
q-EULERIAN POLYNOMIALS: EXCEDANCE NUMBER AND
MAJOR INDEX

JOHN SHARESHIAN1 AND MICHELLE L. WACHS2

Abstract. In this research announcement we present a new q-analog of a

classical formula for the exponential generating function of the Eulerian poly-

nomials. The Eulerian polynomials enumerate permutations according to their
number of descents or their number of excedances. Our q-Eulerian polynomials

are the enumerators for the joint distribution of the excedance statistic and

the major index. There is a vast literature on q-Eulerian polynomials that
involves other combinations of Eulerian and Mahonian permutation statistics,

but this is the first result to address the combination of excedance number
and major index. We use symmetric function theory to prove our formula.

In particular, we prove a symmetric function version of our formula, which

involves an intriguing new class of symmetric functions. We also discuss con-
nections with (1) the representation of the symmetric group on the homology

of a poset introduced by Björner and Welker, (2) the representation of the

symmetric group on the cohomology of the toric variety associated with the
Coxeter complex of the symmetric group, studied by Procesi, Stanley, Stem-

bridge, Dolgachev and Lunts, (3) the enumeration of words with no adjacent

repeats studied by Carlitz, Scoville and Vaughan and by Dollhopf, Goulden
and Greene, and (4) Stanley’s chromatic symmetric functions.

1. Introduction

The subject of permutation statistics originated in the early 20th century work
of Major Percy MacMahon [22, Vol. I, pp. 135, 186; Vol. II, p. viii], [23] and
has developed into an active and important area of enumerative combinatorics over
the last four decades. It deals with the enumeration of permutations according to
natural statistics. A permutation statistic is simply a function from the symmetric
group Sn to the set of nonnegative integers. MacMahon studied four fundamental
permutation statistics, the inversion index, the major index, the descent number
and the excedance number, which we define below.

Let [n] denote the set {1, 2, . . . , n}. For each σ ∈ Sn, the descent set of σ is
defined to be

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i + 1)},
and the excedance set is defined to be

EXC(σ) := {i ∈ [n− 1] : σ(i) > i}.
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The descent number and excedance number are defined respectively by

des(σ) := |DES(σ)| and exc(σ) := |EXC(σ)|.
For example, if σ = 32541, written in one line notation, then

DES(σ) = {1, 3, 4} and EXC(σ) = {1, 3};
hence des(σ) = 3 and exc(σ) = 2. If i ∈ DES(σ) we say that σ has a descent at i.
If i ∈ EXC(σ) we say that σ(i) is an excedance of σ.

MacMahon [22, Vol. I, p. 186] observed that the descent number and excedance
number are equidistributed, that is, the number of permutations in Sn with j
descents equals the number of permutations with j excedances for all j. (There is a
well-known combinatorial proof of this fact due to Foata [11, 14].) These numbers
were first studied by Euler and have come to be known as the Eulerian numbers.
They are the coefficients of the Eulerian polynomials1

An(t) :=
∑

σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ).

Any permutation statistic that is equidistributed with des and exc is said to be an
Eulerian statistic.

The Eulerian numbers and the Eulerian polynomials have been extensively stud-
ied in many different contexts in the mathematics and computer science literature.
For excellent treatments of this subject, see the classic lecture notes of Foata and
Schützenberger [15] and Section 5.1 of Knuth’s classic book series “The Art of
Computer Programming” [21]. The exponential generating function formula,

(1.1)
∑
n≥0

An(t)
zn

n!
=

1− t

ez(t−1) − t

where A0(t) = 1, is attributed to Euler in [21, p. 39].
The major index of a permutation σ ∈ Sn is defined by

maj(σ) :=
∑

i∈DES(σ)

i,

and the inversion statistic is defined by

inv(σ) := |{(i, j) : 1 ≤ i < j ≤ n & σ(i) > σ(j)}|.
MacMahon [23] showed that the major index is equidistributed with the inversion
statistic by establishing the first equality in

(1.2)
∑

σ∈Sn

qmaj(σ) = [n]q! =
∑

σ∈Sn

qinv(σ),

where
[n]q := 1 + q + · · ·+ qn−1

and
[n]q! := [n]q[n− 1]q · · · [1]q.

Rodrigues [28] had earlier obtained the second equality. (An elegant combinatorial
proof of the equidistribution of maj and inv was obtained by Foata [12, 14].) Any
permutation statistic that is equidistributed with the major index and inversion
index is said to be a Mahonian statistic.

