordered alphabet A, we say

i ∈ [n − 1] is an ascent of w if wi ≤ wi+1 and that i ∈ [n − 2] is a double

ascent if wi ≤ wi+1 ≤ wi+2. Let asc(w) denote the number of ascents of w

and

NDAn(A) := {w ∈ An : w has no double ascents}.

We are now ready to count the ascent-free maximal chains. We begin

with the case in which the semipure poset P has a unique maximum element.

In this case P must necessarily be a pure poset of length n. All maximal

chains of P̂ have length n + 2 and must have an ascent at n + 1 under

the EL-labeling. We leave it to the reader to observe that Propositions 3.1

and 3.2 imply the following result.

Theorem 3.3. If P has a unique maximum element then the number of

ascent-free maximal chains of P̂ ∗ Tt,n of length n+2 under the EL-labeling

of Theorem 2.3 is given by∑
w∈NDAn+1(LP )

w1 �≤w2

wn �≤wn+1

c(w)tasc(w)+1(1 + t)n−1−2asc(w),

where c(w) is the number of maximal chains of P � 0̂P with label sequence w.

In the general case in which it is not assumed that P has a unique

maximum element, we have the following result, which also is a consequence

of Propositions 3.1 and 3.2.

Theorem 3.4. Let m ∈ N. Then the number ascent-free maximal chains of

P̂ ∗ Tt,n of length m+ 2 under the EL-labeling of Theorem 2.3 is given by∑
w∈NDAm+2(LP )

w1 �≤w2

wm+1 �≤wm+2

c(w)tasc(w)(1 + t)m−2asc(w)

+
∑

w∈NDAm+2(LP )
w1 �≤w2

wm+1≤wm+2

c(w)tasc(w)(1 + t)m+1−2asc(w),

where c(w) is the number of maximal chains of P̂ of length m+2 with label

sequence w.



256 Linusson, Shareshian, and Wachs

Note that if P has a unique minimum element then P ∗ Tt,n has unique

minimum element, which implies that P ∗ Tt,n is contractible. Hence the

number of ascent-free maximal chains of P̂ ∗ Tt,n has to be 0. This is cor-

roborated by c(w) = 0 if w1 �≤ w2, which follows from the fact that there

is only one maximal chain in each interval [0̂, a] of P̂ , where a is an atom

of P . Therefore in the case that P has a unique minimum element, it is

more interesting to consider the number of ascent-free chains of the interval

(P ∗Tt,n)
+ of P̂ ∗ Tt,n. The following results also follow from Propositions 3.1

and 3.2.

Theorem 3.5. If P has both a unique minimum element and a unique

maximum element then the number of ascent-free maximal chains of (P ∗
Tt,n)

+ under the EL-labeling of Theorem 2.3 is given by∑
w∈NDAn(LP )

wn−1 �≤wn

c(w)tasc(w)+1(1 + t)n−1−2asc(w),

where c(w) is the number of maximal chains of P with label sequence w.

Theorem 3.6. Let m ∈ N. If P has a unique minimum element then the

number of ascent-free maximal chains of (P ∗ Tt,n)
+ of length m+ 1 under

the EL-labeling of Theorem 2.3 is given by∑
w∈NDAm+1(LP )

wm �≤wm+1

c(w)tasc(w)(1 + t)m−2asc(w)

+
∑

w∈NDAm+1(LP )
wm≤wm+1

c(w)tasc(w)(1 + t)m+1−2asc(w),

where c(w) is the number of maximal chains of P+ of length m+1 with label

sequence w.

For pure P we can restate the above results by applying Theorem 2.2.

We need to recall the following terminology and notation. A set of integers

is stable if it contains no two consecutive integers. For X ⊆ Z, the set of

all stable subsets of X is denoted by Pstab(X). For i ≤ j ∈ N, let [i, j] :=

{i, i+ 1, . . . , j} and [j] := [1, j]. If P is a poset of length n let

β(P ) := rkH̃n(P ).
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If P has a unique minimum element 0̂ let

P− := P \ {0̂}.

Corollary 3.7. Let P be a pure poset of length n such that P̂ is EL-shellable.
Assume that P has a unique maximum element. Then

(3.2) β(P ∗ Tt,n) =
∑

S∈Pstab([n−2])

β(P[0,n−1]\S)t
|S|+1(t+ 1)n−2|S|−1.

If P also has a unique minimum element then

(3.3) β((P ∗ Tt,n)
−) =

∑
S∈Pstab([n−2])

β(P[n−1]\S)t
|S|+1(t+ 1)n−2|S|−1.

