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Abstract. An identity of Chung, Graham and Knuth involving
binomial coefficients and Eulerian numbers motivates our study of
a class of polynomials that we call binomial-Eulerian polynomi-
als. These polynomials share several properties with the Euler-
ian polynomials. For one thing, they are h-polynomials of sim-
plicial polytopes, which gives a geometric interpretation of the
fact that they are palindromic and unimodal. A formula of Foata
and Schützenberger shows that the Eulerian polynomials have a
stronger property, namely γ-positivity, and a formula of Postnikov,
Reiner and Williams does the same for the binomial-Eulerian poly-
nomials. We obtain q-analogs of both the Foata-Schützenberger
formula and an alternative to the Postnikov-Reiner-Williams for-
mula, and we show that these q-analogs are specializations of anal-
ogous symmetric function identities. Algebro-geometric interpre-
tations of these symmetric function analogs are presented.
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1. Introduction

In [CnGrKn], Chung, Graham, and Knuth give several proofs of the
following interesting symmetry involving Eulerian numbers an,j and
binomial coefficients. For nonnegative integers r, s,

(1.1)
r+s∑
m=1

(
r + s

m

)
am,r−1 =

r+s∑
m=1

(
r + s

m

)
am,s−1.

A q-analog of this identity was subsequently obtained independently
by Chung and Graham [ChGr] and Han, Lin, and Zeng [HaLiZe].

Equation (1.1) is equivalent to palindromicity of the polynomial

Ãn(t) =
n∑
j=0

ãn,jt
j := 1 + t

n∑
m=1

(
n

m

)
Am(t),

for all n ≥ 0, where Am(t) is the Eulerian polynomial. We refer
to Ãn(t) as a binomial-Eulerian polynomial and ãn,j as a binomial-
Eulerian number. It is well known and easy to prove that the Eulerian
polynomials are palindromic as well. Hence it is natural to ask whether
the binomial-Eulerian polynomials share any other properties with the
Eulerian polynomials, such as unimodality.

A polynomial A(t) =
∑d

j=0 ajt
j ∈ R[t] is said to be palindromic if

aj = ad−j for all j = 0, . . . , d, and it is said to be positive and unimodal
if for some c

0 ≤ a0 ≤ a1 ≤ · · · ≤ ac ≥ · · · ≥ ad−1 ≥ ad ≥ 0.

For example, A5(t) = 1+26t+66t2+26t3+t4 is clearly palindromic, pos-
itive, and unimodal. Many important polynomials arising in algebra,
combinatorics, and geometry are palindromic, positive and unimodal,
see e.g., [St2, St3, Br].

One can easily see that A(t) is palindromic if and only if there exist
γ0, . . . , γb d

2
c ∈ R such that

(1.2) A(t) =

b d
2
c∑

k=0

γkt
k(1 + t)d−2k.

The palindromic polynomial A(t) is said to be γ-positive if γk ≥ 0 for
all k. It is well known and not difficult to see that γ-positivity implies
unimodality.
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The Eulerian polynomials An(t) are γ-positive as is evident from the
Foata-Schützenberger formula [FoSc1, Theorem 5.6],

(1.3) An(t) =

bn−1
2
c∑

k=0

γn,k t
k(1 + t)n−1−2k,

where γn,k = |Γn,k| and Γn,k is the set of permutations σ ∈ Sn with

• no double descents1,
• no final descent,
• des(σ) = k.

For example A5(t) = 1 + 26t+ 66t2 + 26t3 + t4 is γ-positive since

A5(t) = 1t0(1 + t)4 + 22t1(1 + t)2 + 16t2(1 + t)0.

Recent interest in γ-positivity stems from Gal’s strengthening [Ga] of
the Charney-Davis conjecture [ChDa] by asserting that the h-polynomial
of every flag simplicial sphere is γ-positive2. Since, as is well known,
the Eulerian polynomials are the h-polynomials of dual permutohedra,
the Foata-Schützenberger formula confirms Gal’s conjecture for dual
permutohedra.

The permutohedron is an example of a chordal nestohedron. In
[PoReWi, Section 11.2], Postnikov, Reiner, and Williams confirm Gal’s
conjecture for all dual chordal nestohedra by giving explicit combina-
torial formulae for the γ-coefficients. Another example of a chordal
nestohedron, discussed in [PoReWi, Section 10.4], is the stellohedron,
and the h-polynomial of its dual turns out to be equal to Ãn(t). It fol-
lows that palindromicity of Ãn(t) is equivalent to the Dehn-Sommerville
equations for the dual stellohedron.

The γ-positivity formula of Postnikov, Reiner, and Williams in the
case of the stellohedron says that

(1.4) Ãn(t) =

bn
2
c∑

k=0

γ̄n,k t
k(1 + t)n−2k,

where γ̄n,k is the number of σ ∈ Sn+1 such that σ has no double
descents, no final descent, σ(1) < σ(2) < · · · < σ(m) = n+ 1, for some
m ≥ 1, and des(σ) = k.

Here we obtain a γ-positivity formula3 for Ãn(t) that is somewhat
simpler than the Postnikov-Reiner-Williams formula and is similar to

1The terminology used here is defined in Section 2
2The terminology used here is defined in Section 5.
3An alternative proof of (1.5) using poset topological techniques will appear

in [GoWa].
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the Foata-Schutzenberger formula for An(t). For all n ≥ 1,

(1.5) Ãn(t) =

bn
2
c∑

k=0

γ̃n,k t
k(1 + t)n−2k,

where γ̃n,k = |Γ̃n,k| and Γ̃n,k is the set of permutations σ ∈ Sn with

• no double descents,
• des(σ) = k.

(A nice bijection between Γ̃n,k and the set of permutations enumerated
in the Postnikov-Reiner-Williams formula (1.4) was obtained by Ellzey
[El].) Moreover, we present q-analogs of this γ-positivity formula (1.5)
and of the Foata-Schützenberger formula (1.3), and observe that they
are specializations of analogous symmetric function identities. Algebro-
geometric interpretations of these symmetric function analogs are also
presented, which suggest an equivariant version of the Gal phenome-
non.

The q-analogues of the Eulerian numbers and Eulerian polynomials
that we consider were first examined in previous work [ShWa1, ShWa2]
of the authors on the joint distribution of the excedance statistic and
the major index4. They are used in the Chung-Graham, Han-Ling-Zeng
q-analog of (1.1) mentioned above. The q-analog an,j(q) of the Eulerian
number an,j and the q-analog An(q, t) of the Eulerian polynomial An(t)
are polynomials in Z[q] and Z[q][t], respectively, defined by

(1.6) An(q, t) =
n−1∑
j=0

an,j(q)t
j :=

∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ),

for n ≥ 1, and An(q, t) := 1, for n = 0. For example,

A2(q, t) = 1 + t

A3(q, t) = 1 + (2 + q + q2)t+ t2

A4(q, t) = 1 + (3 + 2q + 3q2 + 2q3 + q4)t+ (3 + 2q + 3q2 + 2q3 + q4)t2 + t3.