1It is more common to define the Eulerian polynomials as
P

σ∈Sn
tdes(σ)+1
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Note that by setting q = 1 in (1.2), one gets the formula n! for the number
of permutations. Equation (1.2) is a beautiful “q-analog” of this formula and is
the fundamental example of the subject of permutation statistics and q-analogs, in
which one seeks to obtain nice q-analogs of enumeration formulas.

One can look for nice q-analogs of the Eulerian polynomials by considering the
joint distributions of the Mahonian and Eulerian statistics given above. Consider
the four possibilities,

Ainv,des
n (q, t) :=

∑
σ∈Sn

qinv(σ)tdes(σ)

Amaj,des
n (q, t) :=

∑
σ∈Sn

qmaj(σ)tdes(σ)

Ainv,exc
n (q, t) :=

∑
σ∈Sn

qinv(σ)texc(σ)

Amaj,exc
n (q, t) :=

∑
σ∈Sn

qmaj(σ)texc(σ).

There are many interesting results on the first three q-Eulerian polynomials and
on multivariate distributions of all sorts of combinations of Eulerian and Mahonian
statistics (for a sample see [1, 2, 5, 7, 13, 16, 17, 18, 19, 20, 26, 27, 29, 30, 31, 38]).
These include Stanley’s [31] q-analog of (1.1) given by,∑

n≥0

Ainv,des
n (q, t)

zn

[n]q!
=

1− t

Expq(z(t− 1))− t

where Ainv,des
0 (q, t) = 1 and

Expq(z) :=
∑
n≥0

q(
n
2) zn

[n]q!
.

Surprisingly, we have found no mention of the fourth q-Eulerian polynomial
Amaj,exc

n (q, t) anywhere in the literature. Here we announce the following remark-
able q-analog of (1.1).

Theorem 1.1. The q-exponential generating function for Amaj,exc
n (q, t) is given by

(1.3)
∑
n≥0

Amaj,exc
n (q, t)

zn

[n]q!
=

(1− tq) expq(z)
expq(ztq)− tq expq(z)

,

where Amaj,exc
0 (q, t) = 1 and

expq(z) :=
∑
n≥0

zn

[n]q!
.

An alternative formulation of (1.3) more closely analogous to (1.1) is given by

(1.4)
∑
n≥0

Amaj,exc
n (q, t)

zn

[n]q!
=

1− tq

expq(ztq)Expq(−z)− tq
.

In fact, we prove the following more general result, which reduces to Theorem 1.1
when r = 1.
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Theorem 1.2. Let

Amaj,exc,fix
n (q, t, r) :=

∑
σ∈Sn

qmaj(σ)texc(σ)rfix(σ),

where fix(σ) denotes the number of fixed points of σ ∈ Sn, i.e., the number of
i ∈ [n] such that σ(i) = i. Then

(1.5)
∑
n≥0

Amaj,exc,fix
n (q, t, r)

zn

[n]q!
=

(1− tq) expq(rz)
expq(ztq)− tq expq(z)

.

By setting t = 1 in (1.5) one obtains a formula of Gessel and Reutenauer [19],
and by setting q = 1 one obtains a formula that is equivalent to (1.1). By setting
r = 0, we obtain the new result,∑

n≥0

∑
σ∈Dn

qmaj(σ)texc(σ) zn

[n]q!
=

1− tq

expq(ztq)− tq expq(z)
,

where Dn is the set of derangements in Sn.
Alternative formulations of (1.5) are given by the recurrence relation

Amaj,exc,fix
n (q, t, r) = rn +

n−2∑
k=0

[
n
k

]
q

Amaj,exc,fix
k (q, t, r) tq[n− k − 1]tq,

and the formula

Amaj,exc,fix
n (q, t, r) =

bn
2 c∑

m=0

(tq)m
∑

k0 ≥ 0
k1, . . . , km ≥ 2P

ki = n

[
n

k0, . . . , km

]
q

rk0

m∏
i=1

[ki − 1]tq,

where [
n
k

]
q

=
[n]q!

[k]q![n− k]q!
and

[
n

k0, . . . , km

]
q

=
[n]q!

[k0]q![k1]q! · · · [km]q!
.

