ON THE PROPERTY M CONJECTURE FOR THE
HEISENBERG LIE ALGEBRA

PHIL HANLON! AND MICHELLE L. WACHS?

ABSTRACT. We prove a fundamental case of a conjecture of the
first author which expresses the homology of the extension of the
Heisenberg Lie algebra by C[t]/(t**1) in terms of the homology
of the Heisenberg Lie algebra itself. More specifically, we show
that both the 0'* and k + 1% 2-graded components of homology
of this extension of the 3-dimensional Heisenberg Lie algebra have
dimension 3¥*! by constructing a simple basis for cohomology.

1. INTRODUCTION

In a series of papers [4, 5, 6, 7| dating back to 1986, Hanlon con-
jectured that if L belongs to a certain class of complex Lie algebras,
which includes all semisimple Lie algebras, the Heisenberg Lie algebra,
and the Lie algebra of strictly upper triangular matrices, then the ho-
mology of the Lie algebra L ® C[t]/(t**!) is related to the homology of
L in a very natural way. More precisely, the conjectured relationship
is as follows:

(1.1) H,.(L® C[t]/(t*1)) = H,(L)®*+D

as graded vector spaces. A Lie algebra L that satisfies (1.1) is said to
have Property M.

The Property M conjecture was originally stated for L semisimple.
It is particularly important in this case, since it implies Macdonald’s
root-system conjecture [9] (see [4] and [7, Section 6]). The Property
M conjecture for L semisimple is one of two conjectures known as
the strong Macdonald conjectures. In 1990 Hanlon [5] proved that
sl,(C) has Property M. Macdonald’s original root-system conjecture
was eventually proved by Cherednik [2] in 1995. More recently, Fishel,
Grojnowski and Teleman [3] proved the strong Macdonald conjectures.

In a recent paper, Kumar [8] showed that the Property M conjecture
is false in general for the Lie algebra 7, of strictly upper triangular n xn
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matrices. More precisely he proved that (1.1) is false when L = 7, or
75 and k = 1. He showed, however, that (1.1) does hold for L = 73
and k£ = 1.

The Property M conjecture for the (2n 4 1)-dimensional Heisenberg
Lie algebra, Ha, 1, remains open. This is so even for Hz (= 73). Par-
tial results supporting the conjecture for Hz can be found in [6] and in
[1]. Computational evidence is given in [5]. In this paper we provide
further evidence by settling an important special case.

The Poincaré polynomial for Hs is easy to compute (see [7, Example
3.8]). It is given by

Z dim H,(Hs) y" =1+ 2y + 2y° + v°.
r>0
Hence Property M for L = H3 can be restated as
> dim H (L@ C[t] /(") v = (1 + 2y + 25 + y*),
r>0
which implies that
> " dim H,(L ® C[t]/(t*)) = 6"*".
r>0

Even this simple statement is still open.

Hanlon conjectured that for Hs, equation (1.1) holds for even finer
gradings than the homological dimension grading. One such grading is
an N3-grading by (e, f, r)-degree which is defined in the next section.
For this grading,

Z dim H,y,  p(H3)u™v"w? =14 u + v + wu + wv + uvw
m,n,peN
and the conjecture given in (1.1) becomes

(1.2) > dim Hy,pp(Hs @ ClE /(57 Ju o™ w?

m,n,peEN

= (1 +u+ v+ wu + wv + vow)"
Setting w = 0 yields

(1.3) Z dim H,, 0(Hs @ C[t]/(t* )™ = (1 4+ u + v)F,

m,neN

which implies that the homology of the 0" x-graded piece of H,(Hs ®
CJt]) has dimension 3**1.
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In this paper we prove (1.3). This is accomplished by constructing
the following basis for the 0 z-graded piece of the cohomology of
Hs ® C[t]/(thrl)I

{ea A A Afj A A0 <y < oo <y S kym < i < oo < G < K}

We show that this set is a basis by using the coboundary relations
to show that the set spans and then applying a lower bound on the
dimension which is established by considering a deformation of Hj3 ®
Cl[t]/(#**1). Poincaré duality enables us to construct a “complemen-
tary” basis for the k& + 1% x-graded component of homology. The
paper ends with a new conjecture which presents similar looking bases
for the 0" and k + 1% e- and f-graded pieces of (co)homology of
Hs @ C[t]/ ().

