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Abstract. We prove a fundamental case of a conjecture of the
first author which expresses the homology of the extension of the
Heisenberg Lie algebra by C[t]/(tk+1) in terms of the homology
of the Heisenberg Lie algebra itself. More specifically, we show
that both the 0th and k + 1st x-graded components of homology
of this extension of the 3-dimensional Heisenberg Lie algebra have
dimension 3k+1 by constructing a simple basis for cohomology.

1. Introduction

In a series of papers [4, 5, 6, 7] dating back to 1986, Hanlon con-
jectured that if L belongs to a certain class of complex Lie algebras,
which includes all semisimple Lie algebras, the Heisenberg Lie algebra,
and the Lie algebra of strictly upper triangular matrices, then the ho-
mology of the Lie algebra L⊗C[t]/(tk+1) is related to the homology of
L in a very natural way. More precisely, the conjectured relationship
is as follows:

H∗(L⊗ C[t]/(tk+1)) ∼= H∗(L)⊗(k+1)(1.1)

as graded vector spaces. A Lie algebra L that satisfies (1.1) is said to
have Property M.

The Property M conjecture was originally stated for L semisimple.
It is particularly important in this case, since it implies Macdonald’s
root-system conjecture [9] (see [4] and [7, Section 6]). The Property
M conjecture for L semisimple is one of two conjectures known as
the strong Macdonald conjectures. In 1990 Hanlon [5] proved that
sln(C) has Property M. Macdonald’s original root-system conjecture
was eventually proved by Cherednik [2] in 1995. More recently, Fishel,
Grojnowski and Teleman [3] proved the strong Macdonald conjectures.

In a recent paper, Kumar [8] showed that the Property M conjecture
is false in general for the Lie algebra Tn of strictly upper triangular n×n
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matrices. More precisely he proved that (1.1) is false when L = T4 or
T5 and k = 1. He showed, however, that (1.1) does hold for L = T3

and k = 1.
The Property M conjecture for the (2n+ 1)-dimensional Heisenberg

Lie algebra, H2n+1, remains open. This is so even for H3 (= T3). Par-
tial results supporting the conjecture for H3 can be found in [6] and in
[1]. Computational evidence is given in [5]. In this paper we provide
further evidence by settling an important special case.

The Poincaré polynomial for H3 is easy to compute (see [7, Example
3.8]). It is given by∑

r≥0

dimHr(H3) y
r = 1 + 2y + 2y2 + y3.

Hence Property M for L = H3 can be restated as∑
r≥0

dimHr(L⊗ C[t]/(tk+1)) yr = (1 + 2y + 2y2 + y3)k+1,

which implies that∑
r≥0

dimHr(L⊗ C[t]/(tk+1)) = 6k+1.

Even this simple statement is still open.
Hanlon conjectured that for H3, equation (1.1) holds for even finer

gradings than the homological dimension grading. One such grading is
an N3-grading by (e, f, x)-degree which is defined in the next section.
For this grading,∑

m,n,p∈N
dimHm,n,p(H3)u

mvnwp = 1 + u+ v + wu+ wv + uvw

and the conjecture given in (1.1) becomes∑
m,n,p∈N

dimHm,n,p(H3 ⊗ C[t]/(tk+1))umvnwp(1.2)

= (1 + u+ v + wu+ wv + uvw)k+1.

Setting w = 0 yields∑
m,n∈N

dimHm,n,0(H3 ⊗ C[t]/(tk+1))umvn = (1 + u+ v)k+1,(1.3)

which implies that the homology of the 0th x-graded piece of H∗(H3 ⊗
C[t]) has dimension 3k+1.
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In this paper we prove (1.3). This is accomplished by constructing
the following basis for the 0th x-graded piece of the cohomology of
H3 ⊗ C[t]/(tk+1):

{ei1∧· · ·∧eim∧fj1∧· · ·∧fjn|0 ≤ i1 < · · · < im ≤ k,m ≤ j1 < · · · < jn ≤ k}
We show that this set is a basis by using the coboundary relations
to show that the set spans and then applying a lower bound on the
dimension which is established by considering a deformation of H3 ⊗
C[t]/(tk+1). Poincaré duality enables us to construct a “complemen-
tary” basis for the k + 1st x-graded component of homology. The
paper ends with a new conjecture which presents similar looking bases
for the 0th and k + 1st e- and f -graded pieces of (co)homology of
H3 ⊗ C[t]/(tk+1).