In the next section we describe the techniques that were used to prove Theo-
rem 1.2. They involve an interesting class of symmetric functions and a symmetric
function identity (Theorem 2.1), which generalizes Theorem 1.2. We prove the
symmetric function identity by modifying a bijection of Gessel and Reutenauer [19]
and generalizing a bijection of Stembridge [35]. After a preliminary version of this
paper was circulated, Foata and Han extended Theorem 1.2, finding the generating
function for the joint distribution of maj,exc,fix and des. Their result can also be
obtained by specializing our symmetric function identity.

In Section 3 we discuss a connection with two graded representations of the
symmetric group, which turn out to be isomorphic. We show that a specialization
of the Frobenius characteristic of these representations yields Amaj,exc(q, t). One of
the representations is the representation of the symmetric group on the cohomology
of the toric variety associated with the Coxeter complex of the symmetric group.
This representation was studied by Procesi [25], Stanley [32], Stembridge [35], [36],
and Dolgachev and Lunts [9]. The other representation is the representation of the
symmetric group on the homology of maximal intervals of a certain intriguing poset
introduced by Björner and Welker [4] in their study of connections between poset
topology and commutative algebra. In fact, our study of the latter representation
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is what led us to discover formula (1.1) and its symmetric function generalization,
in the first place.

Various authors have studied Mahonian (resp. Eulerian) partners to Eulerian
(resp. Mahonian) statistics whose joint distribution is equal to a known Euler-
Mahonian distribution. We mention, for example, Foata [13], Foata and Zeilberger
[17], Clarke, Steingŕımisson and Zeng [7], Haglund [20], Babson and Steingŕımsson
[1], and Skandera [29]. In Section 4 we define a new Mahonian statistic to serve as
a partner for des in the (maj, exc) distribution. We do not have a simple proof of
the equidistribution. We have a highly nontrivial proof which uses tools from poset
topology and the symmetric function results announced in Sections 2 and 3.

Details of the proofs discussed in this announcement, as well as further conse-
quences and open problems, will appear in a forthcoming paper.

2. Symmetric function generalization

In this section we present a symmetric function generalization of Theorem 1.2.
Let

H(z) = H(x, z) :=
∑
n≥0

hn(x)zn,

where hn(x) denotes the complete homogeneous symmetric function in the indeter-
minates x = (x1, x2, . . . ), that is

hn(x) :=
∑

1≤i1≤i2≤···≤in

xi1xi2 . . . xin

for n ≥ 1, and h0 = 1. By setting xi := qi−1, for all i, and z := z(1− q) in H(x, z),
one obtains expq(z), see [33]. It follows that

(2.1)
(1− t)H(x, zr)

H(x, zt)− tH(x, z)

∣∣∣∣ xi := qi−1

z := z(1− q)

=
(1− t) expq(zr)

expq(zt)− t expq(z)
.

We will construct for each n, j, k ≥ 0, a quasisymmetric function Qn,j,k(x) whose
generating function

∑
n,j,k≥0 Qn,j,k(x)tjrkzn specializes to∑

n≥0

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)rfix(σ) zn

[n]q!

when we set xi := qi−1 and z := z(1 − q). Thus by taking specializations of both
sides of (2.4) below and setting t := tq, we obtain (1.5).

For σ ∈ Sn, let σ̄ be the barred word obtained from σ by placing a bar above
each excedance. For example, if σ = 531462 then σ̄ = 5̄3̄146̄2. View σ̄ as a word
over the ordered alphabet

{1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n}.

We extend the definition of descent set from permutations to words w of length n
over an ordered alphabet by letting

DES(w) := {i ∈ [n− 1] : wi > wi+1},

where wi is the ith letter of w. Now define the excedance-descent set of a permu-
tation σ ∈ Sn to be

EXD(σ) := DES(σ̄).
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For example, EXD(531462) = DES(5̄3̄146̄2) = {1, 4}. The interesting thing about
EXD is that for all σ ∈ Sn,

(2.2)
∑

i∈EXD(σ)

i = maj(σ)− exc(σ).

For S ⊆ [n− 1] and n ≥ 1, define the quasisymmetric function

FS,n(x1, x2, . . . ) :=
∑

i1 ≥ · · · ≥ in

j ∈ S ⇒ ij > ij+1

xi1 . . . xin
,

and let F∅,0 = 1.
A basic result in Gessel’s theory of quasisymmetric functions (see [33, Lemma 7.19.10])

is that

FS,n(1, q, q2, . . . ) =
q

P
s∈S s

(1− q)(1− q2) . . . (1− qn)
.

Hence it follows from (2.2) that for all σ ∈ Sn,

FEXD(σ),n(1, q, q2, . . . ) =
qmaj(σ)−exc(σ)

(1− q)(1− q2) . . . (1− qn)
.

