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Abstract. We initiate a study of the representation of the sym-
metric group on the multilinear component of an n-ary generaliza-
tion of the free Lie algebra, which we call a free LAnKe. Our central
result is that the representation of the symmetric group S2n−1 on
the multilinear component of the free LAnKe with 2n − 1 gener-
ators is given by an irreducible representation whose dimension is
the nth Catalan number. This leads to a more general result on
eigenspaces of a certain linear operator, which has additional con-
sequences. We also obtain a new presentation of Specht modules
of staircase shape as a consequence of our central result.

1. Introduction

Lie algebras are defined as vector spaces equipped with an antisym-
metric commutator and a Jacobi identity. They are a cornerstone of
mathematics and have applications in a wide variety of areas of math-
ematics as well as physics. Also of fundamental importance is the free
Lie algebra, a natural mathematical construction central in the field of
algebraic combinatorics. The free Lie algebra has beautiful dimension
formulas; an elegant basis in terms of binary trees; and connections to
the shuffle algebra, Lyndon words, necklaces, Witt vectors, the descent
algebra of the symmetric goup, quasisymmetric functions, noncommu-
tative symmetric functions, and the lattice of set partitions. See [Re]
for further information.

In this paper we consider a generalization of the free Lie algebra to
n-fold commutators, and the representation of the symmetric group on
its multilinear component. This representation is a direct generaliza-
tion of the well-known representation of the symmetric group on the
multilinear component of the free Lie algebra.
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Let X := {x1, x2, . . . , xm} be a set of generators. Then the multilin-
ear component of the free Lie algebra on X is the subspace spanned by
bracketed “words” where each generator inX appears exactly once. For
example, [[x1, x3], [[x4, x5], x2]] is such a bracketed permutation when
m = 5, while [[x1, x3], [[x1, x5], x3]] is not. The symmetric group SX
acts naturally on the bracketed words. Indeed, σ ∈ SX acts by replac-
ing each “letter” x of the bracketed word by σ(x). For example,

σ[[x1, x3], [[x4, x5], x2]] = [[σ(x1), σ(x3)], [[σ(x4), σ(x5)], σ(x2)]].

This induces a representation Lie(m) of the symmetric group Sm on
the multilinear component of the free Lie algebra on m generators. It
is well known that the dimension of Lie(m) is (m− 1)!

The representation Lie(m) has several equivalent descriptions; we
mention two of them here.

Theorem 1.1. Let m ≥ 2.

(a) (Klyachko [Kl]) The representation Lie(m) is equivalent to the
representation induced to Sm by any faithful one-dimensional
representation of a cyclic subgroup of order m generated by an
m-cycle.

(b) (Kraskiewicz and Weyman [KW]) Let i and m be relatively
prime, and let λ be a partition of m. The multiplicity of the
irreducible representation indexed by λ in Lie(m) is equal to the
number of standard Young tableaux of shape λ and of major
index congruent to i mod m.

Interestingly, Lie(m) appears in a variety of other contexts, such as
the top homology of the lattice of set partitions in work of Stanley [St1],
Hanlon [Ha], Barcelo [Ba], and Wachs [Wa], homology of configuration
spaces of m-tuples of distinct points in Euclidean space in work of
Cohen [Co], and scattering amplitudes in gauge theories in work of Kol
and Shir [KS].

The generalization of the free Lie algebra that we will consider is
based on the following definition. Throughout this paper, all vector
spaces are taken over the field C.

Definition 1.2. A Lie algebra L of the n-th kind (a “LAnKe,” or
“LATKe” for n = 3) is a vector space equipped with an n-linear bracket

[·, ·, , ·] : ×nL → L
that satisfies the following antisymmetry relation for all σ in the sym-
metric group Sn:

(1.1) [x1, . . . , xn] = sgn(σ)[xσ(1), . . . , xσ(n)]
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and the following generalization of the Jacobi identity:

[[x1, x2, . . . , xn], xn+1, . . . , x2n−1](1.2)

=
n∑
i=1

[x1, x2, . . . , xi−1, [xi, xn+1, . . . , x2n−1], xi+1, . . . , xn],

for xi ∈ L.

The above definition arose from generalizing a relation between ADE
singularities and ADE Lie algebras as a tool to solve a string-theoretic
problem (see [Fr]; also, see [Fi, Ta, DT, Ka, Li, BL, Gu]). This n-ary
generalization of Lie algebras is also referred to in the literature as a
Filippov algebra. A different generalization of Lie algebras that also
involves n-ary brackets appeared in the 1990’s in work of Hanlon and
Wachs [HW].

Similar to a free Lie algebra, a LAnKe is free on X = {x1, . . . , xm}
if it is generated by all possible n-bracketings of elements of X, and if
the only possible relations existing among these bracketings are con-
sequences of n-linearity of the bracketing, the antisymmetry of the
bracketing (1.1), and the generalized Jacobi identity (1.2). The multi-
linear component is spanned by n-bracketed permutations of X. Every
such n-bracketed permutation on X has the same number of brackets,
which depends on m, the number of generators. Indeed, if the number
of brackets is k then m = (n− 1)k + 1.