2. PRELIMINARIES

In this section we recall some notation and background. The Heisen-
berg Lie algebra Hj is the subalgebra of gl3(C) spanned by the basis
vectors 219, 213, 223, Where z;; is the 3 x 3 matrix with 1 as the 7, j entry
and 0’s elsewhere. We use the traditional notation for this basis which
is obtained by letting e = z19, f = 293 and x = z13. The only nonzero
brackets on these basis elements are

[e7f] :_[fae] =T

Let L be a complex Lie algebra and let A be a commutative C-
algebra. The Lie algebra L ® A is defined to be the vector space L ® A
with bracket

[u® a,v® b = lu,v] ® ab,

where [u,v] is the bracket of v and v in L, and ab is the product of a
and b in A.

A basis for Ly := Hz ® C[t]/(t*!) is given by

B = {607617'"7€k’af07f17'"7fk7x07x17"'7xk}7
where ¢; = e@t), fi = f@t and o; = 2 ® ¢ for all i = 0,1,... k.
Clearly, the only nonzero brackets on these basis elements are given by
lei, ;] = —[fj: €] = Ty

for all 4, 7 such that ¢ + j < k.

Let E, F and X denote the subspaces of L spanned by the ¢;’s, f;’s

and z;’s, respectively. Then the exterior algebra of Lj has a N3-grading
given by

ANy = P N(E)@AMF) @ A (X),

m,n,peN
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where A’ denoted the ith exterior power. We will say that an element
uin A™(E) @ A"(F) @ AP(X) is (e, f, z)-homogeneous with (e, f, x)-
degree equal to (m,n,p). We will also say that the e-degree of u is m,
the f-degree is n and the x-degree is p.

Recall that the differential or boundary operator of the Koszul com-
plex for Lie algebra homology is the map 0 : AL — AL defined by

Our A Ay = (1) g ug] Ay A= A A= Nl A= Ay,
i<j
where ~ denotes deletion. The homology of L is
H,(L) =kerd/imo.
When L = Ly, the differential 0 reduces the e-degree and f-degree of

an (e, f,r)-homogeneous element by 1 and increases the z-degree by 1.
We can therefore let

Omnyp : N"(E) @ A"(F) @ NP(X) — A" Y (E) @ A" HF) @ APTH(X)
be the restriction of 9. Now define
Honnp(Li) = ker Oy p/ 1M Oyt 1 1 p—1-
So H,(L) has an N3-grading given by
H (L)) = € Hunnp(Ls)-

m,n,peN
3. A LOWER BOUND ON THE DIMENSION

In this section we derive a lower bound on the dimension of H,, ,, o(Ly)
by considering a deformation of the Lie algebra L; whose homology is
relatively easy to compute.

Let L) denote the Lie algebra

L), = Hs ® C[t]/(t"™ —1).
So the non-zero brackets in Lj, look like:
e, fi] = Titj, ifi+j<k
v Titj—(k+1), Otherwise.

Just as for L, we can restrict the Lie algebra boundary o for
Ly, to A™(E) ® A™(F) ® AP(X) to obtain d,,, . This induces an
(e, f,x)-grading of H,.(L)) whose (m,n,p)-component H,,, ,(L}) is

/ : /
ker 8m7n’p/ Mo, 11 p 1

Lemma 3.1. For all k,m,n,p € N,
dim Hy . p(Ly) > dim Hy, (L)



HEISENBERG LIE ALGEBRA 5

Proof. As a basis for the two complexes, take the set AB of wedges
of distinct elements of B = {eg,e1,... ek, fo, f1---, [r, To, 1. , Ty}
The weight of a wedge of elements from B is the sum of their subscripts.
Order the basis elements of AB so that this weight is weakly increasing.
With respect to this ordered basis, the boundary 0 for Lj is block
diagonal since that map preserves weight. The boundary 0’ has the
form:

(3.1) 9 =0+T1,

where U is strictly block upper triangular.