Another combinatorial description of An(q, t) is given in more recent
work [ShWa3, ShWa4] of the authors.

In [ShWa1, ShWa2], the authors obtain a q-analog of Euler’s formula
for the exponential generating function of the Eulerian polynomials,

(1.7)
∑
n≥0

An(q, t)
zn

[n]q!
=

expq(z)(1− t)
expq(tz)− t expq(z)

.

4The permutation statistics terminology is defined in Section 2.
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(As is standard, [n]q! :=
∏n

j=1[j]q, where [j]q :=
∑j−1

i=0 q
i. Also, expq(z) :=∑

n≥0
zn

[n]q !
.)

The q-analog ãn,j(q) of the binomial-Eulerian number ãn,j and the

q-analog Ãn(q, t) of the binomial-Eulerian polynomial Ãn(t) are poly-
nomials in Z[q] and Z[q][t], respectively, defined by

Ãn(q, t) =
n∑
j=0

ãn,j(q)t
j := 1 + t

n∑
m=1

(
n

m

)
q

Am(q, t).

For example,

Ã2(q, t) = 1 + (2 + q)t+ t2

Ã3(q, t) = 1 + (3 + 2q + 2q2)t+ (3 + 2q + 2q2)t2 + t3.

The following q-analog of (1.3) is proved in [LiShWa, Equations (1.4)
and (6.1)] and also appears in Lin and Zeng [LiZe] (with a different
proof). For n ≥ 1,

(1.8) An(q, t) =

bn−1
2
c∑

k=0

γn,k(q) t
k(1 + t)n−1−2k,

where

γn,k(q) :=
∑
σ∈Γn,k

qinv(σ).

Here we give an alternative derivation5 of (1.8) and we derive the q-
analog of (1.5),

(1.9) Ãn(q, t) =

bn
2
c∑

k=0

γ̃n,k(q) t
k(1 + t)n−2k,

where

γ̃n,k(q) :=
∑
σ∈Γ̃n,k

qinv(σ).

We derive (1.8) and (1.9) by specializing analogous symmetric func-
tion identities. These identities involve the symmetric function poly-
nomials Qn(x, t) and Q̃n(x, t), which specialize to An(q, t) and Ãn(q, t),
respectively, and are defined as follows. For x = (x1, x2, . . . ), let

(1.10)
∑
n≥0

Qn(x, t)zn :=
(1− t)H(z)

H(tz)− tH(z)
,

5This approach is discussed in earlier work [ShWa2, Remark 5.5] of the authors,
though the γn,k(q) are not given.
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where
H(z) :=

∑
n≥0

hn(x)zn,

and hn(x) is the complete homogeneous symmetric function of degree
n. For n ≥ 0, let

(1.11) Q̃n(x, t) := hn(x) + t
n∑

m=1

hn−m(x)Qm(x, t).

For all n ≥ 1 and k ≥ 0, let

γn,k(x) :=
∑

D∈Hn,k

sD(x),

where sD(x) is the skew Schur function of shape D and Hn,k is the
set of skew hooks of size n for which k columns have size 2 and the
remaining n−2k columns, including the last column, have size 1. From
an interpretation of Qn(x, t) due to Gessel [Ge], we have the identity,

(1.12) Qn(x, t) =

bn−1
2
c∑

k=0

γn,k(x) tk(1 + t)n−1−2k,

for all n ≥ 1. We use (1.12) to derive the identity

(1.13) Q̃n(x, t) =

bn
2
c∑

k=0

γ̃n,k(x) tk(1 + t)n−2k,

where
γ̃n,k(x) =

∑
H∈H̃n,k

sH(x)

and H̃n,k is the set of skew hooks of size n for which k columns have
size 2 and the remaining n− 2k columns have size 1.

It was shown by Danilov and Jurkiewicz (see [St3, eq. (26)]) that the
h-polynomial of a simplicial polytope is equal to the Poincaré polyno-
mial of the toric variety associated with the polytope. In [St3] Stanley,
using a formula of Procesi [Pr], gives a representation theoretic inter-
pretation of Qn(x, t) involving the toric variety associated with the
dual permutohedron. This and an equivariant version of the hard Lef-
schetz theorem yield a geometric proof that Qn(x, t) is palindromic,
Schur-positive and Schur-unimodal. Here we give an analogous inter-
pretation for Q̃n(x, t) involving the dual stellohedron. This leads to
the formulation of an equivariant version of the Gal phenomenon, with
the symmetric group actions on the dual permutohedron and the dual
stellohedron exhibiting this phenomenon.
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The paper is organized as follows. In Section 2, we recall some basic
facts about Eulerian polynomials, permutation statistics, q-analogs,
and symmetric functions. The formulae (1.12) and (1.13) are obtained
in Section 3 and direct proofs of palindromicity and Schur-unimodality
of Qn(x, t) and Q̃n(x, t) are given. In Section 4 we show how these
formulae specialize to (1.8) and (1.9), respectively. Algebro-geometic
interpretations of the results in Section 3 are presented in Section 5. In
Section 6, we discuss derangement analogs of the results of the previous
sections.

2. Preliminaries

While investigating divergent series in [Eu], Euler showed that, for
each positive integer n, there is a monic polynomial An(t) ∈ Z[t] of
degree n− 1 such that∑

k≥0

(k + 1)ntk =
An(t)

(1− t)n+1
.

Let us write

An(t) =
n−1∑
j=0

an,jt
j.

The coefficients an,j of the Eulerian polynomial An(t) are called Euler-
ian numbers.

For a permutation σ ∈ Sn, the descent set of σ is

DES(σ) := {i ∈ [n− 1] : σ(i) > σ(i+ 1)}
and the descent number of σ is

des(σ) := |DES(σ)|.
The fact that

(2.1)
∑
σ∈Sn

tdes(σ) = An(t)

for all n seems to have been observed first by Riordan in [Ri]. Earlier,
MacMahon had shown in [Ma, Vol. I, p.186] that, with the excedance
number of σ ∈ Sn defined as

exc(σ) := |{i ∈ [n− 1] : σ(i) > i}|,
the equation

(2.2)
∑
σ∈Sn

texc(σ) =
∑
σ∈Sn

tdes(σ)

holds for all n.
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Recall that the q-binomial coefficients are defined by(
n

k

)
q

:=

{
[n]q !

[k]q ![n−k]q !
0 ≤ k ≤ n,

0 otherwise.

