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On the Homogenized Linial Arrangement:
Intersection Lattice and Genocchi Numbers
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Abstract. Hetyei recently introduced a hyperplane arrangement (called the homoge-
nized Linial arrangement) and used the finite field method of Athanasiadis to show
that its number of regions is a median Genocchi number. These numbers count a
class of permutations known as Dumont derangements. Here, we take a different ap-
proach, which makes direct use of Zaslavsky’s formula relating the intersection lattice
of this arrangement to the number of regions. We refine Hetyei’s result by obtaining a
combinatorial interpretation of the Möbius function of this lattice in terms of variants
of the Dumont permutations. The Möbius invariant of the lattice turns out to be a
(nonmedian) Genocchi number. Our techniques also yield type B, and more generally
Dowling arrangement, analogs of these results
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1 Introduction

Let n ≥ 1. The braid arrangement is the hyperplane arrangement in Rn defined by

An−1 := {xi − xj = 0 : 1 ≤ i < j ≤ n}.

Note that the hyperplanes of An−1 divide Rn into n! open cones of the form

Rσ := {x ∈ Rn : xσ(1) < xσ(2) < · · · < xσ(n)},

where σ is a permutation in the symmetric group Sn.
A classical formula of Zaslavsky [17] gives the number of regions of any real hyper-

plane arrangement A in terms of Möbius function of the intersection (semi)lattice L(A)
(which consists of intersections of collections of hyperplanes in A, viewed as affine sub-
spaces of Rn, ordered by reverse containment). Indeed, given any finite, ranked poset P
of length r, with a minimum element 0̂, define the characteristic polynomial of P to be

χP(t) := ∑
x∈P

µP(0̂, x)tr−rk(x), (1.1)
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where µP(x, y) is the Möbius function of P and rk(x) is the rank of x. Zaslavsky’s
formula is

#{regions of A} = |χL(A)(−1)|. (1.2)

It is well known and easy to see that the lattice of intersections of the braid arrange-
ment An−1 is isomorphic to the lattice Πn of partitions of the set [n] := {1, 2 . . . , n}. It is
also well known that the characteristic polynomial of Πn is given by

χΠn(t) =
n

∑
k=1

s(n, k)tk−1, (1.3)

where s(n, k) is the Stirling number of the first kind, which is equal to (−1)n−k times
the number of permutations in Sn with exactly k cycles; see [15, Example 3.10.4]. Hence
χΠn(−1) = (−1)n−1|Sn|. Therefore from (1.2), we recover the result observed above that
the number of regions of An−1 is n!.

In this extended abstract of [9], we obtain analogous results for a hyperplane arrange-
ment introduced by Hetyei [8]. The homogenized Linial arrangement is the hyperplane
arrangement in R2n defined by3

H2n−3 := {xi − xj = yi | 1 ≤ i < j ≤ n},
where n ≥ 2.

Note that by intersecting H2n−3 with the subspace y1 = y2 = · · · = yn = 0 one
gets the braid arrangement An−1. Similarly by intersecting H2n−3 with the subspace
y1 = y2 = · · · = yn = 1, one gets the Linial arrangement in Rn,

{xi − xj = 1 | 1 ≤ i < j ≤ n}.
Postnikov and Stanley [11] show that the number of regions of the Linial arrangement
is equal to the number of semiacyclic orientations of the complete graph Kn. (Note that
the number of acyclic orientations of Kn is n!, the number of the regions of An−1.)

In [8] Hetyei uses the homogenized Linial arrangement to study certain orientations
of Kn that he calls alternation-acyclic. He shows that the regions of H2n−3 are in bi-
jection with the alternation-acyclic orientations of Kn. Using the finite field method of
Athanasiadis [1], Hetyei obtains a recurrence for χL(H2n−3)(t) and uses it to show that

|χL(H2n−3)(−1)| = hn, (1.4)

where hn is a median Genocchi number.4 Barsky and Dumont [2, Theorem 1] obtain the
following generating function for the median Genocchi numbers

∑
n≥1

hn+1xn = ∑
n≥1

n!(n + 1)!xn

∏n
k=1(1 + k(k + 1)x)

. (1.5)

3To justify our our indexing, we note that the length of the intersection lattice is 2n− 3.
4In the literature the median Genocchi number hn is usually denoted H2n−1.



