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ABSTRACT

WINDOWS IN ALGEBRAIC GEOMETRY

AND APPLICATIONS TO MODULI

SEPTEMBER 2021

SEBASTIAN TORRES KLENNER,

B.S., PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

M.S., PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jenia Tevelev

We apply the theory of windows, as developed by Halpern-Leistner and by Ballard, Favero and

Katzarkov, to study certain moduli spaces and their derived categories. Using quantization and

other techniques we show that stable GIT quotients of (P1)n by PGL2 over an algebraically

closed field of characteristic zero satisfy a rare property called Bott vanishing, which states that

ΩjY ⊗L has no higher cohomology for every j and every ample line bundle L. Similar techniques

are used to reprove the well known fact that toric varieties satisfy Bott vanishing. We also

use windows to explore derived categories of moduli spaces of rank-two vector bundles on a

curve. By applying these methods to Thaddeus’ moduli spaces, we find a four-term sequence of

semi-orthogonal blocks in the derived category of the moduli space of rank-two vector bundles

on a curve of genus at least 3 and determinant of odd degree, a result in the direction of the

Narasimhan conjecture.
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C H A P T E R 1

INTRODUCTION

For an algebraic variety X, we consider the derived category of coherent sheaves Db(X),

whose objects are bounded chain complexes of coherent sheaves, and whose morphisms include

inverses of quasi-isomorphisms, in addition to the usual chain complex morphisms.

In recent years, exciting work has been done regarding derived categories in algebraic geom-

etry, including applications to birational geometry, geometric invariant theory, moduli theory,

among others. In [Kuz16], Kuznetsov suggests that the problem of whether a variety is rational

can be attacked using techniques from derived categories and semi-orthogonal decompositions

of those. Also, great advances have been made regarding Bridgeland stability conditions on

derived categories of algebraic varieties, by Bayer, Macr̀ı, Stellari, and several others (see e.g.

[BMS16], [BLMS19]). Stability conditions have a big impact in the study moduli of spaces of

stable sheaves.

Research done by Halpern-Leistner [HL15], as well as work by Ballard, Favero and Katzarkov

[BFK19], study the derived category of a GIT quotient X //G by a reductive group and how

it changes under variation of GIT. One of the main results in these works shows how, under

some mild hypotheses, the derived category of X //G can be embedded into that of the ambient

quotient stack [X/G] in several different ways, each of them called a window. They also describe

what happens with the derived categories when we move from one GIT chamber to another.

These techniques can be used to describe derived categories of moduli spaces and also see how

they vary under wall-crossing. As an example, Castravet and Tevelev have used the method of

windows to prove a conjecture by Manin and Orlov, stating that the derived category of the

moduli space M0,n of stable rational curves with n marked points admits an Sn-equivariant full

exceptional collection [CT17,CT20a,CT20b].

One feature of this theory is that it can be used to compute cohomology of sheaves on X //G

that descend from objects in the G-equivariant derived category Db
G(X). One of the main results

in the present project uses this fact, together with other techniques in algebraic geometry, to

prove that the geometric quotients (P1)n //L PGL2 satisfy a rare property called Bott vanishing.
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Specifically, this means that sheaves of the form Ωj ⊗ L have no higher cohomology, whenever

L is an ample line bundle (see Theorem 2.1.1 below). The proof of this theorem involves the

use of classical invariant theory, geometric syzygies, among other tools used toward cohomology

calculations. Some of these techniques can also be applied in more general situations. Most

remarkably, they yield a new proof of Bott vanishing for toric varieties in characteristic zero, a

fact that has been known for a long time and with several different proofs.

As another application of the windows methods, we study the derived category of Thaddeus’

moduli spaces Mσ of stable pairs (E, φ) on a smooth projective curve, where E is a rank two

vector bundle and φ is a section, subject to a given stability condition. We find that, under

certain conditions, the derived category of C embeds into that of Mσ using the Fourier-Mukai

functor given by the universal family. This allows us to come up with a four-term sequence of

semi-orthogonal blocks in the moduli space MC(2,Λ) of slope-semistable rank-two bundles with

fixed determinant Λ of odd degree, on a curve C of genus at least 3.

In the present chapter, we describe the results from windows theory and derived categories of

GIT quotients that will be needed in order to understand the subsequent work regarding coho-

mology vanishing and other applications to moduli spaces. This also requires some background

from geometric invariant theory and derived categories. Bott vanishing is discussed in Chapter

2, including the main result about quotients of the form (P1)n //L PGL2. In Chapter 3 we dis-

cuss the derived category of moduli spaces of vector bundles over a curve, with applications of

windows and wall-crossings to the study of the derived category of MC(2,Λ).

1.1 GIT quotients and Kempf-Ness stratifications

We will consider a smooth projective-over-affine variety X over an algebraically closed field

k of characteristic 0, meaning a closed subvariety of Ar × Pd, with a reductive group G acting

on X.

Definition 1.1.1. A G-equivariant coherent sheaf F on X is a coherent sheaf F together with

an isomorphism σ∗F ∼= p∗2F where σ, p2 : G ×k X → X are the action map and the second

projection, respectively. A G-equivariant invertible sheaf L is also called a G-linearized line

bundle, and can be seen as L together with an action of G on the total space of L that is

compatible with the action on X and linear on the fibers.

Given an ample G-linearized line bundle L on X, we write X = ProjR, where R =⊕
d≥0H

0(X,L⊗d), and the corresponding geometric invariant theory quotient is defined as
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ProjRG, where RG is the ring of invariants. We denote by Xu the unstable locus, that is

Xu =
⋂

σ∈H0(X,L⊗d)G

d≥0

{x ∈ X | σ(x) = 0}.

The semi-stable locus is Xss = X\Xu and the stable locus Xs ⊂ Xss consists of semi-stable

points that also have a finite stabilizer and whose orbit is closed in Xss. Denote by Y = X //LG

be the corresponding GIT quotient, and π : Xss � Y the quotient map from the semi-stable

locus. The map π is affine, in particular π∗ is exact, and we have π∗(OXss)G = OY . The

restriction to the stable locus gives a geometric quotient Xs → Xs //G. We will be mostly

interested in the cases where there is no strictly semi-stable locus, that is, Xss = Xs.

Let λ : Gm → G be a one-parameter subgroup. If F is a G-linearized line bundle on X and

y ∈ Xλ is a λ-fixed point, λ acts in the fiber Fy, with a given weight which we denote weightλ Fy.

Similarly, if F is a G-equivariant vector bundle, its λ-weights on Fy are the eigenvalues of the

action of λ on Fy. For a G-equivariant complex F · ∈ Db(X), we refer to the λ-weights of Hi(F ·)

for all i as the λ-weights of F ·.

Suppose we have a G-linearized ample line bundle L for the action of G on X. The unstable

locus Xu = X\Xss can be described using the Hilbert-Mumford numerical criterion.

Theorem 1.1.2 (Hilbert-Mumford criterion). Xss (resp. Xs) consists of the points x such that

weightλ Ly ≥ 0 (resp. > 0) ∀λ such that y = limt→0 λ(t)x exists.

Using the Hilbert-Mumford criterion, one can define what is called a Kempf-Ness (KN)

stratification of the unstable locus, as described below (see [HL15, §2.1] for a more detailed

discussion). For a given one-parameter subgroup λ : Gm → G, and a connected component Z

of the fixed locus Xλ one can define the blade of Z, λ as

YZ,λ = {x ∈ X | lim
t→0

λ(t) · x ∈ Z},

i.e., the points that are attracted to Z as t → 0. The projection q : YZ,λ → Z sending a

point to its limit as t → 0 can be shown to be a bundle of affine spaces. Define also µ(Z, λ) =

− 1
|λ| weightλ L|Z , where |λ| is a norm over one-parameter subgroups given by a choice of some

suitable inner product in the cocharacter lattice of a maximal torus of G. Then we can write a

stratification of the unstable locus by iteratively selecting a pair (Zα, λα) such that µ is positive

and maximal among those (Z, λ) for which Z is not contained in the previously defined strata.

We may assume λ is a one-parameter subgroup of a maximal torus. Let Z◦α ⊂ Zα be the open

subset not intersecting any previous strata. We call Yα = YZ◦α,λ, the set attracted to Z◦α. Then

the next stratum is Sα = G · Yα. It can be proved that this leads to an ascending sequence
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of finitely many G-equivariant open subvarieties Xss = X0 ⊂ X1 ⊂ · · · ⊂ X, where each

Xα\Xα−1 = Sα is one of these strata.

For each stratum Sα, given by a pair Zα, λα, one can define the Levi subgroup Lα ⊂ G given

by elements g ∈ G that centralize λα and satisfy g(Zα) ⊂ Zα; and the parabolic subgroup Pα

as the g ∈ G such that limt→0 λ(t)gλ(t)−1 exists and is in Lα. We have a short exact sequence

1→ Uα → Pα → Lα → 1

where Uα = {g ∈ G | limt→0 λ(t)gλ(t)−1 = 1}. The inclusion Lα ↪→ Pα allows us to write Pα as

a semidirect product Uα o Lα.

We have that the action mapG×PαYα → G·Yα is an isomorphism, whereG×PαYα
π→ G/Pα is

the fibered bundle with fiber isomorphic to Yα. We also know that the λα-weights of the conormal

bundle N∨Sα/X restricted to Zα are positive. Also, it is not hard to see that the λα-weights of

TYα |Zα are nonnegative (see [DH98, §1.3], [Kir84, §12-13] for details).

Example 1.1.3. Let Gm act on X = An+1 by scalar multiplication. Then OX = k[x0, . . . , xn] is

acted on by Gm by t · p(x0, . . . , xn) = p(t−1x0, . . . , t
−1xn). Now this action can be lifted to an

action on OX as an OX -module, by letting t · p(x0, . . . , xn) = t · p(t−1x0, . . . , t
−1xn). We denote

by OX(1) the trivial line bundle linearized in this way. The fixed locus by Gm is the origin, and

it is destabilized by λ : t→ t−1. The unstable locus is just Z = {0}, and the corresponding GIT

quotient is An+1 //OX(1) Gm is Pn. The same is true if we choose a linearization OX(d) with

d > 0.