There are two additional fundamental permutation statistics, the
major index

maj(σ) :=
∑

i∈DES(σ)

i

and the inversion number

inv(σ) := |{(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}|.
MacMahon [Ma] introduced the major index and proved the first equal-
ity in ∑

σ∈Sn

qmaj(σ) = [n]q! =
∑
σ∈Sn

qinv(σ)

after the second equality had been obtained in [Ro] by Rodrigues.
In [ShWa1, ShWa2], the authors define a fixed point version of the

q-Eulerian polynomial, which refines the q-Eulerian polynomial given
in (1.6). For n ≥ 1, let

An(q, t, r) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)rfix(σ),

where fix(σ) is the number of fixed points of σ, and let A0(q, t, r) :=
1. So An(q, t, 1) = An(q, t) for all n ≥ 0. In [ShWa1, ShWa2], the
refinement of (1.7),

(2.3)
∑
n≥0

An(q, t, r)
zn

[n]q!
=

expq(rz)(1− t)
expq(tz)− t expq(z)

is derived.
As mentioned in the introduction, the Foata-Schutzenberger for-

mula (1.3) establishes γ-positivity of the Eulerian polynomials and the
Postnikov-Reiner-Williams formula (1.4) establishes γ-positivity of the
binomial-Eulerian polynomials. We now give precise definitions of the
terminology used in these formulas. We say σ ∈ Sn has

• a double descent if there exists i ∈ [n − 2] such that σ(i) >
σ(i+ 1) > σ(i+ 2)
• an initial descent if σ(1) > σ(2)
• a final descent if σ(n− 1) > σ(n).

We say that a polynomial f(q) ∈ R[q] is q-positive if its coefficients
are nonnegative. Given polynomials f(q), g(q) ∈ R[q] we say that
f(q) ≤q g(q) if g(q) − f(q) is q-positive. More generally, let R be
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an algebra over R with basis b. An element s ∈ R is said to be b-
positive if the expansion of s in the basis b has nonnegative coefficients.
Given r, s ∈ R, we say that r ≤b s if s− r is b-positive.

The R-algebras considered in this paper are R= R, R[q], and the
algebra Λ of symmetric functions over R. If R = R and b = {1}
then b-positive is the same as positive and <b is the usual numerical
< relation. If R = R[q] and b = {qi : i ∈ N} then b-positive is what
we called q-positive above and <b is the same as <q. For R = Λ,
we consider the basis of Schur functions {sλ(x) : λ ∈ ∪n≥0 Par(n)}
and the basis of complete homogeneous symmetric functions {hλ(x) :
λ ∈ ∪n≥0 Par(n)}, where Par(n) is the set of partitions of n. It is a
basic fact that h-positive implies Schur-positive (see for example [St5,
Proposition 7.18.7]).

Definition 2.1. Let R be an R-algebra with basis b. We say that a
polynomial A(t) := a0 + a1t+ · · ·+ ant

n ∈ R[t] is

• b-positive if each coefficient ai is b-positive
• b-unimodal if for some c,

a0 ≤b a1 ≤b · · · ≤b ac ≥b ac+1 ≥b ac+2 ≥b · · · ≥b an,

• palindromic with center of symmetry n
2

if aj = an−j for 0 ≤ j ≤
n,
• b-γ-positive if there exist b-positive γ0, . . . , γb d

2
c ∈ R such that

A(t) =

b d
2
c∑

k=0

γkt
k(1 + t)d−2k.

The following results are well known, at least in the case that R = R
(see [ShWa4, Appendix B]).

Proposition 2.2 (see [St3, Proposition 1]). Let R be an R-algebra
with basis b. Let A(t) and B(t) be palindromic, b-positive, b-unimodal
polynomials in R[t] with respective centers of symmetry cA and cB.
Then

(1) A(t)B(t) is palindromic, b-positive, b-unimodal with center of
symmetry cA + cB.

(2) If cA = cB then A(t)+B(t) is palindromic, b-positive, b-unimodal
with center of symmetry cA.

Corollary 2.3. If A(t) ∈ R[t] is b-γ-positive then A(t) is palindromic,
b-positive, and b-unimodal.
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3. Schur-γ-positivity

In this section we establish Schur-γ-positivity of the symmetric func-
tion analogs Qn(x, t) and Q̃n(x, t) given in (1.10) and (1.11), and we
present combinatorial formulae for the γ-coefficients. We also present
direct proofs of palindromicity, Schur-positivity, and Schur-unimodality,
which don’t rely on Schur-γ-positivity.

It is an easy consequence of the following result of Gessel thatQn(x, t)
is Schur-γ-positive. Let Pn be the set of words of length n over the al-
phabet of positive integers P. Given a word w ∈ Pn, we let wi denote
its ith letter. That is, w = w1w2 . . . wn. Just as for permutations, let
des(w) equal the number of i ∈ [n − 1] such that wi > wi+1. A word
w is said to have a double descent if there exists an i ∈ [n − 2] such
that wi > wi+1 > wi+2. Let NDDn be the set of words in Pn with no
double descents. For w ∈ Pn, let xw := xw1xw2 . . . xwn .

Theorem 3.1 (Gessel [Ge], see [ShWa2, Theorem 7.3]).
(3.1)

1 +
∑
n≥1

zn
∑

w ∈ NDDn

wn−1 ≤ wn

xw t
des(w)(1 + t)n−1−2des(w) =

(1− t)H(z)

H(zt)− tH(z)
,

where w0 = 0.

The symmetric function polynomial Qn(x, t) defined in (1.10) can
now be given an explicit expansion which establishes Schur-γ-positivity.
The γ-coefficients are described in terms of hook shaped skew Schur
functions. A skew hook is a connected skew diagram with no 2 × 2
square. Let Hn,k be the set of skew hooks of size n for which k columns
have size 2 and the remaining n−2k columns, including the last column,
have size 1. For example,

∈ H9,2.

Corollary 3.2. Let

(3.2) γn,k(x) :=
∑

D∈Hn,k

sD(x),

where sD(x) is the skew Schur function of shape D. Then

(3.3) Qn(x, t) =

bn−1
2
c∑

k=0

γn,k(x) tk(1 + t)n−1−2k.
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Consequently the polynomial Qn(x, t) is Schur-γ-positive.

Proof. By (3.1), for n ≥ 1,

Qn(x, t) =
∑

w ∈ NDDn

wn−1 ≤ wn

xw t
des(w)(1 + t)n−1−2des(w).

Note that the semistandard tableaux of hook shape in Hn,k correspond
bijectively to words w ∈ NDDn with wn−1 ≤ wn and with k descents.
Indeed by reading the entries of such a semistandard tableau from
southwest to northeast, one gets such a word. For example, the semis-
tandard tableau

2 8
1 1 8 9

2 5 5

corresponds to the word 255118928 ∈ NDD9, which has 2 descents. It
follows that ∑

w ∈ NDDn

wn−1 ≤ wn

des(w) = k

xw =
∑

D∈Hn,k

sD(x).

The consequence follows from the fact that skew Schur functions are
Schur-positive. �

Next we derive an analogous Schur-γ-positivity result for Q̃n(x, t),
which was defined in (1.11). We begin with a generating function
formula.

Proposition 3.3.

(3.4)
∑
n≥0

Q̃n(x, t)zn =
(1− t)H(z)H(tz)

H(tz)− tH(z)
.