Homogenized Linial Arrangement 3

The median Genocchi numbers also have numerous combinatorial interpretations.
One of these interpretations is given in terms of a class of permutations called Dumont
permutations; see [4] and [5, Corollary 2.4]. Another is given in terms of surjective
pistols in [5, Corollary 2.2].

Here, we further study the intersection lattice L(H2n−1). We refine Hetyei’s result
(1.4) by deriving a combinatorial formula for the Möbius function of L(H2n−1) in terms
of permutations in S2n similar to Dumont permutations, which we call D-permutations.
A key step in our proof is to show that L(H2n−1) is isomorphic to the bond lattice of a
certain bipartite graph. This bond lattice has a nice description as the induced subposet
of the partition lattice Π2n consisting of partitions all of whose nonsingleton blocks have
odd smallest element and even largest element. Our Möbius function result yields a
combinatorial formula for the characteristic polynomial of L(H2n−1) analogous to (1.3)
with Sn replaced by the D-permutations in S2n. By constructing a bijection between the
D-permutations and surjective pistols, we recover Hetyei’s result that |χL(H2n−1)

(−1)| is
a median Genocchi number. Moreover, we obtain the new result that the (nonmedian)
Genocchi number5 gn−1 is equal to |µL(H2n−1)

(0̂, 1̂)|, where 0̂ and 1̂ are the minimum and
maximum elements of L(H2n−1), respectively.

Our techniques also yield a type B analog of Hetyei’s result and more generally a
Dowling arrangement analog. We define the type B homogenized Linial arrangement to be
the hyperplane arrangement in R2n defined by

HB
2n−1 = {xi ± xj = yi : 1 ≤ i < j ≤ n} ∪ {xi = yi : i = 1 . . . , n}. (1.6)

We show that that the intersection lattice of HB
2n−1 is isomorphic to an induced subposet

of the signed partition lattice ΠB
2n−1 and obtain results for the Möbius function and

characteristic polynomial analogous to those for L(H2n−1). We use these results to prove
the following generating function formula for the number of regions rB

n of HB
2n−1,

∑
n≥1

rB
n xn = ∑

n≥1

(2n)!xn

∏n
k=1(1 + 2k(2k + 1)x)

, (1.7)

thereby providing a type B analog of (1.5). We also obtain a type B analog of a formula
of Barsky and Dumont [2] for the generating function of the Genocchi numbers.

Let ω be the primitive mth root of unity e
2πi
m . For m, n ≥ 1, the Dowling arrangement

is a hyperplane arrangement in Cn defined by

{xi −ωlxj = 0 : 1 ≤ i < j ≤ n, 0 ≤ l < m} ∪ {xi = 0 : 1 ≤ i ≤ n}. (1.8)

This is called a Dowling arrangement because its intersection lattice is isomorphic to the
classical Dowling lattice Qn(Zm), which is isomorphic to Πn+1 when m = 1, and to ΠB

n
when m = 2. By introducing a Dowling analog of the homogenized Linial arrangement,
we obtain unifying generalizations of the types A and B results discussed above.

5These are the signless Genocchi numbers; gn is usually denoted (−1)n+1G2n+2 in the literature.
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2 Preliminaries

Hyperplane Arrangements. Let k be a field (here k is R or C). A hyperplane arrangement
A ⊆ kn is a finite collection of affine codimension-1 subspaces of kn. The intersection poset
of A is the poset L(A) of intersections of hyperplanes in A (viewed as affine subspaces
of kn), partially-ordered by reverse inclusion. If

⋂
H∈A H 6= ∅ then the intersection poset

is a geometric lattice, otherwise it’s a geometric semilattice.
If A is a real hyperplane arrangement, then Rn \A is disconnected. By the number

of regions of A we mean the number of connected components of Rn \A. This number
can be detected solely from L(A) as Zaslavsky’s formula (1.2) shows.

If A is a complex hyperplane arrangement, its complement MA := Cn \⋃H∈A H is a
manifold whose Betti numbers βi can be detected solely from L(A). Indeed, this follows
from the formula of Orlik and Solomon [10, Theorem 5.2],

n

∑
i=0

βi(MA)ti = (−t)rχL(A)(−t−1), (2.1)

where r is the length of L(A).
The Bond Lattice of a Graph. Let G be a graph on vertex set [n]. The bond lattice of G is
the subposet ΠG of the partition lattice Πn consisting of partitions π = B1| · · · |Bk such
that G|Bi is connected for all i. Note that Πn is the bond lattice of the complete graph
Kn. Another example is given below.