The object we study in this paper is the representation of the sym-
metric group S(n−1)k+1 on the multilinear component of the free LAnKe
on (n− 1)k + 1 generators. We denote this representation by ρn,k and
note that ρ2,k = Lie(k + 1). See Section 2.1 for further details.

Table 1 summarizes what we can now prove about the decomposition
of ρn,k into irreducibles. The Young diagrams in the table stand for
Specht modules Sλ of the indicated shape λ. The number given below
each decomposition is the dimension of the representation ρn,k, which
can be obtained from the well known hook length formula when k ≤ 3.
The dimension of ρ3,4 was obtained using a C++ computer program.
The symmetric group S(n−1)k+1 is given at the top of each cell. The
sign representations that appear in the k = 1 column trivially follow
from the antisymmetry of the bracket. The k = 2 column follows from
our central result, Theorem 1.3 below, and the k = 3 column follows
from results of the authors, which will appear in a forthcoming paper
[FHSW2]. (This result for k = 3 was a conjecture in an earlier version
of this paper.) The decomposition for ρ3,4 is also proved in [FHSW2].
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Table 1: What we can prove about the representations ρn,k

n
k

1 2 3 4 k

S2 S3 S4 S5 Sk+1

[..] [.[..]] [.[.[..]]] [.[.[.[..]]]]

2 ⊕ 32⊕ 41
⊕213 ⊕ 312 ⊕ 221

Lie(k + 1)

1 2 6 24 k!
S3 S5 S7 S9 S2k+1

[...] [..[...]] [..[..[...]]] [..[..[..[...]]]]

3 ⊕
432⊕ 421

⊕4213 ⊕ 4312 ⊕ 4221
⊕γ3,4a

ρ3,k

1 5 56 1077
S4 S7 S10 S13 S3k+1

[....] [...[....]] [...[...[....]]] [...[...[...[....]]]]

4 ⊕ ρ4,4 ρ4,k

1 14 660
Sn S2n−1 S3n−2 S4n−3 S(n−1)k+1

n 1n 2n−11 3n−2212 ⊕ 3n−11 ρn,4 ρn,k
1 1

n+1

(
2n
n

)
4∏3

i=1(n+i)

(
3n
n,n,n

)
awhere γ3,4 is an S9-module of dimension 204; see section 4.

Theorem 1.3. For all n ≥ 2, the S2n−1-module ρn,2 is isomorphic to

the Specht module S2n−11, whose dimension is the nth Catalan number
1

n+1

(
2n
n

)
.

An explicit S2n−1-isomorphism from ρn,2 to S2n−11 can in fact be ob-
tained from presentations of free LAnKes and Specht modules following
from results in [DI] and [Fu], respectively; see Section 3. In Section 2,

the relationship between ρn,2 and S2n−11 is placed in a more general set-
ting. The S2n−1-module ρn,2 has a presentation of the form Vn,2/Rn,2,
where Vn,2 is generated by n-bracketed permutations involving an n-
bracket that is antisymmetric only, and Rn,2 is the submodule of Vn,2
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generated by the generalized Jacobi relations (1.2). We consider a nat-
ural linear operator on Vn,2 whose kernel is isomorphic to ρn,2. We show

that all the eigenspaces are irreducible of the form S2i12n−1−2i
and that

the one corresponding to eigenvalue 0 is obtained by setting i = n− 1.
Techniques from our proof also play a role in the proof of the above

mentioned decomposition for ρn,3 obtained in [FHSW2]. Our eigenspace
approach is developed further in subsequent work of Brauner and Fried-
mann [BF] and of the authors [FHSW3] in which new presentations for
Specht modules are obtained; see Section 3.

The first three columns of Table 1 suggest that ρn,k is isomorphic
to the module βn,k whose decomposition is obtained by adding a row
of length k to the top of each Young diagram in the decomposition of
ρn−1,k. However the entry ρ3,4 shows that this is not always the case
since γ3,4 6= 0. In [FHSW2] we show that ρn,k contains βn,k for all
n, k, and in Section 4 we speculate on possible necessary and sufficient
conditions for ρn,k ∼= βn,k.

This paper is organized as follows. In Section 2 we prove our general
result on eigenspaces of the linear operator on Vn,2 mentioned above,
which yields Theorem 1.3. In Section 3 we discuss presentations of
LAnKes and Specht modules that yield an explicit isomorphism for
Theorem 1.3. We also use Theorem 1.3 to obtain a new presentation of
any Specht module of staircase shape. In Section 4 we discuss further
research.

An extended abstract of this work appeared in the proceedings of
FPSAC 2018 [FHSW1].

2. The CataLAnKe representation and a linear operator

In this section, we prove Theorem 1.3 by placing it in a more general
context as described in the introduction. We define a linear operator
whose kernel is isomorphic to the representation ρn,2. We show that all
the eigenspaces of this operator are irreducible and in particular that
the eigenspace corresponding to 0 is the Specht module S2n−11.