2. Preliminaries

In this section we recall some notation and background. The Heisen-
berg Lie algebra H3 is the subalgebra of gl3(C) spanned by the basis
vectors z12, z13, z23, where zij is the 3×3 matrix with 1 as the i, j entry
and 0’s elsewhere. We use the traditional notation for this basis which
is obtained by letting e = z12, f = z23 and x = z13. The only nonzero
brackets on these basis elements are

[e, f ] = −[f, e] = x.

Let L be a complex Lie algebra and let A be a commutative C-
algebra. The Lie algebra L⊗A is defined to be the vector space L⊗A
with bracket

[u⊗ a, v ⊗ b] = [u, v]⊗ ab,
where [u, v] is the bracket of u and v in L, and ab is the product of a
and b in A.

A basis for Lk := H3 ⊗ C[t]/(tk+1) is given by

B = {e0, e1, . . . , ek, f0, f1, . . . , fk, x0, x1, . . . , xk},
where ei = e ⊗ ti, fi = f ⊗ ti and xi = x ⊗ ti for all i = 0, 1, . . . k.
Clearly, the only nonzero brackets on these basis elements are given by

[ei, fj] = −[fj, ei] = xi+j

for all i, j such that i+ j ≤ k.
Let E,F and X denote the subspaces of Lk spanned by the ei’s, fi’s

and xi’s, respectively. Then the exterior algebra of Lk has a N3-grading
given by

∧Lk =
⊕

m,n,p∈N
∧m(E)⊗ ∧n(F )⊗ ∧p(X),
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where ∧i denoted the ith exterior power. We will say that an element
u in ∧m(E) ⊗ ∧n(F ) ⊗ ∧p(X) is (e, f, x)-homogeneous with (e, f, x)-
degree equal to (m,n, p). We will also say that the e-degree of u is m,
the f -degree is n and the x-degree is p.

Recall that the differential or boundary operator of the Koszul com-
plex for Lie algebra homology is the map ∂ : ∧L→ ∧L defined by

∂(u1∧ · · ·∧ur) =
∑
i<j

(−1)i+j+1[ui, uj]∧u1∧ · · ·∧ ûi∧ · · ·∧ ûj ∧ · · ·∧ur,

where ˆ denotes deletion. The homology of L is

H∗(L) = ker ∂/ im ∂.

When L = Lk, the differential ∂ reduces the e-degree and f -degree of
an (e, f, x)-homogeneous element by 1 and increases the x-degree by 1.
We can therefore let

∂m,n,p : ∧m(E)⊗ ∧n(F )⊗ ∧p(X)→ ∧m−1(E)⊗ ∧n−1(F )⊗ ∧p+1(X)

be the restriction of ∂. Now define

Hm,n,p(Lk) = ker ∂m,n,p/ im ∂m+1,n+1,p−1.

So H∗(Lk) has an N3-grading given by

H∗(Lk) =
⊕

m,n,p∈N
Hm,n,p(Lk).

3. A lower bound on the dimension

In this section we derive a lower bound on the dimension ofHm,n,0(Lk)
by considering a deformation of the Lie algebra Lk whose homology is
relatively easy to compute.

Let L′k denote the Lie algebra

L′k = H3 ⊗ C[t]/(tk+1 − 1).

So the non-zero brackets in L′k look like:

[ei, fj] =

{
xi+j, if i+ j ≤ k

xi+j−(k+1), otherwise.

