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0. INTRODUCTION

Flagged Schur functions are generalizations of Schur functions. They
appear in the work of Lascoux and Schutzenberger [2] in their study of
Schubert polynomials. Gessel [1] has shown that flagged Schur functions
can be expressed both as a determinant in the complete homogeneous sym-
metric functions and in terms of column-strict tableaux just as can ordinary
Schur functions (Jacobi-Trudi identity). For each row of these tableaux
there is an upper bound (flag) on the entries.

The Schubert polynomials are obtained by applying certain symmetriz-
ing operators to a monomial. In Section | we study the effect of applying
these symmetrizing operators to flagged Schur functions. Although it is
trivial to do this for the determinantal expression, we show, by direct
means, how to apply the symmetrizing operators to the tableau expression
(without the use of determinants). This produces another proof of Gessel’s
result and hence a new inductive proof of the Jacobi-Trudi identity.

Each Schubert polynomial is determined by some permutation. Lascoux
and Schutzenberger {2] state a result which enables one to identify those
permutations whose Schubert polynomial is a flagged Schur function. In
Section 2 we present an explicit expression for the shape and flags (row
bounds) in terms of the permutation. We do this by applying the sym-
metrizing operators to flagged Schur functions. We also show that any
flagged Schur function can be obtained by applying a sequence of sym-
metrizing operators to some monomial.

In Section 4 we consider row (column) flagged skew Schur functions.
Here, for each row (column) of the skew tableaux there is an upper and
lower bound on the entries. In fact the above cited work of Gessel actually
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FLAGGED SCHUR FUNCTIONS 277

deals with row-flagged skew Schur functions. His proof involves a beautiful
and clever combinatorial construction. We present an alternative proof
which makes use of very natural recurrence relations on row-flagged skew
Schur functions. We also prove an analogous result for column-flagged
skew Schur functions by using recurrence relations.

1. FLAGGED SCHUR FUNCTIONS

Let i=(i; 24,2 24,>0) be a partition and let b=
(b, £b,< -+ <b,,) be an increasing sequence of positive integers. Lascoux
and Schutzenberger [2] define the flagged Schur function with shape 4 and
flags b to be

S/i(b)=det|h}.,7i+j(bi)ii./:142 ..... mo (L.1)

where h (k) is the complete homogeneous symmetric function of degree d
in the variables x,, x,,.., x,. Note that if b, =b,= --- =b,, then the deter-
minant in (1.1) is the well-known determinantal expression for ordinary
Schur functions (cf. [3, 4]).

Just as ordinary Schur functions can be expressed determinantally and in
terms of column-strict tableaux, so can flagged Schur functions. A column-
strict tableau of shape A and flags b is an array T of positive integers ¢,
1<i<m, 1<j< A, such that 1,<t,;, ,<b forall 1<i<m, 1<j<4; and
1;<t;,y,;forall 1<i<m, 1<j<4,, . We define 7 (4, b) to be the set of
column-strict tableaux of shape 4 and flags b. For each Te .7 (4, b) let
M(T) be the monomial x?* x£2--- x?n where p, is the number of entries ¢,
that are equal to k. Now let

si(b)= Y M(T).

Te T (Lbh)

Gessel [1] has shown that S;(b) and s,(b) are the same. We will now
show that this result can also be obtained by considering the following
symmetrizing operators. Let f be a polynomial in the variables x, x,,..., x,.
For i=1, 2,..,n— 1 define the symmetrizing operator,

81(f) =f(-xla-.-, xn)—i(il ;, x,‘+1, x,-,..., xn).
i M+l

We will apply this operator to the determinantal expression and to the
tableau expression.
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LEMMA 1.1. Let 4, > A, and b, <b,. Then

(1) abl S,{Mz--»/’_m(bl’ b25' *» hm’: 1 LA A (bl + 13 b2ﬂ'"9 bm)'
(11) ablslliz...)*m(bl, bz,.. . b )~— 54171/2 (bl + 1, bz,..., bm)'

Proof. When m=1, (i) and (it) become,
Cphdby)=hy (b +1). (1.2)

This is easy to verify and is included in the proof of (ii).