2.1. Preliminaries. The following generalizes the standard definition
of a free Lie algebra.

Definition 2.1. Given a set X, a free LAnKe on X is a LAnKe
L together with a mapping i : X → L with the following universal
property: for each LAnKe K and each mapping f : X → K, there is a
unique LAnKe homomorphism F : L → K such that f = F ◦ i.

From this definition, one can see that the free LAnKe on [m] :=
{1, 2, . . . ,m} is the vector space generated by the elements of [m] and
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all possible n-bracketings involving these elements, subject only to the
n-linearity of the bracket, antisymmetry, and generalized Jacobi re-
lations given in Definition 1.2. Let Lien(m) denote the multilinear
component of the free LAnKe on [m], that is, the subspace generated
by n-bracketed words on [m] that contain each letter of [m] exactly
once. We call these bracketed words, bracketed permutations.

For example, the bracketed permutations [[1, 2, 3], 4, 5], [[1, 2, 4], 3, 5],
[[1, 2, 5], 3, 4], [[1, 3, 4], 2, 5], [[1, 3, 5], 2, 4], [[1, 4, 5], 2, 3], [[2, 3, 4], 1, 5],
[[2, 3, 5], 1, 4], [[2, 4, 5], 1, 3], [[3, 4, 5], 1, 2] span the vector space Lie3(5).
By the generalized Jacobi relations and the antisymmetry relations, we
have

[[1, 2, 3], 4, 5] = [[1, 4, 5], 2, 3] + [1, [2, 4, 5], 3] + [1, 2, [3, 4, 5]]

= [[1, 4, 5], 2, 3]− [[2, 4, 5], 1, 3] + [[3, 4, 5], 1, 2].

A permutation σ in the symmetric group Sm acts naturally on a
bracketed permutation in Lien(m) by replacing each letter x of a brack-
eted permutation with σ(x). For example, if σ ∈ S5 then

σ[[2, 3, 5], 1, 4] = [[σ(2), σ(3), σ(5)], σ(1), σ(4)].

Since the antisymmetry and generalized Jacobi relations are preserved
by this action, this induces a representation of Sm on the vector space
Lien(m).

Note that if k is the number of brackets of a bracketed permutation
in Lien(m) then m = (n− 1)k+ 1. (We can also think of the bracketed
permutations as rooted plane n-ary trees on leaf set [(n − 1)k + 1];
see Section 4.) Hence Lien((n − 1)k + 1) is spanned by the bracketed
permutations on [(n−1)k+ 1] with exactly k brackets. Let ρn,k denote
the representation of S(n−1)k+1 on Lien((n − 1)k + 1). In this section,
we study ρn,2, the representation of S2n−1 on Lien(2n− 1).

2.2. A presentation for ρn,2. Let Vn,2 be the multilinear component
of the vector space generated by all possible n-bracketed permutations
on [2n−1], subject only to antisymmetry of the brackets given in (1.1)
(but not to generalized Jacobi, (1.2)). That is, Vn,2 is the subspace
generated by

uτ := [[τ1, . . . , τn], τn+1, . . . , τ2n−1],

where τ ∈ S2n−1, τi = τ(i) for each i, and [·, . . . , ·] is the antisymmetric
n-linear bracket (that does not satisfy the generalized Jacobi relation).

The symmetric group S2n−1 acts on generators of Vn,2 by the follow-
ing action: for σ, τ ∈ S2n−1

σuτ = uστ .
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This induces a representation of S2n−1 on Vn,2 since the action respects
the antisymmetry relation.

For each n-element subset S := {a1, . . . , an} of [2n− 1], let

vS = [[a1, . . . , an], b1, . . . , bn−1],

where {b1, · · · , bn−1} = [2n−1]\S, and the ai’s and bi’s are in increasing
order. Clearly,

(2.1)

{
vS : S ∈

(
[2n− 1]

n

)}
is a basis for Vn,2. Thus Vn,2 has dimension

(
2n−1
n

)
.

For each S ∈
(
[2n−1]
n

)
, use the generalized Jacobi Identity (1.2), to

define the relation
(2.2)

RS := vS −
n∑
i=1

[a1, . . . , ai−1, [ai, b1, . . . , bn−1], ai+1, . . . , an],

where a1 < · · · < an and b1 < · · · < bn−1 are as in the previous
paragraph. Let Rn,2 be the subspace of Vn,2 generated by the RS.
Then as S2n−1-modules

(2.3) Vn,2/Rn,2
∼= ρn,2.

2.3. The linear operator ϕ. Now consider the linear operator ϕ :
Vn,2 → Vn,2 defined on basis elements by

ϕ(vS) = RS.

It is not difficult to see that ϕ is an S2n−1-module homomorphism whose
image is Rn,2. We will need the following lemmas.

Lemma 2.2. (a) As S2n−1–modules,

Vn,2 ∼=
n−1⊕
i=0

S2i12n−1−2i

.