Just as for Lk, we can restrict the Lie algebra boundary ∂′ for
L′k to ∧m(E) ⊗ ∧n(F ) ⊗ ∧p(X) to obtain ∂′m,n,p. This induces an
(e, f, x)-grading of H∗(L

′
k) whose (m,n, p)-component Hm,n,p(L

′
k) is

ker ∂′m,n,p/ im ∂′m+1,n+1,p−1.

Lemma 3.1. For all k,m, n, p ∈ N,

dimHm,n,p(Lk) ≥ dimHm,n,p(L
′
k).
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Proof. As a basis for the two complexes, take the set ∧B of wedges
of distinct elements of B = {e0, e1, . . . , ek, f0, f1 . . . , fk, x0, x1 . . . , xk}.
The weight of a wedge of elements from B is the sum of their subscripts.
Order the basis elements of ∧B so that this weight is weakly increasing.
With respect to this ordered basis, the boundary ∂ for Lk is block
diagonal since that map preserves weight. The boundary ∂′ has the
form:

∂′ = ∂ + U,(3.1)

where U is strictly block upper triangular.
It is a simple fact from linear algebra that if A is block diagonal

and B is strictly block upper triangular, then rank(A+B) ≥ rank(A).
Applying that to equation (3.1) we see that

rank(∂) ≤ rank(∂′).

So, we see that the nullspace of ∂′ has dimension that is no bigger
than the dimension of the nullspace of ∂, whereas the image of ∂′ has
dimension that is no smaller than the dimension of the image of ∂.
Since (3.1) holds for the restriction to each (e, f, x)-graded piece, it
follows that

dimHm,n,p(Lk) ≥ dimHm,n,p(L
′
k)

for all m,n, p ∈ N.

The (k + 1)-fold tensor power of H∗(H3) has a natural (e, f, x)-
grading. We denote the (m,n, p)-component of H∗(H3)

⊗(k+1) under
this grading by (H∗(H3)

⊗(k+1))m,n,p.

Proposition 3.2. For all k, n,m, p ∈ N,

dimHm,n,p(Lk) ≥ dim(H∗(H3)
⊗(k+1))m,n,p.

Proof. By Lemma 3.1 it suffices to prove

dimHm,n,p(L
′
k) = dim(H∗(H3)

⊗(k+1))m,n,p.(3.2)

It is straightforward to check that L′k is isomorphic (as a Lie algebra)
to the (Lie algebra) direct sum of k + 1 copies of the Lie algebra H3.
To see this isomorphism explicitly, let φ(j) be the map from H3 to L′k
defined by

φ(j)(u) = u⊗ 1

k + 1

k∑
`=0

ωj` t`,

where ω is a primitive (k+1)st root of unity. Let H(j)
3 denote the image

of φ(j). It is easy to check that H(j)
3 is a subalgebra of L′k isomorphic
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to H3 and that [H(i)
3 ,H

(j)
3 ] = 0 for i 6= j. It follows that

L′k
∼=

k⊕
i=0

H3.(3.3)

It is straightforward to show that H∗(L⊕M) ∼= H∗(L)⊗H∗(M) for
Lie algebras L and M . Applying this to (3.3) yields

H∗
(
L′k)
∼= H∗(H3)

⊗(k+1).

One can easily check that this isomorphism carries the (e, f, x)-grading
of H∗(L

′
k) to the natural (e, f, x)-grading of H∗(H3)

⊗(k+1). Hence (3.2)
holds.

Corollary 3.3. For all m,n ≤ k + 1,

dimHm,n,0(Lk) ≥
(

k + 1

m,n, k + 1− (m+ n)

)
.

Proof. We use the fact that∑
m,n

dimHm,n,0(H3)u
mvn = 1 + u+ v.

Remark 3.4. The Lie algebras Lk and L′k are part of a more general
construction. For any complex Lie algebra L and complex number z
define

Lk(z) := L⊗ C[t]/(tk+1 − z).
For z 6= 0, an argument similar to the proof of (3.3) shows that the
Lie algebra Lk(z) is a Lie algebra direct sum of k + 1 copies of L. At
the singular point, z = 0, the structure of Lk(z) changes dramatically.
However, the homology of Lk(z) can remain constant at the singular
point. This happens if and only if L has Property M .

