
Extended Abstract

HOMOLOGY OF MATCHING AND CHESSBOARD COMPLEXES

JOHN SHARESHIAN1 AND MICHELLE WACHS2

Abstract. We study the topology of matching and chessboard complexes. Our main results are
as follows.

1. We prove conjectures of A. Björner, L. Lovász, S. T. Vrećica, and R. T. Živaljević on the
connectivity of these complexes.

2. We show that for almost all n, the first nontrivial homology group of the matching complex
on n vertices has exponent three.

3. We prove similar but weaker results on the exponent of the first nontrivial homology group
of the m-by-n chessboard complex for all pairs m < n for which m is sufficiently large and
n−m is sufficiently small.

4. We give a basis for the top homology group of the m-by-n chessboard complex.
5. We prove that a certain skeleton of the matching complex is shellable. This result answers a

question of Björner, Lovász, Vrećica, and Živaljević and is analogous to a result of G. Ziegler
on chessboard complexes.

A matching on vertex set V is a graph in which each vertex is contained in at most one edge.
If G = (V,E) is a graph then the collection of all subgraphs (V,E′) of G which are matchings
determines a simplicial complex M(G), as follows. The vertices of M(G) are (in correspondence
with) the edges of G, and the k-dimensional faces of M(G) are the subgraphs of G which are
matchings with k + 1 edges. If G is the complete graph on vertex set [n] := {1, 2, . . . , n} for some
positive integer n then we write Mn for M(G). Similarly, if G is the complete bipartite graph with
parts [m] and [n]′ := {1′, 2′, . . . , n′} for positive integers m,n then we write Mm,n for M(G).

The complexes Mn are called matching complexes. Topological properties of these complexes
were first examined by S. Bouc in [Bo], in connection with the Quillen complexes at the prime 2
for the symmetric groups Sn. One of Bouc’s main results shows that the homology of Mn with
complex coefficients behaves quite nicely. Note that the natural action of Sn determines an action
of Sn on Mn, which in turn determines a representation of Sn on each reduced homology group
of Mn. As is well known, the irreducible complex representations of Sn are indexed by partitions
of n. For a partition λ, let Sλ be the irreducible representation corresponding to λ, let λ′ be the
partition conjugate to λ and let d(λ) be the sidelength of the largest square which fits inside the
Young diagram of λ (see [MacD],[Sa] or [St, Chapter 7] for definitions). Bouc’s result is as follows.

Theorem 1 ([Bo, Proposition 5]). For all i ≥ 1 and all n ≥ 2, there is an isomorphism

H̃i−1(Mn,C) ∼=
⊕

λ : λ ` n,
λ = λ′,

d(λ) = n− 2i

Sλ

of Sn-modules.

Theorem 1 has been rediscovered more than once. In fact, a result equivalent to this theorem
(see [KRW]) was proved in an earlier paper ([JoWe]) of T. Jósefiak and J. Weyman, who used their
result to provide a representation-theoretic interpretation for the identity∏

i<j

(1− xixj)
∏
i

(1− xi) =
∑
λ=λ′

(−1)
|λ|+d(λ)

2 sλ,
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where sλ is the Schur function associated with λ. (This identity was originally due to D. E. Little-
wood). In [Si], S. Sigg proves the same result as Jósefiak and Weyman in order to determine the
homology of some nilpotent Lie algebras, and in [ReRo], V. Reiner and J. Roberts prove a gener-
alization of Theorem 1 during their investigation of free resolutions of certain modules over certain
quotients of polynomial rings. In [DW], X. Dong and M.L. Wachs show that discrete Hodge theory
can be used to obtain an elegant proof of Theorem 1.

Matching complexes are also studied by A. Björner, L. Lovász, S. Vrećica, and R. Živaljević
in [BLVZ]. Both [BLVZ] and [Bo] contain the following result on the connectivity of matching
complexes. Recall that a topological space T is called k-connected if for 0 ≤ i ≤ k every continuous
map from the i-sphere to T can be extended to a continuous map from the (i+1)-ball to T . The next
theorem is a special case of [BLVZ, Theorem 4.1] and also follows immediately from [Bo, Lemme 2,
Proposition 2 and Proposition 6].

Theorem 2. For a positive integer n, set

ν(n) := bn+ 1
3
c.

Then Mn is (ν(n)− 2)-connected.