Corollary 3.8. Let P be a pure poset of length n such that P̂ is EL-shellable.
Then

β(P ∗ Tt,n)

=
∑

S∈Pstab([n−1])

β(P[0,n]\S)t
|S|(t+ 1)n−2|S|

+
∑

S∈Pstab([n−2])

β(P[0,n−1]\S)t
|S|+1(t+ 1)n−2|S|−1.

If P has a unique minimum element then

β((P ∗ Tt,n)
−)

=
∑

S∈Pstab([n−1])

β(P[n]\S)t
|S|(t+ 1)n−2|S|

+
∑

S∈Pstab([n−2])

β(P[n−1]\S)t
|S|+1(t+ 1)n−2|S|−1.

Part II.
Applications

4. Symmetric function preliminaries

Let hn = hn(x1, x2, . . . ) denote the complete homogenous symmetric func-
tion of degree n in indeterminants x := x1, x2, . . . and en = en(x1, x2, . . . )
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denote the elementary symmetric function of degree n in indeterminants x.

That is

hn(x) :=
∑

1≤ii≤···≤in

xi1 · · ·xin and en(x) :=
∑

1≤ii<···<in

xi1 · · ·xin .

Also let

[n]t := 1 + t+ · · ·+ tn−1.

In this section we will discuss various combinatorial interpretations of vari-

ations of the symmetric function∑
i≥0 hiz

i

1−
∑

i≥2 t[i− 1]thizi
,

which play a key role in the proofs of the results in the subsequent sections.

These and other interpretations are discussed in [20, Section 7].

Let w = w1 · · ·wn ∈ Pn. Recall that we say i ∈ [n− 1] is an ascent of w

if wi ≤ wi+1 and that i ∈ [n − 2] is a double ascent if wi ≤ wi+1 ≤ wi+2.

Recall that asc(w) denotes the number of ascents of w and

NDAn := NDAn(P) = {w ∈ Pn : w has no double ascents}.

Similarly, i ∈ [n−1] is a descent of w if wi > wi+1 and i ∈ [n−2] is a double

descent if wi > wi+1 > wi+2. Let des(w) denote the number of descents of

w and

NDDn := NDDn(P) = {w ∈ Pn : w has no double descents}.

We write xw for xw1
· · ·xwn

.

We begin by presenting the following interpretations due to Gessel, see

Theorem 7.3 of [20]. (Gessel’s original proofs will appear in [11].)

1 +
∑
n≥1

zn
∑

w∈NDAn
w1>w2

wn−1>wn

tasc(w)(1 + t)n−2−2asc(w)xw =
1

1−
∑

i≥2 t[i−1]teizi
,(4.1)

1 +
∑
n≥1

zn
∑

w∈NDAn
wn−1>wn

tasc(w)(1 + t)n−1−2asc(w)xw =

∑
i≥0 eiz

i

1−
∑

i≥2 t[i−1]teizi
,(4.2)
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1 +
∑
n≥1

zn
∑

w∈NDDn

w1≤w2

wn−1≤wn

tdes(w)(1 + t)n−2−2des(w)xw =
1

1−
∑

i≥2 t[i−1]thizi
,(4.3)

1 +
∑
n≥1

zn
∑

w∈NDDn

wn−1≤wn

tdes(w)(1 + t)n−1−2des(w)xw =

∑
i≥0 hiz

i

1−
∑

i≥2 t[i−1]thizi
.(4.4)

Next we present an interpretation due to Shareshian and Wachs [20].

A barred word of length n over alphabet A is an element of (A × {0, 1})n.
We visualize barred words as words over A in which some of the letters are

barred; (a, 1) is a barred letter and (a, 0) is an unbarred letter. If w is a

barred word then |w| denotes the word w with the bars removed. Similarly,

let |a| = |ā| = a. If α is a barred or unbarred letter, we refer to |α| as the

absolute value of α. For a barred word w, let bar(w) denote the number of

barred letters of w. Let Wn be the set of barred words w = w1 · · ·wn of

length n over P satisfying

1. wn is unbarred

2. for all i ∈ [n− 1], if |wi| < |wi+1| then wi is unbarred

3. for all i ∈ [n− 1], if |wi| > |wi+1| then wi is barred.

Elements of Wn are called banners in [20, Section 3], where it is shown that

(4.5) 1 +
∑
n≥1

zn
∑

w∈Wn

tbar(w)x|w| =

∑
i≥0 hiz

i

1−
∑

i≥2 t[i− 1]thizi
.