Equivalently, for all n ≥ 0,

(3.5) Q̃n(x, t) =
n∑

m=0

hn−m(x)Qm(x, t)tn−m.
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Proof. By the definitions (1.11) and (1.10),∑
n≥0

Q̃n(x, t)zn = H(z)(1 + t
∑
n≥1

Qn(x, t)zn)

= H(z)(1 + t(
(1− t)H(z)

H(tz)− tH(z)
− 1))

= H(z)
H(tz)(1− t)
H(tz)− tH(z)

.

�

Let H̃n,k be the set of skew hooks of size n for which k columns have
size 2 and the remaining n− 2k columns have size 1.

Theorem 3.4. Let

(3.6) γ̃n,k(x) :=
∑

D∈H̃n,k

sD(x),

where sD(x) is the skew Schur function of shape D. Then

(3.7) Q̃n(x, t) =

bn
2
c∑

k=0

γ̃n,k(x) tk(1 + t)n−2k.

Consequently the polynomial Q̃n(x, t) is Schur-γ-positive.

Proof. For n ≥ 1, let

Wn(x, t) :=
∑

w ∈ NDDn

wn−1 ≤ wn

xw t
des(w)(1 + t)n−1−2des(w)

and let
W̃n(x, t) :=

∑
w∈NDDn

xw t
des(w)(1 + t)n−2des(w).

By (3.1), we have

(3.8) Wn(x, t) = Qn(x, t).

We will show that

(3.9) W̃n(x, t) = hn(x)tn +
n∑

m=1

hn−m(x)Wm(x, t)tn−m.

It follows from this, (3.5), and (3.8) that W̃n(x, t) = Q̃n(x, t). This is
equivalent to the desired result since the semistandard tableaux of skew
hook shape in H̃n,k correspond bijectively to words in NDDn with k
descents.
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Let In be the set {α ∈ Pn : α1 ≤ · · · ≤ αn} of weakly increasing
words of length n. The right side of (3.9) equals∑

u∈In

tnxu +
n∑

m=1

∑
w ∈ NDDm

wm−1 ≤ wm

tdes(w)(1 + t)m−1−2des(w)xw
∑

u∈In−m

tn−mxu

=
∑
u∈In

tnxu +
n∑

m=1

∑
w ∈ NDDm

wm−1 ≤ wm

u ∈ In−m

tdes(w)+(n−m)(1 + t)m−1−2des(w)xw·u

where w · u denotes concatenation of words w and u.
For v ∈ Pn we seek the coefficient of xv. Note that the coefficient is 0

if v has a double descent. For v ∈ NDDn, let j be the smallest integer
such that vj ≤ vj+1 ≤ · · · ≤ vn. So j − 1 is either 0 (when v is weakly
increasing) or the position of the last descent. Each m ∈ {j+ 1, . . . , n}
determines a decomposition of v into w ·u, where w ∈ NDDm, wm−1 ≤
wm and u ∈ In−m. Note that des(v) = des(w).

The only other value of m that determines a decomposition of v into
w · u for which w ∈ NDDm, wm−1 ≤ wm and u ∈ In−m, is m = j − 1.
In this case, if j − 1 > 0 we have des(v) = des(w) + 1. It follows that
if j > 1, the coefficient cv of xv is given by

cv = tdes(v)+n−j(1 + t)j−2des(v) +
n∑

m=j+1

tdes(v)+n−m(1 + t)m−1−2des(v).

We have

n∑
m=j+1

tdes(v)+n−m(1 + t)m−1−2des(v) = tdes(v)+n−j−1(1 + t)j−2des(v)

n−j−1∑
k=0

(
1 + t

t

)k

= tdes(v)+n−j(1 + t)j−2des(v)

((
1 + t

t

)n−j
− 1

)
= tdes(v)(1 + t)n−2des(v) − tdes(v)+n−j(1 + t)j−2des(v),(3.10)

from which we conclude that cv = tdes(v)(1 + t)n−2des(v).
Now if j = 1 then v is a weakly increasing word and the coefficient

of xv is given by

cv = tn +
n∑

m=1

tn−m(1 + t)m−1.



14 SHARESHIAN AND WACHS

A simple computation shows that the summation is equal to (1+t)n−tn.
Hence cv = (1 + t)n = tdes(v)(1 + t)n−2des(v), as in the previous case. We
have therefore shown that the right hand side of (3.9) is equal to∑

v∈NDDn

tdes(v)(1 + t)n−2des(v)xv,

which by definition is the left side of (3.9). �

Remark 3.5. It was pointed out to us by González D’León that another
identity of Gessel [Ge1, Theorem 4.2] can be used to give an alterna-
tive proof of Theorem 3.4, or equivalently of Q̃n(x, t) = W̃n(x, t). By
inverting (3.9), one can conclude from this that Qn(x, t) = Wn(x, t),
which is equivalent to Gessel’s unpublished result (3.1). Hence [Ge1,
Theorem 4.2] can be used to prove (3.1). Gessel [Ge] has a more direct
proof of (3.1) however.

The following result for Qn(x, t) was first obtained by Stanley [St3]
from the algebro-geometric interpretation of Qn(x, t) given in (5.1).

Corollary 3.6. For all n ≥ 0, the symmetric function polynomi-
als Qn(x, t) and Q̃n(x, t) are palindromic, Schur-positive, and Schur-
unimodal.

Proof. Use Corollary 2.3. �

A stronger result forQn(x, t) was proved by Stembridge [Ste1], namely
h-positivity and h-unimodality of Qn(x, t). A simpler proof of this re-
sult given in [ShWa4, Corollary C.5] relies on the formula

(3.11)
∑
n≥0

Qn(x, t)zn = 1 +

∑
n≥1[n]thnz

n

1− t
∑

n≥2[n− 1]thnzn

and Proposition 2.2. Here we give an alternative proof of Corollary 3.6
for Q̃n(x, t) that does not rely on Theorem 3.4.

Alternative proof of Corollary 3.6 for Q̃n(x, t). Let Q0
n(x, t) be defined

by ∑
n≥0

Q0
n(x, t)zn =

1− t
H(tz)− tH(z)

=
1

1− t
∑

n≥2[n− 1]thnzn
.

It follows from Proposition 2.2 that Q0
n(x, t) is palindromic, h-positive

and h-unimodal with center of symmetry n
2
. By Proposition 3.3,

(3.12) Q̃n(x, t) =
∑
k≥0

(
k∑
j=0

tjhjhk−j

)
Q0
n−k(x, t).
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It is easy to see that
∑k

j=0 t
jhjhk−j is palindromic with center of

symmetry k
2
. It is clearly h-positive, which implies that it is Schur-

positive. We claim that it is also Schur-unimodal. If j ≤ k − j
then by Pieri’s rule hjhk−j =

∑j
i=0 sk−i,i. From this we can see that∑k

j=0 t
jhjhk−j is Schur-unimodal. By Proposition 2.2, we have that(∑k

j=0 t
jhjhk−j

)
Q0
n−k(x, t) is palindromic, Schur-positive, and Schur

unimodal with center of symmetry equal to k
2

+ n−k
2

= n
2
. Again by

Proposition 2.2, we can conclude from (3.12) that Q̃n(x, t) is palin-
dromic, Schur-positive, and Schur-unimodal with center of symmetry
n
2
. �

4. q-γ-positivity of the q-Eulerian and
q-binomial-Eulerian polynomials

It this section we use the results of the previous section to prove that
the q-Eulerian polynomials

An(q, t) :=
∑
σ∈Sn

qmaj(σ)−exc(σ)texc(σ)

and q-binomial-Eulerian polynomials

Ãn(q, t) := 1 + t
n∑

m=1

(
n

m

)
q

Am(q, t)

are q-γ-positive.
From any symmetric function G(x1, x2, . . .) one obtains a power se-

ries in a single variable q by the stable principal specialization, in which
each xi is replaced by qi−1. Let

psq(G) := G(1, q, q2, . . .).