Example 1.1.4. Let Gm act on X = (P1)n diagonally by t · (x : y) = (tx : t−1y). On each P1,

there is a natural way of linearizing the tautological line bundle OP1(−1) by t · (x : y)× (x, y) =

(tx : t−1y) × (tx, t−1y). Doing this in each component and taking tensor products, we get a

natural linearization for any ample line bundle OX(d1, . . . , dn). The Gm-fixed locus consists of

points (z1, . . . , zn) where zi is either 0 or ∞. For a point zI , where zi = ∞ if i ∈ I and zi = 0

otherwise, we compute

µ(λ, I) = −weightλL|zI =
∑
i∈I

di −
∑
i/∈I

di.

This is maximized at (∞, . . . ,∞) and in fact this single point is the first stratum. The next

stratum will be a projective line minus this point. For instance, if d1 ≤ di for every i, then the

second stratum will consist of points (z,∞, . . . ,∞), z 6= ∞. Each subsequent strata will be a

product of projective lines intersected with the complement of the previous strata. The whole

unstable locus consists of points of the form (z1, . . . , zn) with zi =∞ for every i ∈ I, and where∑
i∈I di >

∑
i/∈I di.
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1.2 Derived categories

In the present section we give a brief description of the background that we will use from

derived categories. Detailed definitions and statements can be found in the literature (see e.g.

[Huy06]).

If A is an abelian category, a chain complex F · is a collection of objects F i ∈ A, i ∈ Z with

maps

· · · → F i−1 di−1

−−−→ F i
di−→ F i+1 → · · ·

such that di ◦ di−1 = 0 for every i. We denote by Hi(F ·) the i-th cohomology of this chain

complex, that is, Hi(F ·) = ker di/ im di−1, which is an object in A. We say that F · is bounded

if there are integers m,M such that Hi(F ·) = 0 for i < m and for i > M .

A morphism F · → G· between chain complexes is a collection of morphisms F i → Gi that

induce commutative diagrams with diF and diG. This allows us to define the category Komb(A),

whose objects are bounded chain complexes of objects in A, with morphisms of chain complexes.

A morphism φ : F · → G· induces morphisms between cohomologies, Hi(φ) : Hi(F ·) → Hi(G·).

If φ induces isomorphisms Hi(F ·) ∼= Hi(G·) for every i ∈ Z, then it is said to be a quasi-

isomorphism.

Definition 1.2.1. The (bounded) derived category Db(A) is defined as the localization of

Komb(A) at the class of quasi-isomorphisms. If V is an algebraic variety over k, we denote

by Db(V ) the derived category of coh(V ), the category of coherent sheaves on V .

Remark 1.2.2. To make a rigorous definition of Db(A), one first needs to define the homotopy

category Kb(A). In Kb(A), the morphisms are HomKb(A)(F
·, G·) = HomKomb(A)(F

·, G·)/ ∼,

where ∼ denotes homotopy equivalence. Then Kb(A) is localized at quasi-isomorphisms, that

is, quasi-isomorphisms become isomorphisms in Db(A). Details can be found in [Huy06, §2.1].

Db(A) is a triangulated category, with the shift functor [1] : Db(A) → Db(A), (F ·[1])i =

F i+1, and exact triangles coming from F ·
f−→ G· → C ·(f)→ F ·[1], where C ·(f) is the mapping

cone of f . The abelian category A itself can be seen as a full subcategory of Db(A), as every

object F ∈ Db(A) can be thought of as a chain complex · · · → 0→ F → 0→ · · · concentrated

in degree 0, and every time there is a short exact sequence 0→ F → G→ K → 0 in A, we get

an exact triangle F → G→ K → F [1] in Db(A).

Definition 1.2.3. A full triangulated subcategory D of Db(A) is said to be admissible if the

inclusion functor D ↪→ Db(A) admits both a left and a right adjoint.
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Remark 1.2.4. If V is a smooth projective variety, then the notions of having a right or a left

adjoint can be shown to be equivalent, using Serre duality and Serre functors (see [Huy06,

Theorem 3.12]).

Definition 1.2.5. We say that Db(A) = 〈D1, . . . ,Dr〉 is a semi-orthogonal decomposition if

Di are admissible subcategories, with HomDb(A)(Di,Dj) = 0 for i > j and such that for every

object in T ∈ Db(A) there is a sequence of morphisms 0 = Tn → Tn−1 → · · · → T0 = T , where

the mapping cone of each morphism Ti → Ti−1 is in Di. This last condition can be rephrased as

saying that Db(A) is the smallest full triangulated subcategory containing all the subcategories

Di.

Remark 1.2.6. If D ⊂ Db(A) is any admissible subcategory, then there is a semi-orthogonal

decomposition Db(A) = 〈D⊥,D〉, where D⊥ is the right orthogonal to D⊥, that is, objects

admitting no morphisms from D. Similarly, 〈D,⊥D〉 is also a semi-orthogonal decomposition.

Definition 1.2.7. A class of objects Ω in a triangulated category D is said to be a spanning

class of D if the following two conditions hold.

(a) If HomD(A,B[i]) for all A ∈ Ω and all i ∈ Z, then B ∼= 0.

(b) If HomD(B[i], A) for all A ∈ Ω and all i ∈ Z, then B ∼= 0.

Lemma 1.2.8. Let D1, D2 be admissible subcategories of D and Ω1, Ω2 spanning classes of D1,

D2. If HomD(A,B[i]) = 0 for every A ∈ Ω1, B ∈ Ω2 and i ∈ Z, then also HomD(F,G) = 0 for

every F ∈ D1, G ∈ D2.

Proof. We need to show that D1 ⊂ ⊥D2 or, equivalently, D2 ⊂ D⊥1 . First we see that Ω1 ⊂ ⊥D2.

Let A ∈ Ω1. Since D = 〈D2,
⊥D2〉, we can fit A in a exact triangle D → A→ D′ → D[1] where

D ∈ ⊥D2 and D′ ∈ D2. Applying Hom(·, B) for B ∈ Ω2 we get a long exact sequence where

Hom(D,B[i]) = 0 by definition and Hom(A,B[i]) = 0 by hypothesis. Therefore Hom(D′, B[i]) =

0 for every i and every B ∈ Ω2, so D′ ∼= 0 since Ω2 is a spanning class of D2. As a consequence,

A ∼= D ∈ ⊥D2.

Now let G ∈ D2. Similarly, there is an exact triangle D → G → D′ → D[1] with D ∈ D1,

D′ ∈ D⊥1 . Applying Hom(A, ·) with A ∈ Ω1 we now see that Hom(A,D[i]) = Hom(A,G[i]) = 0

by the previuos discussion and therefore D′ ∼= 0. This implies G ∼= D ∈ D⊥1 , as desired.

If φ : A → B is a left exact functor between abelian categories, one can sometimes define right

derived functors Rφ : Db(A) → Db(B) and Riφ := Hi(Rφ(·)) : Db(A) → B, so that R0φ = φ

on A and every short exact sequence on A gives rise to a long exact sequence of Riφ(·) on B.

This can be done provided that for every object in F ∈ A we can find a quasi-isomorphism

6



F ∼= I · where every Ii is an injective object, or belongs to a suitable φ-adapted class of objects.

Similarly, left derived functors can be defined from right exact functors, provided projective or

other adapted resolutions exist.

Most importantly for our purposes, given a morphism of varieties f : V →W , we get derived

functors such as Rf∗ : Db(V ) → Db(W ) and Lf∗ : Db(W ) → Db(V ), and for the functor

of global sections Γ : coh(V ) → Ab we get the sheaf cohomology functors RiΓ = Hi(V, ·),

sometimes also called hypercohomology functors when applied to a chain complex F · ∈ Db(V ).

For F ∈ coh(V ), one can define Exti(F, ·) as the i-th derived functor Ri Hom(F, ·), and Ext i(F, ·)

as the derived functor Ri Hom (F, ·). We note that in general HomDb(A)(F,G[i]) = Exti(F,G).

For computations with right derived functors, one can often use resolutions by locally free sheaves

(see e.g. [Huy06, §3.3] for a thorough discussion).

Remark 1.2.9. If ı : V ↪→ W is the inclusion of a closed subvariety, then ı∗ is exact and the

derived functors RΓW ◦ ı∗ and RΓV coincide. We will denote both by RΓ. If RΓ(F ) = 0 for an

object F ∈ Db(V ), we say that F is Γ-acyclic. This is equivalent to saying that Hi(V, F ) = 0∀i.

Notation 1.2.10. From now on, all functors between derived categories will be considered to be

derived functors, unless stated otherwise. For instance, Rf∗ will be denoted by just f∗.

Definition 1.2.11. An object E ∈ Db(A) is called exceptional if RHom(E,E) = k, that is,

Hom(E,E[l]) =


k if l = 0

0 otherwise,

An exceptional collection is a collection E1, . . . , Er of objects that are exceptional and such that

Hom(Ei, Ej [l]) = 0 if i > j. It is said to be full if E1, . . . , Er generate the whole derived category,

that is, Db(A) is the smallest full triangulated subcategory containing all of the Ei.

Remark 1.2.12. It can be shown that the full triangulated subcategory 〈E〉 generated by an

exceptional object E is always admissible. In fact, a full exceptional collection defines a semi-

orthogonal decomposition.

1.2.1 Fourier-Mukai transforms

Definition 1.2.13. Let P ∈ Db(V ×W ) and let q : V ×W → V , p : V ×W → W be the

projections. The Fourier-Mukai transform ΦP : Db(V ) → Db(W ) is the functor defined by

F 7→ p∗(P ⊗ q∗(F )).

