
POSET FIBER THEOREMS

ANDERS BJÖRNER1, MICHELLE WACHS2, AND VOLKMAR WELKER3

Abstract. Suppose that f : P → Q is a poset map whose fibers
f−1(Q≤q) are sufficiently well connected. Our main result is a
formula expressing the homotopy type of P in terms of Q and the
fibers. Several fiber theorems from the literature (due to Babson,
Baclawski and Quillen) are obtained as consequences or special
cases. Homology, Cohen-Macaulay, and equivariant versions are
given, and some applications are discussed.

1. Introduction

In an influential paper Quillen [18] presented several “fiber theorems”
for posets (i.e., partially ordered sets). They have the general form:
given a poset map f : P → Q certain properties can be transferred
from Q to P if only the fibers f−1(Q≤q) are sufficiently well-behaved.
The best known of these results (often referred to as “the Quillen fiber
lemma”) says that if the fibers are contractible then P has the same
homotopy type as Q. Another one says that if Q and all fibers are
homotopy Cohen-Macaulay (and some other conditions are met), then
so is P . The corresponding fiber theorem for transferring ordinary
Cohen-Macaulayness from Q to P was given around the same time by
Baclawski [2].

The Quillen fiber lemma has become a fundamental tool in topologi-
cal combinatorics, frequently used to determine homotopy type or com-
pute homology of combinatorial complexes. In this paper we present a
generalization which subsumes several of the known fiber theorems.

We now proceed to state the main result. Then we comment on
the contents of the rest of the paper and on some related work. First,
however, a few definitions are given.
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All posets in this paper are assumed to be finite. For any element x of
a poset P we let P>x := {y ∈ P | y > x} and P≥x := {y ∈ P | y ≥ x}.
The subsets P<x and P≤x are defined similarly. Define the length `(P )
to be the length of a longest chain of P , where the length of a chain
is one less than its number of elements. In particular, the length of
the empty poset is −1. Given two posets P and Q, a map f : P → Q
is called a poset map if it is order preserving, i.e., x ≤P y implies
f(x) ≤Q f(y).

The order complex ∆(P ) of a poset P is defined to be the abstract
simplicial complex whose faces are the chains of P . Usually we do not
distinguish notationally between an abstract simplicial complex ∆ and
its geometric realization ‖∆‖. The distinction should be understood
from the context. Clearly, dim ∆(P ) = `(P ). The join of simplicial
complexes (or topological spaces) is denoted by ∗ and wedges are de-
noted by ∨.

A topological space X is said to be r-connected (for r ≥ 0) if it is
nonempty and connected and its jth homotopy group πj(X) is trivial
for all j = 1, . . . , r. A nonempty space X is said to be r-acyclic if
its jth reduced integral homology group H̃j(X) is trivial for all j =
0, 1, . . . , r. We say that X is (−1)-connected and (−1)-acyclic when X
is nonempty. It is also convenient (for later use) to define that every
space is r-connected and r-acyclic for all r ≤ −2.

We use the notation ' to denote homotopy equivalence and ∼= to
denote group or vector space isomorphism. The jth reduced simplicial
integral homology of the order complex of a poset P is denoted by
H̃j(P ).

The following is the basic version of our main result. More general
versions appear in Theorems 2.5 and 2.7.

Theorem 1.1. Let f : P → Q be a poset map such that for all q ∈ Q
the fiber ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected. Then

∆(P ) ' ∆(Q) ∨
∨
q∈Q

(
∆(f−1(Q≤q)) ∗∆(Q>q)

)
,(1.1)

where the wedge is formed by identifying each q ∈ Q with some element
of f−1(Q≤q).

We will refer to a poset map f : P → Q such that for all q ∈ Q
the fiber ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected as a poset homotopy
fibration.

For clarity, let us remark that if Q is connected then the space de-
scribed on the right-hand side of (1.1), which has |Q| wedge-points,
is homotopy equivalent to a one-point wedge where arbitrarily chosen
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points of f−1(Q≤q), one for each q ∈ Q, are identified with some (arbi-
trarily chosen) point of Q. For general Q one needs at least as many
wedge-points as there are connected components of Q:

∆(P ) '
k⊎
i=1

∆(Q(i)) ∨
∨

q∈Q(i)

∆(f−1(Q≤q)) ∗∆(Q>q)

 ,

where Q(1), . . . , Q(k) are the connected components of Q and
⊎

denotes
disjoint union.

The definition of the join operation used here also needs clarification.
The usual definition of X ∗ Y as a quotient of X × Y × I (see e.g. [10,
p. 468]) implies that the join is empty if either of X or Y is empty.
However, we use another definition in that case, namely X∗∅ = ∅∗X =
X, which agrees with the standard simplicial definition of the join
operation. We should also point out that we use the conventions that
the empty set is a member of every abstract simplicial complex and
that any simplicial map takes the empty set to the empty set. If P is
the empty poset then ∆(P ) = {∅}.
Example 1.2. Let f : P → Q be the poset homotopy fibration de-
picted in Figure 1. For the two top elements of Q the fiber ∆(f−1(Q≤q))
is a 1-sphere. For the bottom element of Q the fiber ∆(f−1(Q≤q)) is a
0-sphere, and ∆(Q>q) is a 0-sphere too. So in either case ∆(f−1(Q≤q))∗
∆(Q>q) is homeomorphic to a 1-sphere. Hence the simplicial complex
on the right side of (1.1) has a 1-sphere attached to each element of Q.
Thus Theorem 1.1 determines ∆(P ) to have the homotopy type of a
wedge of three 1-spheres. One can see this directly by observing that
∆(P ) is homeomorphic to two 1-spheres intersecting in two points.

f
21

5 6

3 4

QP

Figure 1. A poset fibration.
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The paper is organized as follows. We prove some generalizations
of Theorem 1.1 in Section 2 using the “diagram of spaces” technique.
Several corollaries are deduced in Section 3, including generalizations
of two results due to Quillen and one due to Babson.

Section 4 gives the homology version of the main result. For an Euler
characteristic (Möbius function) version, see Walker [29, Corollary 3.2].

In Section 5 we discuss the non-pure version of the Cohen-Macaulay
property, and we prove (based on Theorem 1.1) the generalization to
this setting of the Cohen-Macaulay fiber theorems of Baclawski and
Quillen.

Section 6 is devoted to two applications. One concerns so called
“inflated” simplicial complexes, and the other a connection with the
theory of subspace arrangements. Namely, we show how the Ziegler-
Živaljević formula [33] for the homotopy type of the singularity link of
an arrangement can be conveniently deduced via Theorem 1.1.

The last two sections are devoted to group equivariant versions of
Theorem 1.1. In Section 7 we discuss this on the level of equivari-
ant homotopy, and in Section 8 we derive equivariant versions of the
homology results.

The need for a fiber result such as Theorem 1.1 arose in the work
of the authors. In [27] Wachs uses the results on inflated complexes to
compute homotopy type and homology of multigraph matching com-
plexes and wreath product analogues of chessboard complexes (see also
[26]). These inflation results have led to other interesting developments
such as the work of Pakianathan and Yalçin [16], Shareshian [19] and
Shareshian and Wachs [20] on complexes related to the Brown complex
and the Quillen complex of the symmetric group.

In [9] Björner and Welker use results from this paper to show that
certain constructions on posets (the so called weighted Segre, diagonals
and Rees constructions, all inspired by ring theoretic constructions in
commutative algebra) preserve the Cohen-Macaulay property, homo-
topically and over a field.

In [28] Theorem 1.1 is used to express the homology of rank selected
Dowling lattices in terms of the homology of rank selected partition
lattices. This results in the lifting of a recent result of Hanlon and Hersh
[11] on the multiplicity of the trivial representation of the symmetric
group in the rank selected homology of partition lattices, to the rank
selected homology of Dowling lattices.

We are grateful to Vic Reiner and Günter Ziegler for useful comments
on a preliminary version of this paper.
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2. The proof

In order to prove Theorem 1.1 we need some tools from the theory of
diagrams of spaces. This theory was developed in the 60’s and 70’s by
homotopy theorists. Most of the results we need here were originally
obtained in this context, however we take their formulation from [31]
since that suits our applications best. We refer the reader to [31] for
the original references.