4. A Basis for Cohomology

In this section we compute the dimension of Hm,n,0(Lk) by switching
to cohomology and constructing a spanning set for cohomology which
turns out to be a basis.

Let the coboundary map δ : ∧Lk → ∧Lk be the adjoint of ∂ with
respect to the Hermitian form on ∧Lk that has ∧B as an orthonor-
mal basis. The cohomology of Lk, denoted H∗(Lk), is defined to be
ker δ/ im δ. The key relationship between homology and cohomology is

H∗(Lk) ∼= H∗(Lk).(4.1)
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By restricting δ we obtain a linear map

δm,n,p : ∧m(E)⊗ ∧n(F )⊗ ∧p(X)→ ∧m+1(E)⊗ ∧n+1(F )⊗ ∧p−1(X).

Now define the (e, f, x)-graded cohomology component of degree (m,n, p)
to be

Hm,n,p(Lk) = ker δm,n,p/ im δm−1,n−1,p+1.

The isomorphism in 4.1 restricts to

Hm,n,p(Lk) ∼= Hm,n,p(Lk).

Now let us set p = 0. Note that ker δm,n,0 = ∧m(E) ⊗ ∧n(F ). So
Hm,n,0(Lk) is generated by elements of the form ei1 ∧ · · · ∧ eim ∧ fj1 ∧
· · · ∧ fjn subject only to the cohomology relations. The cohomology
relations are obtained by setting the coboundary of elements of the
form

ei1 ∧ · · · ∧ eim−1 ∧ fj1 ∧ · · · ∧ fjn−1 ∧ xt
equal to 0. This results in relations of the form:

t∑
s=0

ei1 ∧ · · · ∧ eim−1 ∧ fj1 ∧ · · · ∧ fjn−1 ∧ es ∧ ft−s = 0,(4.2)

for each t = 0, . . . , k. We allow ei1∧· · ·∧eim∧fj1∧· · ·∧fjn to represent
an element of cohomology of Lk as well as of the exterior algebra of Lk.

Theorem 4.1. For all k,m, n ∈ N, the set Sm,n :=

{ei1∧· · ·∧eim∧fj1∧· · ·∧fjn|0 ≤ i1 < · · · < im ≤ k,m ≤ j1 < · · · < jn ≤ k}
is a basis for Hm,n,0(Lk).

We will prove Theorem 4.1 by first showing that Sm,n spansHm,n,0(Lk).
To conclude that the spanning set is a basis we appeal to the lower
bound given by Corollary 3.3.

The following ordering of symbols

0̄ < 0 < 1̄ < 1 < · · · < k̄ < k

induces a lexicographical ordering of sequences of these symbols which
we denote by <L. We assign to each wedge product

ω = ei1 ∧ ei2 ∧ · · · ∧ eim ∧ fj,
where 0 ≤ i1, i2, . . . , im, j ≤ k, the sequence

µ(ω) :=

{
(i1, i2, . . . , īj+1, . . . , im) if j < m

(i1, i2, . . . , im) if j ≥ m.
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Lemma 4.2. Each wedge product

ei1 ∧ ei2 ∧ · · · ∧ eim ∧ fj,
where 0 ≤ i1, i2, . . . , im ≤ k and 0 ≤ j < m, can be expressed as a linear
combination of wedge products with lexicographically smaller µ-value.

Proof. By the cohomology relation given in (4.2)

(4.3)

ei1 ∧ · · · ∧ eim ∧ fj = −
∑
r≥1

ei1 ∧ · · · ∧ eij+1+r ∧ · · · ∧ eim ∧ fj−r

−
∑
r≥1

ei1 ∧ · · · ∧ eij+1−r ∧ · · · ∧ eim ∧ fj+r.