This definition can be extended to polynomials in Λ[t] by defining,

psq(
d∑
i=o

Gi(x)ti) :=
d∑
i=0

psq(Gi(x))ti.

Let SY TD denote the set of standard Young tableaux of skew shape
D. For T ∈ SY TD (written in English notation), let DES(T ) be the
set of entries i of T for which i is in a higher row than i + 1, and let
maj(T ) =

∑
i∈DES(T ) i. It is well known (see [St5, Proposition 7.19.11])

that

(4.1) psq(sD) =

∑
T∈SY TD q

maj(T )

(1− q) . . . (1− qn)
,
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where n is the number of cells of D. It follows from this (and is easy
to see directly) that

psq(hn) =
1

(1− q) . . . (1− qn)
.

By taking stable principal specialization of both sides of (1.10), one
can see that the following result is equivalent to (1.7). In fact, in
[ShWa2] this result was used to prove (1.7).

Theorem 4.1 (Shareshian and Wachs [ShWa2]). For all n ≥ 0,

psq(Qn(x, t)) =
An(q, t)

(1− q) . . . (1− qn)

An analogous result holds for the q-binomial-Eulerian polynomials.

Corollary 4.2. For all n ≥ 0,

psq(Q̃n(x, t)) =
Ãn(q, t)

(1− q) . . . (1− qn)
.

Proof. Starting with the definition of Q̃n(x, t) given in (1.11), we have

psq(Q̃n(x, t)) = psq(hn) + t
n∑

m=1

psq(hn−m)psq(Qm(x, t))

=
1∏n

i=1(1− qi)
+ t

n∑
m=1

Am(q, t)∏m
i=1(1− qi)

∏n−m
i=1 (1− qi)

=
1 + t

∑n
m=1

(
n
m

)
q
Am(q, t)∏n

i=1(1− qi)

=
Ãn(q, t)∏n
i=1(1− qi)

,

with the second equality following from Theorem 4.1. �

By taking the stable principal specialization of both sides of (3.4),
one gets the following result. The consequences follow from (1.7) and
(2.3), respectively.

Proposition 4.3.∑
n≥0

Ãn(q, t)
zn

[q]n!
=

(1− t) expq(z) expq(tz)

expq(tz)− t expq(z)
.

Consequently

Ãn(q, t) =
n∑

m=0

(
n

m

)
q

Am(q, t)tn−m
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and

Ãn(q, t) =
n∑

m=0

(
n

m

)
q

Am(q, t, t).

In [ShWa2, Remark 5.5], the authors mention that (3.1) can be used
to establish q-γ-positivity of An(q, t). Now we carry this out by using
(3.3) to obtain the γ-coefficients. The following result is proved in
[LiShWa, Equations (1.4) and (6.1)] without the use of (3.1).

Theorem 4.4. Let Γn,k be the set of permutations σ ∈ Sn with no
double descents, no final descent, and with des(σ) = k, and let

γn,k(q) :=
∑
σ∈Γn,k

qinv(σ) (=
∑
σ∈Γn,k

qmaj(σ−1)).

Then

(4.2) An(q, t) =

bn−1
2
c∑

k=0

γn,k(q) t
k(1 + t)n−1−2k.

Consequently the q-Eulerian polynomials An(q, t) are q-γ-positive.

Proof. By applying stable principal specialization to both sides of (3.3)
we have

(4.3) psq(Qn(x, t)) =

bn−1
2
c∑

k=0

psq(γn,k(x)) tk(1 + t)n−1−2k.

By (3.2) and (4.1), we have

psq(γn,k(x)) =
∑

D∈Hn,k

psq(sD(x))(4.4)

=
∑

D∈Hn,k

∑
T∈SY TD q

maj(T )

(1− q) . . . (1− qn)
.

If D is a skew hook then SY TD corresponds bijectively to the set of
permutations in Sn with a fixed descent set determined by D. Indeed,
by reading the entries of T ∈ SY TD from southwest to northeast, one
gets a permutation ϕ(T ) ∈ Sn. Descents are encountered whenever
one goes up a column. So DES(ϕ(T )) equals the set of all i ∈ [n − 1]
such that the ith cell of D (ordered from southwest to northeast) is
directly below the (i + 1)st cell of D. It follows that if D ∈ Hn,k and
T ∈ SY TD then ϕ(T ) ∈ Γn,k.



18 SHARESHIAN AND WACHS

Note also that for T ∈ SY TD, DES(T ) = DES(ϕ(T )−1). We can
now conclude that

(4.5)
∑

D∈Hn,k

∑
T∈SY TD

qmaj(T ) =
∑
σ∈Γn,k

qmaj(σ−1).

For each J ⊂ [n − 1], the descent class of J is the set {σ ∈ Sn :
DES(σ) = J}. Note that Γn,k is a union of descent classes. By
the Foata-Schützenberger result [FoSc2, Theorem 1] that inv(σ) and
maj(σ−1) are equidistributed on descent classes, we have∑

σ∈Γn,k

qmaj(σ−1) =
∑
σ∈Γn,k

qinv(σ).

Combining this with (4.5) and substituting in (4.4) results in

psq(γn,k(x)) =

∑
σ∈Γn,k

qinv(σ)

(1− q) . . . (1− qn)
.

It follows that the right side of (4.3) equals∑bn−1
2
c

k=0

∑
σ∈Γn,k

qinv(σ) tk(1 + t)n−1−2k

(1− q) . . . (1− qn)
,

while, by Theorem 4.1, the left side equals

An(q, t)

(1− q) . . . (1− qn)
,

thereby completing the proof. �

By taking the stable principal specialization of both sides of equation
(3.7) and using an argument analogous to the proof of Theorem 4.4,
we obtain the following result.

Theorem 4.5. Let Γ̃n,k be the set of permutations σ ∈ Sn with no
double descents and with des(σ) = k, and let

(4.6) γ̃n,k(q) :=
∑
σ∈Γ̃n,k

qinv(σ) (=
∑
σ∈Γ̃n,k

qmaj(σ−1)).

Then

(4.7) Ãn(q, t) =

bn
2
c∑

k=0

γ̃n,k(q) t
k(1 + t)n−2k.

Consequently, the q-binomial-Eulerian polynomials Ãn(q, t) are q-γ-
positive.
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The following result for An(q, t) was first obtained by the authors in
[ShWa2].