(b) The operator ϕ acts as a scalar on each irreducible submodule.
(c) As S2n−1–modules,

(2.4) kerϕ ∼= Vn,2/Rn,2.

Proof. Observe that, due to the antisymmetry of the bracket, the space
Vn,2 constitutes the representation of S2n−1 induced from the sign rep-
resentation of the Young subgroup Sn × Sn−1:

Vn,2 ∼= (sgnn× sgnn−1) ↑
S2n−1

Sn×Sn−1
.
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Part (a) then follows from Young’s rule twisted by the sign represen-
tation. Since Part (a) indicates that Vn,2 is multiplicity-free, Part (b)
follows from Schur’s lemma. Part (c) follows from Part (b). �

We leave the straightforward proof of the following lemma to the
reader.

Lemma 2.3. For all v ∈ Vn,2, let 〈v, vS〉 denote the coefficient of vS
in the expansion of v in the basis given in (2.1). Then for all S, T ∈(
[2n−1]
n

)
,

〈ϕ(vS), vT 〉 =


1 if S = T

(−1)d if S ∩ T = {d}

0 if S 6= T but |S ∩ T | > 1.

2.4. The eigenvalues and eigenspaces of ϕ. It follows from (2.3)
and (2.4) that

(2.5) kerϕ ∼= ρn,2.

Hence Theorem 1.3 says that the kernel of ϕ is isomorphic to the Specht
module S2n−11. The next result generalizes this to all the eigenspaces
of ϕ.

Theorem 2.4. The operator ϕ has n distinct eigenvalues given by

(2.6) wi := 1 + (n− i)(−1)n−i,

for i = 0, 1, . . . , n− 1. Moreover, if Ei is the eigenspace corresponding
to wi then as S2n−1-modules,

Ei ∼= S2i1(2n−1)−2i

for each i = 0, 1, . . . , n− 1.

Proof. By Lemma 2.2, ϕ acts as a scalar on each irreducible submodule.
To compute the scalar, we start by letting t be the standard Young
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tableau of shape 2i12n−1−2i given by

t =
1 n+1

2 n+2

...
...

i n+i

i+1

...

n

n+i+1

...

2n−1

Let Ct be the column stabilizer of t and let Rt be the row stabilizer.
Recall that the Young symmetrizer associated with t is defined by

et :=
∑
α∈Rt

α
∑
β∈Ct

sgn(β)β

and that the Specht module S2i12n−1−2i
is the submodule of the regular

representation CS2n−1 spanned by {τet : τ ∈ S2n−1}.
Now set T := [n], rt :=

∑
α∈Rt

α and factor∑
β∈Ct

sgn(β)β = ftdt,

where dt is the signed sum of permutations in Ct that stabilize {1, 2, . . . , n},
{n + 1, . . . , n + i}, {n + i + 1, . . . , 2n− 1} and ft is the signed sum of
permutations in Ct that maintain the vertical order of these sets. So
etvT = rtftdtvT . Because of the antisymmetry of the bracket, we have

dtvT = n! ((n+ i)− (n+ 1) + 1)! ((2n− 1)− (n+ i+ 1) + 1)! vT

= n! i!(n− i− 1)! vT .

Hence rtftvT is a scalar multiple of etvT . Since the coefficient of vT in
the expansion of rtftvT is 1, we have etvT 6= 0.
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Let ψ : CS2n−1 → Vn,2 be the S2n−1-module homomorphism defined
by ψ(σ) = σvT , where σ ∈ S2n−1 and T := [n]. Now consider the

restriction of ψ to the Specht module S2i12n−1−2i
. By the irreducibility

of the Specht module and the fact that etvT 6= 0, this restriction is
an isomorphism from S2i12n−1−2i

to the subspace of Vn,2 spanned by
{τetvT : τ ∈ S2n−1}. This subspace is therefore the unique subspace of

Vn,2 isomorphic to S2i1(2n−1)−2i
. From here on, we will abuse notation

by letting S2i1(2n−1)−2i
denote the subspace of Vn,2 spanned by {τetvT :

τ ∈ S2n−1}.
Since rtftvT is a scalar multiple of etvT , it is in S2i1(2n−1)−2i

. It follows
that

ϕ(rtftvT ) = crtftvT ,

for some scalar c, which we want to show equals wi. Using the fact that
the coefficient of vT in rtftvT is 1, we conclude that c is the coefficient
of vT in ϕ(rtftvT ). Hence to complete the proof we need only show
that

(2.7) 〈ϕ(rtftvT ), vT 〉 = wi := 1 + (n− i)(−1)n−i.

Consider the expansion,

rtftvT =
∑

S∈([2n−1]
n )

〈rtftvT , vS〉vS,

which by linearity yields,

ϕ(rtftvT ) =
∑

S∈([2n−1]
n )

〈rtftvT , vS〉ϕ(vS).

Hence the coefficient of vT is given by

〈ϕ(rtftvT ), vT 〉 =
∑

S∈([2n−1]
n )

〈rtftvT , vS〉〈ϕ(vS), vT 〉.