1|2|3|4

12|3|4 1|23|4 1|2|34

123|4 12|34 1|234

1234

1

2 3

4

G ΠG

Broken circuits provide a useful means of computing the Möbius function of the bond
lattice of a graph (or more generally, of geometric lattices). We define them now. Let
G = ([n], E) be a finite graph. Fix a total ordering of E and let S be a subset of E. Then S
is called a broken circuit if it consists of a cycle in G with its least edge (with respect to this
ordering) removed. If S does not contain a broken circuit, we say that S is a non-broken
circuit or NBC set.

Given any S ⊆ E, let πS be the partition of [n] whose blocks are the vertex sets of the
connected components of the graph ([n], S). The following theorem is due to Whitney
[16, Section 7] for graphs and Rota [13, Pg. 359] for general geometric lattices.
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Theorem 2.1 (Rota-Whitney). Let π ∈ ΠG. Then

(−1)rk(π)µ(0̂, π) = #{NBC sets S of G : πS = π}.

Given a rooted tree whose vertex set is a subset of Z+, we say the tree is increasing if
each nonroot vertex is larger than its parent. A rooted forest on a subset of Z+ is said to
be increasing if it consists of increasing rooted trees. Note that if G is Kn then by ordering
the edges lexicographically with the smallest element as the first component, the NBC
sets of ΠG are exactly the edge sets of the increasing forests on [n].

Genocchi and median Genocchi Numbers. The Genocchi numbers and median Genoc-
chi numbers are classical sequences of numbers that have been extensively studied in
combinatorics. There are many ways to define them. Here we define them in terms
of Dumont permutations. A Dumont permutation is a permutation σ ∈ S2n such that
2i > σ(2i) and 2i − 1 ≤ σ(2i − 1) for all i = 1, . . . , n. A Dumont derangement is a Du-
mont permutation without fixed points, i.e., 2i > σ(2i) and 2i − 1 < σ(2i − 1) for all
i = 1, . . . , n.

Example 2.2. When n = 2, the Dumont permutations on [4] (in cycle form) are

(1, 2)(3, 4) (1, 3, 4, 2) (1, 4, 2)(3).

When n = 3, the Dumont derangements on [6] are:

(1, 3, 5, 6, 4, 2) (1, 3, 4, 2)(5, 6) (1, 2)(3, 4)(5, 6) (1, 2)(3, 5, 6, 4)
(1, 4, 3, 5, 6, 2) (1, 5, 6, 3, 4, 2) (1, 5, 6, 2)(3, 4) (1, 4, 2)(3, 5, 6).

For n ≥ 0, the (signless) Genocchi number gn is defined to be the number of Dumont
permutations on [2n], and for n ≥ 1, the median Genocchi number hn is defined to be the
number of Dumont derangements on [2n]. The Genocchi numbers gn for n = 0 to 6 are

1, 1, 3, 17, 155, 38227

and the median Genocchi numbers hn for n = 1 to 6 are

1, 2, 8, 56, 608, 9440.

3 The (type A) homogenized Linial arrangement

In this section we give a characterization of the intersection lattice L(H2n−1) as an in-
duced subposet of Π2n and compute its Möbius function.
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3.1 The intersection lattice is a bond lattice

We begin by showing that L(H2n−1) is isomorphic to the bond lattice of a nice bipartite
graph. Let Γ2n be the bipartite graph on vertex set {1, 3, . . . , 2n− 1} t {2, 4, . . . , 2n} with
an edge between 2i− 1 and 2j iff i ≤ j. The graph Γ6 is given below.

1

3

5

2

4

6

Theorem 3.1. The posets L(H2n−1) and ΠΓ2n are isomorphic.

In [9], we prove Theorem 3.1 by constructing an invertible Z-linear automorphism
that sends H2n−1 to an arrangement whose intersection poset is ΠΓ2n .

Proposition 3.2. The bond lattice ΠΓ2n is the induced subposet of Π2n consisting of the partitions
X = B1| · · · |Bk in which min(Bi) is odd and max(Bi) is even for all nonsingleton Bi.