It is a simple fact from linear algebra that if A is block diagonal
and B is strictly block upper triangular, then rank(A + B) > rank(A).
Applying that to equation (3.1) we see that

rank(9) < rank(9').

So, we see that the nullspace of @ has dimension that is no bigger
than the dimension of the nullspace of 0, whereas the image of @' has
dimension that is no smaller than the dimension of the image of 0.
Since (3.1) holds for the restriction to each (e, f,z)-graded piece, it
follows that

dim H,, pp p(Ly) > dim Hyy, (L))
for all m,n,p € N. O

The (k + 1)-fold tensor power of H,.(Hs3) has a natural (e, f,z)-
grading. We denote the (m,n,p)-component of H,(Hs3)®*+) under
this grading by (H,(Hz)®*+D),

Proposition 3.2. For all k,n,m,p € N,

dim H,y, o p(Li) > dim(H, (Hz)2F )00
Proof. By Lemma 3.1 it suffices to prove
(3.2) dim H,, (L) = dim(H, (Hz)®*D),, .

It is straightforward to check that Lj is isomorphic (as a Lie algebra)
to the (Lie algebra) direct sum of k + 1 copies of the Lie algebra Hs.
To see this isomorphism explicitly, let ¢\9) be the map from Hs to L
defined by

k

. 1 )
(4) _ - gt 4t
=0
where w is a primitive (k+1)* root of unity. Let Hé‘j ) denote the image

of pU). Tt is easy to check that ng )is a subalgebra of L) isomorphic
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to Hs and that [HS), H{)] = 0 for i # j. It follows that

k
(3.3) L, = P Hs.
=0

It is straightforward to show that H,(L & M) = H.(L) ® H.(M) for
Lie algebras L and M. Applying this to (3.3) yields

(L) 2 H (M) >0+

One can easily check that this isomorphism carries the (e, f, z)-grading
of H,(L,) to the natural (e, f,z)-grading of H,(H3)®*+1. Hence (3.2)
holds. O

Corollary 3.3. For allm,n < k+1,

kE+1
dim H,, , o(Lg) > .
" 7 70( k> N (m,n,k—I—l - (m+n))

Proof. We use the fact that
Z dim H,, po(H3)u™v" =1+ u +v.

m,n

O

Remark 3.4. The Lie algebras L and Lj are part of a more general
construction. For any complex Lie algebra L and complex number z
define

Li(2) = L& C[t]/ (! — 2).

For z # 0, an argument similar to the proof of (3.3) shows that the
Lie algebra Li(z) is a Lie algebra direct sum of k 4+ 1 copies of L. At
the singular point, z = 0, the structure of Li(z) changes dramatically.
However, the homology of Lj(z) can remain constant at the singular
point. This happens if and only if L has Property M.

4. A Basis FOR COHOMOLOGY

In this section we compute the dimension of Hy, ,,0(Ly) by switching
to cohomology and constructing a spanning set for cohomology which
turns out to be a basis.

Let the coboundary map 0 : AL, — AL, be the adjoint of 0 with
respect to the Hermitian form on ALj; that has AB as an orthonor-
mal basis. The cohomology of Ly, denoted H*(Ly), is defined to be
ker d/imd. The key relationship between homology and cohomology is

(4.1) H.(Ly) = H*(Ly).
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By restricting 0 we obtain a linear map
Smmp : N"(E) @ N"(F) @ AP(X) — A"THE) @ A"THF) @ APHX).
Now define the (e, f, z)-graded cohomology component of degree (m, n, p)

to be
H™ (L) = Ket by 611t

The isomorphism in 4.1 restricts to
Hm,n,p(Lk) = Hm,n,p(Lk).

Now let us set p = 0. Note that kerd,, o = A™(E) ® A"(F). So
H™"™Y(Ly) is generated by elements of the form e; A+ Ae; A fj, A
-+ A\ fj, subject only to the cohomology relations. The cohomology
relations are obtained by setting the coboundary of elements of the
form

€i /\"'/\eim_1 /\f]'1 /\"'/\fjn_1 /\fEt
equal to 0. This results in relations of the form:

t

(42) > en A A Afi A A fi Neg A fimg =0,
s=0

foreacht =0,...,k. We allow e;; A---Ae;, A fj, A---Af;, torepresent
an element of cohomology of L as well as of the exterior algebra of Lj.