We will also need an interpretation due to Askey and Ismail [1] and one

due to Stanley (personal communication, see Theorem 7.2 of [20]). Given a

finite multiset M over P, let SM denote the set of multiset permutations of

M . Recall that we can write w ∈ SM in two-line notation as a 2×|M | array
(wi,j) whose top row is a weakly increasing arrangement of the multiset M

and whose bottom row is an arbitrary arrangement of M . By supressing

the top row, we write w in one-line notation as the word, w1 · · ·w|M |, where
wi := w2,i. If w ∈ SM we say that w has length |M |. An excedance of a

multiset permutation w = (wi,j), written in two-line notation, is a column

j such that w1,j < w2,j . Let exc(w) be the number of excedances of w.

Recall that w = (wi,j) ∈ SM is a multiset derangement if each of the

columns of w have distinct entries, i.e., w1,j �= w2,j for all j = 1, . . . , |M |.
For example, if
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w =

[
1 1 1 2 3 3 4
3 2 3 1 4 1 1

]
then w is a multiset derangement in S{13,2,32,4} and exc(w) = 4.

Now let MDn be the set of all multiset derangements of length n. Askey
and Ismail [1] (see also [13]) proved the following t-analog of MacMahon’s
[15, Sec. III, Ch. III] result on multiset derangements

(4.6)
∑
n≥0

zn
∑

w∈MDn

texc(w)xw =
1

1−
∑

i≥2 t[i− 1]teizi
.

Recall from Section 1 that a multiset permutation w = w1 · · ·wn ∈ SM

is called a Smirnov word if it has no adjacent repeats, i.e. wi �= wi+1 for
all i = 1, . . . , n − 1. Let SWn be the set of all Smirnov words of length
n. Stanley (see Theorem 7.2 and (7.7) of [20]) observed that the following
t-analog of a result of Carlitz, Scoville and Vaughan [9]

(4.7)
∑
n≥0

zn
∑

w∈SWn

tdes(w)xw =

∑
i≥0 eiz

i

1−
∑

i≥2 t[i− 1]teizi

is equivalent to (4.5) by P-partition reciprocity [25, Section 4.5].

5. Chain product analog of Bn

In this section we generalize the q = 1 case of (1.3) and (1.4) by utilizing the
results of the previous section. Given a weak composition μ := (μ1, . . . , μk)
of n, let Bμ denote the product of chains Cμ1

× · · · ×Cμk
. Recall that M(μ)

denotes the multiset {1μ1 , . . . , kμk}. Given a multiset M , let MDM be the
set of multiset derangements of the multiset M and let SWM be the set of
Smirnov words that are multiset permutations of M .

Theorem 5.1. Let μ be a composition of n. Then B−
μ ∗Tt,n−1 and (Bμ∗Tt,n)

−

have the homotopy type of a wedge of (n−1)-spheres. The numbers of spheres
in these wedges are, respectively,

(5.1) β(B−
μ ∗ Tt,n−1) =

∑
w∈MDM(μ)

texc(w)+1

and

(5.2) β((Bμ ∗ Tt,n)
−) =

∑
w∈SWM(μ)

tdes(w)+1.
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Proof. We begin by applying Theorem 3.3 to P := B−
μ , which has length

n − 1. Let k = l(μ). There is a well known EL-labeling of Bμ in which the
edge

((x1, . . . , xi, . . . , xk), (x1, . . . , xi + 1, . . . , xk))

is labeled by i. Here LP is the totally ordered set {1 < 2 < · · · < k}.
Hence ̂B−

μ ∗ Tt,n−1 has an EL-labeling as described in Theorem 2.3. The
label sequence of each maximal chain of P � {0̂} = Bμ is a permutation of
the multiset M(μ). Moreover each mulitset permutation occurs exactly once
as the label sequence of a maximal chain. So c(w) = 1 if w ∈ SM(μ) and
c(w) = 0 if w ∈ [k]n −SM(μ). It follows from Theorem 3.3 that the number

of ascent-free maximal chains of ̂B−
μ ∗ Tt,n−1 under the given labeling is∑

w∈NDAn∩SM(μ)

w1>w2
wn−1>wn

tasc(w)+1(1 + t)n−2−2asc(w).

Similarly by Theorems 2.3 and 3.5 with P = Bμ, the poset (Bμ ∗ Tt,n)
+ has

an EL-labeling for which the number of ascent-free maximal chains is∑
w∈NDAn∩SM(μ)

wn−1>wn

tasc(w)+1(1 + t)n−1−2asc(w).