Corollary 4.6. For all n ≥ 0, the polynomials An(q, t) and Ãn(q, t)
are palindromic and q-unimodal.

Just as for Corollary 3.6, an alternative proof of Corollary 4.6 can be
given which doesn’t make use of Theorems 4.4 and 4.5. For An(q, t) a
simple proof is given in Appendix C.1 of [ShWa4] by using the formula

1 +
∑
n≥1

An(q, t)
zn

[n]q!
= 1 +

∑
n≥1[n]t

zn

[n]q !

1− t
∑

n≥2[n− 1]t
zn

[n]q !

obtained by manipulating (1.7).

Alternative proof of Corollary 4.6 for Ãn(q, t). By (2.3) and Proposi-
tion 4.3,

Ãn(q, t) =
∑
k≥0

(
k∑
j=0

(
k

j

)
q

tj

)
An−k(q, t, 0).

Since∑
n≥0

An(q, t, 0)
zn

[n]q!
=

(1− t)
expq(tz)− t expq(z)

=
1

1− t
∑

n≥2[n− 1]t
zn

[n]q !

,

it follows from Proposition 2.2 that An(q, t, 0) is palindromic and q-

unimodal with center of symmetry n
2
. It is well known that

∑k
j=0

(
k
j

)
q
tj

is palindromic and q-unimodal with center of symmetry k
2
. Note that

this follows from taking the stable principal specialization of
∑k

j=0 hjhk−jt
j,

which we observed to be Schur-unimodal in the alternative proof of
Corollary 3.6. By Proposition 2.2, Ãn(q, t) is a sum of palindromic, q-
positive, q-unimodal polynomials with center of symmetry k

2
+ n−k

2
. It

therefore follows again from Proposition 2.2 that Ãn(q, t) is palindromic
and q-unimodal. �

Note that palindromicity of Ãn(q, t) is equivalent to the following
q-analog of (1.1).

Corollary 4.7 (Chung-Graham [ChGr] and Han-Lin-Zeng [HaLiZe]).
For positive integers r, s,

r+s∑
m=1

(
r + s

m

)
q

am,r−1(q) =
r+s∑
m=1

(
r + s

m

)
q

am,s−1(q).
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A symmetric function analog is given by the following result, which
is equivalent to palindromicity of Q̃n(x, t). (A more general result
appears as Theorem 2 in the preprint [Lin] of Z. Lin.)

Corollary 4.8. For positive integers r, s,

r+s∑
m=1

hr+s−mQm,r−1 =
r+s∑
m=1

hr+s−mQm,s−1.

5. Geometric interpretation: equivariant Gal
phenomenon

In this section we will present interpretations of results in Section 3
using geometry and representation theory. The idea behind such in-
terpretations was, to our knowledge, first employed by Stanley, and is
discussed in [St3].

Herein, a polytope is the convex hull of a finite set of points in some
Rd. A polytope is simplicial if every proper face is a simplex. Let
P be a d-dimensional simplicial polytope. Associated with P is the
h-polynomial defined by

hP (t) :=
d∑
j=0

fj−1(t− 1)d−j,

where fi is the number of faces of P of dimension i. It is well known that
the h-polynomial of every simplicial polytope is palindromic and uni-
modal. Indeed, palindromicity is equivalent to the Dehn-Sommerville
equations, and unimodality was proved by Stanley [St1] as part of the
g-Theorem of Billera, Lee and Stanley (see e.g., [St2, Bi]).

A simplicial complex is said to be flag if it is the clique complex of
its 1-skeleton; that is, its faces are the cliques of its 1-skeleton. Ex-
amples of flag simplicial complexes include barycentric subdivisions of
simplicial complexes, or more generally order complexes of posets. Gal
formulated the following strengthening of the long standing Charney-
Davis conjecture [ChDa].

Conjecture 5.1 (Gal [Ga]). If P is a flag simplicial polytope (or more
generally a flag simplicial sphere) then hP (t) is γ-positive.

Gal’s conjecture has been proved for certain special classes and ex-
amples; see [Pe, Section 10.8]. One such example is the dual of the
permutohedron. The permutohedron Pn is the convex hull of the set
{(σ(1), . . . , σ(n)) : σ ∈ Sn}. The dual permutohedron P ∗n is combi-
natorially equivalent to the barycentric subdivision of the boundary of
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the (n− 1)-simplex. Clearly P ∗n is a flag simplicial polytope. It is well
known that

hP ∗
n
(t) = An(t).

Hence by (1.3), hP ∗
n
(t) is γ-positive.

We will say that a flag simplicial polytope P exhibits Gal’s phenom-
enon if hP (t) is γ-positive. So P ∗n exhibits Gal’s phenomenon. The
permutohedron and another polytope called the stellohedron belong to
a class of polytopes called chordal nestohedra. In [PoReWi, Section
11.2] Postnikov, Reiner, and Williams show that the duals of chordal
nestohedra exhibit Gal’s phenomenon and they give a combinatorial
formula for the γi.

Let ∆n be the simplex in Rn with vertices 0, e1, . . . , en, where ei is
the ith standard basis vector. The stellohedron Stn is obtained from
∆n by truncating all faces not containing 0 in an order such that if
F,G are such faces and dimF < dimG then F is truncated before G.
Stellohedra are discussed in various papers, including [PoReWi, Section
10.4] and [CaDe].

Stellohedra are simple polytopes. Therefore, each dual polytope St∗n
is a simplicial polytope. If F is a face of a polytope P and PF is
obtained from P by truncating F , then P ∗F is obtained from P ∗ by
stellar subdivision of the dual face F ∗ (see for example [Ew, Theorem
2.4]). Therefore, St∗n is (combinatorially equivalent to) the polytope
obtained from ∆n through stellar subdivision of all faces not contained
in the convex hull of {e1, . . . , en} in an order such that if F,G are such
faces and dimF < dimG then F is subdivided after G.

Postnikov, Reiner, and Williams [PoReWi, Section 10.4] observe that

hSt∗n(t) = Ãn(t).

Hence γ-positivity of Ãn(t) is a consequence of their general result on
chordal nestohedra, as is their formula (1.4).

Associated to any simplicial polytope P is a toric variety X(P ).
Danilov and Jurkiewicz (see [St3, eq. (26)]) showed that for any sim-
plicial polytope P ,

hP (t) =
∑
j≥0

dimH2j(X(P ))tj,

where H i(X(P )) is the degree i singular cohomology of X(P ) over C.
From this, one has the algebro-geometric interpretation of the Eulerian
and binomial-Eulerian polynomials given by,

An(t) =
n−1∑
j=0

dimH2j(X(P ∗n))tj
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and

Ãn(t) =
n∑
j=0

dimH2j(X(St∗n))tj.

The purpose of this section is to discuss equivariant versions of these
interpretations.