For any n, j, k ≥ 0, let

Qn,j,k = Qn,j,k(x) :=
∑

σ ∈ Sn

exc(σ) = j
fix(σ) = k

FEXD(σ),n(x).

By taking the specialization of the generating function we get,
(2.3)∑

n,j,k≥0

Qn,j,k(x)tjrkzn

∣∣∣∣∣∣ xi := qi−1

z := z(1− q)

=
∑
n≥0

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)rfix(σ) zn

[n]q!
.

It follows from (2.1) and (2.3) that by setting xi := qi−1, z := z(1−q) and t := tq
in the following result we obtain Theorem 1.2.

Theorem 2.1.

(2.4)
∑

n,j,k≥0

Qn,j,ktjrkzn =
(1− t)H(zr)

H(zt)− tH(z)
.

The proof of this theorem requires an alternative characterization of Qn,j,k which
is established by adapting a bijection that Gessel and Reutenauer [19] introduced
to enumerate permutations with a fixed descent set and a fixed cycle type. Gessel
and Reutenauer deal with circular words over the alphabet of positive integers. We
consider circular words over the alphabet of barred and unbarred positive integers.
For each such circular word and each starting position, one gets a linear word by
reading the circular word in a clockwise direction. If one gets a distinct linear
word for each starting position, then the circular word is said to be primitive.
For example (1̄, 1, 1) is primitive while (1̄, 2, 1̄, 2) is not. The absolute value of a
letter is the letter obtained by erasing the bar if there is one. We will say that a
primitive circular word is a necklace if each letter that is followed (clockwise) by a
letter greater in absolute value is barred and each letter that is followed by a letter
smaller in absolute value is unbarred. Letters that are followed by letters equal in
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absolute value have the option of being barred or not. A circular word consisting
of one barred letter is not a necklace. For example the following circular words are
necklaces:

(1̄, 3, 1, 1̄, 2, 2), (1̄, 3, 1̄, 1̄, 2, 2), (1̄, 3, 1, 1̄, 2̄, 2), (1̄, 3, 1̄, 1̄, 2̄, 2), (3),

while (1̄, 3̄, 1, 1, 2, 2̄) and (3̄) are not.
An ornament is a multiset of necklaces. The type λ(R) of an ornament R is the

partition whose parts are the sizes of the necklaces in R. The weight w(R) of an
ornament R is the product of the weights of the letters of R, where the weight of
the letter a is the indeterminate x|a|, where |a| denotes the absolute value of a. For
example

λ((1̄, 2, 2), (1̄, 2̄, 3, 3, 2)) = (5, 3)

and
w((1̄, 2, 2), (1̄, 2̄, 3, 3, 2)) = x2

1x
4
2x

2
3.

For each partition λ and nonnegative integer j, let Rλ,j be the set of ornaments of
type λ with j bars.

Theorem 2.2. For all λ ` n and j = 0, 1, . . . , n− 1, let

Qλ,j :=
∑

σ

FEXD(σ),n

summed over all permutations of cycle type λ with j excedances. Then

Qλ,j =
∑

R∈Rλ,j

w(R).

This theorem is proved via a bijection between ornaments of type λ with j
bars and permutations of cycle type λ with j excedances paired with “compatible”
weakly decreasing sequences of positive integers. Our bijection is an adaptation of
the Gessel-Reutenauer bijection which sends multisets of primitive circular words
over an ordered alphabet to permutations paired with compatible weakly decreasing
sequences over the same alphabet. The Gessel-Reutenauer bijection, which is also
described in [8], can be viewed as a necklace analog of the bijection in Stanley’s
theory of P-partitions [30]. Here we need to order our alphabet by

1 < 1̄ < 2 < 2̄ < . . . .

Our map is obtained by first applying the Gessel-Reutenauer map to our orna-
ments and then removing the bars from the barred letters in the compatible weakly
decreasing sequence to obtain a weakly decreasing sequence of positive integers.

Theorem 2.2 has several interesting consequences. For one thing, it can be used
to prove that the quasisymmetric functions Qλ,j and Qn,j,k are actually symmetric.
It also has the following useful consequence.

Corollary 2.3. For all n, j, k,

Qn,j,k = hkQn−k,j,0.