Looking back at Lemma 2.3, we see that the S = T term is 1, which
yields,

〈ϕ(rtftvT ), vT 〉 = 1 +
∑

S∈([2n−1]
n )\{T}

〈rtftvT , vS〉〈ϕ(vS), vT 〉.

To get a contribution from an S 6= T term, by Lemma 2.3, we must
have S∩T = {d} for some d, in which case 〈ϕ(vS), vT 〉 = (−1)d. Hence

(2.8) 〈ϕ(rtftvT ), vT 〉 = 1 +
n∑
d=1

(−1)d〈rtftvT , vS(d)〉,
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where

S(d) = {d, n+ 1, n+ 2, . . . , 2n− 1}.
To compute 〈rtftvT , vS(d)〉, we must consider how we get vS(d) from

the action of permutations appearing in rtft on vT . Recall that ft
is a sum of column permutations σ of t (with sign) that maintain the
vertical order of {1, 2, . . . , n}, {n+1, . . . , n+i}, and {n+i+1, . . . , 2n−
1}. In order to get S(d), we have that σ fixes 1, 2, . . . , i and n +
1, . . . , n+ i and then the row permutation α is

α = (1, n+ 1)(2, n+ 2) · · · (i, n+ i)(i+ 1) · · · (2n− 1)

and σ interchanges {n+i+1, . . . , 2n−1} with a subset of {i+1, . . . , n},
leaving one element d of {i+ 1, . . . , n} in rows i+ 1, . . . , n.

Since σ maintains the vertical order of 1, 2, . . . , n, it must be that
d = i+ 1. Thus the summation in (2.8) is left only with the d = i+ 1
term. Suppose that i+ 1 goes to row j with i+ 1 ≤ j ≤ n. So

t =
1 n+1

2 n+2

...
...

i n+i

i+1

...

j−1

j

j+1

...

n

n+i+1

...

2n−1

−→ ασt =
n+1 1

n+2 2

...
...

n+i i

n+i+1

...

n+j−1

i+1

n+j

...

2n−1

i+2

...

n

One can easily compute the sign of σ by counting inversions or writing
σ in cycle form as

σ = (1) · · · (i)(n+ 1) · · · (n+ i)(i+ 1, n+ i+ 1, i+ 2, n+ i+ 2, . . . , j)

(n+ j, j + 1)(n+ j + 1, j + 2) · · · (2n− 1, n),
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where the cycle involving i+ 1 is a ((2n− 1− 2i)− 2(n− j))–cycle. So

sgn(σ) = (−1)(2j−2i−1)+1(−1)n−j = (−1)n−j.

In terms of our basis,

ασvT = [[n+ 1, n+ 2, . . . , n+ i, n+ i+ 1, . . . , n+ j − 1, i+ 1, n+ j, . . . , 2n− 1],

1, 2, . . . , i, i+ 2, . . . , n].

To put this basis in canonical form, we need to move i+ 1 to the
front of the inside bracket, which yields ασvT = (−1)j−1vS(i+1). Hence
sgn(σ)ασvT = (−1)n−1vS(i+1). Since there are n − i positions j where
i+ 1 might land,

〈rtftvT , vS(i+1)〉 = (n− i)(−1)n−1.

Since all other terms in the summation in (2.8) vanish, by plugging this
into (2.8), we obtain (2.7), which completes the proof. �

Proof of Theorem 1.3. By Theorem 2.4, since wi = 0 for i = n−1 only,
S2n−11 is the kernel of ϕ. The result now follows from (2.5). �

3. Alternative presentations

In this section, we discuss presentations of LAnKes and Specht mod-
ules that yield an explicit isomorphism from ρn,2 to S2n−11. We also
obtain a new presentation for Specht modules of staircase shape.

For each partition λ = (λ1 ≥ · · · ≥ λl) of m, let Tλ be the set
of Young tableaux of shape λ in which each element of [m] appears
once. Let Mλ be the vector space generated by Tλ subject only to
column relations, which are of the form t+ s, where s is obtained from
t by switching two entries in the same column. Given t ∈ Tλ, let t̄
denote the coset containing t in Mλ. These cosets, which are called
column tabloids, generate Mλ. The symmetric group Sm acts on Tλ by
replacing each entry of a tableau by its image under the permutation
in Sm. This induces a representation of Sm on Mλ.

There are various different presentations of Sλ in the literature,
which involve the column relations and Garnir relations. Here we are
interested in a presentation of Sλ discussed in Fulton [Fu, Section 7.4].
The Garnir relations are of the form t̄ −

∑
s̄, where the sum is over

all s ∈ Tλ obtained from t ∈ Tλ by exchanging any k entries of a fixed
column with the top k entries of the next column, while maintaining
the vertical order of each of the exchanged sets. There is a Garnir
relation gtc,k for every t ∈ Tλ, every column c ∈ [λ1 − 1], and every k

from 1 to the length of the column c + 1. Let Gλ be the subspace of
Mλ generated by these Garnir relations. Clearly Gλ is invariant under



CATALANKE THEOREM 13

the action of Sm. The presentation of Sλ obtained in Section 7.4 of
[Fu] is given by

(3.1) Mλ/Gλ ∼= Sλ.