Hence by Theorem 2.1, the posets B−
μ ∗ Tt,n−1 and (Bμ ∗ Tt,n)

− have the
homotopy type of a wedge of (n− 1)-spheres and the top Betti numbers are
given by

β(B−
μ ∗ Tt,n−1) =

∑
w∈NDAn∩SM(μ)

w1>w2
wn−1>wn

tasc(w)+1(1 + t)n−2−2asc(w),

and

β((Bμ ∗ Tt,n)
−) =

∑
w∈NDAn∩SM(μ)

wn−1>wn

tasc(w)+1(1 + t)n−1−2asc(w).

By combining (4.6) and (4.1) we obtain

(5.3)
∑

w∈MDM

texc(w) =
∑

w∈NDAn∩SM
w1>w2

wn−1>wn

tasc(w)(1 + t)n−2−2asc(w),
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and by combining (4.7) and (4.2) we obtain

(5.4)
∑

w∈SWM

tdes(w) =
∑

w∈NDAn∩SM
wn−1>wn

tasc(w)(1 + t)n−1−2asc(w),

for all multisets M on P of size n. Equations (5.1) and (5.2) now follow from

(5.3) and (5.4), respectively.

Remark 5.2. When M = {1n}, equation (5.4) reduces to a result of Foata

and Schützenberger [10], which is used to show that the Eulerian polynomials

are palindromic and unimodal. We see from (5.3) and (5.4), respectively, that

the polynomials
∑

w∈MDM
texc(w) and

∑
w∈SWM

tdes(w) are palindromic and

unimodal for all multisets M .

6. q-analog of Bn

The lattice Bn(q) of subspaces of an n-dimensional vector space over the

finite field Fq is bounded and pure of length n. It is well known that Bn(q)

is EL-shellable (see [28]). Using (3.3) to compute β((Bn(q) ∗ Tt,n)
−) and

equating the resulting formula with the formula given in (1.4), we obtain a

new Mahonian permutation statistic, which we call aid, and we show that

the pairs (aid, des) and (maj, exc) are equidistributed on Sn.

Let σ ∈ Sn. Recall that an inversion of σ is a pair (σ(i), σ(j)) such that

1 ≤ i < j ≤ n and σ(i) > σ(j). An admissible inversion of σ is an inversion

(σ(i), σ(j)) that satisfies either

• 1 < i and σ(i− 1) < σ(i) or

• there is some k such that i < k < j and σ(i) < σ(k).

We write inv(σ) for the number of inversions of σ and ai(σ) for the

number of admissible inversions of σ. For example, if σ = 6431275 then there

are 11 inversions, but only (6, 5) and (7, 5) are admissible. So inv(σ) = 11

and ai(σ) = 2.

Now let

aid(σ) := ai(σ) + des(σ).

It turns out that aid is equidistributed with the Mahonian permutation

statistics inv and maj on Sn. We give a short combinatorial proof of this

in Proposition 6.3 below. First we prove the following more general joint

distribution result.
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Theorem 6.1. For all n ≥ 0,∑
σ∈Sn

qaid(σ)tdes(σ) =
∑
σ∈Sn

qmaj(σ)texc(σ).

Proof. It is well known (see [27, Theorem 3.12.3]) that for all S ⊆ [n− 1],

β(Bn(q)S) =
∑
σ∈Sn

DES(σ)=S

qinv(σ).

Hence by (3.3) we have

β((Bn(q) ∗ Tt,n)
−) =

∑
S∈Pstab([1,n−2])

∑
σ∈Sn

DES(σ)=[1,n−1]\S

qinv(σ)t|S|+1(t+ 1)n−1−2|S|

=
∑

σ∈Sn∩NDAn
σn−1>σn

qinv(σ)tasc(σ)+1(1 + t)n−1−2asc(σ).(6.1)

We will rewrite the expression (6.1) as the enumerator of barred per-
mutations. Given a set X of size n, a barred permutation of X is a word
w1w2 · · ·wn with n distinct letters in X, in which some of the letters are
barred. Let |wi| denote the letter wi with the bar removed if there is one
and let |w| = |w1| · · · |wn| ∈ SX , where SX is the set of ordinary permuta-
tions of X. Let bar(w) denote the number of bars of w. Let WX be the set
of barred permutations w of X satisfying

(A) wn is barred
(B) if i ∈ [n−1] and |wi| < |wi+1| then wi is barred and wi+1 is not barred.

It is not hard to see that the expression (6.1) equals∑
w∈W[n]

qinv(|w|)tbar(w),

which by Lemma 6.2 below equals∑
σ∈Sn

q(
n

2)−ai(σ)tdes(σ)+1.

Hence

(6.2) β((Bn(q) ∗ Tt,n)
−) =

∑
σ∈Sn

q(
n

2)−ai(σ)tdes(σ)+1.