We now prove (i) for m> 1. Since b, <b,<b,, i=2,.., m, every entry
below the first row of the determinant in (1.1) is symmtric in x,, and x, ..
Hence applying 0,, to the determinant is the same as applying J,, to each
of the elements in the first row. By (1.2) the resulting determinant is
S5 = tigsim (D11, b2 byy).

Next we prove (ii). We will group together the terms of s,(b) according
to the configuration of tableau entries that are equal to b, or b, + 1. Let
t=b,. We define an equivalence relation ~ on J(4,5b). For T,,
T,e T (4, b) let T\~ T, if the collection of positions that contain either a ¢
or a t+ 1 is the same for T, as it is for T,. Clearly these positions form a
skew diagram with one or more components. Let & be the equivalence
class of 7 (4, b) whose tableaux have the configuration of entries equal to ¢
or t+ 1 shown in Fig. 1. Here each  represents a t or a t + 1 and any m, or
r; can be 0. In Fig. 1, the skew diagram appears connected. However the
argument to follow is unaffected by the occurrence of more than one com-
ponent. We have,

S st (1]

Te.o

u :»

Z m”) R(),

...t te...

...t L g A o

e+l ekl M Ty

shape A
flags b

... W

e+l ekl Mk

"k

FiGURE 1
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where R(s/) is the polynomial associated with entries other than ¢ and
t+ 1. Applying @, gives,

xml_xmll
ar Z M(T)= - =+ (x1x1+1)rl+r2+m+rk
Te X — X4
k m;
x (H 3 x:‘x:"w) R()
i=2v=0
0 if m1=0,
my— |
(X, )TN e (1.3)
- y=0

k m;
X <l_[ Y x}'x;”;,“) R(eZ) if m,;>0.
i=2v=0

Nowlet A=A, —124,=z 24 )and b'=(b,+1<b, < - b)) If
m, >0 let &/’ be the equivalence class of 7 (4’, ") whose tableaux have the

configuration of entries equal to ¢ or 7+ 1 shown in Fig. 2.
Clearly X ,.. ,- M(T) is equal to (1.3). Hence we have

0 it m, =0,
a, Y M(D)= (1.4)
Te. Z M(T) if m >0
Teod'
Observe that there is a natural bijection .o/ «» .o/ between the equivalence

classes of (4, b) with m,; >0 and the equivalence classes of 7 (1, d').
Therefore (ii) follows from (1.4), since s, (b)=> .Y ,.., M(T) and

... 0 |we .
t...t #x o  fedlltl m1~l

el el ™2 r
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s6)V=Y, S M(T), where o and &/’ range over all equivalence
classes of 7 (4, b) and 7 (A, b'), respectively. ||

By repeatedly applying the inverse of 0, to S;(h) (or s;(b)) we can
reduce b, to 1. When b, =1 the next lemma shows that S,(b) and s5,() can
be further reduced.

LEMMA 1.2. If by =1 then,

(1) S}.Mz"‘/‘.m(bl’ bz,..., bm) =Xf‘(S;_2..,,1m(b2,..., bm))*
(i1) 5,1./12-».;.,,,(}71’ by sens bm):-V;'1(5;~3--»;~m(b2’---» b)),

where the symbol * denotes the deletion of all terms that contain x,.

Proof. This time the proof of (ii) is trivial. It follows immediately from
the definition of s,(b).

To prove (i), observe that (h,, (k))*=h, (k)—x hfk). Hence if we
subtract x, times column ; from column j+ 1 of the determinant in (1.1)
then we get

_ * ’ *
S,(b) = det h;, :I(bz) (h,,z({)z)) (h“,zim(bz))
B moilbn) (i s o (i (b)) |

=XTI(S22“-/‘\,,,(/)2.”bm))*' l

THEOREM 1.3. S,(h)=s,(h).