The first combinatorial application of the theory of diagrams of
spaces was in the work of Ziegler and Živaljević [33], continued in
Welker, Ziegler and Živaljević [31]. Our work is closely related to [33]
and [31], and could be said to follow in their footsteps.

A diagram of spaces over a finite poset Q is a functor D : Q → Top
from Q into the category of topological spaces. Here we consider Q as
a small category with a unique arrow pointing from x to y if x ≤ y.
This means that to each x ∈ Q we associate a topological space Dx and
to any pair x ≤ y in Q we associate a continuous map dxy : Dx → Dy

such that dxx = idDx and dxz = dyz ◦ dxy for x ≤ y ≤ z. A simplicial
Q-diagram is a functor from Q to the category of simplicial complexes.
By considering the geometric realization it is clear that a simplicial
diagram can be viewed as a diagram of spaces.

There are two constructions of a limit-space associated to a diagram
of spaces D.

• colimD: The colimit of the diagram D is the quotient of the dis-
joint union

⊎
x∈QDx modulo the equivalence relation generated

by a ∼ b if dxy(a) = b for some x ≤ y such that a ∈ Dx and
b ∈ Dy.
• hocolimD: The homotopy colimit of the diagram D is the quotient

of the disjoint union
⊎
x∈Q ∆(Q≥x) ×Dx modulo the equivalence

relation generated by (c, a) ∼ (c, b) if dxy(a) = b for some x ≤ y
such that a ∈ Dx, b ∈ Dy and c ∈ ∆(Q≥y).

A diagram map α : D → E is a collection of continuous maps αx :
Dx → Ex, x ∈ Q, such that αy ◦ dxy = exy ◦ αx for all x ≤ y in Q. A
diagram map α : D → E induces a continuous map from hocolimD to
hocolim E in a natural way.

We need three lemmas from [31]. The first of these is proved in a
more general form at the end of this section (Lemma 2.8) and the other
two are quoted without proof.

Lemma 2.1 (Homotopy Lemma [31, Lemma 4.6]). Let D and E be Q-
diagrams. Suppose α : D → E is a diagram map such that αx : Dx →
Ex is a homotopy equivalence for all x ∈ Q. Then α induces homotopy
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equivalence,

hocolimD ' hocolim E .
Lemma 2.2 (Wedge Lemma [31, Lemma 4.9]). Let Q be a poset with
a minimum element 0̂ and let D be a Q-diagram. Assume that for each
y > 0̂ in Q there exists a point cy ∈ Dy such that dxy(a) = cy for all
x < y and a ∈ Dx. Then

hocolimD '
∨
x∈Q

(Dx ∗∆(Q>x)) ,

where the wedge is formed by identifying cx ∈ Dx ∗ ∆(Q>x) with x ∈
D0̂ ∗∆(Q>0̂) for all x > 0̂.

A continuous map α : X → Y is said to be a cofibration if for all
continuous maps f0 : Y → Z and homotopies gt : X → Z such that
f0 ◦ α = g0 there exists a homotopy ft : Y → Z such that gt = ft ◦ α.
It is closed if it sends closed sets to closed sets. For example, if Y has
a triangulation such that X is triangulated by a subcomplex (one says
that (Y,X) is a simplicial pair), then the inclusion map X ↪→ Y is a
closed cofibration [10, p. 431].

Lemma 2.3 (Projection Lemma [31, Proposition 3.1]). Let D be a Q-
diagram such that dxy is a closed cofibration for all x ≤ y in Q. Then

hocolimD ' colimD.
The following example of a diagram of spaces appears in Defini-

tion 1.2 of [33]. An arrangement of subspaces A = {A1, . . . , Am} is a
finite collection of closed subspaces of a topological space U such that

1. A,B ∈ A implies that A ∩B is a union of subspaces in A, and
2. for A,B ∈ A and A ⊆ B the inclusion map A ↪→ B is a cofibra-

tion.

Let Q be the inclusion poset (A,⊆). There is an associated Q-diagram
D(A), called the subspace diagram of A, which is defined as follows:
For each x ∈ Q, let Dx = x, and for x ≤ y let dx,y be the inclusion
map x ↪→ y. Since the intersection of any pair of subspaces in A is a
union of subspaces in A, it follows that colimD(A) is homeomorphic to⋃
A∈AA. On the other hand, by the Projection Lemma hocolimD(A) '

colimD(A). Hence, we get:

Corollary 2.4 (to Projection Lemma). Let A be an arrangement of
subspaces. Then

hocolimD(A) '
⋃
A∈A

A.
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Remark. This corollary appears in [31, Lemma 4.5] and [33, Lemma
1.6] in a slightly different form; namely, in terms of the intersection
poset rather than the inclusion poset. Since the arrangement does
not have to be closed under intersection, these posets can be different.
Therefore the diagram of spaces in [31] and [33] may subtly differ from
the diagram considered here.

We are now ready to prove Theorem 1.1, which we restate in a slightly
more general form.

Theorem 2.5. Let f : P → Q be a poset map such that for all q ∈ Q
the fiber f−1(Q≤q) is nonempty, and for all non-minimal q ∈ Q the in-
clusion map ∆(f−1(Q<q)) ↪→ ∆(f−1(Q≤q)) is homotopic to a constant
map which sends ∆(f−1(Q<q)) to cq for some cq ∈ ∆(f−1(Q≤q)). Then

∆(P ) ' ∆(Q) ∨
∨
q∈Q

(
∆(f−1(Q≤q)) ∗∆(Q>q)

)
,

where the wedge is formed by identifying each q ∈ Q with cq.

Proof. Let A = {∆(f−1(Q≤q)) | q ∈ Q}. We claim that A is an
arrangement of subspaces of ∆(P ). For all x, y ∈ Q, we have

∆(f−1(Q≤x)) ∩∆(f−1(Q≤y)) =
⋃

z:z≤x,y
∆(f−1(Q≤z)).

Let A ⊆ B in A. Since (B,A) is a simplicial pair, the inclusion
map A ↪→ B is a cofibration. Hence A is indeed an arrangement of
subspaces. Clearly

⋃
A∈AA = ∆(P ). Hence by Corollary 2.4

∆(P ) ' hocolimD(A).(2.1)

Now let Ey = ∆(f−1(Q≤y)) for all y ∈ Q. For all x < y, let exy :
Ex → Ey be the constant map exy(a) = cy for all a ∈ Ex. The spaces Ey
and the maps exy form a Q-diagram E . Let Q̂ be the poset obtained

from Q by attaching a minimum element 0̂ to Q and let Ê be the
Q̂-diagram obtained by including E0̂ = ∅ in E . Clearly hocolim E =

hocolim Ê . It therefore follows from the Wedge Lemma (Lemma 2.2)
that

hocolim E ' ∆(Q) ∨
∨
q∈Q

∆(f−1(Q≤q)) ∗∆(Q>q),

where the wedge is formed by identifying cq ∈ ∆(f−1(Q≤q)) ∗∆(Q>q)
with q ∈ ∆(Q), for all q ∈ Q.

It remains to show that

hocolimD(A) ' hocolim E .
We use the Homotopy Lemma (Lemma 2.1).
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Suppose that y is not minimal in Q. Consider the homotopy from
the inclusion map ∆(f−1(Q<y)) ↪→ ∆(f−1(Q≤y)) to the constant map
which sends ∆(f−1(Q<y)) to cy. By the homotopy extension property
for simplicial pairs [10, pp. 430–431], such a homotopy can be extended
to a homotopy equivalence

αy : ∆(f−1(Q≤y))→ ∆(f−1(Q≤y))

which takes ∆(f−1(Q<y)) to cy. For minimal y ∈ Q, let αy be the
identity mapping on ∆(f−1(Q≤y)). The Homotopy Lemma applies to
the diagram map α : D(A)→ E and completes the proof.

Proof of Theorem 1.1. The connectivity condition implies that each
fiber is nonempty. Since all maps from a triangulable space of dimen-
sion r to an r-connected space are homotopic, the connectivity condi-
tion also implies that the inclusion map ∆(f−1(Q<y)) ↪→ ∆(f−1(Q≤y))
is homotopic to any constant map. Hence we can apply Theorem 2.5.

Remark 2.6. In the corollaries and homology versions of Theorem 1.1
that appear in the following sections, the fiber connectivity condition
(or its homology version) can be replaced by the weaker fiber condition
(or its homology version) given in Theorem 2.5. For simplicity, we have
chosen to use the simpler (albeit stronger) connectivity assumption
throughout the paper.