Here we let ei = fi = 0 if i < 0 or i > k.
Consider the rth term of the first sum and suppose this term is

nonzero. We have

µ(ei1 ∧ · · · ∧ eij+1+r∧ · · · ∧eim ∧ fj−r)
= (i1, . . . , īj−r+1, . . . , ij+1 + r, . . . , im)

<L (i1, . . . , īj+1, . . . , im)

= µ(ei1 ∧ · · · ∧ eim ∧ fj).
The rth term of the second sum is handled similarly. Assume the

term is nonzero. If j + r < m then

µ(ei1 ∧ · · · ∧ eij+1−r∧ · · · ∧eim ∧ fj+r)
= (i1, . . . , ij+1 − r, . . . , īj+r+1, . . . , im)

<L (i1, . . . , īj+1, . . . , im)

= µ(ei1 ∧ · · · ∧ eim ∧ fj).
If j + r ≥ m then

µ(ei1 ∧ · · · ∧ eij+1−r∧ · · · ∧eim ∧ fj+r)
= (i1, . . . , ij+1 − r, . . . , im)

<L (i1, . . . , īj+1, . . . , im)

= µ(ei1 ∧ · · · ∧ eim ∧ fj).
Hence each nonzero wedge product on the right side of (4.3) has lexi-
cographically smaller µ value than that of ei1 ∧ · · · ∧ eim ∧ fj.

Proof of Theorem 4.1. It follows from Lemma 4.2, the anticommuting
exterior algebra relations and induction that Sm,1 spansHm,1,0(Lk). We
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use this to show that Sm,n spans Hm,n,0(Lk) for all m and n. Consider
an arbitrary generator of Hm,n,0(Lk),

ω = ei1 ∧ · · · ∧ eim ∧ fj1 ∧ · · · ∧ fjn ,
where 0 ≤ i1 < · · · < im ≤ k and 0 ≤ j1 < · · · < jn ≤ k. We show that
ω is in the span of Sm,n by induction on the minimum f -index, j1.

If j1 ≥ m then ω ∈ Sm,n. Now suppose j1 < m. We will show
that ω can be expressed as a linear combination of wedge products in
Hm,n,0(Lk) with larger minimum f -index. Since Sm,1 spans Hm,1,0(Lk),
the wedge product ei1∧· · ·∧eim∧fj1 is a linear combination of elements
of the form ei′1 ∧ · · · ∧ ei′m ∧ fj′1 , where 0 ≤ i′1 < · · · < i′m ≤ k and
m ≤ j′1 ≤ k. It follows that ω = ei1 ∧ · · ·∧ eim ∧fj1 ∧ · · ·∧fjn is a linear
combination of elements of the form ei′1 ∧ · · · ∧ ei′m ∧ fj′1 ∧ fj2 ∧ · · · ∧ fjn ,
where 0 ≤ i′1 < · · · < i′m ≤ k and m ≤ j′1 ≤ k. Clearly the wedge
products of this form have larger minimum j-index than that of ω.
It follows by induction these wedge products are in the span of Sm,n.
Hence ω is in the span of Sm,n and we can conclude that Sm,n spans
Hm,n,0(Lk).

We now have

dimHm,n,0(Lk) ≤ |Sm,n| =
(k + 1)!

m!n!(k + 1−m− n)!
.

Hence by Corollary 3.3, Sm,n is a basis for Hm,n,0(Lk).

Remark 4.3. The proofs of Lemma 4.2 and Theorem 4.1 show that
(4.3) provides the basic step of a straightening algorithm for expressing
wedge products in Hm,n,0(Lk) in terms of elements of the basis Sm,n.

The conjecture given in (1.3), which is restated here, is an immediate
consequence.

Theorem 4.4. For all k ≥ 0,∑
m,n

dimHm,n,0(Lk)u
mvn = (1 + u+ v)k+1.

Equivalently,

dimHm,n,0(Lk) =

(
k + 1

m,n, k + 1−m− n

)
.(4.4)

Corollary 4.5. The dimension of the 0th x-graded component of H∗(Lk)
is 3k+1.