Any simplicial action of a finite group G on P determines an ac-
tion of G on X(P ) and thus a representation of G on each cohomology
group of X(P ). If G is the symmetric group Sn, the Frobenius char-
acteristic, denoted by ch herein, assigns to each representation (up to
isomorphism) of G a symmetric function, as discussed in [St5, Section
7.18]. The symmetric group Sn acts simplicially on P ∗n and St∗n. For
P = P ∗n , Stanley [St3], using a recurrence of Procesi [Pr] obtained the
interpretation,

(5.1) Qn(x, t) =
n−1∑
j=0

ch(H2j(X(P ∗n))tj.

From this interpretation, Stanley concluded that palindromicity and
Schur-unimodality of Qn(x, t) are consequences of an equivariant ver-
sion of the hard Lefschetz theorem. Here, using (5.1) and Procesi’s
technique, we obtain an analogous result for Q̃n(x, t), which enables
us to also interpret palindromicity and unimodality of Q̃n(x, t) as a
consequence of the equivariant version of the hard Lefschetz theorem.

Theorem 5.2. For all n ≥ 1,

Q̃n(x, t) =
n∑
j=0

ch(H2j(X(St∗n))tj.

Proof. Let ∆n be the n-simplex with vertex set {0, e1, . . . , en}. Let Fi
be the set of i-dimensional faces of ∆n containing 0. Let Tn = ∆n

and, for 1 ≤ i ≤ n − 1, let Ti be the polytope obtained from Ti+1 by
simultaneous stellar subdivision of all faces in Fi. Note that if F ∈ Fi
then F is a indeed face of Ti+1. Moreover, the link LF of F in the
boundary complex of Ti+1 has one vertex for each face of the boundary
of ∆n strictly containing F . Indeed, when applying stellar subdivision
to such a face E, we remove E and add a cone over the boundary of
E. Call the vertex of this cone φ(E). The vertices of LF are all such
φ(E), and a set {φ(Ei)} of such vertices forms a face of LF if and only
if {Ei} is a chain in the face poset of the boundary of ∆n. Thus LF
is isomorphic to the barycentric subdivision of the link of F in the
boundary of ∆n, which is equal to L̄F\{0}, the barycentric subdivision
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of the link of F \{0} in the boundary of the (n−1)-simplex with vertex
set {e1, . . . , en}.

Note that T1 = St∗n. The action of Sn on {e1, . . . , en} by permu-
tation of indices induces a simplicial action on each Ti. Thus we can
consider the representations of Sn on the cohomology groups of the
varieties X(Ti). If F = {0, ei1 , . . . , eik}, where 1 ≤ i1 < · · · < ik ≤ n,
then S[n]\{i1,...,ik} acts simplicially on LF and this action is equivalent
to the action of S[n]\{i1,...,ik} on L̄F\{0}. By viewing LF and L̄F\{0}
as simplicial polytopes, we have that these actions induce isomorphic
representations of S[n]\{i1,...,ik} on cohomology of the corresponding va-
rieties X(LF ) and X(L̄F\{0}).

For 1 ≤ i ≤ n, we write Xi for X(Ti). Then Xn is the projective
space Pn. As explained in [Ew, Section VI.7], Xi is obtained from Xi+1

by a series of equivariant blowups. For each i ∈ {1, . . . , n} and each
F ∈ Fi, let LF be the link of F in the boundary complex of Ti+1,
as above. As discussed in [Pr, Section 3], there is an isomorphism of
graded vector spaces,

(5.2) H∗(Xi) ∼= H∗(Xi+1)⊕
⊕
F∈Fi

H∗(X(LF ))⊗H+(Pi),

where H+(Pk) := ⊕j>0H
2j(Pk).

In fact, we can extend (5.2) to an isomorphism of Sn-representations.
Note that Sn acts transitively on Fi, with the stabilizer of the face Fi :=
conv{0, e1, . . . , ei} being the subgroup Gi := S{1,...,i} ×S{i+1,...,n}. The
factor S{i+1,...,n} inGi acts onH∗(X(LFi

)) as it does onH∗(X(L̄Fi\{0})),
as mentioned above. This is equivalent to the representation of Sn−i on
H∗(X(P ∗n−i)). The factor S{1,...,i} acts trivially on H+(Pi), as explained
in [Pr, Section 3].

We see now that the representation of Sn on H∗(Xi) is the direct sum
of the representation on H∗(Xi+1) with the representation induced from
that of Gi on H∗(X(LFi

))⊗H+(Pi) determined by the representations
of S{i+1,...,n} and S{1,...,i} on the respective tensor factors. Recalling
the well known fact that H2j(Pi) has dimension one for 1 ≤ j ≤ i and
taking Frobenius characteristics, we obtain, for 1 ≤ i ≤ n,

Ri(x, t) = Ri+1(x, t) + t[i]thi(x)
n−i−1∑
j=0

ch(H2j(X(P ∗n−i))t
j,

where

Ri(x, t) :=
∑
j≥0

ch(H2j(Xi))t
j.
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By (5.1) we may conclude that

(5.3) Ri(x, t) = Ri+1(x, t) + t[i]thi(x)Qn−i(x, t).

By induction we have

Ri(x, t) = hn(x)[n+ 1]t +
n−1∑
m=i

t[m]thm(x)Qn−m(x, t).

Setting i = 1 yields,

(5.4)
n∑
j=0

ch(H2j(X(St∗n))tj = hn(x)[n+ 1]t +
n−1∑
m=1

t[n−m]thn−m(x)Qm(t).

We will manipulate the symmetric function on the right side of (5.4)
to obtain the desired result. Setting r = 1 in [ShWa2, Corollary 4.1],
we obtain

(5.5) Qn(x, t) = hn(x) +
n−2∑
k=0

Qk(x, t)hn−k(x)t[n− k − 1]t.

Now

hn(x)[n+1]t+
n−1∑
m=1

hn−m(x)Qm(x, t)t[n−m]t

= hn(x)[n+ 1]t + h1(x)Qn−1(x, t)t− hn(x)t[n]t

+
n−2∑
m=0

hn−m(x)Qm(x, t)t[n−m]t

= hn(x) + h1(x)Qn−1(x, t)t+
n−2∑
m=0

hn−m(x)Qm(x, t)t[n−m− 1]t

+
n−2∑
m=0

hn−m(x)Qm(x, t)tn−m

= Qn(x, t) + h1(x)Qn−1(x, t)t+
n−2∑
m=0

hn−m(x)Qm(x, t)tn−m

=
n∑

m=0

hn−m(x)Qm(x, t)tn−m,

the third equality following from (5.5). The result now follows from
(5.4) and Proposition 3.3. �
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Corollary 5.3. For 0 ≤ j ≤ n− 1,

psq(ch(H2j(X(P ∗n))) =
an,j(q)

(1− q) . . . (1− qn)

and for 0 ≤ j ≤ n,

psq(ch(H2j(X(St∗n))) =
ãn,j(q)

(1− q) . . . (1− qn)
.

Proof. The first equation is a consequence of (5.1) and Theorem 4.1,
while the second equation is a consequence of Theorem 5.2 and Corol-
lary 4.2. �

The next result follows from combining (5.1) with Corollary 3.2 and
combining Theorem 5.2 with Theorem 3.4.