Recall that in our notation functors are assumed to be derived, so by p∗(P ⊗q∗(F )) we mean

Rp∗(P ⊗LLq∗(F )), where ⊗L is the left derived tensor product. A Fourier-Mukai functor always
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admits left and right adjoints [Muk81] and in fact, the same is true for any exact functor between

derived categories of smooth projective varieties [BvdB03]. By a theorem of Orlov, we know that

any fully-faithful functor between derived categories of smooth projective varieties must be a

Fourier-Mukai functor given by some object in the product [Orl03]. For a given Fourier-Mukai

transform, one can check whether it is fully faithful using the following criterion of Bondal and

Orlov.

Theorem 1.2.14 (Fully-faithfulness criterion [BO95]). Let P ∈ Db(V ×W ), where V and W

are smooth projective varieties. The Fourier-Mukai transform ΦP is fully faithful if and only if

for any two closed points x, y ∈ V one has

HomDb(W )(ΦP (Ox),ΦP (Oy)[i]) =


k if x = y and i = 0

0 if x 6= y or i < 0 or i > dimV.

The proof of this theorem uses the fact that the skyscraper sheaves Ox over closed points

form a spanning class on Db(V ) [Huy06, Proposition 3.17].

Let q : BlW V → V be the blow-up of a smooth variety V along a smooth subvariety W ⊂ V

of codimension c ≥ 2. Denote by E the exceptional divisor, with its inclusion ı : E ↪→ BlW V

and projection π = q|E : E →W . For each integer k, one can define a functor

Φk := ı∗ ◦ (OE(kE)⊗ (·)) ◦ π∗ : Db(W )→ Db(BlW V ).

Notice that Φk is the Fourier-Mukai transform given by OE(kE) considered as an object in

Db(W × BlW V ), that is, supported in E = W ×W E ⊂ W × BlW V . Orlov’s blow-up formula

tells us that the functors Φk are in fact fully-faithful, and they can be put into a semi-orthogonal

decomposition of Db(BlW V ).

Theorem 1.2.15 (Orlov’s blow-up formula [Orl92]). For every k, the functor Φk = ΦOE(kE)

is fully faithful, and defines an equivalence between Db(W ) and an admissible subcategory Dk ⊂

Db(BlW V ). The same is true for the functor q∗ : Db(V ) ↪→ Db(BlW V ). Moreover, the sequence

of subcategories

Dc−1, . . . ,D1, q
∗Db(V )

defines a semi-orthogonal decomposition of Db(BlW V ).

1.3 Quotient stacks and descent

For a scheme X over S with an action by a reductive group G, the quotient stack [X/G] is

defined as follows.
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Definition 1.3.1. The quotient stack [X/G] is the category whose objects are principal G-

bundles P → T together with a G-equivariant map P → X, and whose morphisms consist of

commutative diagrams
P P ′

T T ′

that are compatible with the G-equivariant maps P → X, P ′ → X.

Remark 1.3.2. The functor [X/G] → Sch /S sending P → T to the scheme T makes [X/G] a

category over Sch /S fibered in groupoids. In fact, given a map T → T ′, a principal G-bundle

over T ′ can be pulled back to a principal G-bundle over T .

Remark 1.3.3. The scheme X itself can also be seen as a quotient stack of X by the trivial

group. It is not hard to see that, as a stack, it corresponds to the category of schemes over X.

There is a canonical quotient map q : X → [X/G], which is the functor sending a morphism

P
φ−→ X to the trivial principal G-bundle G× P → P together with the morphism G× P → X,

(g, p) 7→ g · φ(p).

In our setting, we take X to be a projective-over-affine variety over k, with the action of

a reductive group G. We denote by X the corresponding quotient stack [X/G]. We will work

with coherent OX-modules, which are given by G-equivariant coherent OX -modules. Indeed

Db(X) = Db
G(X), that is, an object in Db(X) is represented by a G-equivariant bounded chain

complex in Db(X) (see e.g. [BFK19, Proposition 2.2.10]). Cohomology on X is G-equivariant

cohomology on X [BFK19, Lemma 2.2.8]. For a given G-linearized ample line bundle L, denote

by Xss the corresponding open substack [Xss/G], with its inclusion ı : Xss ↪→ X. The quotient

map π gives a map from the quotient stack p : Xss → X //G. We get a commutative diagram

Xss Xss X //G.
q

π

p

If Xss = Xs, Xss is a Deligne-Mumford stack [BFK19, Proposition 2.1.8], and the GIT quotient

Y = X //LG is a coarse moduli space for Xss. In this case, the map p is finite. If, further,

the action is free on Xss, then p is an isomorphism. This is because in this case Xss → X //G

is a principal G-bundle, and every principal G-bundle P → T with a G-equivariant morphism

P → X defines a map from T = P/G to X //G, getting a pullback diagram

P X

T X //G.

Notation 1.3.4. We denote by Hi the i-th hypercohomology of a complex in Db(X), that is,
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the i-th derived functor RiΓ of the functor of global sections. Also, denote by Hi
G the derived

functor of invariant global sections ΓG.

Remark 1.3.5. We assume G to be a reductive group, so taking G-invariants is an exact func-

tor on finite dimensional representations. Therefore, for a complex F · ∈ Db(X), Hi(X, F ·) =

Hi
G(X,F ·) = Hi(X,F ·)G.

For an object F̃ ∈ Db(Xss), we say that it “descends” to F ∈ Db(X //G) if p∗(F ) ∼= F̃ , that is,

if there is a G-equivariant isomorphism π∗(F ) ∼= F̃ , where p∗, π∗ denote the derived pullbacks.

Observe that given F̃ , such F is unique up to isomorphism: it has to be the pushforward

p∗(F̃ ) = π∗(F̃ )G. In the case that G acts freely on Xss, p is an isomorphism, so the categories

Db(Xss) and Db(X //G) are equivalent, via F 7→ π∗(F )G. In general, for an object F̃ ∈ Db(X),

we say that it descends to F ∈ Db(X //G) if its restriction F̃ |Xss does.

For a G-equivariant vector bundle on X, we have the following descent criterion (see [DN89,

Theorem 2.3]).

Theorem 1.3.6 (Kempf’s descent Lemma [DN89]). A G-equivariant vector bundle V on X

descends to a vector bundle on X //G if and only if for every x ∈ Xss, the stabilizer Gx acts

trivially on the fiber Vx.

The action of G on X can be differentiated to obtain a G-equivariant morphism of vector

bundles s : g ⊗ OX → TX (cf. [DH98, §2.1]). On a fiber over x ∈ X, this morphism looks as

follows: the orbit map G → X, g 7→ g · x is differentiated at the identity e ∈ G, giving rise to

sx : g→ TX,x. The map s can be viewed as a G-equivariant vector field s ∈ H0(X,TX ⊗ g∨)G.

By abuse of notation, we will write g for g⊗OX . Taking the dual of s we get a two step complex

ΩX → g∨. For a two-step chain complex of flat modules K = [A→ B], one can define its j-th

derived exterior power ΛjK as the object 0→ ΛjA→ Λj−1A⊗B → · · · → SjB → 0 where Λk

and Sk denote exterior and symmetric powers, respectively (see [Wey03, §2.4], [Ill71, §I.4]).

Notation 1.3.7. We define the cotangent complex LX ∈ Db(X) to be the two-step G-linearized

complex ΩX → g∨, in degrees 0 and 1. We denote by ΛjLX the j-th (derived) exterior power of

this object, which can then be written as the Koszul complex

0→ ΩjX → Ωj−1
X ⊗ g∨ → · · · → Sjg∨ → 0,

concentrated in degrees 0 to j (see [Tot18] and the references therein).

Call q : Xss → Xss is the canonical quotient map to the quotient stack, and denote by LXss

the restriction of LX to Xss. We observe that if there is no strictly semi-stable locus LXss is

(isomorphic to) a vector bundle, and the same is true for its exterior powers.
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Lemma 1.3.8. If Xss = Xs, there is a short exact sequence 0 → q∗ΩXss → ΩXss → g∨ → 0.

If, further, the action is free on Xss, then ΛjLX descends to ΩjY for every j.

Proof. For x ∈ X, the kernel of g → TX,x is the Lie algebra of the stabilizer of x. Then the

restriction of the map g → TX to the stable locus is injective, since stabilizers are finite in Xs.

This implies that if Xss = Xs, we have a surjection ΩXss � g∨ ⊗ OXss . But g∨ ⊗ OXss =

ΩXss/Xss , the relative cotangent bundle, since g ⊗ OXss is exactly TXss/Xss . Therefore, the

relative sequence 0→ q∗ΩXss → ΩXss → g∨ → 0 is the exact sequence that we want.

If the action is free on Xss, the GIT quotient Y is isomorphic to Xss and we have a G-

equivariant short exact sequence of vector bundles 0→ π∗ΩY → ΩXss → g∨ → 0. From this we

see that in this case the restriction LXss is isomorphic to π∗ΩY in Db(Xss), that is, LX descends

to ΩY and, for the same reason, each ΛjLX descends to ΩjY .

1.4 Quantization and Windows

The Quantization Theorem states that cohomologies of a complex F ∈ Db(Xss) can be

computed in X if F is the restriction of some complex in Db(X) satisfying a numerical condition

related to the λ-weights in the unstable strata. It was proved by Teleman [Tel00] in the case

where F is a vector bundle, and Halpern-Leistner [HL15, Theorem 3.29] proved it for an arbitrary

object in the derived category. As usual, X denotes the quotient stack [X/G], where X is a

smooth projective-over-affine variety over k and G is a reductive group.

Theorem 1.4.1 (Quantization Theorem [HL15]). Let {Sα} be a KN stratification of the unstable

locus, with the corresponding one-parameter subgroups λα and connected components Zα of the

fixed locus Xλα . Let

ηα = weightλα(detN∨Sα/X)|Zα .

Let {wα} be any collection of integers and suppose F̃ , G̃ ∈ Db(X) restrict to F , G ∈ Db(Xss).

If F̃ , G̃ satisfy that, for every l and every α, all the λα-weights of Hl(F̃ )|Zα are ≥ wα and all

the λα-weights of Hl(G̃)|Zα are < wα + ηα, then

HomDb(X)(F̃ , G̃) ∼= HomDb(Xss)(F,G).