In [BLVZ] it is conjectured that this result is the best one possible.

Conjecture 3 ([BLVZ]). If n > 2 then Mn is not (ν(n)− 1)-connected.

It is known (see for example [Bj, 9.16]) that for k ≥ 1 a complex ∆ is k-connected if and only if
∆ is simply connected and H̃i(∆,Z) = 0 for all i ≤ k. So, to prove Conjecture 3 it suffices to show
that

H̃ν(n)−1(Mn,Z) 6= 0(1)

for all n > 2. Note that by Theorem 1, if H̃ν(n)−1(Mn,C) 6= 0 then there is some partition λ of n
such that

n− 2ν(n) = d(λ) ≤
√
n.(2)

It is easy to see that n− 2ν(n) >
√
n whenever n ≥ 12. In fact, Condition (2) is satisfied if and only

if n ∈ {3, 4, 5, 6, 8, 9, 11}. So, if Conjecture 3 is true then H̃ν(n)−1(Mn,Z) is a nontrivial finite group
for all remaining n > 2. Most of the work necessary to prove Conjecture 3 is done in [Bo], where
the following results appear. From now on we write H̃k(Mn) for H̃k(Mn,Z).

Proposition 4 ([Bo, Proposition 7]). If k ≥ 1 then H̃k(M3k+4) ∼= Z3.

Proposition 5 ([Bo, Proposition 8]). If k ≥ 3 then H̃k(M3k+3) is a nontrivial 3-group of exponent
at most 9.

To prove Propositions 4 and 5, Bouc first shows that there is a long exact sequence

· · · δ→
⊕
a,h

H̃t−1(Mn−3)
φ→ H̃t(Mn)

ψ→
⊕
i,j

H̃t−2(Mn−4) δ→

⊕
a,h

H̃t−2(Mn−3)
φ→ Ht−1(Mn)

ψ→ · · · ,

where a ranges over the set {1, 2} and h, i, j range over the set {3, . . . , n} with i 6= j. For n ≡
0, 1 mod 3 the long exact sequence ends with⊕

a,h

H̃ν(n−3)−1(Mn−3)
φ→ Hν(n)−1(Mn)→0.(3)

Bouc uses the surjection φ and induction to obtain Propositions 4 and 5. His calculation H̃2(M7) ∼=
Z3 ([Bo, Proposition 3]) provides the base step of the induction.
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For n ≡ 2 mod 3, Bouc’s long exact sequence ends with⊕
a,h

H̃ν(n−3)−1(Mn−3)
φ→ H̃ν(n)−1(Mn)

ψ→
⊕
i,j

H̃ν(n−4)−1(Mn−4)→0(4)

It is straightforward to use this to prove the following result.

Proposition 6. H̃k(M3k+2) 6= 0 for all k ∈ N.

Conjecture 3 follows. With more work, we use Bouc’s long exact sequence to obtain the following
result.

Theorem 7. 1. If n ∈ {3, 4, 5, 6, 8} then H̃ν(n)−1(Mn) is nontrivial and free.
2. If n ∈ {9, 11} then H̃ν(n)−1(Mn) is the direct sum of a nontrivial free group and a nontrivial

group of exponent 3.
3. If n ≥ 15 or n ∈ {7, 10, 12, 13} then H̃ν(n)−1(Mn) has exponent 3.

Note that the case n = 14 is not covered in Theorem 7. Of course we know that H̃4(M14) is
a nontrivial finite group by Theorem 1 and Proposition 6, but we do not know that this group
has exponent 3. For n ≤ 13, the entire homology H̃∗(Mn) has been determined, using a computer
program first developed by F. Heckenbach and later updated by J.-G. Dumas, Heckenbach, D.
Saunders and V. Welker. The results for n ≤ 12 appear in [BBLSW]. The main points of Theorem 7
are the improvement of Bouc’s exponent result from Proposition 5 and the fact that H̃k(M3k+2) has
exponent 3 for k ≥ 5. The improvement of Bouc’s Proposition 5 is a consequence of the computer
calculation

H̃3(M12) ∼= Z56
3 ,

which provides a base step for an induction proof whose induction step is provided by the surjection
φ in (3).