Corollary 5.4. For P ∈ {P ∗n , St∗n−1}, the polynomial
∑n−1

j=0 ch(H2j(X(P ))tj

is Schur-γ-positive.

Corollary 5.4 suggests an equivariant version of Gal’s phenomenon.

Definition 5.5. Let P be a flag simplicial d-dimensional polytope on
which a finite group G acts simplicially. The action of G induces a
graded representation of G on cohomology of the associated toric vari-
ety X(P ). We say that (P,G) exhibits the equivariant Gal phenomenon
if there exist G-modules ΓP,k such that

d∑
j=0

H2j(X(P ))tj =

b d
2
c∑

k=0

ΓP,k t
k(1 + t)d−2k.

Corollary 5.4 says that (P ∗n ,Sn) and (St∗n,Sn) both exhibit the equi-
variant Gal phenomenon.

It is not the case that every group action on a flag simplicial polytope
exhibits the equivariant Gal phenomenon. Indeed, for i ∈ [n], let ei be
the ith standard basis vector in Rn. Consider the cross-polytope CP n,
which is the convex hull of {±ei : i ∈ [n]}. It is straightforward to see
that (the boundary of) CP n is a flag simplicial polytope. The convex
hull of some set S of vertices of CP n is a boundary face if and only if
there is no i such that S contains both ei and −ei.

Let T ≤ GLn(R) be the group of all diagonal matrices whose nonzero
entries are 1 or −1 and let S ≤ GLn(R) be the set of all n× n permu-
tation matrices. The semidirect product W = S n T preserves CP n.
It is well known and not hard to see that the h-polynomial of CP n is
(1 + q)n. The action of W on H0(X(CP n)) is trivial. It follows that if
G ≤ W and (CP n, G) exhibits the equivariant Gal phenomenon, then
G acts trivially on H∗(X(CP n)).
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Consider the element c ∈ W satisfying e1c = e2, e2c = −e1 and
eic = −ei for 3 ≤ i ≤ n. Note that c and c3 fix no boundary face of
CP n and that c2 fixes those boundary faces not including any of ±e1,
±e2. It follows that the action of C on CP n is proper, that is, the
stabilizer in C of any face F of CP n fixes F pointwise. This allows us
to apply results of Stembridge. We observe that

det(I − qc) = (1 + q2)(1 + q)n−2.

On the other hand, according to Theorem 1.4 and Corollary 1.6 of
[Ste2], any w ∈ W not having 1 as an eigenvalue and acting trivially
on H∗(X(CP n)) satisfies

det(I − qw) = (1 + q)n.

(Indeed, using the notation from [Ste2], any such w satisfies P∆w(q) = 1
and δ(w) = 0.)

We see that if G ≤ W contains (any conjugate of) c, then (CP n, G)
does not exhibit the equivariant Gal phenomenon. It would be inter-
esting to find classes, beyond (P ∗n ,Sn) and (St∗n,Sn) that exhibit the
equivariant Gal phenomenon.

6. Remarks on derangement polynomials

One can modify the q-Eulerian polynomials An(q, t) and q-Eulerian
numbers an,j(q) by summing over all derangements in Sn instead of
over all permutations in Sn. That is, let Dn be the set of derangements
in Sn and let

Dn(q, t) :=
∑
σ∈Dn

qmaj(σ)−exc(σ)texc(σ),

for n ≥ 1, and let Dn(q, t) := 1 for n = 0. Since Dn(q, t) = An(q, t, 0),
it follows from (2.3) that

(6.1)
∑
n≥0

Dn(q, t)
zn

[n]q!
=

1− t
expq(tz)− t expq(z)

.

Recall from the alternative proof of Corollary 4.6 that Dn(q, t) is
palindromic and q-unimodal. (This result was first noted by the authors
in [ShWa2] and the q = 1 case was proved earlier by Brenti [Br].) There
is an analogous symmetric function result conjectured by Stanley [St3]
and proved by Brenti [Br]. The analogous symmetric function result
says that the symmetric function polynomial Q0

n(x, y) is palindromic,
Schur-positive and Schur-unimodal, where Q0

n(x, t) is defined by

(6.2)
∑
n≥0

Q0
n(x, t)zn :=

1− t
H(tz)− tH(z)

.
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An algebro-geometric interpretation of this result was given subse-
quently by Stanley (see [St4, page 825]), who determined the rep-
resentation of the symmetric group on the graded local face module
associated with the barycentric subdivision of the simplex.

A formula of Gessel shows that Q0
n(x, t) is, in fact, Schur-γ positive

(see [ShWa2, Equation (7.9)]). Let

γ0
n,k(x) :=

∑
D∈H0

n,k

sD(x),

where H0
n,k is the set of skew hooks of size n for which k columns have

size 2 and the remaining n − 2k columns, including the first and last
column, have size 1. Gessel’s formula is equivalent to

(6.3) Q0
n(x, t) =

bn−2
2
c∑

k=0

γ0
n,k(x) tk(1 + t)n−2−2k,

for all n ≥ 1.
It is mentioned in [ShWa2, Remark 5.5] that Gessel’s formula can

be used to establish q-γ-positivity of Dn(q, t). However an explicit
description of the γ-coefficients is not given there. By applying stable
principal specialization to (6.3), one obtains the following description
of the γ-coefficients. This result is proved in [LiShWa, Equation (1.3)
and Theorem 3.3] without the use of Gessel’s formula. It appears also
in [LiZe].

Theorem 6.1. For 0 ≤ k ≤ n, let Γ0
n,k be the set of permutations

σ ∈ Sn with no double descents, no intial descent, no final descent,
and with des(σ) = k. Let

γ0
n,k(q) :=

∑
σ∈Γ0

n,k

qinv(σ) (=
∑
σ∈Γ0

n,k

qmaj(σ−1)).

Then

(6.4) Dn(q, t) =

bn
2
c∑

k=0

γ0
n,k(q) t

k(1 + t)n−2k.

Consequently, Dn(q, t) is q-γ-positive.

As discussed in Stanley [St4], the Poincaré polynomial of the graded
local face module associated with a certain type of subdivision of a
simplicial complex is equal to the local h-polynomial associated with
the subdivision, which in the case of the barycentric subdivision of the
(n − 1)-simplex is equal to Dn(1, t). In [At1] Athanasiadis considers
γ-positivity of local h-polynomials and formulates a generalization of
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Gal’s conjecture for local h-polynomials, which would provide a geo-
metric interpretation of γ-positivity of Dn(1, t); see also [At2, At3].
One could also consider an equivariant version of Gal’s phenomenon in
the local setting.

We remark that in [LiShWa] the authors and Linusson consider mul-
tiset versions of the Eulerian polynomial An(t) and the derangement
polynomial Dn(1, t) and show that they are γ-positive. A generaliza-
tion of (1.3) is given in [LiShWa, Equation (5.4)] and a generalization
of the q = 1 case of (6.4) is given in [LiShWa, Equation (5.3)].
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