Remark 1.4.2. In particular, if F̃ ∈ Db(X) descends to F ∈ Db(Xss) and has λα-weights < ηα,

then H ·(Xss, F ) = H ·(X, F̃ ). If the action is free on Xss, this computes the cohomologies

H ·(Y, F ), where Y is the GIT quotient.

11



Remark 1.4.3. The quantization theorem is a generalization of the original “quantization com-

mutes with reduction” conjecture by Guillemin and Sternberg, who showed the equality between

dimH0(X,L)G and dimH0(X //LG,L) and then conjectured the equality of the two holomor-

phic Euler characteristics [GS82].

Example 1.4.4. Write Pn as the GIT quotient of X = An+1 by G = Gm. Call OX(d) the

trivial line bundle on An+1 with the linearization given by the character t 7→ td, so that OX(d)

descends to OPn(d) on Pn = Xss. The unstable locus is just the origin, and it is destabilized by

λ : t 7→ t−1. We compute η = n + 1 and weightλOX(d) = −d. By the quantization theorem,

Hi(Pn,OPn(d)) = Hi
Gm(An+1,OX(d)) as long as d > −n − 1, so Hi(Pn,OPn(d)) = 0 whenever

i > 0 and d > −n− 1, and H0(Pn,OPn(d)) consists of homogeneous polynomials of degree d (cf.

[Har77, III.5]).

In fact, Halpern-Leistner’s work says much more. His Categorical Kirwan Surjectivity says

that Db(Xss) can be embedded into Db(X) in several different ways via different windows.

Definition 1.4.5. Consider a Kempf-Ness stratification {Sα} with inclusions σα : Zα ↪→ X.

For any choice of integers {wα}, the full triangulated subcategory

Gw = {F ∈ Db(X) | σ∗α(F ) is supported in weights [wα, wα + ηα)}

is called a window.

Denote

Db
Xu(X)≥w := {F ∈ Db

Xu(X) | ∀α, λα-weights of H·(σ∗αF ) are ≥ wα}

where Db
Xu(X) stands for the full triangulated subcategory of objects whose cohomology H· is

supported in the unstable locus. Similarly, define

Db
Xu(X)<w := {F ∈ Db

Xu(X) | ∀α, λα-weights of H·(σ∗αF ) are < wα + ηα}.

Then we have the following theorem from [HL15, Theorem 2.10].

Theorem 1.4.6 (Derived Kirwan surjectivity [HL15]). Given any choice of integers w = {wα},

the window Gw is equivalent to Db(Xss) via the restriction functor. Moreover, we have semi-

orthogonal decompositions

Db
Xu(X) = 〈Db

Xu(X)<w, D
b
Xu(X)≥w〉

Db(X) = 〈Db
Xu(X)<w, Gw, D

b
Xu(X)≥w〉.

The decomposition Db
Xu(X) = 〈Db

Xu(X)<w, D
b
Xu(X)≥w〉 can be refined as follows. For every

stratum Sα, let Sα be the quotient stack [Sα/G], and let Zα = [Zα/Lα] where Lα is the
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Levi subgroup of the corresponding one-parameter subgroup λα. Denote by Db(Zα)v the full

subcategory of complexes in Db(Zα) whose cohomologies are concentrated in weight v with

respect to λα. Then the functor j∗ ◦ q∗ : Db(Z)v → Db(X) is fully faithful, where q : Sα → Zα

is the canonical projection and j : Sα → X is the embedding. Using this one can obtain the

following semi-orthogonal decompositions [HL15,BFK19]:

Db
Xu(X)≥w = 〈 Db(Z1)w1

, Db(Z1)w1+1, . . . ,

Db(Z1)w2 , D
b(Z1)w2+1, . . . ,

. . . ,

Db(Z1)wN , D
b(Z1)wN+1, . . .〉

Db
Xu(X)<w = 〈 . . . , Db(ZN )wN−2, D

b(Z1)wN−1,

. . . ,

. . . , Db(Z2)w2−2, D
b(Z1)w2−1,

. . . , Db(Z1)w1−2, D
b(Z1)w1−1〉.

(1.4.1)

Example 1.4.7. Consider Pn as the GIT quotient of X = An+1 by Gm. In fact Pn is isomor-

phic to the open substack Xss ⊂ X. By Hilbert’s syzygy theorem, every finitely generated

graded k[x0, . . . , xn]-module has a finite resolution by free graded modules, so the ambient stack

[An+1/Gm] has an infinite full exceptional collection given by {OX(d)}d∈Z. In particular, the re-

strictions {OPn(d)}d∈Z must generate the whole derived category Db(Pn) (cf. [CT20b]). Derived

Kirwan surjectivity shows that, in order to generate the whole category, it suffices to take the

descent of objects in Db
Gm(An+1) having λ-weights between w and w + n at the origin. In fact,

it can be shown that for any integer w the sequence OPn(w), . . . ,OPn(w+n) is a full exceptional

collection [Bĕı78].

In order to get a decomposition of the form (1.4.1), consider the unstable locus Xu = Z =

[z/Gm] where z is the origin. The object Oz(v) ∈ Db(Z) has λ-weight equal to −v, and in fact it

is easy to see that Db(Z)v is generated by Oz(−v), so we have a semi-orthogonal decomposition

Db(Z) = 〈. . . ,Oz(1),Oz,Oz(−1), . . .〉.

In fact, the objects Oz(v) are orthogonal to each other from both sides by Schur’s Lemma, since

each of them is an irreducible representation of Gm. A full semi-orthogonal decomposition of

Db
Gm(An+1) is obtained as

Db(X) = 〈. . . ,Oz(w + 2),Oz(w + 1),OPn(w − n), . . . ,OPn(w),Oz(w),Oz(w − 1), . . .〉. (1.4.2)
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Here, by abuse of notation, we have written Oz(v) in place of j∗Oz(v), where j : {z} ↪→ X is

the inclusion. Observe that the weights of j∗Oz(v) as an object in Db(X) can be obtained by

taking a (Gm-equivariant) Koszul resolution of the origin z ∈ X[
OX(−n− 1)→ · · · → OX(−1)⊕(n+1) → OX

]
∼= j∗Oz.

The restriction j∗j∗Oz to the unstable locus is therefore isomorphic to
⊕n+1

d=0 Oz(−d)[d] and this

has weights 0, . . . , n+ 1. Similarly, for any v ∈ Z, j∗Oz(−v) will have weights v, . . . , v+n+ 1. If

v ≥ w, these weights are all ≥ w while, if v < w the weights are all < w + η. This is consistent

with the semi-orthogonal decomposition (1.4.2) as provided by Derived Kirwan surjectivity.

1.5 Variation of GIT

In [DH98], Dolgachev and Hu study the relationship between GIT quotients X //LG obtained

using different choices of a G-linearized ample line bundle L. The G-ample cone CG(X) is the

convex cone in NSG(X) ⊗ R spanned by G-linearized line bundles with nonempty semi-stable

locus, and it can be split into a system of finitely many walls and chambers where, for any L in

the interior of a chamber we have Xss(L) = Xs(L) and any two linearized ample line bundles

within the same chamber give rise to the same GIT quotient. For linearizations located on a

wall, there is strictly semi-stable locus, and they describe the birational transformation that

occurs between two GIT quotients arising from adjacent chambers. This is called wall-crossing.

Results from [HL15] and [BFK19] describe how the derived category of a GIT quotient is

changed when we move from one GIT chamber to another. Let L0 be a linearization lying on

a wall, and suppose that, for another G-linearized line bundle L′ and sufficiently small ε > 0,

the linearizations L± := L0 ± εL′ both lie in the interior of adjacent chambers, separated by a

codimension-one wall containing L0. Points in the strictly semi-stable locus Xsss(L0) change

from being stable to unstable as one crosses the wall in one direction or the other. Other than

that, points that are either stable or unstable for L0 will stay so for L±. In fact, using KN

stratifications we can write Xss(L0) in two different ways

Xss(L0) = S±1 ∪ · · · ∪ S±m± ∪X
ss(L±) (1.5.1)

where S±α are the KN strata of Xu(L±) lying in Xss(L0). Further, the KN strata can be con-

structed from one-parameter subgroups λ±α in a way that (Zα, λ
+
α ) appears in the KN stratifica-

tion of Xu(L+) and (Zα, λ
−
α ) in that of Xu(L−) [HL15, §5]. That is, from one side of the wall to

the other, the maximal destabilizing one-parameter subgroup flips from λ+
α to λ−α : t 7→ λ+

α (t)−1,

and the unstable stratum flips from the descending manifold of Zα to its ascending manifold. Let
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us denote λα := λ+
α . We will use the following result (see [BFK19, Theorem 1] and [HL15, Propo-

sition 4.5]).

Theorem 1.5.1 (Derived Categories under GIT wall-crossing [HL15,BFK19]). Let X = [X/G]

and L± = L0±εL′ as above, with ε sufficiently small, and where L± lie in the interior of adjacent

GIT chambers with non-empty semi-stable locus Xss(L±) = Xs(L±). Suppose m+ = m− in

(1.5.1). Consider the λα-weights of the canonical bundle ωX restricted to Zα, for every Zα

appearing in Xss(L0).

(a) If these weights are all zero, there is an equivalence Db(Xss(L+)) ∼= Db(Xss(L−)).

(b) If these weights are all < 0, there is a fully faithful functor Db(Xss(L+)) ⊂ Db(Xss(L−)).

(c) If these weights are all > 0, there is a fully faithful functor Db(Xss(L−)) ⊂ Db(Xss(L+)).

In other words, a window Gw corresponding to a given GIT chamber can sometimes be

embedded in a bigger window corresponding to the derived category of another GIT chamber.

Note that weightλ ωX |Zα is precisely η+
α − η−α , the difference between the widths of the windows

on either side of the wall. We will be mostly interested in the cases when Xss(L±) is isomorphic

to X //L± G, so Theorem 1.5.1 is a statement about the derived categories Db(X //L± G).

