MTH 309

Additional Problems for Sec 2.3

1. For each of the following functions, determine whether the function is one to one.
(a) $f:\{1,2,3\} \rightarrow\{2,3,4\}$
$f(1)=3, \quad f(2)=4, \quad f(3)=4$
(b) $f: \mathbb{N} \rightarrow \mathbb{N}$
$f(n)=n+3$
(c) $f: \mathbb{Z} \rightarrow \mathbb{Z}$
$f(n)=n+3$
(d) Let $\mathcal{A}=\{0,1\}$ and let \mathcal{A}^{*} be the set of bit strings.
$f: \mathcal{A}^{*} \rightarrow \mathbb{N}$
$f(w)=$ the number of 1 's in w
(e) $f: \mathcal{P}(\{0,1, \ldots, n\}) \rightarrow \mathcal{P}(\{1,2, \ldots, n+1\})$
$f(S)=\{x \in\{1,2, \ldots, n+1\} \mid x-1 \in S\}$
(f) $f: \mathcal{P}(\{1,2 \ldots, n\}) \rightarrow \mathcal{P}(\{1,2, \ldots, n+1\})$ $f(S)=S \cup\{n+1\}$
2. For each of the following bijections, find its inverse. (Be sure to include domain, codomain and rule.)
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$, where $f(x)=7 x-4$.
(b) Let $\mathcal{A}=\{0,1\} . f: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$, where $f\left(w_{1} w_{2} \ldots w_{n}\right)=w_{n} w_{1} w_{2} \ldots w_{n-1}$.
(c) $f:\{T \in \mathcal{P}(\{1,2, \ldots, n\}) \mid n \in T\} \rightarrow \mathcal{P}(\{1,2, \ldots, n-1\})$, where $f(T)=$ $T-\{n\}$.
3. Let $0 \leq k \leq n$. Find a bijection from the set of subsets of size k of the set $U=\{1,2, \ldots, n\}$ to the set of subsets of size $k+1$ of the set $V=\{1,2, \ldots, n+1\}$ that contain the integer $n+1$. (Describe the domain and codomain by using set builder notation and express the rule by using unions.)