It follows from Corollary 2.3 that Theorem 2.1 is equivalent to

(2.5)
∑

n,j≥0

Qn,j,0t
jzn =

1− t

H(zt)− tH(z)
,
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which in turn, is equivalent to the recurrence relation

(2.6) Qn,j,0 =
∑

0 ≤ m ≤ n − 2
j + m − n < i < j

Qm,i,0hn−m.

We establish this recurrence relation by introducing another type of configuration,
closely related to ornaments.

Define a banner B to be a word over the alphabet of barred and unbarred positive
integers, where B(i) is barred if |B(i)| < |B(i+1)| and B(i) is unbarred if |B(i)| >
|B(i + 1)| or i = length(B). All other letters have the option of being barred. The
weight of a banner is the product of the weights of its letters.

A Lyndon word over an ordered alphabet is a word that is strictly lexicographi-
cally smaller than all its circular rearrangements. A Lyndon factorization of a word
over an ordered alphabet is a factorization into a weakly lexicographically decreas-
ing sequence of Lyndon words. It is a result of Lyndon (see [24, Theorem 5.1.5])
that every word has a unique Lyndon factorization. The Lyndon type of a word is
the partition whose parts are the lengths of the words in its Lyndon factorization.
For each partition λ and positive integer j, let Bλ,j be the set of banners with j
bars whose Lyndon type is λ.

By turning the Lyndon words in the Lyndon factorization of a banner into cir-
cular words, we obtain an ornament. This map from banners to ornaments is the
bijection whose existence is asserted in the following proposition.

Proposition 2.4. For any partition λ and nonnegative integer j, there is a weight-
preserving bijection from Bλ,j to Rλ,j .

Corollary 2.5. Let Bn,j be the set of banners of length n with j bars whose
Lyndon type has no parts of size 1. Then

Qn,j,0 =
∑

B∈Bn,j

w(B)

Define a marked sequence (α, i) to be a weakly increasing finite sequence α of
positive integers together with an integer i such that 1 ≤ i ≤ length(α) − 1. Let
Mn be the set of marked sequences of length n and let Bn be the set of banners of
length n whose Lyndon type has no parts of size 1.

Theorem 2.6. For all n ≥ 2, there is a bijection

γ : Bn →
⋃

0≤m≤n−2

Bm ×Mn−m,

such that if γ(B) = (B′, (α, i)) then

w(B) = w(B′)w(α)

and
bar(B) = bar(B′) + i,

where bar(B) denotes the number of bars of B.

We will not describe the bijection here except to say that, when restricted to
banners with distinct letters, it reduces to a bijection from permutations to marked
words that Stembridge [35] constructed to study the representation of the symmet-
ric group on the cohomology of the toric variety assoiciated with the type A Coxeter
complex. (We discuss this representation in Section 3.) Banners in Bn admit a
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certain kind of decomposition, called a decreasing decomposition in [8]. The de-
creasing decomposition plays the role in our bijection that the cycle decomposition
of permutations plays in Stembridge’s bijection.

Corollary 2.5 and Theorem 2.6 are all that is needed to establish the recurrence
relation (2.6), which yields our main result, Theorem 2.1.

Remark. If one applies the standard involution ω to the symmetric function
appearing on the right hand side of (2.4), one gets a refinement of a symmetric
function that has been studied by Carlitz, Scoville and Vaughan [6] and Dollhopf,
Goulden and Greene [10] in connection with the enumeration of words with no
adjacent repeats. It was pointed out to us by Richard Stanley that these words and
our banners can be viewed as “dual” graph colorings in the sense of [34, Theorem
4.2].

3. Some Representation Theoretic Consequences

The Frobenius characteristic ch is a fundamental homomorphism from the ring
of representations of symmetric groups to the ring of symmetric functions. In this
section we present two representations whose Frobenius characteristic is Qn,j :=∑n

k=0 Qn,j,k.
The first representation involves the toric variety associated with the Coxeter

complex of a Weyl group. Let Xn be the toric variety associated with the Coxeter
complex of Sn. The action of Sn on Xn induces a representation of Sn on the co-
homology H2j(Xn) for each j = 0, . . . , n−1. (Cohomology in odd degree vanishes.)
Stanley [32], using a formula of Processi [25], proves that∑

n≥0

n−1∑
j=0

chH2j(Xn) tjzn =
(1− t)H(z)

H(zt)− tH(z)
.

Combining this with Theorem 2.1 yields the following conclusion.

Theorem 3.1. For all j = 0, 1, . . . , n− 1,

chH2j(Xn) = Qn,j .