Proof. The result follows from Lemmas 1.1 and 1.2 and induction on
the sum of the flags, 6, +b,+ - +b,,. |

2. SCHUBERT POLYNOMIALS

We shall regard elements of the symmetric group %, as words in the sym-
bols 1, 2,.., n. We say that w=w,w, - w, is an increasing permutation if
W, <w,< - <w,. Wesay that w has a descent at i if w,>w,, ,. Similarly
w has an ascent at i if w,<w,, .

For each i=1, 2,.., n—1 let g, be the adjacent transposition (i, i+ 1).
Every we &, can be expressed as a product of the ¢,. Here multiplication
by o, on the right transposes the symbols in position i and i+ 1, ie., if
w=w,w, - w,then wo,=w,---w, w, - w,. The length of a permutation
w denoted by /(w), is the minimum number of o, (repetitions counted)
needed to express w.
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Let f be a polynomial in the variables x,, x,,.., x,. Forw=g¢,0,-0,,
k = [l(w), define the operator,

aw(f) = aikaik,l e 6:‘,(.[),

where the symmetrizing operators are applied from right to left. The fact
that ¢, is well defined follows the fact that the product depends only on w
and not on the expression ¢, 0, "0, (see [2]).

Let w, be the permutation n, n— 1,.., 1. For we %, define the Schubert
polynomial

— —1 -2...
Fw - awow(xr]l x; Xn )

Hence F,, = x}~'x4"2---x,_, and if u covers w in weak Bruhat order (see
[5] for the definition) then F,=¢,F, for some i=1, 2,.,n— 1.

We now review some fundamental properties of Schubert polynomials
which appear in [2].

(1) F, is a homogeneous polynomial with positive integral coef-
ficients, of degree /(w) in variables x,, x,,.., x,,, where the right-most
descent of w is at m.

(2) F, is symmetric in the variables x; and x,_ , if and only if w has
an ascent at /.

(3} F, is a Schur function in the variables x,, x,,..., x,, if and only if
the only descent of w is at m.

Lascoux and Schutzenberger also characterize those permutations whose
Schubert polynomials are flagged Schur functions. Before stating their
result we need some additional terminology. For w=w w, - w,€.%, and
i=1, 2..., n define the inversion sets,

Liw)={j=1,2,..,nli<jand w,>w,}.
Similarly the inverse inversion sets are
Jwy={j=12,.,n|j<iand w,>w,}.

Let A(w) be the partition of /(w) obtained by arranging the cardinalities of
the non-empty inversion sets in decreasing order. Let u(w) be the conjugate
of the partition of /(w) obtained by arranging the cardinalities of the non-
empty inverse inversion sets in decreasing order.

PROPOSITION 2.1. (Lascoux and Schutzenberger [2]). Let we %,. Then
the following are equivalent:

(1Y F. is a flagged Schur function of shape .
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(2) The inversion sets of w ordered by inclusion form a chain.
(3) Alw)=p(w).
Furthermore when the above conditions hold 4 = i(w).

Lascoux and Schutzenberger also give bounds on the flags when F,, is a
flagged Schur function. They do not, however, say what the flags are. In
Theorem 2.3 we give an explicit description of the flags in terms of the
descents of w.

A permutation w will be called a single-shape permutation if A(w)= u(w)
and A{w) will be referred to as the shape of the permutation. Single-shape
permutations are also significant in the enumeration of chains in weak
Bruhat order (see [5]).

Proposition 2.1 (2) and (3) give two ways of describing single-shape per-
mutations. We now present a third recursive way, which we will make use
of in the sequel.

PROPOSITION 2.2. Let the left-most descent of w=w,w, - w, occur at d.
(If w is an increasing permutation then d=n.) Then w is a single-shape per-
mutation if and only if n=1 or n>1 and

(1) all symbols greater than w, appear in ascending order to the right
of w, and,

(2) wywy, "W, - w, is a single-shape permutation (" denotes
deletion).