The result now follows from (1.4).
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Given barred permutations α ∈ WA and β ∈ WB, where A and B are

disjoint sets, let α · β denote the barred permutation in WA	B obtained by

concatenating the words α and β. Also let θ denote the empty word. We

define a map

ϕ :
⊎
X⊆P

|X|<∞

WX →
⊎
X⊆P

|X|<∞

SX ,

recursively as follows. If w is in the domain of ϕ and m is the maximum

letter of |w| then

ϕ(w) =

⎧⎪⎨⎪⎩
θ if w = θ

m · ϕ(β) if w = m̄ · β
ϕ(β) ·m · ϕ(α) if w = α ·m · β and β �= θ.

Lemma 6.2. The map ϕ is a well-defined bijection which satisfies

1. ϕ(WX) = SX ,

2. des(ϕ(w)) + 1 = bar(w),

3. ai(ϕ(w)) =
(|X|

2

)
− inv(|w|)

for all finite nonempty subsets X of P and all w ∈ WX .

Proof. By (B) of the definition of WX , if letter m is barred in the word

w ∈ WX then it is the first letter of w. By (A), if m is unbarred it cannot

be the last letter. Hence the three cases of the definition of ϕ cover all

possibilities. It is also clear from the definition of WX that if α ·m ·β ∈ WX

and β �= θ then α ∈ WA and β ∈ WX\(A∪{m}) for some subset A � X.

Hence by induction on |X| we have that ϕ is a well-defined map that takes

elements of WX to SX .

To show that ϕ is a bijection satisfying (1) we construct its inverse.

Define

ψ :
⊎
X⊆P

|X|<∞

SX →
⊎
X⊆P

|X|<∞

WX ,

recursively by

ψ(σ) =

⎧⎪⎨⎪⎩
θ if σ = θ

m̄ · ψ(δ) if σ = m · δ
ψ(δ) ·m · ψ(γ) if σ = γ ·m · δ and γ �= θ,
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where m is the maximum letter of σ. Let γ ·m · δ ∈ SX . One can see that

conditions (A) and (B) of the definition of WX hold for ψ(γ ·m ·δ) whenever
they hold for ψ(γ) and ψ(δ). Hence by induction on |X|, ψ is a well-defined

map. One can easily also show by induction that ϕ and ψ are inverses of

each other.

We also prove (2) by induction on |X|, with the base case |X| = 0 being

trivial. We do the third case of the definition of ϕ and leave the second to

the reader. Let w = α ·m · β ∈ WX with β �= θ. If α �= θ then

bar(w) = bar(α) + bar(β) = des(ϕ(α)) + des(ϕ(β)) + 2,

by the induction hypothesis. Since m is the largest element of X and is not

the last letter of ϕ(w), we have

des(ϕ(w)) = des(ϕ(β)) + 1 + des(ϕ(α)).

Hence (2) holds in this case.

Our proof of (3) proceeds by induction on n = |X|, the case n = 0 being

trivial.

If w = m̄ · β then

ai(ϕ(w)) = ai(m · ϕ(β))
= ai(ϕ(β))

=

(
n− 1

2

)
− inv(|β|)

=

(
n

2

)
− (inv(|β|) + n− 1)

=

(
n

2

)
− inv(|m̄ · β|).

Indeed, the first two equalities follow immediately from the definitions and

the third follows from our inductive hypothesis.

Next, say w = α · m · β with α ∈ WA and β ∈ WB, where |B| > 0.

Set inv(A,B) := |{(a, b) : a ∈ A, b ∈ B, a > b} It follows quickly from the

inductive hypothesis and the definitions that
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ai(ϕ(w)) = ai(ϕ(β) ·m · ϕ(α))
= ai(ϕ(β)) + |A|+ ai(ϕ(α)) + inv(B,A)

=

(
|B|
2

)
− inv(|β|) + n− 1− |B|

+

(
|A|
2

)
− inv(|α|) + |A||B| − inv(A,B).

Now

inv(|α ·m · β|) = inv(|α|) + |B|+ inv(|β|) + inv(A,B)

and a straightforward calculation shows that(
|B|
2

)
+ n− 1 +

(
|A|
2

)
+ |A||B| =

(
n

2

)
.

Hence

ai(ϕ(w)) =

(
n

2

)
− inv(|α ·m · β|)

as desired.

We pose the question of whether there is an enlightening direct bijective

proof of Theorem 6.1. Our proof of Theorem 6.1 relies on (1.4), whose proof,

in turn, relies on a q-analog of Euler’s formula for the Eulerian polynomials

derived by Shareshian and Wachs in [20]. A considerable amount of work in

symmetric function theory and bijective combinatorics went into the proof of

this q-analog of Euler’s formula. Since the steps in deriving Theorem 6.1 from

the q-analog of Euler’s formula are reversible, a nice direct combinatorial

proof of Theorem 6.1 would provide an interesting alternative proof of the

q-analog of Euler’s formula. Here we give a simple combinatorial proof that

aid is Mahonian.