Example 1.5.2. Let Gm act on X = An+1 × Am+1 by t · (z, w) = (tz, t−1w). Let L0 =

OX , L+ = OX(1) and L− = OX(−1). This is the standard flip. We have X //L0
Gm =

Spec
⊕

d≥0H
0(OPn×Pm(d, d)), the affine cone over the Segre embedding Pn × Pm ↪→ PN , and

there is a commutative diagram

X̃

X //L+
Gm X //L− Gm

X //L0
Gm

where all the arrows are blow-ups (cf. [Tha96, Theorem 1.9]). X̃ is the blow-up of X //L0
Gm at

the origin, with exceptional locus Pn × Pm, while X //L± Gm → X //L0
Gm are small resolutions

with exceptional loci Pn and Pm, respectively.

For the linearizations L±, we have

Xu(L+) = 0× Am, Xu(L−) = An × 0.

The Gm-fixed locus is the origin Z = (0, 0), and the destabilizing one-parameter subgroup for

L+ is λ : t 7→ t−1, whose weight on ωX is n −m. The action is free on each semi-stable locus,
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so Xss(L±) ∼= X //L± Gm. Then, Proposition 1.5.1 says that if n < m we have an embedding

Db(X //L+
Gm) ↪→ Db(X //L− Gm). If n = m, then both derived categories are equivalent.

The widths of the windows are η+ = m + 1, η− = n + 1. Suppose n < m. Then given

a window G+
w ⊂ Db(X //L+

Gm), Theorem 1.4.6 together with (1.4.1) give a semi-orthogonal

decomposition

Db(X //L− Gm) ∼= G−w
∼= 〈G+

w , D
b(Z)w, . . . , D

b(Z)w+m−n−1〉

where Z = [Z/Gm] is the origin with the trivial action, and Db(Z)v is generated by the restriction

of OX(−v) to Z. Then Db(Z)v is embedded into Db(X //L− Gm) by j∗◦π∗, where π : 0×Am+1 →

Z is the projection and j : 0 × Am+1 ↪→ An+1 × Am+1 the inclusion. Since OX(−v) descends

to OPm(v) on X //L− Gm, where Pm is the exceptional locus of X //L− Gm → X //L0
Gm, we get

the following semi-orthogonal decomposition

Db(X //L− Gm) = 〈Db(X //L− Gm),OPm(w), . . . ,OPm(w +m− n− 1)〉.
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C H A P T E R 2

BOTT VANISHING

2.1 Introduction

We say that a smooth projective variety Y satisfies Bott vanishing if for every ample line

bundle L we have

Hi(Y,ΩjY ⊗ L) = 0 ∀i > 0,∀j ≥ 0. (2.1.1)

In [Tot20], Totaro gives a geometric interpretation of what it means for a K3 surface to

have this property. In general, it is not clear what the geometric meaning of Bott vanishing is,

although it is certainly useful, when it holds, to compute sections of some vector bundles.

This property turns out to be very restrictive. For instance, a Fano variety that satisfies

Bott vanishing must be rigid, and even among rigid Fano varieties, the property is known to

fail for quadrics of dimension at least 3 and Grassmannians other than Pn (see the discussion in

[Tot20] and the references therein). Smooth toric varieties are among the few known examples of

varieties satisfying Bott vanishing. Several different proofs can be found in [BC94], [BTLM97],

[Fuj07], [Mus02]. In fact, vanishing (2.1.1) is shown for any projective toric variety, where ΩjY is

defined as the pushforward of ΩjY 0 from the smooth locus Y 0 (see e.g. [Fuj07]). Up until Totaro’s

paper [Tot20], there were no known non-toric examples of rationally connected varieties with

this property. He proves that the quintic del Pezzo surface over any field satisfies Bott vanishing,

as well as coming up with several other non-toric examples from K3 surfaces. Namely, he proves

that Bott vanishing fails for K3 surfaces of degree less than 20 or equal to 22, while it holds for

all K3 surfaces of degree 20 or at least 24 with Picard number 1. Recent work by Wang [Wan21]

studies Bott vanishing for elliptic surfaces X with an elliptic fibration π : X → P1, and how the

property is affected by the geometric properties of the fibration, such as the existence of certain

singular fibers.

The following theorem was motivated by [Tot20] and it continues the quest for non-toric

examples of varieties satisfying Bott vanishing. Observe that the quintic del Pezzo surface can

be realized as a GIT quotient of (P1)5 by the diagonal action of PGL2 with respect to the

17



symmetric polarization L = O(1, . . . , 1). We prove that in fact Bott vanishing holds for every

stable GIT quotient (P1)n //L PGL2, over an algebraically closed field of characteristic 0. In

particular, this gives one new Fano example for each even dimension.

Theorem 2.1.1. Let PGL2 act diagonally on (P1)n, over an algebraically closed field of char-

acteristic zero. Suppose L is a PGL2-linearized ample line bundle on (P1)n admitting no strictly

semi-stable locus. Then the GIT quotient Y = (P1)n //L PGL2 satisfies Bott vanishing.

To prove this, we use the results of Halpern-Leistner’s to carry out computations in the

derived category of GIT quotients [HL15], as described in §1. His Quantization Theorem will

allow us to, roughly speaking, compute cohomologies H ·(X //G,F ) on the GIT quotient as G-

equivariant cohomologies H ·G(X, F̃ ) on the ambient quotient stack [X/G], where F̃ must be

some object in the derived category of [X/G] descending to F and satisfying certain weights

condition over the unstable locus. The stratification of the unstable locus associated to the

action of PGL2 on (P1)n is discussed in §2.5. We refer the reader to [CT17,CT20a,CT20b] for a

description of the derived category of the quotient stack [(P1)n/PGL2] in terms of an equivariant

full exceptional collection.

For our case, we use the object ΛjLX ⊗ L described in §1.3, which descends to ΩjY ⊗ L in

the GIT quotient. In §2.2 we check that this object satisfies the weights condition from the

quantization theorem, and then devote most of the work to the corresponding computation of

cohomology in the ambient quotient stack. We first see that, as a consequence of the Bott

vanishing property on X = (P1)n, this amounts to computing cohomologies of the complex of

invariant global sections of the object ΛjLX⊗L on (P1)n (see Lemma 2.3.1). Following Weyman’s

method of geometric syzygies [Wey03], we view these as sections of some sheaves in the product

X × P(g), rather than sheaves on X. Let M ⊂ X × P(g) be the scheme-theoretic zero locus of

the section s : ΩX → g∨. Koszul resolution of M , together with an associated spectral sequence,

yields then vanishing for the i-th cohomology in (2.1.1), for i 6= 0, j. This is discussed in §2.3.

The techniques used up to this point do not require the particular context of PGL2 acting on

(P1)n, and can be applied to other GIT quotients X //G satisfying certain hypotheses. The

main properties that we need are that of X itself satisfying Bott vanishing and M being a local

complete intersection.

Next, we observe in §2.4 that in the case of an abelian group acting on a smooth affine variety,

very similar techniques can be used to get a stronger vanishing result (see Theorem 2.4.3).

Theorem 2.1.2. Let G be an abelian reductive group acting on a smooth affine variety X, over

an algebraically closed field of characteristic zero. Let L be a linearization with no strictly semi-

stable locus and descending to a line bundle L in the GIT quotient Y = X //LG. Suppose G
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acts freely on Xss except for a subset of codimension at least 2. Then Hi(Y,ΩjY ⊗ L) = 0 ∀i >

0,∀j ≥ 0.

Observe that this is not the same as Bott vanishing, since the formula is only stated for

the descent of the linearization L, while Bott vanishing requires (2.1.1) to hold for any ample

line bundle. However, this vanishing is essentially all that needs to be verified in the particular

case that X = Ad, where we have an explicit description of the G-ample cone and the ring

of invariants, as detailed in [HK00]. As a consequence, we obtain yet another proof of Bott

vanishing for the toric case in characteristic zero (see Theorem 2.4.6). More precisely, we show it

for a Q-factorial projective toric variety over an algebraically closed field of characteristic zero,

using its description as a GIT quotient of the affine space due to Cox [Cox14]. We then hope that

these techniques, using windows, may be applied to yield more examples of varieties satisfying

Bott vanishing.

In §2.5 we finish the proof of Theorem 2.1.1. Here we mostly deal with the vanishing of

Hj(Y,ΩjY ⊗L), where Y = (P1)n //L PGL2. Given the work developed in the previous sections,

this amounts to computing cohomology of the complex of invariant global sections of the object

ΛjLX ⊗ L defined in Section 1.1. More precisely, we are left with the computation of the

last cohomology of this complex, which is the same as investigating surjectivity of the map of

invariant sections H0(X,ΩX ⊗ Sj−1g∨)G → H0(X,Sjg∨)G. To do this we use techniques that

are particular to our case, that is, PGL2 acting on X = (P1)n. Namely, we handle invariant

sections using the description of [HMSV05, HMSV09], where sections are identified with linear

combinations of directed graphs with prescribed degrees on the vertices.

2.2 Weights and cohomology

Throughout the present Chapter, X will denote a smooth projective-over-affine variety over

an algebraically closed field k of characteristic zero, with an action by a reductive group G. We

will use the results described in §1.

In the following theorem and corollary, we check that we can apply the Quantization Theorem

to ΛjLX ⊗ L, where L is the G-linearized ample line bundle on X. In the holomorphic setting,

this was observed in [Tel00, Theorem 7.1].

Theorem 2.2.1. Let G be a reductive group acting on X, and {Sα} a KN stratification of the

unstable locus as described in §1.1. The λα-weights of the complex ΛjLX|Zα are all ≤ ηα. If G

is abelian, then the λα-weights of the individual terms (ΛjLX)p|Zα = (Ωj−pX ⊗ Spg∨)|Zα of the

complex are all ≤ ηα.