The key idea in the proof of the exponent result for n ≡ 2 mod 3 is to show that the group⊕
i,j H̃ν(n−4)−1(Mn−4) is generated by elements whose preimages under ψ of (4) have the form

α ∗ β, where α is a cycle in H̃ν(5)−1(MA), for some subset A ⊆ [n] of cardinality 5, β is a cycle in
H̃ν(n−5)−1(M[n]\A) and ∗ is the operation associated with concatenating oriented simplices. This
enables us to prove by induction that H̃ν(n)−1(Mn) is generated by cycles of the form α ∗ β, where
α and β are as above. Since 3(α ∗ β) = α ∗ 3β, if H̃ν(n−5)−1(Mn−5) has exponent 3 then so does
H̃ν(n)−1(Mn). Hence H̃ν(n)−1(Mn) has exponent 3 for n ≥ 17. Since H̃2(M9) has a nontrivial free
part, we cannot say anything about the exponent of H̃4(M14).

Not much is known about the order of the finite groups H̃ν(n)−1(Mn) when n ≥ 14. We are able
however to derive the following bounds. For all n ≥ 2, let rn be the rank (i.e., minimum number of
generators) of H̃ν(n)−1(Mn).

Theorem 8. Let n ≥ 9.
1. If n ≡ 0 mod 3 then n− 1 ≤ rn ≤ 2(n− 2)rn−3.
2. If n ≡ 2 mod 3 then (n− 1)(n− 3)− 1 ≤ rn ≤ (n− 2)(n− 3) + 2(n− 2)rn−3.

The lower bound on rn in the case that n ≡ 0 mod 3, was obtained by Bouc [Bo]. We extend
his technique to obtain the lower bound for the other case. The upper bounds are derived from the
exact sequences (3) and (4).

We turn now to the chessboard complexes Mm,n. The name “chessboard complex” comes from the
fact that Mm,n is isomorphic to the complex of all collections S of squares on an m× n chessboard
such that if a rook is placed on each square in S, none of these rooks threatens any other. These
complexes were first studied by P. Garst in [Ga], as coset complexes for collections of point stabilizers
in symmetric groups. They also appear in the work of S. Vrećica and R. Živaljević on combinatorial
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geometry ([VrZi]) and the commutative algebra work ([ReRo]) of Reiner and Roberts mentioned
above. The connectivity properties of Mm,n are investigated in [BLVZ], where the following theorem
appears.

Theorem 9 ([BLVZ, Theorem 1.1]). For m,n ∈ N with m ≤ n, define

ν(m,n) := min
{
m, bm+ n+ 1

3
c
}
.

Then the chessboard complex Mm,n is (ν(m,n)− 2)-connected.

Again, it was conjectured in [BLVZ] that this result is the best one possible.

Conjecture 10 ([BLVZ, Conjecture 1.5]). For all m ≤ n, the complex Mm,n is not (ν(m,n) − 1)-
connected.

The complex homology of Mm,n was determined by J. Friedman and P. Hanlon in [FrHa]. Note
that the group Sm × Sn acts on Mm,n, making the complex homology groups of Mm,n modules for
Sm × Sn. Friedman and Hanlon give a description of the decomposition of each H̃i(Mm,n,C) into
irreducible Sm × Sn-modules. This description is similar to that given for the matching complex in
Theorem 1, although somewhat more complicated. A consequence of this description is the following
result.

Theorem 11 ([FrHa, Theorem 7]). We have

H̃ν(m,n)−1(Mm,n,C) 6= 0

if and only if n ≥ 2m− 4 or (m,n) ∈ {(6, 6), (7, 7), (8, 9)}.

It follows that if Conjecture 10 is true, the group H̃ν(m,n)−1(Mm,n,Z) will be nontrivial but finite
for all pairs (m,n) which do not satisfy one of the conditions given in Theorem 11. We have proved
Conjecture 10 and obtained some information on torsion similar to that given in Theorems 7 and 8.
As above, we suppress the symbol Z from our notation for integral homology.

Theorem 12. Let m,n ∈ N with m ≤ n.

1. For all such m,n we have H̃ν(m,n)−1(Mm,n) 6= 0.
2. If m+ n ≡ 1 mod 3 and 5 ≤ n ≤ 2m− 5 then

H̃ν(m,n)−1(Mm,n) ∼= Z3.