Proposition 6.3. Let Fn(q) =
∑

σ∈Sn
qaid(σ). Then Fn(q) satisfies the fol-

lowing recurrence for all n ≥ 2,

Fn(q) := (1 + q)Fn−1(q) +

n−1∑
j=2

[
n− 1
j − 1

]
q

qjFj−1(q)Fn−j(q).

Consequently Fn(q) = [n]q!.
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Proof. The terms on the right side of the recurrence q-count permutations
according to the position of n in the permutation. That is for each j,

∑
σ∈Sn

σ(n−j+1)=n

qaid(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
n− 1

j − 1

]
q

qjFj−1(q)Fn−j(q) if j = 2, . . . , n− 1

Fn−1(q) if j = 1

qFn−1(q) if j = n.

It is easy to see that [n]q! also satisfies the same recurrence relation.

A more natural Mahonian permutation statistic whose joint distribution
with des is the same as that of aid is discussed in [22, 23]. This statistic is
a member of a family of Mahonian statistics introduced by Rawlings [18].

7. p-analog of chain product analog of Bn

Given a prime p and a weak composition μ := (μ1, . . . , μk) of n, let Bμ(p)
denote the lattice of subgroups of the abelian p-group Z/pμ1Z×· · ·×Z/pμkZ.
The poset Bμ(p) is a natural p-analog of Bμ. It is pure and bounded of length
n. Moreover, it provides the following p-analog of Theorem 5.1.

Theorem 7.1. Let μ be a weak composition of n and let p be a prime. Then
Bμ(p)

− ∗ Tt,n−1 and (Bμ(p) ∗ Tt,n)
− have the homotopy type of a wedge of

(n− 1)-spheres. The numbers of spheres in these wedges are, respectively,

(7.1) β(Bμ(p)
− ∗ Tt,n−1) =

∑
w∈MDM(μ)

ps1(w)texc(w)+1

and

(7.2) β((Bμ(p) ∗ Tt,n)
−) =

∑
w∈SWM(μ)

ps2(w)tdes(w)+1,

where s1, s2 : Pn → N are statistics on words over P.

Proof. It is well known that Bμ(p) is EL-shellable. Hence by Theorem 2.3,
Bn(q)

− ∗ Tt,n−1 and (Bn(q) ∗ Tt,n)
− are EL-shellable. It is also known (see

[8, (1.30)]) that for all S ⊆ [n− 1],

β(Bμ(p)S) =
∑

w∈SM(μ)

DES(w)=S

pcocharge(w),
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where cocharge is a statistic on words introduced by Lascoux and Schützen-
berger for the purpose of showing that the Kostka polynomials have nonneg-
ative integer coefficients. (We will not need the precise definition of cocharge
here.)

Now by (3.2) we have

β(Bμ(p)
− ∗ Tt,n−1)

=
∑

S∈Pstab([2,n−2])

∑
w∈SM(μ)

DES(w)=[1,n−1]\S

pcocharge(w)t|S|+1(t+ 1)n−2−2|S|.

Hence

(7.3) β(Bμ(p)
− ∗ Tt,n−1) =

n∑
i=1

fi(p)t
i,

where fi(p) ∈ N[p]. By (5.3),

fi(1) = |{w ∈ MDM(μ) : exc(w) = i− 1}|.

Since fi(1) is the sum of the coefficients of fi(p), we can assign a nonnegative
integer s1(w) to each word w in MDM(μ) so that

fi(p) =
∑

w∈MDM(μ)

exc(w)=i−1

ps1(w).

By plugging this into (7.3), we obtain the desired result (7.1).
The proof of (7.2) follows along the lines of that of (7.1) with (3.3) and

(5.4) used instead of (3.2) and (5.3).

Problem. It would be interesting to find nice combinatorial descriptions
of the coefficients of the polynomials β(Bμ(p)

− ∗ Tt,n−1) and β((Bμ(p) ∗
Tt,n)

−). That is, find natural statistics s1 and s2 for which (7.1) and (7.2)
hold. When w ∈ SM(1n), we see from (1.3) that s1(w) can be defined to be(
n
2

)
−maj(w) + exc and from (6.2) that s2(w) can be defined to be

(
n
2

)
− ai.