19



Proof. Let Z = Zα correspond to the stratum Sα, and let λ = λα be the corresponding one-

parameter subgroup. Since the weights condition is local, it is enough to compute them when

we further restrict to an open affine Z ′ ⊂ Z. Consider the restriction

g→ TX |Z′ (2.2.1)

of the dual of LX to Z ′. Include λ in a maximal torus of G and let h ⊂ g be the corresponding

Cartan subalgebra. We can write a root decomposition

g = h⊕
⊕
β∈∆

gβ .

Observe that p = h⊕
⊕

β(dλ)≥0 gβ is precisely the Lie algebra of the parabolic subgroup P = Pα.

Call n− =
⊕

β(dλ)<0 gβ , so that g = p⊕ n−.

Let Y = Y ◦α be the corresponding blade. Using the isomorphism G×P Y ∼= G · Y , we get a

short exact sequence of tangent sheaves:

0→ G×P TY → TG·Y → π∗TG/P → 0.

When we restrict to Z ′, this sequence splits, since these are vector bundles and Z ′ is affine.

Therefore we have TG·Y |Z′ = TY |Z′ ⊕ π∗(TG/P )|Z′ . By the defnition of the blade, the first

summand has only nonnegative λ-weights, while the second summand has all negative λ-weights.

In fact, since n− = g/p, we see that (n− ⊗OG·Y )|Z′
∼→ π∗(TG/P )|Z′ .

Now the restriction of the sequence

0→ TG·Y → TX |G·Y → NG·Y/X → 0

to Z ′ splits, again because Z ′ is affine, so we obtain TX |Z′ = TY |Z′⊕(π∗TG/P )|Z′⊕(NG·Y/X)|Z′ .

Therefore, since the complex (2.2.1) is G-equivariant, it must split as the direct sum of the

complexes

n−
∼→ (π∗TG/P )|Z′

and

p→ TY |Z′ ⊕ (NS/X)|Z′ .

Similarly, the restricted complex LX|Z′ = [ΩX |Z′ → g∨] is written as a direct sum of two com-

plexes, namely the duals of the complexes above. Therefore, by [Wey03, Proposition 2.4.7], the

exterior powers of ΩX |Z′ → g∨ are quasi-isomorphic to those of the complex ΩY |Z′⊕(N∨S/X)|Z′ →

p∨. Now the exterior and symmetric powers of p and TY |Z′ all have nonnegative λ-weights, so

their duals have weights ≤ 0. On the other hand, the weights of N∨S/X |Z′ are all positive and
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the sum of all of them is weightλ detN∨S/X |Z′ = ηα. Combining all these, we see that for every

j, the weights of Λj(ΩY |Z′ ⊕N∨S/X |Z′ → p∨) are all ≤ ηα.

If G is abelian, then G = P , n− = 0 and the weights of g are all 0. Then it suffices to know

that the exterior powers of ΩY |Z′ ⊕ (N∨S/X)|Z′ have weights ≤ ηα for the reasons above.

Corollary 2.2.2. Let L ∈ Db(X) be a G-linearized ample line bundle giving a GIT quotient

Y = X //LG. Then the complex ΛjLX ⊗ L satisfies the hypothesis of Theorem 1.4.1, so

Hi(Xss,ΛjLXss ⊗ L) = Hi(X,ΛjLX ⊗ L).

If G is abelian, we also have Hi(Xss, (ΛjLXss)
p ⊗ L) = Hi(X, (ΛjLX)p ⊗ L) for each p.

Proof. Indeed, by definition of the stratification, weightλαL|Zα < 0 for every α, and weights are

additive with respect to tensor product.

2.3 The Koszul complex of sections

Let L be a G-linearized ample line bundle on a smooth projective-over-affine variety X and

consider the complex ΛjLX ⊗ L. We want to investigate the associated complex F · of global

sections,

F · =
[
0→ H0(X,ΩjX ⊗ L)→ H0(X,Ωj−1

X ⊗ L)⊗ g∨ → · · · → H0(X,L)⊗ Sjg∨ → 0
]
,

(2.3.1)

concentrated in degrees 0 to j. For the remainder of the section, we extend the definition of

Bott vanishing to a smooth projective-over-affine variety using equation (2.1.1).

Lemma 2.3.1. Suppose X satisfies Bott vanishing. Then the hypercohomology of ΛjLX ⊗ L

equals the G-equivariant cohomology of F ·, this is, Hi(X,ΛjLX ⊗ L) = Hi(F ·)G.

Proof. Consider ΛjLX ⊗ L as a complex of coherent sheaves on X. From a suitable bi-complex

resolution we get a spectral sequence Ep,q1 = Hq(X, (ΛjLX)p ⊗L) converging to the hypercoho-

mology Hp+q(X,ΛjLX⊗L). Since X itself satisfies Bott vanishing, all the terms Ep,q1 are equal

to zero except for q = 0:

0 0 0 · · · 0 0

0 E0,0
1 E1,0

1 · · · Ej,01 0.

Therefore the sequence degenerates at E2. We get Ep,0∞ = Ep,02 = Hp(E·,01 ). The hyperco-

homology Hp(X,ΛjLX ⊗L) equals the invariant sections Hp(X,ΛjLX ⊗L)G = Hp(E·,01 )G. But

the complex E·,01 is precisely F ·.
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Now write Pm = P(g) and let W = X × P(g), carrying a canonical G-action. Observe

H0(P(g),OP(g)(l)) = Slg∨ for each l ≥ 0. Given the action, the vector bundle TX �OP(g)(1) has

a canonical G-equivariant global section s ∈ H0(X×P(g), TX�OP(g)(1))G = (H0(X,TX)⊗g∨)G,

which is the one giving the map ΩX → g∨. Let M ⊂ W be the scheme-theoretic zero locus

of s. Suppose this is a local complete intersection, that is, the section s is given locally by

a regular sequence. By smoothness of X × (P1)n, this is equivalent to codimM = n, where

n = rk(TX �OP(g)(1)) = dimX (see e.g. [Har77, §II.8]). In this case, the associated augmented

Koszul complex

K ·s =
[
0→ ΩnX �OP(g)(−n)→ · · · → ΩX �OP(g)(−1)→ OW → OM → 0

]
(2.3.2)

is exact (see e.g. [Wei94, Corollary 4.5.4]). We consider this complex to be concentrated in

degrees −n to 1, this is, Kp
s = Ω−pX ⊗OPm(p) for p ≤ 0 and K1

s = OM .

Proposition 2.3.2. Suppose M is a local complete intersection and suppose X satisfies Bott

vanishing. Then Hi(Xss,ΛjLXss⊗L) = 0 for i 6= 0, j. If, in addition, H0(M,L�OP(g)(j)|M )G =

0, then Hj(Xss,ΛjLXss ⊗ L) = 0 too.

Proof. From Corollary 2.2.2, we know Hi(Xss,ΛjLXss ⊗ L) = Hi(X,ΛjLX ⊗ L). Therefore,

by Lemma 2.3.1, it suffices to show Hi(F ·)G = 0 for 0 < i < j. Since the Koszul complex

K ·s is exact, all its hypercohomologies vanish. The same is true for the complex K̃ ·s = K ·s ⊗

(L�OP(g)(j)). Take the associated spectral sequence Ep,q1 = Hq(X × P(g), K̃p
s ), converging to

Hp+q(X × P(g), K̃ ·s) = 0. Since X satisfies Bott vanishing, we have

Hq(X × P(g), K̃p
s ) =



H0(X,Ω−pX ⊗ L)⊗ Sp+jg∨ if q = 0, −j ≤ p ≤ 0

H0(X,Ω−pX ⊗ L)⊗Hm(Pm,OPm(j + p))∨ if q = m, p ≤ −j −m− 1

Hq(M, (L�OPm(j))|M ) if p = 1

0 otherwise,

and the sequence has the following shape:

· · · E−j−m−2,m
1 E−j−m−1,m

1 0 · · · · · · 0 E1,m
1

· · · 0 · · · · · · 0 E1,m−1
1

...
...

...

· · · 0 · · · · · · 0 E1,1
1

· · · 0 · · · 0 E−j,01 · · · E0,0
1 E1,0

1 .

Note that the complex F · is precisely the naive truncation of the shifted complex E·,01 [−j]
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obtained by omitting the last term, since the differentials are determined precisely by the section

s : ΩX → g∨.

From the description of the spectral sequence, we see that for q = 0 and −j + 1 ≤ p ≤ 0,

it degenerates at E2 and we get 0 = Hi−j(X × P(g), K̃ ·s) = Hi(F ·), for 1 ≤ i < j (even

before taking invariants). By the same reason we find that indeed Hq(M, (L�OPm(j))|M ) = 0

if q > 0, although we do not need this. Now if, further, L � OP(g)(j)|M has no invariant

global sections, then the complex of G-invariants (E·,01 [−j])G is precisely (F ·)G, so in this case,

Hj((F ·)G) = 0. Since taking invariant sections is an exact functor, this is the same as saying

that Hj(F ·)G = 0.

2.3.1 Vanishing on the GIT quotient

Observe that Proposition 2.3.2 applies to the quotient stack Xss. Now, if the action of G on

Xss is free, this result can be interpreted in terms of its coarse moduli space, namely the GIT

quotient Y = X //LG. Indeed, if G acts freely on Xss, then ΛjLXss descends to ΩjY , as observed

in Lemma 1.3.8. Suppose further that L descends to a line bundle L on Y . By exactness of

p∗ = π∗(·)G, we have Hi(Y,ΩjY ⊗ L) = Hi(Xss,ΛjLXss ⊗ L), so if the latter vanishes, then so

does Hi(Y,ΩjY ⊗ L).

In the case of a quotient Y = (P1)n //L PGL2 without strictly semi-stable locus, we can check

that the hypotheses of Proposition 2.3.2 are satisfied, so Hi(Y,ΩjY ⊗ L) = 0 for i 6= 0, j, where

L is the descent of the linearization L. In Section 2.5, we will see that, in order to show Bott

vanishing for (P1)n //L PGL2, the only line bundle we need to consider is precisely the descent

of L. The rest of that section will be devoted to prove the vanishing of the j-th cohomology.