One of Quillen’s poset fiber results [18, Proposition 7.6] states that
if all the fibers of a poset map f : P → Q are t-connected then ∆(P ) is
t-connected if and only if ∆(Q) is t-connected. A more general result
stating that if all the fibers are t-connected then f induces isomorphism
of homotopy groups πr(∆(P ), b) ∼= πr(∆(Q), f(b)) for all r ≤ t and all
basepoints b, was obtained by Björner [4, p. 1850] [5]. Since this does
not follow from Theorem 1.1, we ask whether there is a stronger version
of Theorem 1.1 which implies these fiber results. We have been able to
obtain the following partial answer to this question.

A t-equivalence is a continuous map ψ : X → Y such that the
induced map ψ∗ : πr(X, b)→ πr(Y, ψ(b)) is an isomorphism for all r < t
and all basepoints b, and is a surjection for r = t and all basepoints
b. By Whitehead’s theorem [10, p. 486], the following result implies
Theorem 1.1 when t is large.
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Theorem 2.7. Let f : P → Q be a poset map and let t be a non-
negative integer. If each fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-
connected then there is a t-equivalence

ψ : ∆(P )→ ∆(Q) ∨
∨
q∈Q

(
∆(f−1(Q≤q)) ∗∆(Q>q)

)
.

Proof. The proof follows the lines of the proof of Theorem 1.1. The
diagram map α : D(A) → E in the proof of Theorem 2.5 is modified
so that αy is the constant map to cy when t < `(f−1(Q<y)). Using
the fact that αy is a t-equivalence for all y, we complete the proof by
applying the following strong version of the homotopy lemma.

Lemma 2.8 (Strong Homotopy Lemma). Let D and E be Q-diagrams.
Suppose α : D → E is a diagram map such that for each y ∈ Q the
map αy : Dy → Ey is a t-equivalence, where t is some fixed nonneg-
ative integer. Then the induced map from hocolimD to hocolim E is a
t-equivalence.

Proof. The proof of the homotopy lemma given in the appendix of [33]
is modified by using [32, Corollary 2] instead of [33, Corollary 4.2].

We use induction on the size of Q. If |Q| = 1 the result is trivial.
Let |Q| > 1.

Case 1: Q has a unique maximum y. The natural collapsing maps
hocolimD → Dy and hocolim E → Ey are deformation retractions which
commute with the appropriate maps. So the result holds.

Case 2: Q has more than one maximal element. Let y be one of the
maximal elements. Let D(< y),D(≤ y) and D(6= y) be the restrictions
of D to the posets Q<y, Q≤y and Q \ {y}, respectively. Let

X = hocolimD and X0 = hocolimD(≤ y).

We view X0 as the mapping cylinder of the natural map hocolimD(<
y) → Dy. So X0 is hocolimD(< y) × [0, 1] glued to Dy as a map-
ping cylinder. Now view hocolimD(6= y) as a space that contains
hocolimD(< y)× {0} and set

X1 = hocolimD(6= y) ∪ (hocolimD(< y)× [0, 1/2]).

We have

X2 := X0 ∩X1 = hocolimD(< y)× [0, 1/2].

Clearly hocolimD(6= y) is a deformation retract of X1, hocolimD(< y)
is a deformation retract of X2, and

◦
X0 ∪

◦
X1= hocolimD(≤ y) ∪ hocolimD(6= y) = hocolimD = X,
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where
◦
X i denotes interior of Xi in X. Define Y and Yi, i = 0, 1, 2,

analogously for E . Since by induction, we have that the maps Xi → Yi
induced by α are t-equivalences, we can apply [32, Corollary 2] to
conclude that the induced map X → Y is also a t-equivalence.

3. Corollaries

The following is a direct consequence of Theorem 1.1. It is a minor
generalization of “the Quillen fiber lemma” [18, Proposition 1.6].

Corollary 3.1. Let f : P → Q be a poset map, and suppose that
for all q ∈ Q either the fiber ∆(f−1(Q≤q)) is contractible or else it is
`(f−1(Q<q))-connected and ∆(Q>q) is contractible. Then

∆(P ) ' ∆(Q).

Another result of Quillen’s [18, Theorem 9.1] can be generalized as
follows.

Corollary 3.2. Let f : P → Q be a poset map. Fix t ≥ 0. Suppose
for all q ∈ Q that the fiber ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected and
that ∆(Q>q) is (t− `(f−1(Q<q))− 2)-connected. Then

πr(∆(P ), b) ∼= πr(∆(Q), f(b))

for all r ≤ t and all basepoints b. Consequently, ∆(P ) is t-connected if
and only if ∆(Q) is t-connected.

Proof. Using the fact that the join of an i-connected simplicial complex
with a j-connected simplicial complex is (i+ j + 2)-connected, we find
that all components of the wedge on the right-hand side of equation
(1.1) are t-connected with the possible exception of ∆(Q). We claim
that the t-connectivity of these components implies that for all r ≤ t
and all b ∈ P ,

πr(∆(Q), f(b)) ∼= πr(Γ, f(b)),

where Γ is the simplicial complex on the right-hand side of (1.1). To
establish this claim we use the following homotopy theory fact which
can be proved by using [14, Theorem 6.2], [12, Exercise 4.1.15] and
Van Kampen’s theorem: If X is a connected CW-complex and Y is a
t-connected CW-complex then πr(X ∨ Y ) ∼= πr(X) for all r ≤ t.

Remark. After this paper was finished G. Ziegler pointed us to the re-
cent paper [15], which contains two results (Theorem 3.8 and Theorem
3.6) very similar to our Corollary 3.2 and its homology version.
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In his thesis, Babson [1] (see also [22, Lemma 3.2]) presented a fiber
lemma for posets involving fibers of the form f−1(q). It can be gen-
eralized as follows. (Babson’s lemma is the special case where condi-
tion (i) is sharpened to “∆(f−1(q)) is contractible”, condition (ii) to
“∆(f−1(q)∩P≥p) is contractible for all p ∈ f−1(Q≤q)” and the conclu-
sion to “∆(P ) ' ∆(Q)”.)

Corollary 3.3. Let f : P → Q be a poset map. Suppose that for every
q ∈ Q:

(i) ∆(f−1(q)) is `(f−1(Q<q))-connected,
(ii) ∆(f−1(q)∩P≥p) is contractible or else it is `(f−1(q)∩P>p)-connected

and ∆(P<p) is contractible, for all p ∈ f−1(Q≤q).

Then

∆(P ) ' ∆(Q) ∨
∨
q∈Q

(
∆(f−1(q)) ∗∆(Q>q)

)
,(3.1)

where the wedge is formed by identifying each q ∈ Q with some element
of f−1(q).

Proof. By Theorem 1.1 and condition (i) it suffices to show that the
poset inclusion map

g : f−1(q)→ f−1(Q≤q)

induces homotopy equivalence of order complexes. But this follows
from Corollary 3.1 and condition (ii), since g−1((f−1(Q≤q))≥p) = f−1(q)∩
P≥p, g−1((f−1(Q≤q))>p) = f−1(q) ∩ P>p and f−1(Q≤q)<p = P<p.

A simplicial complex version of Theorem 1.1 follows from the poset
version. Given a face F of a simplicial complex ∆, let Ḟ denote the
subcomplex of faces contained in F and let lk∆ F denote the link of F ,
i.e.,

lk∆ F = {G ∈ ∆ | G ∩ F = ∅ and G ∪ F ∈ ∆}.

Corollary 3.4. Let f : Γ→ ∆ be a simplicial map. If the fiber f−1(Ḟ )
is dim f−1(Ḟ \ {F})-connected for all nonempty faces F of ∆, then

Γ ' ∆ ∨
∨

F∈∆\{∅}

(
f−1(Ḟ ) ∗ lk∆ F

)
,

where the wedge is formed by identifying a vertex of f−1(Ḟ ) with a
vertex of F for each nonempty face F of ∆.

Proof. We view f as a poset map from the poset of nonempty faces of Γ
to the poset of nonempty faces of ∆. Since the barycentric subdivision
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of a complex is homeomorphic to the complex, f is a poset homotopy
fibration. Hence by Theorem 1.1

sd Γ ' sd ∆ ∨
∨

F∈∆\{∅}

(
sd f−1(Ḟ ) ∗ sd lk∆ F

)
,

where sd denotes the barycentric subdivision. Passing from the barycen-
tric subdivision to the original complexes yields the result.