3. If m + n ≡ 0 mod 3 and 9 ≤ n ≤ 2m − 9 then H̃ν(m,n)−1(Mm,n) is a 3-group of exponent at
most 9. Also, the rank rm,n of H̃ν(m,n)−1(Mm,n) satisfies

n ≤ rm,n ≤ (m− 1)rm−2,n−1 + (n− 1)rn−1,m−2.

4. If m+ n ≡ 2 mod 3 and 13 ≤ n ≤ 2m− 13 then H̃ν(m,n)−1(Mm,n) is a 3-group of exponent at
most 9. Also, the rank rm,n of H̃ν(m,n)−1(Mm,n) satisfies

n(n− 1)− 1 ≤ rm,n ≤ (m− 1)(n− 1) + (m− 1)rm−2,n−1 + (n− 1)rn−1,m−2.

We conjecture that the exponent of H̃v(m,n)−1(Mm,n) is in fact 3 when the pair (m,n) satisfies
the conditions of Theorem 12. We prove that in order to establish this conjecture one needs only
verify it for m = n = 9. However the software of Dumas, Heckenbach, Saunders and Welker is not
yet able to produce results for these values.

It is natural to ask whether H̃ν(m,n)−1(Mm,n) is a 3-group whenever (m,n) does not satisfy
the conditions of Theorem 11. However, computations performed by Dumas using the software of
Dumas, Heckenbach, Saunders and Welker indicate that H̃4(M7,8) contains 2-torsion.
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The proof of Theorem 12 uses an adaptation of Bouc’s long exact sequence. Namely, there is a
long exact sequence

· · · δ→
⊕
a

H̃t−1(Mm−2,n−1)⊕
⊕
a′

H̃t−1(Mm−1,n−2)
φ→ H̃t(Mm,n)

ψ→

⊕
a,a′

H̃t−2(Mm−2,n−2) δ→
⊕
a

H̃t−2(Mm−2,n−1)⊕
⊕
a′

H̃t−2(Mm−1,n−2)
φ→ · · · ,

where a runs through {2, . . . ,m} and a′ runs through {2′, . . . , n′}. However, it is not as easy to
exploit this sequence in proving Theorem 12 as it was to use the original sequence of Bouc when
proving Theorem 7. In fact, it is necessary to understand the top homology H̃m−1(Mm,n) for certain
pairs (m,n) in order to proceed with the induction process used in our proof. Indeed, we use the
long exact sequence to show that H̃ν(m,n)−1(Mm,n) is generated by elements of the form α ∗ β,
where α is an element in the top homology of some chessboard complex MI,J , I ⊆ [m], J ⊆ [n]′, β
is an element in the homology of M[m]\I,[n]′\J and ∗ is the operation associated with concatenating
oriented simplices. We then need to decompose α into “smaller” cycles in order to apply induction.
This is accomplished by constructing a basis for the top homology of the chessboard complex.

Our construction of a basis for the top homology and cohomology of Mm,n for all pairs (m,n) is
based on the Robinson-Schensted correspondence. It follows from Friedman and Hanlon’s decompo-
sition of the homology of Mm,n into irreducible Sm×Sn-modules that the rank of the top homology
of the chessboard complex Mm,n is the number of pairs of standard Young tableaux (S, T ) such that
S has m cells, T has n cells and the Young diagram underlying S is obtained from that underlying
T by removing the first row. Let Pm,n be the set of such pairs of standard tableau. We construct
for each (S, T ) ∈ Pm,n, an element ρ(S, T ) ∈ H̃m−1(Mm,n) and an element γ(S, T ) ∈ H̃m−1(Mm,n),
and show that these elements form bases for homology and cohomology, respectively.

Let (S, T ) ∈ Pm,n. First add a cell with entry∞ to the bottom of each of the first n−m columns
of S (possibly including some empty columns) to obtain a semistandard tableau S∗ of the same
shape as T . (Here ∞ represents a number larger than m.) The inverse of the Robinson-Schensted
bijection applied to (S∗, T ) produces a permutation σ of the multiset {1, 2, . . . ,m,∞n−m}. The
multiset permutation σ corresponds naturally to the oriented simplex (ie. matching) of Mm,n given
by

((σ(i1), i1), (σ(i2), i2), . . . , (σ(im), im)) ,
where σ(i1)σ(i2) · · ·σ(im) is the subword of σ obtained by removing the ∞’s. This oriented simplex
is clearly a cocycle since it is in the top dimension. Let γ(S, T ) be the coset of the coboundary group
Bm−1(Mm,n) that contains this oriented simplex.