Proof. Observe that (1) is equivalent to
i, forall j=1,2,.,n, (2.1)

and (2) is equivalent to {I;| j#d} forming a chain. Hence (1) and (2)
together imply that {I;| j=1, 2,.., n} forms a chain which means that w is a
single-shape permutation.

Conversely if w is a single-shape permutation then {/,|j=1,2,..,n}
forms a chain. This immediately implies (2). Since the left-most descent of
w is at d, I, is not properly contained in any /;. Hence (2.1) must hold
which means that (1) holds also. §

For each i=1, 2,., n such that the inversion set I(w)#¢ let ¢,=
min [{w)—1. Let b(w)=(by(w)<bh(w)< -+ <b,(w)) be the sequence
obtained by arranging the ¢, in increasing order. We will refer to b(w) as
the flag sequence of w. Note that the number of flags of w (repetitions
counted) is the same as the number of parts of A(w), and that the set of
flags of w is precisely the set of descents of w. We now present the main
result of this section.
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THEOREM 2.3. If w=w,w, - w, is a single-shape permutation then F, is
the flagged Schur function S,,\(b(w)), where A(w) is the shape of w and
b(w) is the flag sequence of w.

Proof. The proof is by induction on the parameters (n, /(wg)—l{w))
ordered lexicographically. The result holds trivially for w=w, and for
n=1. Now assume that /(w) </(w,). Suppose that the left-most descent of
w is at d. There are three cases.

Case 1. Assume d>1. Let w=wog,_,. Then w =w,, w,,., w,
W4 1+ W, It follows from Proposition 2.2 that w’ is a single-shape per-
mutation. Since /(w') > /(w), by induction we have F,. = §,,(b(w'}). Now
since F,=¢, ,F, we have

Fo=04_1S;0(b(w)). (2.2)

It is easy to see that

Aw )y =4 (w)+1, Adw') = A w), i=2,.,m,
and

biw)=d—1=b,(w)—1, b{w') = b{w), i=2,.,m
This implies, by Lemma 1.1, that d,_, S, ,(b(w")) = S,,,(b(w)). Combin-
ing this with (2.2) completes the proof for Case 1.

Case 2. Assume d=1 and w,<n Let w=0,w=w,+1, w,,.,
Wiy W,. We will show that F,,=x,F,. Let u=w, +1, w;, w,+2,.., n,
wy—1, w;—2,..,1 Since all the symbols greater than w, appear in
ascending order in w, it follows that w'e, 0, -0,=u and
wo,0, 0,0, =u, where I(w)+k=1Iu) and i,#1, j=1,., k Conse-
quently,

k
FW=<]_[ a@f> o\F,
=1

and

k
F, =<ﬂ afj> F,.
7

j=1
It is easy to check that F,=x{x%---x%-! where a, =w, and a,=w, — 1.
Hence 8, F,=x¢~'x%---x%- = F /x,. This implies that

LS
=—<]_[ 6,-})Fu since  i; # 1,
y
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Now by induction F,. =S,.(b(»')). Hence F,=(1/x;) ;.. (b(n'}). But
since

Aw)=4,(w)+ 1, Adw') = Adw), i=2,.,m
and
biw)=b(w)=1,  hw)=bfw),  i=2um,

we also have

Hence F, =S, (b(w)).

Case 3. Assume d=1 and w,=n Let wow=0,0, " 0,, where
l{w)+k =I(w,). Since w, = n, it follows that i,# 1, j=1,..., k. Consequently,

to

=0,0, " 0Cy(x] X}

ik k- I
Y R | ol A n 2.,
=X af}.('i/\ 1 ("il(x2 X l)'

Let w' =w,w; - w,,. Then w' is a single-shape permutation in &%, . If
is a polynomial in the variables x,, x,,.., x, then let /1 be the polynomial
obtained from f by replacing x, by x, ., i=1, 2,.., n. We have