Any two maps from a space to a contractible space are homotopic.
Hence the following gives another generalization of Quillen’s fiber lemma
(the case of contractible fibers and T = ∗). This result is not a con-
sequence of Theorem 1.1, but its proof also employs the theory of dia-
grams of spaces.

Proposition 3.5. Let f : P → Q be a poset map. Assume that Q is
connected and that for all q ≤ q′ in Q the inclusion map ∆(f−1(Q≤q)) ↪→
∆(f−1(Q≤q′)) induces homotopy equivalence. In particular, all fibers
∆(f−1(Q≤q)) are homotopy equivalent to some fixed space T . Then

∆(P ) ' ∆(Q)× T.
Proof. This follows straightforwardly from Corollary 2.4 and the Quasi-
fibration Lemma [31, Proposition 3.6].

4. Homology fibrations

This section is devoted to the homology version of Theorem 1.1 and
its corollaries. For the proofs we again rely on the theory of diagrams
of spaces. Homology versions of the tools of Section 2 were used by
Sundaram and Welker [23], and we refer to their paper for further
details.

We use the notation H̃∗(∆) = ⊕i∈Z H̃i(∆).

Theorem 4.1. Fix an integer t ≥ 0. Let f : P → Q be a poset map
such that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-
acyclic and either H̃∗(f

−1(Q≤q)) or H̃∗(Q>q) is free. Then for all r ≤ t,

H̃r(P ) ∼= H̃r(Q)⊕
⊕
q∈Q

r⊕
i=−1

(
H̃i(f

−1(Q≤q))⊗ H̃r−i−1(Q>q)
)
.

The same result holds for homology taken over any field.

For the proof we use a slight generalization of a homology version
of the Wedge Lemma due to Sundaram and Welker [23]. It will be
proved later in this paper as a special case of Proposition 8.8, see also
Remark 8.9.
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Proposition 4.2 ([23, Proposition 2.3]). Let D be a simplicial Q-diagram
for which each Dx 6= {∅}. Let t be a nonnegative integer. Assume that
for all nonminimal y in Q and r ≤ t, the induced map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

Dx)→ H̃r(Dy)

is trivial. Assume also that either H̃∗(Dx) or H̃∗(Q>x) is free for all x.
Then for all r ≤ t,

H̃r(hocolimD) ∼= H̃r(Q)⊕
⊕
x∈Q

r⊕
i=−1

(
H̃i(Dx)⊗ H̃r−i−1(Q>x)

)
.

The same result holds for homology taken over any field.

Proof of Theorem 4.1. LetD(A) be the simplicial Q-diagram described
in the proof of Theorem 2.5. The map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

f−1(Q≤x))→ H̃r(f
−1(Q≤y))

induced by the inclusion map is trivial for all r ≤ t, since H̃r(
⊎
x<y f

−1(Q≤x)) =

0 if r > `(f−1(Q<y)) for dimensional reasons, and H̃r(f
−1(Q≤y)) = 0

for all r ≤ min{t, `(f−1(Q<y))} by the acyclicity assumption. Thus
we can apply Proposition 4.2 to D(A). The result now follows from
equation (2.1).

Homology versions of Corollaries 3.1 – 3.4 follow straightforwardly.
We state two of them.

Corollary 4.3. Let f : P → Q be a poset map. Suppose that for all
q ∈ Q either the fiber ∆(f−1(Q≤q)) is t-acyclic or else it is `(f−1(Q<q))-
acyclic and ∆(Q>q) is t-acyclic. Then

H̃r(P ) ∼= H̃r(Q)

for all r ≤ t. The same result holds for homology taken over any field.

Corollary 4.4. Let f : Γ → ∆ be a simplicial map. Suppose that the
fiber f−1(Ḟ ) is min{t, dim f−1(Ḟ \{F})}-acyclic and either H̃∗(f

−1(Ḟ ))
or H̃∗(lk∆ F ) is free for all nonempty faces F of ∆. Then for all r ≤ t,

H̃r(Γ) ∼= H̃r(∆)⊕
⊕

F∈∆\{∅}

r⊕
i=−1

(
H̃i(f

−1(Ḟ ))⊗ H̃r−i−1(lk∆ F )
)
.

The same result holds for homology taken over any field.
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5. Cohen-Macaulay Fibrations

Since the late 1970’s two very similar fiber theorems for transferring
the Cohen-Macaulay property of posets are known, one for the homol-
ogy version and one for the homotopy version, due to Baclawski [2]
and Quillen [18], respectively. Several years later Stanley [21] intro-
duced the more general property of “sequential Cohen-Macaulayness”.
In this section we introduce a homotopy version of the sequential
Cohen-Macaulay property by considering a characterization of sequen-
tial Cohen-Macaulayness due to Wachs [25]. We show how the homol-
ogy and homotopy versions of the sequential Cohen-Macaulay property
can be transferred via poset fibrations, thereby reproving and general-
izing the results of Baclawski and Quillen.

Let ∆ be a simplicial complex, and for 0 ≤ m ≤ dim ∆ let ∆〈m〉

be the subcomplex generated by all facets (i.e. maximal faces) of di-
mension at least m. We say that ∆ is sequentially connected if ∆〈m〉 is
(m−1)-connected for all m = 0, 1, . . . , dim ∆. Similarly, we say that ∆
is sequentially acyclic over k if H̃r(∆

〈m〉; k) = 0 for all r < m ≤ dim ∆,
where k is the ring of integers or a field.

A simplicial complex is said to be pure if all facets are of equal dimen-
sion. Clearly a pure d-dimensional simplicial complex is sequentially
connected if and only if it is (d − 1)-connected, and it is sequentially
acyclic if and only if it is (d− 1)-acyclic. Cohen-Macaulay (CM) com-
plexes (see [21]) are pure. The notion of sequentially Cohen-Macaulay
(SCM) simplicial complexes is a nonpure generalization due to Stan-
ley [21, Chap. III, Sec. 2]. In Wachs [25, Theorem 1.5] the following
characterization is given: a simplicial complex is SCM over k if and
only if the link of each of its faces is sequentially acyclic over k. (The
term “vanishing homology property” was used in place of “sequentially
acyclic” in [25].) A simplicial complex is CM if and only if it is SCM
and pure.

One can formulate a homotopy version of the SCM property as
follows. We say that ∆ is sequentially homotopy Cohen-Macaulay
(SHCM) if the link of each of its faces is sequentially connected. For
pure simplicial complexes, SHCM reduces to the notion of homotopy
Cohen-Macaulay (HCM). The following sequence of implications holds:

(nonpure) shellable =⇒ SHCM =⇒ SCM over Z
=⇒ SCM over k, for all fields k.

For more information about S(H)CM complexes, see [8]
A poset is said to be CM (SCM, HCM or SHCM) if its order complex

is. A poset P is said to be semipure if all closed principal lower order
ideals P≤x are pure. The rank, rk(x), of an element x in a semipure
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poset P is defined to be `(P≤x). Finally, P 〈m〉 denotes the lower order
ideal of P generated by elements of rank at least m.

In the pure case part (i) of the following result specializes to the
homotopy Cohen-Macaulay fiber theorem of Quillen [18, Corollary 9.7],
and part (ii) specializes to Baclawski’s Cohen-Macaulay fiber theorem
[2, Theorem 5.2].

Theorem 5.1. Let P and Q be semipure posets and let f : P → Q be
a surjective rank-preserving poset map.

(i) Assume that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is HCM. If Q is
SHCM, then so is P .

(ii) Let k be a field or Z, and assume that for all q ∈ Q the fiber
∆(f−1(Q≤q)) is CM over k. If Q is SCM over k, then so is P .

(iii) If the conditions of (i) or (ii) are fulfilled, then

βi(P ) = βi(Q) +
∑
q∈Q〈i〉

βrk(q)(f
−1(Q≤q))βi−rk(q)−1(Q>q).

[Here βi(·) = rank H̃i( · ), or βi(·) = dimk H̃i( · ; k) if k is a field.]

Proof. We begin with part (i). First we show that P is sequentially
connected; that is, ∆(P )〈m〉 is (m−1)-connected for allm = 0, . . . , `(P ).
Since P 6= ∅ we may assume that m > 0. Note that ∆(P )〈m〉 =
∆(P 〈m〉). We will show that Corollary 3.2 (with t = m− 1) applies to
the map f 〈m〉 : P 〈m〉 → Q〈m〉, where f 〈m〉 is the restriction of f .