We use the Rota-Whitney Theorem (Theorem 2.1) to compute the Möbius function of
ΠΓ2n . Our NBC sets have a nice description which we give now. We say that a rooted
tree on node set A ⊂ Z+ is increasing-decreasing (ID) if for each internal node a,

• if a is odd then a is less than all its descendants and all its children are even.
• if a is even then a is greater than all its descendants and all its children are odd.

We say that an unrooted tree T is an ID tree if for some choice of root (namely the
smallest node or the largest node), T is a rooted ID tree. A forest on node set A is said
to be an ID forest if it consists of ID trees. An example of a rooted ID tree is given below.

8

1 73

4 62

5

T =

The following lemma is a special case of a more general result about Ferrers graphs,
which was obtained independently by Selig, Smith and Steingrimsson [14, Theorem 7.3]
in a different context.

Lemma 3.3. Write the edges of Γ2n as ordered pairs (a, b) where a < b. Now partially order the
edges so that (a1, b1) ≤ (a2, b2) if a1 ≤ a2 and b1 ≥ b2. With respect to any linear extension of
this order, the NBC sets in Γ2n are the edge sets of the ID forests on [2n].

Now by the Rota-Whitney Theorem (Theorem 2.1) we have the following result.

Theorem 3.4. For all π ∈ ΠΓ2n , we have that (−1)|π|µ(0̂, π) equals the number of ID forests
on [2n] whose trees have nodes sets equal to the blocks of π.
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3.2 Dumont-like permutations

Our next step is to introduce a class of permutations similar to the Dumont permutations
and then give a bijection between these permutations in S2n and the ID forests on [2n].

Let A be a finite subset of Z+. We say σ ∈ SA is a D-permutation on A if i ≤ σ(i)
whenever i is odd and i ≥ σ(i) whenever i is even. We denote by DA the set of D-
permutations on A and by DCA the set of D-cycles on A. If A = [n], we write Dn and
DCn.

Note that all Dumont permutations are D-permutations, but not conversely. Indeed,
the only difference between the two classes of permutations on S2n is that fixed points
can be even or odd in a D-permutation, while only odd fixed points are allowed in a
Dumont permutation. It follows immediately from the definitions that

DC2n ⊆ {Dumont derangements in S2n} ⊆ {Dumont permutations in S2n} ⊆ D2n.

Recall that the two sets in the middle of this chain are enumerated by median Genocchi
number hn and Genocchi number gn, respectively. According to our next theorem the
sets on the ends of the chain are also enumerated by Genocchi and median Genocchi
numbers.

Theorem 3.5. For all n ≥ 1,

(1) |DC2n| = gn−1

(2) |D2n| = hn+1

The proofs appear in the full version of the paper [9]. The proof of (1) follows from
an elementary bijection, while the proof of (2) is more difficult and relies on the theory
of surjective pistols discussed in [12] and [5].

Next we define a bijection ψA from the set TA of ID trees on A to DCA, for all finite
A ⊆ Z+. For T ∈ TA, root T at its largest node and order the children of each even node
in increasing order and the children of each odd node in decreasing order. This turns
T into a rooted planar tree, which can be traversed in postorder. Let α := α1, · · · , α|A|
be the word obtained by traversing T in postorder, that is, αi is the ith node of T in
postorder. Now let ψA(T) be the permutation whose cycle form is (α). For the ID tree T
given in Section 3.1, we have ψ[8](T) = (4, 2, 1, 5, 6, 3, 7, 8).

Lemma 3.6. For all A ⊆ [2n], the map ψA : TA → DCA is a well-defined bijection. Conse-
quently |TA| = |DCA|.

The cycle support of σ ∈ Sn is the partition cyc(σ) ∈ Πn whose blocks are com-
prised of the elements of the cycles of σ. For example, cyc((1, 7, 2, 4)(5)(6, 8, 9, 3)) =
1247|5|3689. As a consequence of Theorem 3.4 and Lemma 3.6, we have the following
result.
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Theorem 3.7. For π ∈ ΠΓ2n , where n ≥ 1,

(−1)|π|µΠΓ2n
(0̂, π) = |{σ ∈ D2n | cyc(σ) = π}|.

Now by Theorems 3.1 and 3.7, we have the following analog of (1.3).

Theorem 3.8. For all n ≥ 1,

χL(H2n−1)
(t) =

2n

∑
k=1

sD(n, k)tk−1, (3.1)

where (−1)ksD(n, k) is equal to the number of D-permutations on [2n] with exactly k cycles.