The construction of the cycles is a bit more involved. Recall that in the inverse Robinson-
Schensted procedure, an entry “pops” from a cell in the top row of the left tableau when an entry
is “crossed out” of the right tableau. For each top cell, we must keep track of the entries of S∗ that
are popped and the corresponding entries of T that are crossed out. For each i = 1, 2, . . . , n −m
let A∗i be the multiset of entries that are popped from the ith cell of the top row of S∗ and let Bi
be the corresponding set of entries that are crossed out of T . One can easily see that A∗i is actually
a set and ∞ ∈ A∗i for all i. Now let Ai = A∗i \ {∞}. So |Ai| = |Bi| − 1. It is easily observed that
Mm,n is an orientable pseudomanifold whenever m = n − 1 which implies that its top homology is
cyclic. For i = 1, . . . , n−m, let αi be a generator of the cyclic group H̃|Ai|−1(MAi,Bi). Now define

ρ(S, T ) = α1 ∗ · · · ∗ αn−m,
which is unique up to sign.

Theorem 13. Let m ≤ n. Then
1. {ρ(S, T ) | (S, T ) ∈ Pm,n} is a basis for H̃m−1(Mm,n).
2. {γ(S, T ) | (S, T ) ∈ Pm,n} is a basis for the free part of H̃m−1(Mm,n).



6 J. SHARESHIAN AND M. WACHS

Theorem 13 is proved by finding an ordering of the pairs of standard tableaux

(S1, T1), . . . , (St, Tt)

in Pm,n such that the matrix
(〈ρ(Si, Ti), γ(Sj , Tj)〉)i,j=1,...,t

is triangular with 1’s on the diagonal. Here 〈, 〉 denotes a pairing of homology and cohomology.
The invertibility of the matrix establishes independence of the cycles (and cocyles). The result then
follows from the Friedman-Hanlon determination of the rank of rational homology.

The final result we mention here is an answer to another question from [BLVZ]. Given the
connectivity properties of Mn and Mm,n described in Theorems 2 and 9, the authors of that paper
ask whether the (ν(n) − 1)-skeleton of Mn is shellable and whether the (ν(m,n) − 1)-skeleton of
Mm,n is shellable. The second question was answered affirmatively by G. Ziegler in [Zi]. We provide
an affirmative answer to the first question.

Theorem 14. For every n ≥ 2, the (ν(n)− 1)-skeleton of Mn is shellable.

We prove Theorem 14 by exhibiting an ordering of the facets of the given skeleton which is a
shelling. We will now describe this ordering. For any graph G, let V (G) denote the vertex set of G
and let E(G) denote the edge set of G. An ordered partition of a graph G is a sequence (G1, . . . , Gr)
of subgraphs such that {V (G1), . . . , V (Gr)} is a partition of V (G) and {E(G1), . . . , E(Gr)} is a
partition of E(G). We define for each G ∈ Mn an ordered partition P (G) = (G1, . . . , Gr) of G, as
follows. Set G0 = (∅, ∅) and set i = 1. If Gj has been defined for 0 ≤ j < i, set

Xi := [n] \
⋃
j<i

V (Gj).

If Xi = ∅ then stop. If |Xi| = 1 then set Gi = (Xi, ∅) and stop. Otherwise, let xi, yi be the two
smallest elements of Xi and let Gi be the smallest subgraph of G that contains vertices xi, yi and
all incident edges. Increase i by one and continue.

For example, if n = 10 and E(G) = {16, 24, 37} then

P (G) = (G1, G2, G3, G4),

where

G1 = ({1, 2, 4, 6}, {16, 24}), G2 = ({3, 5, 7}, {37}), G3 = ({8, 9}, ∅), G4 = ({10}, ∅).
Next we define a partial order on the set of all graphs on subsets of [n] as follows: G1 ≺ G2 if

either |V (G1)| < |V (G2)| or G1 is a single edge uv and G2 consists of isolated vertices u, v. This
partial order induces a partial order on the set of all ordered partitions of graphs on [n], namely
lexicographical order. Lexicographical order induces a partial order on the facets of the (ν(n)− 1)-
skeleton of Mn given by G ≺L H if P (G) precedes P (H) in the lexicographical order on ordered
partitions of graphs. We prove that any linear extension of the partial order ≺L is a shelling.
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