We claim that for all q ∈ Q〈m〉,
(f 〈m〉)−1(Q

〈m〉
≤q ) = f−1(Q≤q),(5.1)

where Q
〈m〉
≤q := (Q〈m〉)≤q. To see this, first observe that Q

〈m〉
≤q = Q≤q and

(f 〈m〉)−1(Q
〈m〉
≤q ) = f−1(Q≤q) ∩ P 〈m〉. Hence to establish (5.1) it suffices

to show that f−1(Q≤q) ⊆ P 〈m〉. Let x ∈ f−1(Q≤q). Since q ∈ Q〈m〉,
there is some z ∈ Q such that rk(z) ≥ m and q ≤ z. It follows from
the fact that f is surjective and rank-preserving that f−1(Q≤z) has a
maximal element of rank rk(z). Since f−1(Q≤z) is pure, all maximal
elements have rank rk(z). It follows that x is less than or equal to
some element of rank rk(z). Hence x ∈ P 〈m〉 and (5.1) holds. A similar
argument yields

(f 〈m〉)−1(Q
〈m〉
<q ) = f−1(Q<q)(5.2)

for all q ∈ Q〈m〉.
Since f is rank-preserving and surjective, we have

(5.3)

`((f 〈m〉)−1(Q
〈m〉
<q )) = `(f−1(Q<q)) = `(f−1(Q≤q))− 1 = rk(q)− 1
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for all q ∈ Q〈m〉. It follows that ∆(f−1(Q≤q)) is `(f−1(Q<q))-connected,

since it is HCM. Hence by (5.1) and (5.2), ∆((f 〈m〉)−1(Q
〈m〉
≤q )) is

`((f 〈m〉)−1(Q
〈m〉
<q ))-connected for all q ∈ Q〈m〉.

On the other hand, note that (Q〈m〉)>q = (Q>q)
〈m−rk(q)−1〉 for all q ∈

Q〈m〉. Since ∆(Q>q) is the link of a face of ∆(Q) we have that ∆(Q>q)
is sequentially connected. Hence ∆((Q>q)

〈m−rk(q)−1〉) is (m−rk(q)−2)-

connected. Therefore by (5.3), ∆((Q〈m〉)>q) is (m−`((f 〈m〉)−1(Q
〈m〉
<q ))−

3)-connected.
We have shown that Corollary 3.2 applies. Therefore ∆(P )〈m〉 =

∆(P 〈m〉) is (m− 1)-connected, since ∆(Q)〈m〉 = ∆(Q〈m〉) is.

Next we check that all open intervals and principal upper and lower
order ideals of P are sequentially connected. From this it will follow
that the link of every face of ∆(P ) is sequentially connected, since
the join of sequentially connected complexes is sequentially connected.
(This fact is easy to verify when at most one of the complexes is non-
pure, which is the situation here. It is proved in general in [8].)

Let (a, b) be an open interval in P . Then (a, b) is an open interval
in the fiber f−1(Q≤f(b)). Since the fiber is HCM, it follows that (a, b),
which is the link of a face of the fiber, is sequentially connected. The
same argument works for open principal lower order ideals in P .

To show that all open principal upper order ideals P>x are sequen-
tially connected we show that the restriction of f to P>x is a surjective
rank-preserving poset map onto Q>f(x) whose fibers are HCM. It will
then follow by induction that P>x is SHCM (and hence sequentially
connected) since Q>f(x) is. The restriction is clearly rank-preserving.
The fibers have the form f−1(Q≤q) ∩ P>x where q > f(x). Since
f−1(Q≤q) ∩ P>x is an open principal upper order ideal of the HCM
poset f−1(Q≤q), it is HCM. Since f is rank preserving and surjec-
tive and f−1(Q≤q) is pure, we have that all the maximal elements of
f−1(Q≤q) map to q. One of these maximal elements must be greater
than x. Hence there is an element in P>x which maps to q. It follows
that the restriction of f to P>x is surjective onto Q>f(x).

Part (ii) is proved the same way, using Theorem 4.1 instead of Corol-
lary 3.2. The statement about βi(P ) in part (iii) is implied by Theo-
rem 4.1 and the fact that `(Q>q) < i− rk(q)− 1 for q /∈ Q〈i〉.

We have the following partial converse to (i) and (ii) of Theorem 5.1.
Its proof is similar to that of Theorem 5.1 and is left as an exercise.

Theorem 5.2. Let P and Q be semipure posets and let f : P → Q be
a surjective rank-preserving poset map. Assume for all q ∈ Q that the
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fiber f−1(Q≤q) is HCM (alt. CM) and that f−1(Q>q) = P>p for some
p ∈ P . If P is SHCM (alt. SCM) then so is Q.

Corollary 5.3. Let f : Γ → ∆ be a surjective dimension-preserving
simplicial map such that for all faces F of ∆ the fiber f−1(Ḟ ) is HCM
(alt. CM). If ∆ is SHCM (alt. SCM) then so is Γ. Conversely, suppose
also that for each face F of ∆ the complex f−1(lk∆ F ) is the link of some
face of Γ. If Γ is SHCM (alt. SCM) then so is ∆.

Proof. This follows from the fact that a simplicial complex is SHCM
(alt. SCM) if and only if its barycentric subdivision is.

6. Two applications

6A. Inflated simplicial complexes.

Let ∆ be a simplicial complex on vertex set [n] := {1, 2, . . . , n} and
let m = (m1, . . . ,mn) be a sequence of positive integers. We form a
new simplicial complex ∆m, called the m-inflation of ∆, as follows.
The vertex set of ∆m is {(i, c) | i ∈ [n], c ∈ [mi]} and the faces of ∆m

are of the form {(i1, c1), . . . , (ik, ck)} where {i1, . . . , ik} is a k element
face of ∆ and cj ∈ [mij ] for all j = 1, . . . , k. We can think of cj as a
color assigned to vertex ij and of {(i1, c1), . . . , (ik, ck)} as a coloring of
the vertices of face {i1, . . . , ik}. A color for vertex i is chosen from mi

colors.

Example 6.1. Let P and Q be the posets depicted in Figure 1 of
Section 1. We have that ∆(P ) is the (2, 2, 2)-inflation of ∆(Q).

Inflated simplicial complexes arose in work of Wachs [27] on bounded
degree digraph and multigraph complexes, where the following conse-
quence of Theorem 1.1 is used. This result, for the special case that
m = (2, . . . , 2), first appeared in Björner [3, pp. 354–355] in connection
with subspace arrangements.

Theorem 6.2. Let ∆ be a simplicial complex on vertex set [n] and let
m be a sequence of n positive integers. If ∆ is connected then

∆m '
∨
F∈∆

(susp|F |(lk∆ F ))∨ν(F,m),

where ν(F,m) =
∏

i∈F (mi − 1). For general ∆,

∆m '
k⊎
i=1

∨
F∈∆(i)

(susp|F |(lk∆(i) F ))∨ν(F,m),

where ∆(1), . . . ,∆(k) are the connected components of ∆.
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Proof. Let f : ∆m → ∆ be the simplicial map that sends each vertex
(i, c) of ∆m to vertex i of ∆. We call this map the deflating map and
show that it is a poset fibration. We claim that each fiber f−1(Ḟ ) is
a wedge of ν(F,m) spheres of dimension dimF . First observe that
the fiber f−1(Ḟ ) is a matroid complex. Since all matroid complexes
are (pure) shellable [17], the fiber is a wedge of spheres of dimension
dimF (cf. [7]). To determine the number of spheres in the wedge
we compute the reduced Euler characteristic. The number of (k − 1)-
dimensional faces in f−1(Ḟ ) is

∑
A∈(Fk)

∏
i∈Ami. Hence the reduced

Euler characteristic of f−1(Ḟ ) is

χ̃(f−1(Ḟ )) =
∑
A⊆F

(−1)|A|−1
∏
i∈A

mi =
∏
i∈F

(1−mi).

Therefore the number of spheres in the wedge is |χ̃(f−1(Ḟ ))| = ν(F,m).
We may assume ∆ is connected since the general case follows from

this case. By Corollary 3.4,

∆m '
∨
F∈∆

(SdimF )∨ν(F,m) ∗ lk∆ F.