Next we invoke Theorem 3.5. By setting t = −1 in (3.1) we recover Hetyei’s result
(1.4) that χL(H2n−1)

(−1) = −hn+1 , and by setting t = 0 we obtain the following new
result on the Genocchi numbers.

Theorem 3.9. For all n ≥ 1,

µL(H2n−1)
(0̂, 1̂) = −|DC2n| = −gn−1.

In the full version of the paper [9], we use Theorem 3.8 and the theory of surjective
pistols in [12] to derive the following result.

Theorem 3.10.

∑
n≥1

χL(H2n−1)
(t) xn = ∑

n≥1

(t− 1)n(t− 1)n−1 xn

∏n
k=1(1− k(t− k)x)

, (3.2)

where (a)n denotes the falling factorial a(a− 1) · · · (a− n + 1).

Equation (3.2) reduces to a formula of Barsky and Dumont [2, Lemma 2] for the
Genocchi numbers when t is set equal to 0 and to the formula of Barsky and Dumont
for the median Genocchi numbers given in (1.5) when t is set equal to −1.

We are also able to obtain the following characterization of the median Genocchi
numbers by evaluating χΠΓ2n

(t) in another way.

Theorem 3.11. For all n ≥ 1, hn+1 is equal to the number of permutations σ on [2n] whose
descents σ(i) > σ(i + 1) occur only when σ(i) is even and σ(i + 1) is odd.

We now give yet another way in which the median Genocchi numbers arise.

Theorem 3.12. 6 For all n ≥ 3,

χL(H2n−1)
(t) = (t− 1)3χPn(t),

where Pn is the intersection semilattice of a certain affine hyperplane arrangement in R2n−4.
Moreover, |χPn(1)| = hn−2; hence the number of bounded regions of this affine arrangement is
hn−2.

6This result was also independently conjectured by Hetyei (personal communication).
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In the full version of the paper, we compute χPn(1) by applying the theory of shella-
bility to the NBC complex of the geometric semilattice Pn. The consequence follows from
Zaslavsky’s result on the number of bounded regions of an affine arrangement [17].

4 The homogenized Linial-Dowling arrangement

In this section, we extend the results of the previous section to the Dowling arrange-
ments, which generalize the complexified types A and B braid arrangements.

The Dowling lattice Qn(Zm) consists of labeled partitions B0|B1| . . . |Bk of {0} ∪ [n]
such that

• 0 ∈ B0 (B0 is called the zero block),

• the elements of Bi, i ≥ 1, are labeled with elements of {0, 1, . . . , m− 1} and min(Bi)
is labeled with 0.

The cover relation is given by merging blocks as follows. Let B0|B1| · · · |Bk ∈ Qn(Zm).

• If B0 and Bi merge, erase all of the labels from Bi and merge the blocks as in Πn to
obtain a new zero block B′0.

• Suppose i, j 6= 0, and min(Bi) < min(Bj). There are m ways to merge Bi and Bj.
For each ` ∈ {0, . . . , m− 1}, when Bi and Bj merge, the labels of the elements of Bi
remain unchanged, while ` is added mod m to the labels of the elements of Bj.

Example 4.1. Suppose m = 3. Then 05|1031|2042 is covered by

0135|2042 0245|1031 05|10203142 05|10213140 05|10223141.

It is not hard to see that for all m ≥ 1, the Dowling lattice Qn(Zm) is isomorphic to
the intersection lattice of the Dowling arrangement defined in (1.8). See [3] and [7] for
further information on Dowling lattices.

Now we introduce a Dowling analog of the homogenized Linial arrangement. Let
ω = e2πi/m be a primitive mth root of unity. The homogenized Linial-Dowling arrangement
is the complex hyperplane arrangement

Hm
2n−1 = {xi −ω`xj = yi | 1 ≤ i < j ≤ n, 0 ≤ ` < m} ∪ {xi = yi | 1 ≤ i ≤ n} ⊆ C2n .

Note that when m = 2, the arrangement Hm
2n−1 is a complexified version of the type B

homogenized Linial arrangement HB
2n−1 defined in the introduction. When m = 1, the

arrangement Hm
2n−1 is the complexified version of the arrangement obtained by inter-

secting H2n−1 with the coordinate hyperplane xn+1 = 0. The resulting arrangement on
the coordinate hyperplane has the same intersection lattice as H2n−1.