The second representation involves poset topology, a subject in which topological
properties of a simplicial complex associated with a poset are studied, see [37].
The faces of the simplicial complex, called the order complex of the poset, are
the chains of the poset. Here we consider the homology of the order complex of
the Rees product of two simple posets. The Rees product is a poset construction
recently introduced by Björner and Welker [4] in their study of relations between
poset topology and commutative algebra.

Definition 3.2. Let P and Q be pure (ranked) posets with respective rank func-
tions rP and rQ. The Rees product P ∗Q of P and Q is defined as follows:

P ∗Q := {(p, q) ∈ P ×Q : rP (p) ≥ rQ(q)}

with order relation given by (p1, q1) ≤ (p2, q2) if the following holds
• p1 ≤P p2

• q1 ≤Q q2

• rP (p2)− rP (p1) ≥ rQ(q2)− rQ(q1).
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Let Bn be the Boolean algebra (ie., the lattice of subsets of [n] ordered by
inclusion) and let Cn be the chain 1 < 2 < · · · < n. The maximum elements of
(Bn \ {∅}) ∗ Cn are of the form ([n], j), where j = 1, . . . , n. Let In,j be the set
of elements of (Bn \ {∅}) ∗ Cn that are smaller than ([n], j) and let H̃i(In,j) be
the reduced simplicial (complex) homology of the order complex of In,j . It follows
from results of Björner and Welker that homology vanishes below the top dimension
n− 2. The symmetric group Sn acts on In,j in an obvious way and this induces a
representation on H̃n−2(In,j). We prove the following result using techniques from
poset topology.

Theorem 3.3.

1 +
∑
n≥1

n∑
j=1

ch(H̃n−2(In,j)⊗ sgn) tj−1zn =
(1− t)H(z)

H(zt)− tH(z)
,

where sgn denotes the sign representation. Consequently for all n, j,

ch(H̃n−2(In,j)⊗ sgn) = Qn,j−1

and as Sn-modules
H̃n−2(In,j)⊗ sgn ∼= H2j−2(Xn).

We conjecture that for all λ and j, the symmetric function Qλ,j is also the
Frobenius characteristic of some representation. One consequence of Theorem 2.2
is that Qλ,j can be described as a product of plethysms of symmetric functions
of the form Q(n),i, where (n) denotes a partition with a single part. Hence if the
conjecture holds for all Q(n),i then it holds in general. We use ornaments and
banners to show that if the conjecture does hold then the restriction to Sn−1 of the
representation whose Frobenius characteristic is Q(n),i, has Frobenius characteristic
Qn−1,i−1.

4. A new Mahonian statistic

In this section we describe a new Mahonian statistic whose joint distribution
with des is the same as the joint distribution of maj and exc.

An admissible inversion of σ ∈ Sn is a pair (σ(i), σ(j)) such that the following
conditions hold:

• i < j
• σ(i) > σ(j)
• either

◦ σ(j) < σ(j + 1) or
◦ ∃k such that i < k < j and σ(k) < σ(j).

Let ai(σ) := # admissible inversions of σ. Define the statistic

aid(σ) := ai(σ) + des(σ).

For example, the admissible inversions of 24153 are (2, 1), (4, 1) and (4, 3). So
aid(24153) = 3 + 2.

Theorem 4.1. For all n ≥ 1,∑
σ∈Sn

qaid(σ)tdes(σ) =
∑

σ∈Sn

qmaj(σ)texc(σ).
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We do not have a direct proof of this simple identity except when t or q is 1.
Our proof relies on Theorem 1.1, a q-analog of Theorem 3.3, and techniques from
poset topology. We consider the Rees product (Bn(q) \ {(0)}) ∗Cn, where Bn(q) is
the lattice of subspaces of the vector space Fn

q . Let In,j(q) be the set of elements
in (Bn(q) \ {(0)}) ∗Cn that are less than the maximal element (Fn

q , j). We first use
a well-known tool from poset topology, called lexicographic shellability [3, 37], to
prove that

(4.1) dim H̃n−2(In,j(q)) =
∑

σ ∈ Sn

des(σ) = j − 1

qai(σ).

We then use other tools from poset topology to prove a theorem analogous to
Theorem 3.3, which states that

(4.2)
∑
n≥0

n∑
j=1

dim H̃n−2(In,j(q))tj−1 zn

[n]q!
=

(1− t) expq(z)
expq(zt)− t expq(z)

.

Theorem 4.1 now follows from Theorem 1.1 and equation (4.1).
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