The result now follows from the fact that the join operation is distribu-
tive over the wedge operation.

Let k be a field or the ring of integers.

Corollary 6.3. For all r ∈ Z,

H̃r(∆m; k) =
⊕
F∈∆

ν(F,m) H̃r−|F |(lk∆ F ; k).

Corollary 6.4. For any simplicial complex ∆ on [n] and n-sequence
of positive integers m, the inflated simplicial complex ∆m is CM over
k (SCM over k, HCM or SHCM) if and only if ∆ is.

Proof. This follows from the fact that all the fibers of the deflating map
given in the proof of Theorem 6.2 are homotopy Cohen-Macaulay and
Corollary 5.3.

Remark 6.5. A poset P is said to be obtained by replicating elements
of a poset Q if there is a surjective poset map f : P → Q such that
(1) f(x1) < f(x2) if and only if x1 < x2 and (2) f−1(y) is an antichain
for all y ∈ Q. For example, the poset P of Figure 1 is obtained by
replicating elements of Q. This operation was shown by Baclawski [2,
Theorem 7.3] to preserve CMness.

It is easy to see that for any posets P and Q, the order complex
∆(P ) is an inflation of the order complex ∆(Q) if and only if P is
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obtained by replication of elements of Q. Thus, Baclawski’s result can
be extended to this special case of Corollary 6.4:

Let P be obtained by replicating elements of Q. Then P is
CM over k (SCM over k, HCM or SHCM) if and only if Q is.

For the case that P and Q are semipure this also follows from Theorems
5.1 and 5.2.

6B. Subspace arrangements.

The tools from the theory of diagrams of spaces discussed in Section 2
were used by Ziegler and Živaljević [33] to prove results about the
homotopy type of various spaces connected to subspace arrangements.
In particular, they proved a result (see Corollary 6.8 below) which can
be considered a homotopy version and strengthening of the Goresky-
MacPherson formula on subspace arrangements. In this section we
show that the Ziegler-Živaljević formula can be viewed as a consequence
of Theorem 1.1. This does however not amount to a new proof, since
the methods used are essentially the same.

Let Γ be a regular cell complex and let Γ1, . . . ,Γn be a collection
of subcomplexes whose union is Γ. For each nonempty subset I =
{i1, . . . , it} ⊆ {1, 2, . . . , n}, let ΓI = Γi1 ∩ · · · ∩ Γit . The semilattice of
intersections is defined as

L(Γ1, . . . ,Γn) := {‖ΓI‖ | ∅ 6= I ⊆ {1, . . . , n}}
ordered by inclusion.

Proposition 6.6. Assume that for all nonempty I, J ⊆ {1, . . . , n} the
proper inclusion ΓI ( ΓJ implies dim ΓI < dim ΓJ , and that each ΓI is
(dim ΓI − 1)-connected. Let L = L(Γ1, . . . ,Γn) \ {∅}. Then

Γ ' ∆(L) ∨
∨
T∈L

(T ∗∆(L>T )) ,

where the wedge is formed by identifying each vertex T in the simplicial
complex ∆(L) with a point in the topological space T ∗∆(L>T ).

Proof. The face poset F(Γ) of a regular cell complex Γ is the set of
closed cells ordered by inclusion. Let f : F(Γ) → L send a closed cell
σ to ‖ΓI‖, where ΓI is the intersection of all Γi containing σ. Clearly
f is order preserving. We claim that f is a poset homotopy fibration.

Observe that
f−1(L≤‖ΓI‖) = F(ΓI).

Since a regular cell complex is homeomorphic to the order complex of its
face poset [6, Proposition 4.7.8], we have that ∆(f−1(L≤‖ΓI‖)) is home-
omorphic to ‖ΓI‖, which (by assumption) is (dim ΓI − 1)-connected.
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Since

f−1(L<‖ΓI‖) =
⋃

ΓJ(ΓI

F(ΓJ)

and `(F(ΓJ)) = dim ΓJ , we also have that `(f−1(L<‖ΓI‖)) < dim ΓI .
It follows that ∆(f−1(L≤‖ΓI‖)) is `(f−1(L<‖ΓI‖))-connected. Hence f
is indeed a poset homotopy fibration and the result follows from The-
orem 1.1.

Remark 6.7. By using the stronger Theorem 2.5 rather than Theo-
rem 1.1, the connectivity and dimension conditions in the hypothesis
of Proposition 6.6 can be replaced by the weaker condition: for all
nonminimal T ∈ L, the inclusion map

⋃
S<T S ↪→ T is homotopic to a

constant map which sends
⋃
S<T S to cT for some cT ∈ T . This results

in a stronger form of Proposition 6.6 which is stated in [13, Lemma
6.1].

Let A be a linear subspace arrangement, i.e., a finite collection of
linear subspaces in Euclidean space Rd. The singularity link V o

A is
defined as

V o
A = Sd−1 ∩

⋃
X∈A

X,

where Sd−1 is the unit (d − 1)-sphere in Rd. The intersection lattice
LA of A is the collection of all intersections of subspaces in A ordered
by reverse inclusion. See [3] for a survey of the theory of subspace
arrangements.

Corollary 6.8 (Ziegler & Živaljević [33]). For every linear subspace ar-
rangement A,

V o
A '

∨
x∈LA\{0̂}

suspdimx(∆(0̂, x)).(6.1)

Proof. Suppose A = {X1, . . . , Xn}. Let H be an essential hyperplane
arrangement in Rd such that each Xi is the intersection of a subcollec-
tion of hyperplanes in H. The hyperplane arrangement H determines
a regular cell decomposition of the singularity link Sd−1∩

⋃
X∈HX (see

e.g. [6, Section 2.1]). Let Γ be the subcomplex whose geometric re-
alization is V o

A, and for each i, let Γi be the subcomplex of Γ whose
geometric realization is Sd−1 ∩ Xi. Since the intersection of any r-
dimensional linear subspace of Rd with Sd−1 is an (r− 1)-sphere, ‖ΓI‖
is a dim ΓI-sphere and is therefore (dim ΓI − 1)-connected, for each I.
Since LA \ {0̂} is isomorphic to the dual of L(Γ1, . . . ,Γn), the result is
obtained by applying Proposition 6.6.
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7. Group actions on homotopy

In this section we derive group equivariant versions of Theorem 1.1
and its corollaries. We begin with a review of some definitions.

Let G be a group. A G-poset is a poset on which G acts as a group
of poset automorphisms. A G-poset map f : P → Q is a poset map
from G-poset P to G-poset Q which commutes with the G-action (i.e.,
f(gx) = gf(x) for all g ∈ G and x ∈ P ). A G-simplicial complex is
a simplicial complex on which G acts as a group of simplicial auto-
morphisms. A G-simplicial map f : ∆ → Γ is a simplicial map from
G-simplicial complex ∆ to G-simplicial complex Γ which commutes
with the G-action. A G-space is a topological space on which G acts
as a group of homeomorphisms. A G-continuous map f : X → Y from
G-space X to G-space Y is a continuous map that commutes with the
G-action.

Clearly, the order complex of a G-poset is a G-simplicial complex and
a G-poset map induces a G-simplicial map. Also if ∆ is a G-simplicial
complex then the induced action of G on the geometric realization ‖∆‖
is a G-space and a G-simplicial map induces a G-continuous map.

Let f, f ′ : X → Y be G-continuous maps. We say that f and f ′ are
G-homotopic if there is a homotopy F : X × [0, 1]→ Y between f and
f ′ such that gF (x, t) = F (gx, t) for all g ∈ G, x ∈ X and t ∈ [0, 1].
Two G-spaces X and Y are said to be G-homotopy equivalent if there
are G-continuous maps α : X → Y and β : Y → X such that α ◦ β
and β ◦ α are G-homotopic to the respective identity maps on Y and
X. We denote the G-homotopy equivalence by X 'G Y .

A G-space X is said to be G-contractible if X is G-homotopy equiv-
alent to a point. Given a G-poset (G-space) X, let XG denote the
subposet (subspace) of elements (points) fixed by G. For r ≥ −1, a
G-space X is said to be (G, r)-connected if XG is nonempty and for
each G-simplicial complex ∆ such that dim ∆ ≤ r, all G-continuous
maps from ‖∆‖ to X are G-homotopic. Clearly a G-contractible space
is (G, r)-connected for all r. An example of an r-connected space that
is not (G, r)-connected is as follows. Let X be a 1-sphere and let G
be the cyclic group generated by the reflection about the line spanned
by a pair of antipodal points a and b. Although X is 0-connected it
is not (G, 0)-connected. Indeed the inclusion map from the 0-sphere
consisting of a and b is not G-homotopic to the constant map which
takes a and b to a.