More generally, when the action is not free on Xss and the coarse moduli space Y is not

smooth, we introduce the following notation.

Notation 2.3.3. Let Y 0 ⊂ Y be the nonsingular locus, with inclusion ı : Y 0 ↪→ Y . Then for each

j, ΩjY will denote the (non-derived) pushforward ı∗(Ω
j
Y 0). We call X ′ ⊂ Xss the locus where G

acts freely.

Note that X ′ ⊂ π−1(Y 0), where π : Xss → Y is the quotient map. Recall ΛjLXss is a vector

bundle provided Xss = Xs. We are interested in the cases when π∗(Λ
jLXss)

G = ΩjY . Suppose

this holds and L descends to L, that is, there is a G-equivariant isomorphism π∗(L) ∼= L|Xxx . In

this situation, the projection formula yields π∗(Λ
jLXss ⊗ L)G = ΩjY ⊗ L and Proposition 2.3.2

can be interpreted as vanishing of cohomologies Hi(Y,ΩjY ⊗ L).

Proposition 2.3.4. With the notation as above, suppose Xss = Xs and Xss\X ′ ⊂ Xss
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has codimension at least 2. If L descends to a line bundle L on Y , then Hi(Y,ΩjY ⊗ L) =

Hi(Xss,ΛjLXss ⊗ L) for every i, j.

Proof. Let Y ′ = π(X ′) and consider the open inclusions X ′ ↪→ Xss and ι : Y ′ ↪→ Y ,

X ′ Xss

Y ′ Y

π π

ι

where Y ′ ⊂ Y 0 ⊂ Y and X ′ ⊂ π−1(Y 0) ⊂ Xss. We first observe that, since Xss = Xs, π is

equidimensional and so Y \Y ′ ⊂ Y has codimension at least 2. The same is true for Y 0\Y ′ ⊂ Y 0.

Write ι as a composition

Y ′
ı′

↪→ Y 0 ı
↪→ Y.

By smoothness of X, Y has to be normal, and then we see that ι∗OY ′ = OY , while ı′∗Ω
j
Y ′ = ΩjY 0 ,

by the codimension condition. Using ι = ı ◦ ı′, we get ι∗Ω
j
Y ′ = ΩjY .

G acts freely on X ′, so we have a G-equivariant short exact sequence 0→ π∗ΩY ′ → ΩX′ →

g∨ → 0. Therefore, the restriction of LXss to X ′ descends to ΩY ′ , and similarly for their j-th

exterior powers. We then have π∗(Λ
jLXss |X′)G = ΩjY ′ . On the other hand, it is not difficult to

see that π∗(Λ
jLXss |X′)G = π∗(Λ

jLXss)
G|Y ′ . That is,

ι∗π∗(Λ
jLXss)

G = ΩjY ′ . (2.3.3)

Using the projection formula on (2.3.3) and the fact that ι∗OY ′ = OY , we get π∗(Λ
jLXss)

G =

ι∗Ω
j
Y ′ = ΩjY . Therefore,

π∗(Λ
jLXss ⊗ L)G = ΩjY ⊗ L

again by the projection formula. By exactness of p∗ = π∗(·)G, we obtain Hi(Y,ΩjY ⊗ L) =

Hi(Xss,ΛjLXss ⊗ L).

Remark 2.3.5. If Xss = Xs and the action is free on π−1(Y 0), we have that X ′ = π−1(Y 0) and

the condition on the codimension of Xss\X ′ ⊂ Xss is automatically satisfied. Indeed, Y \Y 0 ⊂ Y

has codimension ≥ 2 by normality of Y . Equidimensionality of π guarantees that the same is

true for Xss\π−1(Y 0) ⊂ Xss.

2.4 The case of X affine and G abelian

In the case that G is an abelian group and X is a smooth affine variety, we get a stronger

version of Proposition 2.3.2, provided there is no strictly semi-stable locus. To do this, we apply

24



very similar techniques to the ones used in Section 2.3. The difference is that, in this case, we

can take advantage of Corollary 2.2.2 by working on the semi-stable locus from the beginning.

Also, an affine variety X automatically satisfies the Bott vanishing condition.

As usual, L denotes a G-linearized ample line bundle on a smooth projective-over-affine

variety X with a G-action. Consider the augmented Koszul complex K ·s on X × P(g) defined in

(2.3.2), and let K̄ ·s be its restriction to Xss×P(g). We first observe that this restriction is exact

if Xss = Xs. This is because the projection of M to X lands entirely on the unstable locus.

Lemma 2.4.1. If Xss = Xs, then M ∩ (Xss × P(g)) = ∅. In particular, the restriction K̄ ·s is

acyclic in this case.

Proof. For a pair (x, l) in M , l must be a line in g = Am+1 contained in the Lie algebra of

the stabilizer Gx, so x cannot be stable. By the assumption, x /∈ Xss. As a consequence,

the restriction of K ·s to Xss × P(g) is acyclic since M ∩ (Xss × P(g)) = ∅ is a local complete

intersection.

Now suppose G is abelian and X is affine. Let F̄ · the complex of global sections of ΛjLXss⊗L,

F̄ · =
[
0→ H0(Xss,ΩjXss ⊗ L)→ H0(Xss,Ωj−1

Xss ⊗ L)⊗ g∨ → · · · → H0(Xss,L)⊗ Sjg∨ → 0
]
,

(2.4.1)

concentrated in degrees 0 to j. Using a similar argument to the one in Lemma 2.3.1, we can

show the complex of invariants (F̄ ·)G computes the hypercohomologies of ΛjLXss ⊗ L.

Lemma 2.4.2. If G is abelian and X is affine, we have Hi(Xss,ΛjLXss ⊗ L) = Hi(F̄ ·)G.

Proof. First, we see that by Corollary 2.2.2, Hi(Xss, (ΛjLXss)
p⊗L) = Hi(X, (ΛjLX)p⊗L). For

i > 0 this is zero since X is affine. Now take the spectral sequence Ep,q1 = Hq(Xss, (ΛjLXss)
p⊗L),

which converges to Hp+q(Xss,ΛjLXss ⊗ L). By the previous observation, we see that Ep,q1 = 0

for q 6= 0, and so Hi(Xss,ΛjLXss ⊗L) = Hi(E·,01 ) for every i. But the complex E·,01 is precisely

(F̄ ·)G.

Following the ideas from Proposition 2.3.2, we obtain the following vanishing result. Here

ΩjY and X ′ are as in Notation 2.3.3.

Theorem 2.4.3. Suppose G is abelian, X is affine and Xss = Xs. Then Hi(Xss,ΛjLXss⊗L) =

0 for every i > 0, j ≥ 0. Further, if Xss\X ′ has codimension at least 2 and L descends to L, we

have

Hi(Y,ΩjY ⊗ L) = 0 ∀i > 0, j ≥ 0.
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Proof. Let K̄ ·s be the restriction of K ·s to Xss×P(g). By Lemma 2.4.1, K̄ ·s is an acyclic complex,

being the (augmented) Koszul resolution of M ∩ (X × P(g)) = ∅.

Take now the spectral sequence Ep,q1 = Hq(Xss×P(g), K̄p
s ⊗L)G, converging to Hp+q(Xss×

P(g), K̄ ·s ⊗ L)G = 0. Since Hi(Xss, (ΛjLXss)
p ⊗ L)G = 0 for i > 0, we find

Ep,q1 =


(H0(Xss,Ω−pXss ⊗ L)⊗ Sp+jg∨)G if q = 0, −j ≤ p ≤ 0

(H0(Xss,Ω−pXss ⊗ L)⊗Hm(Pm,OPm(j + p))∨)G if q = m, p ≤ −j −m− 1

0 otherwise.

Note that the complex of invariants (F̄ ·)G is precisely the shifted complex E·,01 [−j]. For q = 0

and −j+1 ≤ p ≤ 0, the sequence degenerates at E2 and we get 0 = Hi−j(Xss×P(g), K̄ ·s⊗L) =

Hi(F̄ ·)G, for i ≥ 1. From Lemma 2.4.2, we conclude Hi(Xss,ΛjLXss ⊗ L) = 0 for i > 0. The

last part of the statement is a direct consequence of Proposition 2.3.4.

2.4.1 The toric case

Now let Y be a Q-factorial projective toric variety. From [Cox14], we know Y is the GIT

quotient of an affine space X = Ad by the abelian reductive group G = Hom(ClY,Gm), with

Xs = Xss and Xus ⊂ X has codimension at least 2. The character group of G is canonically

identified with ClY . If we call Σ the fan in N ∼= Zn determining the toric variety and d = |Σ(1)|

the number of 1-dimensional cones, then we have a surjection Zd = 〈eρ, ρ ∈ Σ(1)〉Z � ClY

and we can write X = SpecR, where R = k[x1, . . . , xd] =
⊕

v∈ClY Rv is the Cox ring, and each

graded piece Rv ∼= H0(Y,OY (D)), for v = [D]. We have a short exact sequence

0→M → Zd → ClY → 0, (2.4.2)

with the map on the left being m 7→
∑
〈m,nρ〉eρ, where nρ ∈ N is the vector corresponding

to the 1-dimensional cone ρ ∈ Σ(1). This way, the action of G is described by the short exact

sequence

1→ G→ (G∨m)d → T → 1

obtained by applying Hom(·,Gm) to (2.4.2). Here T = N ⊗G∨m is the torus acting on Y . Using

the usual description of Y as
⋃
uσ, where uσ = Spec k[σ∨∩M ], this quotient is described locally

by uσ = Uσ/G, where Uσ = {z ∈ Ad | zρ 6= 0 ∀ρ /∈ σ(1)} (see [Cox14], [CLS11, §14] for details).

In the case that Y is smooth, then G = Gd−nm is a torus and the action is free on Xss.

In what follows we will see that, from Theorem 2.4.3 we can recover Bott vanishing for the

toric case, over k. For the remainder of the present section X will denote Ad, G will denote
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Hom(ClY,Gm) and Y = X //LG will be a projective Q-factorial toric variety obtained as a GIT

quotient given by a linearization L.