8. The noncrossing partition lattice

A set partition π is said to be noncrossing if for all a < b < c < d, whenever
a, c are in a block B of π and b, d are in a block B′ of π then B = B′. Let NCn
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be the poset of noncrossing partitions of [n] ordered by reverse refinement.
This poset, known as the noncrossing partition lattice, was first introduced
by Kreweras [14], who showed that it is a pure lattice with Möbius invariant
equal to the signed Catalan number (−1)n−1 1

n

(
2n−2
n−1

)
. Björner and Edelman

(cf. [2]) gave the first EL labeling of NCn and later Stanley [26] gave a
different EL-labeling in which the maximal chains are labeled with parking
functions.

A word w ∈ Pn is said to be a parking function of length n if its weakly
increasing rearrangement u satisfies ui ≤ i for all i ∈ [n]. Let PFn be the set
of parking functions of length n. Recall that for w = w1, . . . , wn ∈ Pn,

DES(w) := {i ∈ [n− 1] : wi > wi+1} and des(w) := |DES(w)|.

Stanley uses his EL-labeling to prove that for all S ⊆ [n− 1],

(8.1) β((NCn+1)[n−1]\S) = |{w ∈ PFn : DES(w) = S}|.

Theorem 8.1. For all n, t ∈ P, the posets (NCn+1∗Tt,n)
− and NC−

n+1∗Tt,n−1

have the homotopy type of a wedge of (n−1)-spheres. The numbers of spheres
in these wedges are, respectively,

(8.2) β((NCn+1 ∗ Tt,n)
−) =

1

n+ 1

n−1∑
k=0

(
n− 1

k

) ∑
w∈[n+1]n−k

tdes(w)+k

and

β(NC−
n+1 ∗ Tt,n−1)

(8.3)

= (−1)n +
1

n+ 1

n−1∑
r=0

(−1)r
(
n+ 1

r

)n−1−r∑
k=0

(
n− 1− r

k

) ∑
w∈[n+1]n−k−r

tdes(w)+k.

By a straightforward computation involving the binomial theorem, The-
orem 8.1 reduces to the following result when t = 1.

Corollary 8.2. For all n ∈ P, the posets (NCn+1 ∗Cn)
− and NC−

n+1 ∗Cn−1

have the homotopy type of a wedge of (n−1)-spheres. The numbers of spheres
in these wedges are, respectively,

β((NCn+1 ∗ Cn)
−) = (n+ 2)n−1
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and

β(NC−
n+1 ∗ Cn−1) =

(n+ 1)n+1 + (−1)n(n+ 3)

(n+ 2)2

Proof of Theorem 8.1. Since NCn+1 is EL-shellable it follows from Theo-

rem 2.3 that NC−
n+1 ∗ Tt,n−1 and (NCn+1 ∗ Tt,n)

− have the homotopy type

of a wedge of (n− 1)-spheres.

Proof of (8.2). By substituting (8.1) into (3.3) we obtain

β((NCn+1 ∗ Tt,n)
−)(8.4)

=
∑

S∈Pstab([1,n−2])

|{w ∈ PFn : DES(w) = S}|t|S|+1(t+ 1)n−2|S|−1

=
∑

w∈PFn∩NDDn

wn−1≤wn

tdes(w)+1(t+ 1)n−2des(w)−1.

Let WCompn,k be the set of all weak compositions of n into k parts. It

is straightforward to show that w ∈ PFn if and only if w ∈ SM(μ) for some

μ ∈ WCompn,n such that
∑j

i=1 μi ≥ j for all j = 1, . . . , n. We will call a

weak composition of n into n parts that satisfies this condition a parking

composition of n, and let PCn be the set of all parking compositions of n. It

now follows from (8.4) that

(8.5) β((NCn+1 ∗Tt,n)
−) =

∑
μ∈PCn

∑
w∈SM(μ)∩NDDn

wn−1≤wn

tdes(w)+1(t+1)n−2des(w)−1.

Note that every parking composition μ of n can be viewed as an element

of WCompn,n+1 by adjoining a 0 to the end of μ. For μ, μ′ ∈ WCompn,n+1,

we say that μ and μ′ are cyclically equivalent if μ′ can be obtained by

cyclically rotating the parts of μ. Since all elements of WCompn,n+1 are

primitive words, i.e., they are not equal to a power of a shorter word, the

equivalence classes of WCompn,n+1 under cyclic equivalence all have size

equal to n + 1. Moreover, each equivalence class has exactly one parking

composition μ, i.e. μ = (μ1, . . . , μn, 0) where (μ1, . . . , μn) ∈ PCn.