The proof of the following result is similar to that of the type A version except that
we use a group-labeled graph in place of the graph Γ2n.
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Theorem 4.2. For all n, m ≥ 1, the intersection lattice L(Hm
2n−1) is isomorphic to the induced

subposet Lm
2n−1 of Q2n−1(Zm) consisting of all labeled partitions such that

• for nonsingleton B0, min(B0 \ {0}) is odd,

• for all nonsingleton Bi, with i > 0, min(Bi) is odd and max(Bi) is even.

To compute the Möbius function of the geometric lattice L(Hm
2n−1), we apply the

Rota-Whitney Theorem (Theorem 2.1) to Lm
2n−1 and then we construct a bijection from

the NBC sets of Lm
2n−1 to the class of m-labeled D-permutations, which we now define.

An m-labeled D-permutation σ on [2n] is a D-permutation whose entries are deco-
rated with elements of {0, 1, . . . , m− 1} such that

• cycle minima are labeled 0,

• if (a1, a2, . . . , ar = 2n) is the cycle of σ containing 2n then all right-to left minima of
the word a1a2 . . . ar are labeled 0.

For example, let n = 5 and σ = (3, 7, 8, 5, 9, 10)(1, 4, 2)(6). Since the right-to-left minima
of the first cycle are 10, 9, 5, 3, they must all be labeled 0. Since 1 and 6 are the min-
ima of their respective cycles, they must also be labeled 0. Hence σ with the labeling
(30, 7∗, 8∗, 50, 90, 100)(10, 4∗, 2∗)(60), where ∗ denotes any label in {0, 1, 2}, is a 3-labeled
D-permutation.

We write Dm
2n for the set of m-labeled D-permutations on [2n] and DCm

2n for the set
of m-labeled D-cycles on [2n]. The cycle support of σ ∈ Dm

2n is the m-labeled partition
cyc(σ) = B0| · · · |Bk ∈ Qn(Zm) obtained from σ as follows:

• The set of entries of the cycle of σ that contains 2n gives rise to the zero block B0,
with 2n replaced by 0 and all labels removed.

• Each cycle of σ that doesn’t contain 2n gives rise to a labeled block B for which the
labels of the entries of B are the same as the labels of the entries of the cycle.

For example, if σ = (10314122)(50)(60)(7080) then cyc(σ) = 07|10223141|50|60.

Theorem 4.3. Let n, m ≥ 1. For all π ∈ Lm
2n−1,

(−1)|π|µLm
n (0̂, π) = |{σ ∈ Dm

2n | cyc(σ) = π}|.
By this result and Theorem 4.2 we have,

Theorem 4.4. For all n, m ≥ 1,

χL(Hm
2n−1)

(t) =
2n

∑
k=1

sD,m(n, k)tk−1,

where (−1)ksD,m(n, k) is equal to the number of σ ∈ Dm
2n with exactly k cycles. Consequently,

χL(Hm
2n−1)

(−1) = −|Dm
2n| and µL(Hm

2n−1)
(0̂, 1̂) = −|DCm

2n|.
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By the Orlik-Solomon formula (2.1), Theorem 4.4 gives a combinatorial formula for
the the Betti numbers of the complement of Hm

2n−1 in C2n.
In the full version of the paper [9], we use Theorem 4.4 and the theory of surjective

pistols in [12] to derive the following m-analog of (3.2). Note that this reduces to (1.7)
when we set m = 2 and t = −1.

Theorem 4.5. For all m ≥ 1,

∑
n≥1

χL(Hm
2n−1)

(t) xn = ∑
n≥1

(t− 1)n,m(t−m)n−1,m xn

∏n
k=1(1−mk(t−mk)x)

. (4.1)

where (a)n,m = a(a−m)(a− 2m) · · · (a− (n− 1)m).

We also obtain an m-analog of Theorem 3.12, in which the intersection semilattice Pm
n

of a certain affine arrangement in C2n−4 satisfies

χL(Hm
2n−1)

(t) = (t−m)(t− 1)2χPm
n (t).

5 Further work

The graph Γ2n belongs to a class of graphs called Ferrers graphs, which were introduced
by Ehrenborg and van Willegenburg [6]. We have been able to extend some of our
results to more general Ferrers graphs and to skew Ferrers graphs. We also have results
on directed graph analogs of the homogenized Linial arrangement.
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