MTH 309

Additional Problems for Sec 2.3

- 1. For each of the following functions, determine whether the function is one to one.
 - (a) $f: \{1, 2, 3\} \to \{2, 3, 4\}$ $f(1) = 3, \quad f(2) = 4, \quad f(3) = 4$
 - (b) $f: \mathbb{N} \to \mathbb{N}$ f(n) = n + 3
 - (c) $f : \mathbb{Z} \to \mathbb{Z}$ f(n) = n + 3
 - (d) Let $\mathcal{A} = \{0, 1\}$ and let \mathcal{A}^* be the set of bit strings. $f : \mathcal{A}^* \to \mathbb{N}$ f(w) = the number of 1's in w
 - (e) $f : \mathcal{P}(\{0, 1, \dots, n\}) \to \mathcal{P}(\{1, 2, \dots, n+1\})$ $f(S) = \{x \in \{1, 2, \dots, n+1\} \mid x-1 \in S\}$
 - (f) $f : \mathcal{P}(\{1, 2, \dots, n\}) \to \mathcal{P}(\{1, 2, \dots, n+1\})$ $f(S) = S \cup \{n+1\}$
- 2. For each of the following bijections, find its inverse. (Be sure to include domain, codomain and rule.)
 - (a) $f : \mathbb{R} \to \mathbb{R}$, where f(x) = 7x 4.
 - (b) Let $\mathcal{A} = \{0, 1\}$. $f : \mathcal{A}_n \to \mathcal{A}_n$, where $f(w_1 w_2 \dots w_n) = w_n w_1 w_2 \dots w_{n-1}$.
 - (c) $f: \{T \in \mathcal{P}(\{1, 2, \dots, n\}) \mid n \in T\} \to \mathcal{P}(\{1, 2, \dots, n-1\}), \text{ where } f(T) = T \{n\}.$
- 3. Let $0 \le k \le n$. Find a bijection from the set of subsets of size k of the set $U = \{1, 2, ..., n\}$ to the set of subsets of size k+1 of the set $V = \{1, 2, ..., n+1\}$ that contain the integer n + 1. (Describe the domain and codomain by using set builder notation and express the rule by using unions.)