On page 102 (after Ex. 15) of [Fu], a presentation of Sλ with fewer
relations is given. The presentation is

(3.2) Mλ/Gλ,1 ∼= Sλ,

where Gλ,1 is the subspace of Gλ generated by

{gtc,1 : c ∈ [λ1 − 1], t ∈ Tλ}.

In Appendix 1 of [DI], a proof that the generalized Jacobi relations
(1.2) are equivalent to the relations

[[x1, x2, . . . , xn], y1, . . . , yn−1](3.3)

=
n∑
i=1

[[x1, x2, . . . , xi−1, y1, xi+1, . . . , xn], xi, y2, . . . , yn−1]

is given. This gives an alternative presentation of ρn,k for all n, k.
Using the natural correspondence between generators

[[a1, . . . , an], b1, . . . , bn−1]

of Vn,2 and column tabloids t̄, where t is the tableau whose first column
is a1, . . . , an and whose second column is b1, . . . , bn−1, we see that the
alternative Jacobi relations (3.3) correspond to the Garnir relation gt1,1
for λ = 2n−11. Thus the natural correspondence between generators
yields an isomorphism from ρn,2 to the realization of S2n−11 given in
(3.2).

As we have just noted, the presentation (3.2) and the equivalence of
the generalized Jacobi relations (1.2) and (3.3) imply Theorem 1.3. It
is not difficult to see that conversely Theorem 1.3 and the presentation
(3.2) imply the equivalence of the generalized Jacobi relations (1.2) and
(3.3) (not just in the free case). Thus the proof of Theorem 1.3 given
in Section 2 yields a new proof of this equivalence.

The natural correspondence between generators of Vn,2 and genera-

tors of M2n−11 also takes the generalized Jacobi relations (1.2) to the
Garnir relations gt1,n−1. This enables us to give another presentation of

S2n−11 with fewer relations than that of (3.1). In fact, we can extend
this to a wider class of Specht modules. Suppose the length of column
c of the Young diagram λ is n and the length of column c+ 1 is n− 1.
One of the Garnir relations for t ∈ Tλ is gtc,n−1, which is t̄−

∑
s̄, where

the sum is over all s obtained from t by exchanging the entire column
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c+1 with all but one element of column c. There will be one s for each
entry of column c that remains behind in the exchange.

Suppose column c of t has entries a1, a2, . . . , an reading from top
down and column c + 1 has entries b1, . . . , bn−1, also reading from top
down. We can associate t̄ with the bracketed permutation,

[[a1, a2, . . . , an], b1, . . . , bn−1],

where the bracket is antisymmetric. The Garnir relation gtc,n−1 corre-
sponds to the relation

[[a1,a2, . . . , an], b1, . . . , bn−1]−
n∑
i=1

[[b1, . . . , bi−1, ai, bi, . . . , bn−1], a1, . . . , âi, . . . , an],

where ·̂ denotes deletion. If we move the ai to the front of the in-
ner bracket and move the inner bracket to the place where the ai was
deleted, the signs will cancel each other, and we will get the gener-
alized Jacobi relation (1.2). It therefore follows from Theorem 1.3
that {gtc,n−1 : t ∈ Tλ} generates all the other Garnir relations in
{gtc,k : t ∈ Tλ, k ∈ [n − 1]} for fixed column c. This allows us to

reduce the number of relations in the presentation of Sλ given in (3.1).
We express this in the following result.

Theorem 3.1. Let (λ′1 ≥ λ′2 ≥ · · · ≥ λ′j) be the conjugate of λ `
m. Let G̃λ be the subspace of Mλ generated by the union of the sets
{gtc,λ′c+1

: t ∈ Tλ} for each column c for which λ′c+1 = λ′c − 1 and the

sets {gtc,k : t ∈ Tλ, k ∈ [λ′c+1]} for the other columns. Then

Sλ ∼= Mλ/G̃λ.

We will say that λ is a staircase partition if its conjugate has the
form (n, n − 1, n − 2, . . . , n − r). Note that the partition 2n−11 is a
staircase partition. The following result reduces to Theorem 1.3 for
the shape 2n−11.

Corollary 3.2. Let λ be a staircase partition of m and let G̃λ be the
subspace of Mλ generated by

{gtc,λ′c+1
: c ∈ [λ1 − 1], t ∈ T ∗λ },

where T ∗λ is the set of Young tableaux of shape λ in which each element
of [m] appears once and the columns increase. Then

Sλ ∼= Mλ/G̃λ.
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In [FHSW3] the authors show that Corollary 3.2 holds for a broader
class of partitions, namely the partitions whose conjugate has distinct
parts. The proof is based on a generalization of Theorem 2.4. In [BF],
Brauner and Friedmann obtain a result analogous to this generalization
of Theorem 2.4 and use it to obtain an interesting new presentation of
Specht modules of all shapes, in which the number of relations has been
similarly reduced. This new presentation implies the presentation (3.2)
and is used to give another proof of Theorem 1.3.