Now let f : P → Q be a G-poset map. Assume that f−1(Q≤q)
StabG(q)

is nonempty for all q ∈ Q and choose cq ∈ f−1(Q≤q)
StabG(q) so that

gcq = cgq for all g ∈ G. This can be done by first choosing the cq’s for
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the orbit representatives in Q. With a fixed choice of cq’s we can form
the G-simplicial complex

Γ(f, {cq}q∈Q) := ∆(Q) ∨
∨
q∈Q

(
∆(f−1(Q≤q)) ∗∆(Q>q)

)
,

where the wedge is formed by identifying each q ∈ Q with cq ∈
f−1(Q≤q). The action of G on the vertex set

⊎
q∈Q(f−1(Q≤q)]Q>q) of

Γ(f, {cq}q∈Q) can be described as follows: If x ∈ f−1(Q≤q) ]Q>q then
g ∈ G takes x to gx in f−1(Q≤gq) ]Q>gq.

Theorem 7.1. Let f : P → Q be a G-poset map such that for all
q ∈ Q the fiber f−1(Q≤q) is (StabG(q), `(f−1(Q<q)))-connected. Then

∆(P ) 'G ∆(Q) ∨
∨
q∈Q

(
∆(f−1(Q≤q)) ∗∆(Q>q)

)
,(7.1)

where the wedge is formed by identifying each q ∈ Q with cq ∈ f−1(Q≤q)
where the cq are chosen so that gcq = cgq.

The proof of Theorem 7.1 goes along the lines of the proof of Theorem
1.1 using an equivariant version of a Q-diagram (see Definition 8.7)
and equivariant versions of the Projection Lemma, Homotopy Lemma,
Wedge Lemma (see for example [30]) and the Homotopy Extension
Property.

Theorem 7.1 generalizes the equivariant Quillen fiber lemma which
was first proved and applied by Thévenaz and Webb [24].

Corollary 7.2 ([24]). Let f : P → Q be a G-poset map such that for
all q ∈ Q the fiber ∆(f−1(Q≤q)) is StabG(q)-contractible. Then ∆(P )
and ∆(Q) are G-homotopy equivalent.

Equivariant versions of all the corollaries in Section 3 follow from
Theorem 7.1. We state the equivariant version of Corollary 3.4.

Corollary 7.3. Let f : Γ → ∆ be a G-simplicial map. If the fiber
f−1(Ḟ ) is (StabG(F ), dim f−1(Ḟ \ {F}))-connected for all nonempty
faces F of ∆ then

Γ ' ∆ ∨
∨

F∈∆\{∅}

(
f−1(Ḟ ) ∗ lk∆ F

)
,

where the wedge is formed by identifying a vertex cF in f−1(Ḟ ) with a
vertex of F and the cF are chosen so that gcF = cgF for all g ∈ G.

It is clear from the proof of Theorem 7.1 that the equivariant connec-
tivity assumption can be replaced by the weaker assumption that the
inclusion map ∆(f−1(Q<q)) ↪→ ∆(f−1(Q≤q)) is StabG(q)-homotopic to
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the constant map. Even this assumption seems to be very strong and
we do not see an application of the result in its full strength. The
following example shows that an equivariant connectivity assumption
is needed.

Example 7.4. Let f : P → Q be the poset homotopy fibration dis-
cussed in Example 1.2. Let G be the cyclic group of order 2 whose
non-identity element acts by (1 2)(3 4) on P and trivially on Q. Note
that if q is one of the maximal elements of Q then the fiber f−1(Q≤q)
is G-homeomorphic to a circle with (1 2)(3 4) acting by reflecting the
circle about the line spanned by a pair of antipodal points. As was
previously observed this G-space is not (0, G)-connected. We now see
that (7.1) does not hold. Clearly, ∆(P ) is G-homeomorphic to two cir-
cles intersecting in two points such that these two points are the only
fixed points and (1 2)(3 4) reflects each circle about the line spanned
by the fixed points. The G-complex on the right side of (7.1) has a
circle attached to each element of Q. One of the circles is fixed by
(12)(34) and each of the other two circles is reflected about the line
spanned by the wedge point and its antipode. Although the simplicial
complexes are homotopy equivalent they fail to be G-homotopy equiv-
alent. To be G-homotopy equivalent the subcomplexes of points that
are fixed by the action of G must be homotopy equivalent. The fixed
point subcomplex of ∆(Q) consists of two isolated points and the fixed
point subcomplex of the right side of (7.1) has the homotopy type of
the wedge of a 1-sphere and two 0-spheres.

8. Group actions on homology

Although the strong assumptions dilute the applicability of Theorem
7.1, it is possible to prove a result for the G-module structure of the
homology groups without such restrictions. The action of G on a sim-
plicial complex ∆ induces a representation of G on reduced simplicial
homology H̃∗(∆; k), where k is any field. For the remainder of this
paper we assume that k is a field of characteristic 0.

Given a subgroup H of G and a kH-module V , let V ↑GH denote the
induction of V to G.

Theorem 8.1. Fix a nonnegative integer t. Let f : P → Q be a G-
poset map such that for all q ∈ Q the fiber ∆(f−1(Q≤q)) is min{t, `(f−1(Q<q))}-
acyclic over the field k. Then for all r ≤ t, we have the following
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isomorphism of kG-modules

H̃r(P ; k) ∼=G

H̃r(Q; k) ⊕
⊕
q∈Q/G

r⊕
i=−1

(
H̃i(f

−1(Q≤q); k)⊗ H̃r−i−1(Q>q; k)
)
↑GStabG(q) .

Before proving the theorem we consider an example and some con-
sequences.

Example 8.2. Theorem 8.1 can be applied to the poset fibration given
in Example 7.4. View G as the symmetric group S2. The conclusion is
that H̃r(P ; k) is 0 unless r = 1 in which case the S2-module H̃1(P ; k)

decomposes into S2 ⊕ S12 ⊕ S12
, where Sλ denotes the irreducible rep-

resentation of Sn indexed by λ. The first summand comes from the
bottom element of Q and the other two summands come from the top
elements.

The following “equivariant homology Quillen fiber lemma” is a direct
consequence of the theorem.

Corollary 8.3. Let f : P → Q be a G-poset map. If the fiber ∆(f−1(Q≤q))
is t-acyclic over k for all q ∈ Q then as G-modules

H̃r(P ; k) ∼=G H̃r(Q; k),

for all r ≤ t.

Equivariant homology versions of all the consequences of Theorem 1.1
discussed in previous sections follow from Theorem 8.1. We state two
of these equivariant homology results here.

Corollary 8.4. Let f : Γ → ∆ be a G-simplicial map. If the fiber
f−1(Ḟ ) is min{t, dim f−1(Ḟ \ {F})}-acyclic over k for all nonempty
faces F of ∆, then for all r ≤ t,

H̃r(Γ; k) ∼=G

⊕
F∈∆/G

r⊕
i=−1

(
H̃i(f

−1(Ḟ ); k)⊗ H̃r−i−1(lk∆ F ; k)
)
↑GStabG(F ) .

Corollary 8.5. Let ∆ be a G-simplicial complex on vertex set [n] and
let m be an n-sequence of positive integers. If G acts on the inflation
∆m and this action commutes with the deflating map, then for all r ∈
Z,

H̃r(∆m; k) ∼=G

⊕
F∈∆/G

(
H̃|F |−1(Ḟm(F ); k)⊗ H̃r−|F |(lk∆ F ; k)

)
↑GStabG(F ),

where m(F ) is the subsequence (mi1 , . . . ,mit) of m = (m1, . . . ,mn) for
F = {i1 < · · · < it}.
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The following is a homology version of a generalization of [4, Lemma
11.12] and [24, Proposition 1.7].

Corollary 8.6. Let P be a G-poset and A a G-invariant induced sub-
poset of P such that ∆(P<x) is t-acyclic for all x ∈ P \ A. Then

H̃r(A) ∼=G H̃r(P ),

for all r ≤ t.