Theorem 4.1. For all k,m,n € N, the set S, ,, =
{ea A New, Afj Ao Afi |0 Sy < - v <y < km < i < oo < jp < k}
is a basis for H™™O(Ly,).

We will prove Theorem 4.1 by first showing that S, ,, spans H™™%(Ly).
To conclude that the spanning set is a basis we appeal to the lower
bound given by Corollary 3.3.

The following ordering of symbols

0<0<l<l<---<k<k

induces a lexicographical ordering of sequences of these symbols which
we denote by <. We assign to each wedge product

w:eil/\e7;2/\~~~/\eim/\fj,
where 0 < iy,%9,...,%y, ] < k, the sequence

,LL((U) - (il,ig,...,€j+1,...,im) 1f ] <m
' (i17i2a"-7im) lf]Zm
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Lemma 4.2. Fach wedge product
€1 /\6i2/\"'/\€im/\fj,

where 0 < 41,09, ...,0, < kand0 < j < m, can be expressed as a linear
combination of wedge products with lexicographically smaller p-value.

Proof. By the cohomology relation given in (4.2)

(4.3)
en N Ne, Ny = = e Ao Aey i Ao Nei, A fi
r>1
—Zeil /\---/\eijﬂ,r/\---/\eim/\fjH.
r>1

Here we let e, = f; =0if 1 <0 ori > k.
Consider the r** term of the first sum and suppose this term is
nonzero. We have

ples N Aei e oo Neg, A fioy)
= (Uyeeeyljridy ooy djy1 F Ty i)
<L (01 e ey Bty e e ey im)
= (e, N Neip, A fj).
The 7' term of the second sum is handled similarly. Assume the
term is nonzero. If j +r < m then

ples N-e ANeg o oo Neg, A figr)
= (i, i = e et i)
<L (B1y ooy tjgty e im)
= pley N Nei, A fj).
If 5 +r > m then

pleiy N Aei N - s Neg, A figr)
= (l1yeeesljp1 —Tyeeeyim)
<p (i1, e ey Gjgty e ey lm)
= pley A Aei, A ).

Hence each nonzero wedge product on the right side of (4.3) has lexi-
cographically smaller p value than that of e;, A---Ae;, A f;. |

Proof of Theorem 4.1. It follows from Lemma 4.2, the anticommuting
exterior algebra relations and induction that S, ; spans H™'0(L). We
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use this to show that S, , spans H™m0(L;) for all m and n. Consider
an arbitrary generator of H,,,o(Ly),

wzeil/\."/\eim/\fjl/\.”/\fj"7

where 0 <4y < -+ <ip, <kand 0 < j; <--- < j, < k. We show that
w is in the span of S,,, by induction on the minimum f-index, ji.

If j1 > m then w € §,,,,. Now suppose j; < m. We will show
that w can be expressed as a linear combination of wedge products in
H™"™Y(L) with larger minimum f-index. Since S,, 1 spans H,,10(Ly),
the wedge product e;, A---Ae;, A fj, is a linear combination of elements
of the form ey A -+ Aey A fj, where 0 < @) < - <, < k and
m < ji; < k. It follows that w = e;;, A---Ae;, A fj, A--- A fj, is a linear
combination of elements of the form e; A---Aey A fir A fj, Ao+ A [,
where 0 < ¢} < --- < i < kand m < j; < k. Clearly the wedge
products of this form have larger minimum j-index than that of w.
It follows by induction these wedge products are in the span of S, .
Hence w is in the span of S, , and we can conclude that S,,, spans
Hm’n’O(Lk).

We now have

. k+1)!

dim H™™O(Ly) < |Spmn| = ( i

o (Lx) < 1Sl mInl(k+1—m —n)!