4. Further results and speculations

For n ≥ 2 and k ≥ 1, let βn,k be the S(n−1)k+1-module whose de-
composition into irreducibles is obtained by adding a row of length k
to the top of each Young diagram in the decomposition of ρn−1,k. (Set
ρ1,k := S1.) For example, using the decomposition of ρ2,3 given in Ta-

ble 1, we have β3,3 = S3212 ⊕ S321, and using the decompostion of ρ2,4
given in Table 1, we have

(4.1) β3,4 = S432 ⊕ S421 ⊕ S4213 ⊕ S4312 ⊕ S4221.

In [FHSW2] we prove that

(4.2) ρn,k ∼= γn,k ⊕ βn,k,

for some some S(n−1)k+1-module γn,k whose irreducibles have at most
k− 1 columns. From Table 1 we see that for 1 ≤ k ≤ 3, γn,k = 0 if and
only if n ≥ k.

Question 4.1. For general k ≥ 1, does n ≥ k imply γn,k = 0?

We think that the converse is likely to be true.

Conjecture 4.2. If n < k then γn,k 6= 0.

We can see from Table 1 that this conjecture is true whenever 1 ≤
k ≤ 4. It is easy to see that the conjecture is also true when n = 2.
Indeed, β2,k = Sk,1 has dimension k and dim ρ2,k = k!.

We give some further justification for Conjecture 4.2 by considering
a submodule of ρn,k spanned by a certain set of n-bracketed permuta-
tions. It is convenient to think of n-bracketed permutations on a finite
set X as rooted plane n-ary trees on leaf set X. If T is such a tree and
X = {a}, let [T ] be the bracketed permutation a. If |X| > 1, let [T ] be
the bracketed permutation defined recursively by [[T1], [T2], . . . , [Tn]],
where T1, T2, . . . , Tn are the subtrees of the root of T ordered from left
to right. Note that the number of internal nodes of T is equal to the
number of brackets of [T ].
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For example, if T is the ternary tree in which the children of the root
are the leaves 1,2,3 ordered from left to right then [T ] = [1, 2, 3]. If T
is the ternary tree with subtrees from left to right given by T1, T2, T3,
where [T1] = [1, 2, 3], [T2] = [4, 5, 6], and [T3] = [[7, 8, 9], 10, 11] then
[T ] = [[1, 2, 3], [4, 5, 6], [[7, 8, 9], 10, 11]].

We will say that an internal node of an n-ary tree T is abundant if all
of its children are internal nodes. In the second example given above,
the root of T is the only abundant internal node of T . We will say that
T is abundant if it has an abundant internal node. Thus the T in the
first example given above is not abundant, while the T in the second
example is.

Let Tn,k be the set of rooted plane n-ary trees on leaf set [k(n−1)+1]
and let αn,k be the submodule of ρn,k spanned by

{[T ] : T ∈ Tn,k and T is abundant}.

It follows from Young’s rule that all the irreducibles in αn,k have at
most k − 1 columns. Hence αn,k is isomorphic to a submodule of γn,k.
Thus the following conjecture implies Conjecture 4.2.

Conjecture 4.3. If n < k then αn,k 6= 0.

Note that the only way that this conjecture could be false is if [T ] = 0
for all abundant T ∈ Tn,k. In particular, if it is false for k = n+ 1 then
the single term relation

[[x1, . . . , xn], [xn+1, . . . , x2n], . . . , [x(n−1)n+1, . . . , xn2 ]] = 0

would have to hold for all LAnKe’s. This seems unlikely.
The next two propositions respectively show that the converse of

Conjecture 4.3 is true and that the n = 2 case of the conjecture is true.

Proposition 4.4. Let n ≥ 2 and k ≥ 1. Then Tn,k contains an abun-
dant tree if and only if n < k. Consequently, αn,k = 0 if n ≥ k.

Proof. Suppose T ∈ Tn,k is abundant. Let y1, . . . , yj be the nonabun-
dant internal nodes of T and for each i, let li be the number of chil-
dren of yi that are leaves. Clearly

∑j
i=1 li = (n − 1)k + 1. We

also have
∑j

i=1 li ≤ jn ≤ (k − 1)n since T is abundant. Hence
(n− 1)k + 1 ≤ (k − 1)n, which is equivalent to n < k.

Now suppose n < k. We will construct an abundant tree in Tn,k.
First let S be any tree in Tn,k−n−1. So S has leaf set {1, 2, . . . ,m},
where m = (n − 1)(k − n − 1) + 1. Replace the leaf m in S with the
tree U , where [U ] :=

[[m, . . . ,m+n−1], [m+n, . . . ,m+2n−1], . . . , [m+(n−1)n, . . . ,m+n2−1]]
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to get the abundant tree T . Since we added n + 1 internal nodes (or
brackets), T has k − n− 1 + n+ 1 = k internal nodes. Hence T is the
desired abundant tree in Tn,k. �

Proposition 4.5. For all k ≥ 1, α2,k
∼= γ2,k. Consequently, Conjec-

ture 4.3 is true for n = 2.