Given a weak composition μ of n, let

Fμ :=
∑

w∈SM(μ)∩NDDn

wn−1≤wn

tdes(w)+1(t+ 1)n−2des(w)−1
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and let

xμ := xμ1

1 · · ·xμk

k ,

for μ = (μ1, . . . , μk). It follows from (4.4) that
∑

μ∈WCompn,n+1
Fμx

μ, is a

polynomial in t whose coefficients are symmetric polynomials in the variables
x1, . . . , xn+1. Hence

Fμ = Fμ′

whenever μ′ is a rearrangement of μ; so Fμ is constant on cyclic equivalence
classes of WCompn,n+1. We can therefore choose a representative of each
cyclic equivalence class of WCompn,n+1 to compute the sum of Fμ over the
weak compositions μ in WCompn,n+1. By letting the parking compositions
be the chosen representatives, we arrive at∑

μ∈WCompn,n+1

Fμ = (n+ 1)
∑

μ∈PCn

Fμ.

It now follows from (8.5) that

(8.6) β((NCn+1 ∗ Tt,n)
−) =

1

n+ 1

∑
μ∈WCompn,n+1

Fμ.

By combining (4.4) and (4.5) we have that for all m,n ∈ P and μ ∈
WCompn,m,

Fμ =
∑

w∈Wn

|w|∈SM(μ)

tbar(w),

which implies that

(8.7)
∑

μ∈WCompn,m

Fμ =
∑

w∈Wn

|w|∈[m]n

tbar(w).

We claim that for all m and n,

(8.8)
∑

w∈Wn

|w|∈[m]n

tbar(w) =

n−1∑
k=0

(
n− 1

k

)
tk

∑
u∈[m]n−k

tdes(u).

To prove this claim first note that there are two types of barred letters in
w ∈ Wn. The type I barred letters are those that are followed by a letter
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equal to it in absolute value and the type II barred letters are those that are

followed by a letter that is smaller than it in absolute value. The summand

on the right side of the equation enumerates banners that have exactly k

barred letters of the first type. To obtain such a banner first choose the k

positions from the first n− 1 positions in which the type I barred letters are

to appear and leave them blank, then fill in the remaining n − k positions

with an arbitrary word u in [m]n−k, then fill in the k barred positions that

were left blank from right to left so that the letter equals its successor in

absolute value, and finally put bars over the descent positions of the resulting

word, the number of which is clearly equal to des(u).

By combining (8.7) and (8.8) we obtain

(8.9)
∑

μ∈WCompn,m

Fμ =

n−1∑
k=0

(
n− 1

k

)
tk

∑
w∈[m]n−k

tdes(w).

Now set m = n + 1 and plug this equation into (8.6) to obtain the desired

result (8.2).

Proof of (8.3). It follows from (8.1) and (3.2) that

β(NC−
n+1 ∗ Tt,n−1) =

∑
μ∈PCn

Gμ,

where

Gμ :=
∑

w∈SM(μ)∩NDDn

wn−1≤wn

w1≤w2

tdes(w)+1(t+ 1)n−2des(w)−2.

Using a similar argument to that which was used to derive (8.6) (with (4.3)

now playing the role of (4.4)) we obtain

(8.10) β(NC−
n+1 ∗ Tt,n−1) =

1

n+ 1

∑
μ∈WCompn,n+1

Gμ.

For n ≥ 1, let

Fn :=
∑

w∈NDDn

wn−1≤wn

tdes(w)(1 + t)n−1−2des(w)xw
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and

Gn :=
∑

w∈NDDn

w1≤w2

wn−1≤wn

tdes(w)(1 + t)n−2−2des(w)xw.

Also let F0 = G0 = 1. By (4.4) and (4.3) we have∑
n≥0

Fnz
n =

∑
n≥0

Gnz
n
∑
n≥0

hnz
n.

Hence ∑
n≥0

Gnz
n =

∑
n≥0

Fnz
n
∑
n≥0

(−1)ienz
n.

Equating coefficients of zn yields

Gn =

n∑
r=0

(−1)rerFn−r.(8.11)

By applying to (8.11), the specialization that sets

xi =

{
1 if i ∈ [n+ 1]

0 otherwise,

we obtain

∑
μ∈WCompn,n+1

Gμ = (−1)n(n+ 1) +

n−1∑
r=0

(−1)r
(
n+ 1

r

) ∑
μ∈WCompn−r,n+1

Fμ.

By plugging (8.9) into this equation we obtain

∑
μ∈WCompn,n+1

Gμ = (−1)n(n+ 1) +

n−1∑
r=0

(−1)r
(
n+ 1

r

) n−r−1∑
k=0

(
n− r − 1

k

)
tk

×
∑

w∈[n+1]n−r−k

tdes(w).

The desired result (8.3) follows from this and (8.10).
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