Remark 4.6. Adin and Athanasiadis [1] derive the special case of (4.4)
obtained by setting m = 1.
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Since Lk is nilpotent, we can use Poincaré duality to conclude that
the dimension of the k + 1st x-graded component of (co)homology of
Lk is also 3k+1. In fact, we can explicitly transfer the basis for the 0th

x-graded component of cohomology to the k+1st x-graded component
of homology. For I = {i1 < i2 < · · · < in} ⊆ {0, 1, . . . , k}, let

eI := ei1 ∧ ei2 ∧ · · · ∧ ein
and define fI and xI similarly. Let ψ : ∧Lk → ∧Lk be the isomorphism
defined by

ψ(eI ∧ fJ ∧ xK) = eĪ ∧ fJ̄ ∧ xK̄ ,
where S̄ denotes the complement {0, 1, . . . , k}−S. It is straightforward
to check that ψ ◦ ∂ = (−1)kδ ◦ ψ. Hence ψ determines a well-defined
isomorphism ψ : Hm,n,p(Lk)→ Hk+1−m,k+1−n,k+1−p(Lk).

Theorem 4.7. For all k,m, n ∈ N,

{eI ∧ fJ ∧ x0,1,...,k | 0, 1, . . . , k − n ∈ J, |I| = m, |J | = n}
is a basis for Hm,n,k+1.

Proof. Apply ψ to the basis given in Theorem 4.1.

Corollary 4.8. For all k ≥ 0,∑
m,n

dimHm,n,k+1(Lk)u
mvn = (u+ v + uv)k+1.

Equivalently,

dimHm,n,k+1(Lk) =

(
k + 1

k + 1−m, k + 1− n,m+ n− k − 1

)
.

Remark 4.9. Conjecture (1.2) is a special case of a conjecture involv-
ing the Laplacian of Lk (see [7, Conjecture 6E]). In this context The-
orem 4.4 states that the dimension of the (m,n, 0)-graded piece of the
kernel of the Laplacian of Lk has dimension

(
k+1

m,n,k+1−m−n
)
. and Corol-

lary 4.8 states that the dimension of the (m,n, k + 1)-graded piece of
the kernel of the Laplacian of Lk has dimension

(
k+1

k+1−m,k+1−n,m+n−k−1

)
.

5. Conjectured bases for other components of
(co)homology

We now consider the 0th e- and f -graded pieces of homology. Since

Hn,0,p(Lk) ∼= H0,n,p(Lk)

we need only consider the 0th e-graded piece. Analogous to the 0th x-
graded piece of cohomology, H0,n,p(Lk) is generated by all the elements
of ∧n(F )⊗ ∧p(X) subject to the boundary relations.
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By setting u = 0 in (1.2) one has the following conjectured generating
function ∑

n,p∈N
dimH0,n,p(Lk)v

nwp = (1 + v + vw)k+1.(5.1)

This implies that the total dimension of the 0th e-graded piece of ho-
mology is 3k+1. It also implies that if p > n then H0,n,p(Lk) vanishes.
The second consequence is not hard to prove.

The following conjecture implies (5.1).

Conjecture 5.1. Let 0 ≤ p ≤ n and ωp = f0 ∧ · · · ∧ fp−1. Then

{ωp ∧ fi1 ∧ · · · ∧ fin−p ∧ xj1 ∧ · · · ∧ xjp |
p ≤ i1 < · · · < in−p ≤ k, 0 ≤ j1 < · · · < jp ≤ k}

is a basis for H0,n,p(Lk).

We can prove this conjecture for p ≤ 2 by using ideas similar to those
of Section 4, and expect that these ideas will eventually lead to a proof
for all p. By applying the Poincaré duality isomorphism ψ given in
Section 4, one can formulate an equivalent conjecture for Hk+1,n,p(Lk)
(and Hm,k+1,p(Lk)).
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