Proof. We need only show that

ρ2,k/α2,k
∼= Sk1

since β2,k = Sk1. This is clearly true when k < 3; so assume k ≥ 3. It
follows from Theorem 1.1 (b) that Sk1 has multiplicity 1 in ρ2,k. Since
all irreducibles in α2,k have fewer than k columns, Sk1 is not in α2,k.
Thus Sk1 is in the quotient ρ2,k/α2,k with multiplicity 1. We will show
that there are no other irreducibles in the quotient.

Define the comb

cm := [. . . [[[1, 2], 3], 4], . . . ,m].

It is well known that {σck+1 : σ ∈ Sk+1, σ(1) = 1} forms a basis for
ρ2,k, see e.g. [Wa]. This is known as the comb basis.

Let 2 < j ≤ k. Let w = [cj−1, [j, j + 1]], u = [[cj−1, j], j + 1] and
v = [[cj−1, j+ 1], j]. By the Jacobi relations, w = u− v. It follows that

[. . . [[w, j + 2], j + 3], . . . , k + 1]

= [. . . [[u, j + 2], j + 3], . . . , k + 1]− [. . . [[v, j + 2], j + 3], . . . , k + 1].

Since w represents an abundant tree, so does [. . . [[w, j + 2], j +
3], . . . , k+1]. Hence [. . . [[w, j+2], j+3], . . . , k+1] = 0 in the quotient
ρ2,k/α2,k. This implies that in the quotient

[. . . [[u, j + 2], j + 3], . . . , k + 1] = [. . . [[v, j + 2], j + 3], . . . , k + 1].

But note that [. . . [[u, j + 2], j + 3], . . . , k + 1] is the comb ck+1 and
[. . . [[v, j + 2], j + 3], . . . , k + 1] is the comb (j, j + 1)ck+1. Hence in the
quotient ck+1 = (j, j+1)ck+1 for 2 < j ≤ k. It follows that σck+1 = ck+1

for all σ ∈ Sk+1 such that σ(1) = 1 and σ(2) = 2. This implies that
there is at most one comb in the quotient whose leftmost leaves are
1, 2.

The same argument shows that for each a = 2, 3, . . . , k + 1, there is
at most one comb in the quotient whose leftmost leaves are 1, a. We
are thus left with at most k combs whose leftmost leaf is 1. Since the
combs whose leftmost leaf is 1 form a basis for ρ2,k, they span ρ2,k/α2,k.
Hence ρ2,k/α2,k has dimension at most k. But since Sk1 has dimension
k and is contained in the quotient, the quotient must be isomorphic to
Sk1. �
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Question 4.6. Is αn,k isomorphic to γn,k for all n ≥ 2 and k ≥ 1?

From Table 1 and Proposition 4.4, we see that Question 4.6 has an
affirmative answer whenever k ≤ 3.

Proposition 4.7. If Question 4.6 has an affirmative answer for (n, k) =
(3, 4) then

(4.3) ρ3,4 ∼= S3213 ⊕ S323 ⊕ β3,4.
If Question 4.6 has an affirmative answer when k = 4 then for all
n ≥ 3,

ρn,4 ∼=
S4n−33213 ⊕ S4n−3323 ⊕ S4n−232 ⊕ S4n−11 ⊕ S4n−2213 ⊕ S4n−2312 ⊕ S4n−2221.

Proof. From (4.2) we have

ρ3,4 ∼= γ3,4 ⊕ β3,4.
Using a computer program written in C++, we found that dim ρ3,4 =
1077. It follows from (4.1) and the hook length formula that dim β3,4 =
873. Hence dim γ3,4 = 204. Since we are assuming α3,4 = γ3,4, we have
dimα3,4 = 204.

Every abundant tree in T3,4, has the form

[[σ(1), σ(2), σ(3)], [σ(4), σ(5), σ(6)], [σ(7), σ(8), σ(9)]],

where σ ∈ S9. It follows that α3,4 is a submodule of the induction to
S9 of the wreath product module sgn3[sgn3], which decomposes as1

S19 ⊕ S2215 ⊕ S2313 ⊕ S323 ⊕ S3213 .

By the hook length formula, the respective dimensions of these Specht
modules are 1, 27, 48, 84 and 120. Hence dimα3,4 is the sum of some
subset of these numbers. This subset must be {84, 120} since this is
the only subset whose sum is equal to dimα3,4. It follows that α3,4 =

S323 ⊕ S3213 . Since we are assuming that α3,4 = γ3,4, equation (4.3)
holds.

For n ≥ 4, the decomposition now follows from (4.2), (4.3), (4.1),
Proposition 4.4, and the assumption that γn,4 = αn,4. �
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