8 C e an(v\’g' 2«\'31 e Xy l)= (F"")f'

ik

Hence F, = x"~'(F,.)". But since ' is a single shape permutation in &, |,
by induction we have F,. =S, (h(w’)). It follows that

Fw = xlllﬁ I(S,i(n")(b(w/)))+
= Y’l’ 7I(S).Z(n')/l}(w)--»}.m(n')(bZ(Wy) - 15 b}(ny) - 13"" bm(w)_ 1))T

By using the tableau expression for the flagged Schur function we can
easily see that

(S).z(M')/'q(n')---}.m(w)(b2(w) - 19 b (W) - 1""! bm(w) - 1))T
= (S).z(w))_](w) M)( Z(W) (W),..., bm(w)))*

Applying Lemma 1.2 results in £, = §,,.,(6(w)). 1

Not all flagged Schur functions are Schubert polynomials. (Lascoux and
Schutzenberger characterize those that are.) However all flagged Schur
functions can be obtained in the same fashion in which the Schubert
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polynomials are obtained, that is, by applying the symmetrizing operators
to some monomial.

THEOREM 2.4. Every flagged Schur function S,(b) is equal to
a\rt(x7lxlzlz e 'x;l"m)’ w’here al = A’I + bl - i and w = om Um + 1 e O-hm' 1 O.V" — ] J"’I e
O 0410, Oy

(L 1

Proof.  We use induction on the sum of the flags b, + b, + -~ +b,,. If
the sum of the flags is 1 then b, =1 and m=1. Clearly, S;(h)=x} =
d.(x{"). Now suppose the sum of the flags is greater than 1. There are two
cases.

Case 1. Assume b, > 1. By the induction hypothesis,

Si] + Liz....,}_m(bl - 13 bZ""’ bm) = awahl,l(xllllx(zlz T Vdm)'

v

By Lemma 1.1, applying J,, _, to both sides of this equation yields,
Si(b)= 6f’l -1 awﬂhl ‘1(x‘1”X‘212 Xy

=0, (x{1x52+ xlm).

m

Case 2. Assume b, =1. We have,
S:(b)= xSy, 5 (b= Loy by — 1)) (2.3)
By the induction hypothesis,
Syl =1y by = 1) =10 (x{ixg2- - xm 1), (2.4)

m
where a/=4,,,+b,,,—1—i=a,,, and w=90,_,0,""0, -0,
Om_1"""Ohy 2 "0, "G, . Observe that (4, (x4ixg- xdm-1))' =
0,{x5x% -~ x2). Hence (2.3) and (2.4) combined become
S;(b)=x710,(x32xP - x4m).
Since none of the transpositions involved in the expression for w is equal to
¢,, we have S,(b) =0, (x}x%x% - x). Since 1, =a,, we are done. ||

3. FLAGGED SKEW SCHUR FUNCTIONS

Let A=(A, 24,2 24,>0)and u=(u, 2,2 - 2p,=0) be two
partitions such that A;—py, >0 for all i=1,2,.,m Let a=(a,, a,,..., a,,)
and b= (b,, b,,.., b,,) be two sequences of positive integers.

A column-strict skew tableau of shape A/u and row flags a and b is an
array T of positive integers f,, 1<i<m, u,<j<4, such that
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a;<t;<t;,<b, for all 1<i<m, p;<j<4, and t;<t,,.,; for all
I<i<m, p;<j<A;.,. We now let J(A/u, a,b) denote the set of all
column-strict tableaux of shape 4/u and row flags a and b. The row-flagged
skew Schur function s, (a, b) is defined to be 3, ;..M (T). Note that
this definition does not require b, >a; for all i=1,.., n. For example, the

tableau
[314]

[1]2

is in 7 (A/u, a, b), where A=(4,2,2) u=(2,2,0), a=(3,51), b=(4, 1, 2).
Also if A, =y, for all i=1, 2,.., m then we will adopt the convention that
Sla, b)= 1.