Hence by Corollary 3.3, Sy, is a basis for H™™°(Ly). O

Remark 4.3. The proofs of Lemma 4.2 and Theorem 4.1 show that
(4.3) provides the basic step of a straightening algorithm for expressing
wedge products in H,, ,0(Lx) in terms of elements of the basis Sy, .

The conjecture given in (1.3), which is restated here, is an immediate
consequence.

Theorem 4.4. For all k > 0,
Z dim H,, po(Li)u™0™ = (1 +u + v)

Equivalently,
E+1
4.4 dim H,p, no(Ly) = :
(4.4) m Hnno( L) (m,n,l{:+1—m—n>
Corollary 4.5. The dimension of the 0 x-graded component of H,(Ly,)
is 3k,

Remark 4.6. Adin and Athanasiadis [1] derive the special case of (4.4)
obtained by setting m = 1.



10 HANLON AND WACHS

Since L; is nilpotent, we can use Poincaré duality to conclude that
the dimension of the k + 1% z-graded component of (co)homology of
Ly, is also 31, In fact, we can explicitly transfer the basis for the 0%
x-graded component of cohomology to the &+ 1%t z-graded component
of homology. For [ = {i; <iy <--- <i,} C{0,1,...,k}, let

er:=¢€; Ney, N Nej,
and define f; and x; similarly. Let ¢ : AL, — ALy be the isomorphism
defined by
Yler A frNxg) =er N frAag,
where S denotes the complement {0, 1,...,k}—S. It is straightforward

to check that 1 0 @ = (—1)k6 0 4. Hence 1) determines a well-defined
isomorphism ¢ : H"™"P(Ly) — Hy1—mp+1-nj+1—p(Li)-

Theorem 4.7. For all k,m,n € N,
{esNfrNzo1. k10,1,....k—ne J|I|=m,|J|=n}
is a basis for Hy, pnjt1-
Proof. Apply 9 to the basis given in Theorem 4.1. |
Corollary 4.8. For all k > 0,

Z dim Hypy o o1 (L) u™0" = (u + v + uv)*

m,n

Equivalently,

E+1
dim Hpy o1 (Li) = .
i Hyn o1 (L) (k+1—m,k—|—1—n,m—|—n—k—1)

Remark 4.9. Conjecture (1.2) is a special case of a conjecture involv-
ing the Laplacian of Ly (see [7, Conjecture 6E]). In this context The-
orem 4.4 states that the dimension of the (m,n,0)-graded piece of the
kernel of the Laplacian of Lj; has dimension (m " k’f{imfn) and Corol-
lary 4.8 states that the dimension of the (m,n, k + 1)-graded piece of
the kernel of the Laplacian of Ly has dimension (k lemk Jfrlhm e k—l)'
5. CONJECTURED BASES FOR OTHER COMPONENTS OF
(CO)HOMOLOGY

We now consider the 0 e- and f-graded pieces of homology. Since

Hn,O,p(Lk> = HO,n,p<Lk)

we need only consider the 0 e-graded piece. Analogous to the 0% 2-
graded piece of cohomology, Ho (L) is generated by all the elements
of A"(F) ® NP(X) subject to the boundary relations.
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By setting « = 0 in (1.2) one has the following conjectured generating
function

(5.1) > dim Hop(Li)v"w? = (14 v 4 vw)*+.

n,peN

This implies that the total dimension of the 0 e-graded piece of ho-
mology is 3*"1. Tt also implies that if p > n then Hy,,(Ly) vanishes.
The second consequence is not hard to prove.

The following conjecture implies (5.1).

Conjecture 5.1. Let 0 <p<n andw, = foA--- A fp_1. Then
{wp Afiy Ao A fi, Njy Ao ANy |
p<ig < - <ipp, <k, 0<j<---<jp,<k}
is a basis for Hy, ,»(Ly).

We can prove this conjecture for p < 2 by using ideas similar to those
of Section 4, and expect that these ideas will eventually lead to a proof
for all p. By applying the Poincaré duality isomorphism ) given in
Section 4, one can formulate an equivalent conjecture for H**1mP(Ly)
(and H™H*LP(Ly)).
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