Proof. The proof is similar to that of [24, Proposition 1.7]. We use
the embedding map f : P \M → P , where M is the set of maximal
elements of P \ A.

The proof of Theorem 8.1 follows the lines of the proof of Theo-
rem 4.1 using an equivariant version of Corollary 2.4 (cf. [23]) and the
equivariant version of Proposition 4.2 given in Proposition 8.8 below.

Definition 8.7. Given a G-poset Q, a (simplicial) Q-diagramD is said
to be a (simplicial) (G,Q)-diagram if ]q∈QDq is a G-space (simplicial
complex) satisfying

• gDq = Dgq for all g ∈ G and q ∈ Q, and
• gdx,y(a) = dgx,gy(ga) for all x ≤Q y, a ∈ Dx and g ∈ G.

The action of G on ]q∈QDq induces natural actions of G on colimD
and hocolimD.

Proposition 8.8 ([23, Proposition 2.3]). Let D be a simplicial (G,Q)-
diagram for which each Dx 6= {∅}. Let t be a nonnegative integer.
Assume that for all nonminimal y in Q and r ≤ t, the induced map

(∪x<ydx,y)∗ : H̃r(
⊎
x<y

Dx; k)→ H̃r(Dy; k)(8.1)

is trivial. Then for all r ≤ t,

H̃r(hocolimD; k) ∼=G

H̃r(Q; k) ⊕
⊕
x∈Q/G

r⊕
i=−1

(
H̃i(Dx; k)⊗ H̃r−i−1(Q>x; k)

)
↑GStabG(x) .

Proof. Let (Cr(hocolimD; k), δr)r=0,...,d, where d = dim(hocolimD), de-
note the cellular chain complex of the CW-complex hocolimD. The
cells of hocolimD are of the form

α× ({x} ∗ β),

where x ∈ Q, α ∈ Dx \ {∅} and β ∈ ∆(Q>x). Let min β denote the
smallest element of the chain β. The differential is given by

δ(α× ({x} ∗ β)) = A+B + C,(8.2)
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where

A =

{
∂(α)× ({x} ∗ β) if dimα > 0

0 otherwise,

B =

{
(−1)`(α)−1dx,minβ(α)× β if dim dx,minβ(α) = dimα

0 otherwise,
(8.3)

C = (−1)`(α)α× ({x} ∗ ∂(β)),(8.4)

and ∂ is the simplicial boundary map.
We use the theory of spectral sequences to compute the homology

of the cellular chain complex (Cr(hocolimD; k), δr)r=0,...,d. For r,m =
0, . . . , d, let Fr,m be the subspace of Cr(hocolimD; k) spanned by the
r-dimensional cells for which the chain β has length at most m − 1.
Clearly the Fr,m are G-invariant and δrFr,m ⊆ Fr−1,m. So

Fr,−1 ⊆ Fr,0 ⊆ · · · ⊆ Fr,r = Cr(hocolimD; k)

is a filtration of the complex of kG-modules (Cr(hocolimD; k), δr). In
the spectral sequence associated with this filtration, the E1 component
is given by E1

r,m = Hr(Fr,m, Fr−1,m−1; k). It is clear that if α× (x∗β) ∈
Fr,m then B and C of (8.2) are in Fr−1,m−1. It follows that E1

r,m is
generated by elements of the form

α× ({x} ∗ β)(8.5)

where x ∈ Q, α ∈ Hr−m(Dx; k) and β is a chain of length m − 1 in
Q>x. The differential δ1 : E1

r,m → E1
r−1,m−1 is given by

δ1(α× ({x} ∗ β)) = B∗ + C

where B∗ is like B in (8.3) except that dx,minβ is replaced by the induced
map d∗x,minβ and C is given by (8.4).

If m < r ≤ t and α ∈ Hr−m(Dx; k), then α is also in the reduced
homology H̃r−m(Dx; k). Hence d∗x,minβ(α) = 0 by (8.1). It follows that
B∗ = 0 and so

δ1(α× ({x} ∗ β)) = (−1)`(α)α× ({x} ∗ ∂(β)).(8.6)

We can see that as G-modules

E1
r,m
∼=G

⊕
x∈Q/G

(H̃r−m(Dx,k)⊗ C̃m−1(Q>x; k)) ↑GStabG(x),

and that E2
r,m, the homology of the complex (E1

r,m, δ
1
r,m), is isomorphic

to the G-module⊕
x∈Q/G

H̃m−1

(
Q>x; H̃r−m(Dx; k)

)
↑GStabG(x) .
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By the Universal Coefficient Theorem we have the G-module isomor-
phism

E2
r,m
∼=G

⊕
x∈Q/G

(
H̃m−1(Q>x; k)⊗ H̃r−m(Dx; k)

)
↑GStabG(x)

Now we compute E2
r,m for r = m. For each x that is minimal in Q

set

mx :=
1

|V (Dx)|
∑

v∈V (Dx)

[v] ∈ H0(Dx; k),

where V (Dx) denotes the vertex set of the simplicial complex Dx and
[·] denotes (nonreduced) homology class. Note that we are using the
fact that k has characteristic 0 here. It is clear that gmx = mgx for all
minimal x and g ∈ G. Now, let y be a non-minimal element of Q. Let

dy :=
⋃
x<y

dx,y.

It follows from the fact that d∗y is trivial on the reduced homology

H̃0(
⊎
x<yDx; k) that if a and b are points in

⊎
x<yDx then

d∗y([a]) = d∗y([b]).(8.7)

(Here d∗y is the induced map on nonreduced homology and reduced
homology is viewed as a submodule of nonreduced homology.) It follows
from (8.7) that d∗y(mx1) = d∗y(mx2) for all minimal elements x1, x2 < y.
This allows us to define my to be the common value of d∗y(mx) for all
minimal x < y. Note that this construction also implies

d∗y(mx) = my(8.8)

for all x < y, not just the minimal x. We also need to note that
gmy = mgy for all y ∈ Q and g ∈ G.

For each x ∈ Q we can decompose H0(Dx; k) into the direct sum
of the subspace H̃0(Dx; k) and the subspace generated by mx. This
enables us to decompose E1

r,r into G-invariant subspaces Ur and Vr.
The subspace Ur is generated by elements of the form α × ({x} ∗ β)
where x ∈ Q, α ∈ H̃0(Dx; k) and β is a chain of length r − 1 in Q>x.
The subspace Vr is generated by elements of the form mx × ({x} ∗ β)
where x ∈ Q and β is a chain of length r− 1 in Q>x. Let Hr(U) be the
homology of the complex (Ur, δ

1
r). Just as for the case r > m, we have

Hr(U) ∼=G

⊕
x∈Q/G

(
H̃r−1(Q>x; k)⊗ H̃0(Dx; k)

)
↑GStabG(x) .
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Let φr : Vr → Cr(Q; k) be the G-isomorphism defined by

φr(mx × ({x} ∗ β)) = {x} ∗ β.
It follows from the fact that d∗minβ(mx) = mminβ (cf. (8.8)) that φr
commutes with the differentials δ1

r and ∂r. Hence, the homology Hr(V )
of the complex (Vr, δ

1
r) is given by

Hr(V ) ∼=G H̃r(Q; k).

We now have

E2
r,r
∼=G H̃r(Q; k)⊕

⊕
x∈Q/G

(
H̃r−1(Q>x; k)⊗ H̃0(Dx; k)

)
↑GStabG(x) .

It is easily seen that δ2 = 0, and thus the result follows.

Remark 8.9. Proposition 8.8 is a slight generalization of Proposi-
tion 2.3 of Sundaram and Welker [23]. The proof given above is es-
sentially that of Sundaram and Welker [23] with some details filled in.
We include this proof in order to account for the term H̃r(Q; k), which
is missing from their decomposition (a correct statement is given in [30,
Theorem 8.11]). Note that if there is no group action involved then it
is not necessary to assume that k has characteristic 0, because one can
simply define mx, for minimal x, to be the homology class of any point
in Dx.

Sundaram and Welker [23] use Proposition 8.8 to derive an equi-
variant homology version of the Ziegler-Živaljević formula (6.1). The
Sundaram-Welker formula can also be viewed as a consequence of The-
orem 8.1, just as the Ziegler-Živaljević formula was viewed as a conse-
quence of Theorem 1.1 in Section 6.
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