For 4, u, a, b as described above we define

S},/y(ao b)=det'h ~ i+ j— l(a b )|l.f,‘—“l‘2 ..... ms (3])

where £,(u, v) is the complete homogeneous symmetric function of degree d
in the variables x,x, ;- x, if u<v and d>0. If d=0 then h(u,v)=1
and if d<0 then A, v)=0. If u>v and d+#0 then A (u, v)=0

That flagged Schur functions can be expressed determinantally and in
terms of tableaux is a special case of Gessel’s result. He actually proves that
S;ula, b)=s5,,(a b) when the flags are increasing. We now present an
alternative proof of this result by establishing natural recurrence relations
given in the 3 lemmas to follow.

LeMMA 3.1. Let k be such that p, = 4., . Then,

(1) S//u( )_Sf/p(d 5) S;/;‘( i ")
(i) syda b) =544, 6) 55,

where the symbols * and ~applied to a sequence t,, t,,..., t,, denote the sub-
sequences ti, ty,.., t, and b, ti 2y Ly, Fespectively.

Proof. (1) Since p, >4, ,,, it follows that u,> A, whenever j<k <i.
This implies that A, — u, + j — i <0 whenever j <k < i. Hence the i, j-entry of
the determinant in (3.1) is O for all j < k < i. Therefore the determinant can
be expressed as a product of the determinants given by S;,;(4, b) and

8544, b).

(i) This follows immediately from the definition of s,,,(a, b). §

LEMMA 3.2, Let k be such that p, <A, a, <by. If ay<a,,, (or k=m)
and p, > u; (or k=1) then,
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(1) Si/”(a, b) =xakSA/u'(a, b) + Si/u(a,, b),
(ll) Si/p(aa b)zxaksi/u'(a’ b)+s)./u(a” b),

where the symbol, ', applied to a sequence denotes adding 1 to the kth
element of the sequence.

Proof. (i) The determinants in the equation are identical except for the
kth column. Hence the equation holds if and only if the corresponding
equation for the kth column holds, ie.,

h&,—uk+k——i(ak’ bi)=xakh).,-/4kAl+kvi(aka b/)

+ kAt 1,0) (32)

holds for all i=1, 2,.., m. This is easily observed to hold. (It is also a
special case of (ii).) Note that the conditions on u,. 4., a,, b, were not
used in establishing (1).

(i1) J(A/u, a, b) can be partitioned into two sets 7, which consists of
those tableaux in which the first entry of row k is a, and 7, which consists
of those tableaux in which the first entry of row k is greater than or equal
to a, + 1.

By removing the first entry of row k from a tableau in , we obtain a
tableau in 7 (4/i’, a, b). Conversely, given any tableau in J (4/y', a, b) we
can add a, to the beginning of row k without violating the column
strictness. Indeed since a, ., > a,, all elements of row k41 are strictly
greater than a,. We can conclude that 3, , M(T)=x,,s,,(a, b). Since
we also have that 3. M(T)=s,,(a’, b), the proof is complete.

LemMa 3.3. Let k be such that a, _ | =y, tx_, = ly. Then

(i) S,ula b)=S§,,(a, b),
(”) S)./u(a’ b) = s}./u(a(’ b)a

where the symbol ' is as in Lemma 3.2.

Proof. (i) In the determinant for S,,(a’, b) we add x,, times column
k—1 to column k. The i, k-entry of the new determinant is h; , ., .
@+ 1,0,) + xuh e vx 1 dai_y, b). Since .y =p, and a,  =ay,
the result follows from (3.2).

(ii) The result is a consequence of the column strictness of the
tableaux. ||

The next lemma establishes the “boundary” conditions that are satisfied
by the row-flagged skew Schur functions.
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LEmMMA 34. Let a;<a,,, and b,<b,,, whenever i, <4, . If b, <u,
and p, < A, for some k then

(i) S,,(a b)=0
(i) s;(a 6)=0.

Proof. (i) The proof is by induction on m. f m=1, §;,,(a, b)=h;,
(ay, b,)=0. Suppose m>1. If u, >4, , for some i then the result follows
from Lemma 3.1 and the induction hypothesis. Now suppose u; <4, for
all i It follows that a,<a,,, and b,< b, , for all i. Hence b, < a, implies
that b,<a, whenever i<k<j Similarly u, <4, implies that u; <4,
whenever z<k < j. Therefore the i, j-entry of the determinant in (3.1) is 0
for all i<k <. It follows that S, (a, b)=0.

(i1} Since J (4/u, a, b)= ¢, the result holds. |

THEOREM 3.5. If a,<a;,, and b;<b,,,, whenever u,<A4;, ,, then
S:ula, b)=s,,a b)

Proof. We prove this by induction on (m, A—yu, b—a) ordered
lexicographically. If m=1 then S, (a, b)=h,, _,(a,, b,)=s,,(a b)

Suppose m>1. If i,—u,=0 for some i/ then 4,, <A, =y, and 4;=
u;<u; . Hence we can 1nvoke Lemma 3.1 with k=i or k=i—1. The
result now follows by induction.

Now suppose m>1 and u,< 4, for all i=1, 2,.., m. If b, —a, <0 for
some k then the result is a consequence of Lemma 3.4.

Finally suppose m> 1, 4,— u; >0, b;—a,=0forall i=1, 2,..., m. Let k be
such that ¢, >a, 2 - 2 a,<a,,, (or k=m). f y, ;> p, (or k=1) then
the result follows from Lemma 3.2 and induction. If u, =y, then
Ap> i, which means that a, |, <a,. Hence a,_,=a,. We now invoke
Lemma 3.3 and the induction hypothesis to obtain the result. ||

We now consider column-flagged skew Schur functions. Let 7 *(4/u, a
b) be the set of column-strict skew tableaux whose shape is the conjugate of
A/u and whose column flags are a and b (i.e, the entries of column i are
bounded below by a; and above by b,). The column-flagged skew Schur
function 5% ,(a, b) is defined to be 3", ;.06 M(T). We also define,

Sr/u(a’ b) detl(’/ — M+ - l(a b )lz,j:1.2,...,m9
where e (u, v) is the elementary symmetric function of degree d in the
variables x,, x,. s X, ifv—u+12d>0.1f d=0 then e{u, v)=1 and if
d<0 then e (u,v)=0. fv—u+ 1 <d+#0 then e (u, v)=0.

We will present a result analogous to Theorem 3.5 for column-flagged
skew Schur functions. This result is also obtainable from Gessel’s com-
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binatorial construction. There are four lemmas that are analogous to
Lemmas 3.1-3.4, whose proofs we will omit.

LeMMA 3.1*.  Let k be such that p, > 4, . Then,
(i) S%u(a, b)=Si.a, b) SW( b)
(i) s¥,(a b)=s34(a, b) s3,(d, b)

where ~ and “are as in Lemma 3.1.

LEMMA 3.2*. Let k be such that p, <Ay, a,—p,<b.—4i,+1. If
A — P <Ay — P+ 1 (or k=m)and p, _, >y, (or k= 1) then,
(1) S¥ula, b)=x,S¥,(a, b)+S},.(a, b),
(11) Sr/u(a9 b) xal\s)/u (a b) + S//.u(a ] b)a

where ' is as in Lemma 3.2.

LEMMA 3.3*  Let k be such that a, _ |, =a,+ 1, pu, = p,. Then

(1) S¥.(a b)=S%,(a, b),
(11) S;"k/;t(a’ b) //u(a b)

where ' is as in Lemma 3.2.

LEMMA 3.4* Let a;—pw;<a;  — ;o +1 and b;— A4, <b;  —4,,,+1
whenever u,<A;, . If by— A +1<a,—pu, and u, < 4, for some k then

(1) S%.(a, b)=0,
(it) s¥,(a, b)=0.

THEOREM 3.5*% Ifa,—p;<a; \—ui o+l and b, — 4, <b,, —4,,,+1
whenever p; <4, then S%,(a, b)=s%,(a, b).
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