We first see that, in order to show Bott vanishing, the only ample line bundle we need to

consider is the descent of L (cf. [HK00, Proposition 2.9]).

Lemma 2.4.4. With the notation as above, let L be an ample line bundle on Y . Then L is the

descent of a linearization L′ such that Y = X //L′ G.

Proof. Since X is an affine space and Xus has codimension ≥ 2, we see PicX = PicXss are

trivial and the G-equivariant Picard group is PicGX = PicGXss = ClY , the character group of

G. The map PicY → PicGXss, L 7→ π∗L, is the inclusion PicY ↪→ ClY . That is, every given

line bundle L on Y is the descent of Lv, which is the trivial line bundle on X linearized by the

character v = L ∈ ClY . Further, given a linearization Lw, for some w ∈ ClY , we see that RG

is precisely
⊕

k≥0Rkw =
⊕

k≥0H
0(Y, L⊗k), for L = w. If L is an ample line bundle on Y , then

Y = Proj
⊕

k≥0H
0(Y, L⊗k), so that L is the descent of a linearization L′ ∈ PicGX such that

Y = X //L′ G.

We also check that the action is free on the preimage of the smooth locus Y 0 ⊂ Y .

Lemma 2.4.5. G acts freely on π−1(Y 0).

Proof. The smooth locus of Y is given by
⋃
σ smooth uσ (see e.g. [CLS11, Proposition 11.1.2]).

It suffices to check that G acts freely on Uσ for σ ∈ Σ a smooth cone. Consider the map

h : Zd � ClY from (2.4.2) and suppose g ∈ G = Hom(ClY,Gm) is in the stabilizer of some

z ∈ Uσ. Since zρ 6= 0 for every ρ /∈ σ(1), this implies g(v) = 1 for every v ∈ h(〈eρ, ρ /∈ σ(1)〉Z).

But in fact, if σ is a smooth cone, the restriction of h to the span of {eρ, ρ /∈ σ(1)} is still

surjective. This is because we can complete {nρ, ρ ∈ σ(1)} to a Z-basis {nρ} ∪ {n′α} of N ,

choose a dual basis {mρ, ρ ∈ σ(1)}∪{m′α} and see that under the map f : M → Zd from (2.4.2),

mρ 7→ eρ +w, some w ∈ 〈eρ, ρ /∈ σ(1)〉Z. As a consequence, every vector w ∈ Zd can be written

as w′+w′′, with w′ ∈ im(f) = ker(h), w′′ ∈ 〈eρ, ρ /∈ σ(1)〉Z. We conclude 〈eρ, ρ /∈ σ(1)〉Z → ClY

is surjective. Therefore g(v) = 1 for every v ∈ ClY , so g = 1.

Finally, we get a new proof of the following well-known result.

Theorem 2.4.6 (Bott vanishing for toric varieties). Let Y be a Q-factorial projective toric

variety over k and L an ample line bundle on Y . Then Hi(Y,ΩjY ⊗L) = 0 for every i > 0, j ≥ 0.

In particular, a smooth projective toric variety over k satisfies Bott vanishing.

Proof. Let L be an ample line bundle on Y . By the discussion above L is the descent of a

linearization L′ such that Y = X //L′ G, so we can assume L is the descent of the linearization
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L. By Lemma 2.4.5, the non-free locus Xss\X ′ has codimension ≥ 2 (see Remark 2.3.5), so

Theorem 2.4.3 implies Hi(Y,ΩjY ⊗ L) = 0 for i > 0, j ≥ 0. If Y is smooth, then Y 0 = Y and

this is Bott vanishing.

2.5 The case of X = (P1)n and G = PGL2

Now we consider the diagonal action of PGL2 on (P1)n, so throughout this section G will

denote PGL2, X will denote (P1)n and g will denote sl2. For a given ample line bundle L =

OX(d1, . . . , dn), di > 0, where
∑
di is even, there is a unique PGL2-linearization, giving rise

to a GIT quotient Y = X //L PGL2, a projective variety. Variation of GIT is described, for

instance, in [Has03, §8]

A maximal torus of g is one-dimensional, so to get a KN stratification it essentially suffices

to consider a single one-parameter subgroup. We consider λ : Gm → PGL2 given by

λ(t) =

t 0

0 t−1

 .
The fixed locus of λ is the union of the points zI where, for every I ⊂ {1, . . . , n}, zI has

coordinates zi =∞ if i ∈ I and zi = 0 otherwise. We use the convention 0 = (0 : 1),∞ = (1 : 0).

One can compute

µ(λ, I) = −weightλL|zI =
∑
i∈I

di −
∑
i/∈I

di

(cf. Example 1.1.4) and we can get a KN stratification of the unstable locus indexed by the

subsets I for which µ(λ, I) > 0. Indeed, a point z = (z1, . . . , zn) ∈ X is unstable if and only if

there is an I ⊂ {1, . . . , n} with
∑
i∈I di >

∑
i/∈I di such that zi = α for every i ∈ I. Also, it can

be computed that ηλ,I = 2(|I| − 1) (see [CT20b] for details). A linearization OX(d1, . . . , dn) is

in a GIT wall if and only if there is a splitting I ∪ Ic = {1, . . . , n} such that
∑
i∈I di =

∑
i/∈I di.

Since the ambient space X = (P1)n is a smooth projective toric variety, it satisfies Bott vanishing

and then results from Section 2.3 can be applied.

Note that in our case, the cotangent sheaf is a direct sum of line bundles, namely ΩX =⊕n
i=1OX(0, . . . ,−2, . . . , 0), each summand having a −2 in the i-th position and zeros elsewhere.

The section s ∈ H0(TX � OP(g)(1))G associated to the map ΩX → g∨ is then the sum of n

sections si, where each si ∈ (H0(X,OX(0, . . . , 2, . . . , 0))⊗ g∨)G.

Let {E,H,F} be the usual basis of g, where [E,H] = −2E, [E,F ] = H, [H,F ] = −2F . If we

choose a basis {X0, Y0, Z0} of g∨ = H0(P(g), TP(g)) that is dual to the basis {−E,H,F}, then
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we can explicitly compute si in coordinates. For this, we use the isomorphism TP1 ∼= OP1(2),

∂/∂(x/y) 7→ −y2, where (x : y) are coordinates in P1. Writing

E =
∂

∂t

1 t

0 1


∣∣∣∣∣∣∣
t=0

, H =
∂

∂t

1

1− t2

1 + t 0

0 1− t


∣∣∣∣∣∣∣
t=0

, F =
∂

∂t

1 0

t 1


∣∣∣∣∣∣∣
t=0

and using the chart y 6= 0 we find that the action of PGL2 on P1 determines the map g→ TP1

that sends

E 7→ ∂

∂(x/y)
, H 7→ 2x

y

∂

∂(x/y)
, F 7→ −x

2

y2

∂

∂(x/y)
.

Combining all these and using ∂/∂(xi/yi) 7→ −y2
i on each i-th component P1

(xi:yi)
, we find

si = x2
iZ0 − 2xiyiY0 + y2

iX0. Observe that we can also identify g ∼= g∨ as g-representations by

sending the basis {E,H,F} to {Z0, 2Y0,−X0}.

Remark 2.5.1. Consider the diagonal action of SL2 on X. Then any ample line bundle L =

OX(d1, . . . , dn) carries a unique SL2-linearization, giving rise to a GIT quotient Y = X //L SL2.

If
∑
di is even, then L also admits a unique PGL2-linearization, and X //L SL2 = X //L PGL2.

In any case, L⊗2 admits a PGL2-linearization and X //L SL2 is canonically isomorphic to the

quotient X //L⊗2 SL2 = X //L⊗2 PGL2.

Proposition 2.5.2. Consider X = (P1)n, G = PGL2, g = sl2 as above. Let M ⊂ X × P(g)

be the vanishing locus of the section s ∈ H0(TX � OP(g)(1))G associated to the map ΩX → g∨.

Then M =
⋂

(si = 0) is a local complete intersection.

Proof. The section s is the direct sum of the n sections si ∈ H0(OX(0, . . . , 2, . . . , 0)�OP2(1))G

given by si = x2
iZ0 − 2xiyiY0 + y2

iX0, as noted above. By smoothness of X, it suffices to

check that dimM = 2. Consider the map p : M → P2 given by the projection on the second

component. We show p is a finite map. Indeed, since p is projective, it suffices to show that it

has finite fibers. We note that a given point (x1 : y1; . . . ;xn : yn)× (X0 : Y0 : Z0) is in M if and

only if for every i, (X0 : Y0 : Z0) ∈ P2 is in the line that is tangent to the rational normal curve

(X0Z0−Y 2
0 = 0) ⊂ P2 at the point (x2

i : xiyi : y2
i ). Since every point is in at most 2 lines tangent

to a given conic, we have |p−1(X0 : Y0 : Z0)| ≤ 2n. Therefore p is finite and dimM = 2.

Corollary 2.5.3. For a PGL2-linearized ample line bundle L on X, we have Hi(X,ΛjLX⊗L) =

0 for i 6= 0, j.

Proof. This follows from Proposition 2.3.2, as M is a local complete intersection and X = (P1)n

has the Bott vanishing property. Recall Hi(Xss,ΛjLXss ⊗ L) = Hi(X,ΛjLX ⊗ L) by Corollary

2.2.2.
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2.5.1 The ring of invariants

Let Y = (P1)n //PGL2 be given by a polarization L = O(d1, . . . , dn), di > 0. We will assume

Xss = Xs. This implies that the action of G = PGL2 is free in Xss and Y is smooth.

Remark 2.5.4. The condition Xss = Xs is equivalent to the following condition: there is no

partition I t Ic = {1, . . . , n} such that
∑
i∈I di =

∑
i/∈I di. This is a consequence of the Hilbert-

Mumford criterion and the description of the unstable locus (see e.g. [CT20b, §4]).

If we consider the action of the torus (Gm)n on the Grassmannian Gr(2, n) and linearize

the ample line bundle OG(2,n)(1) of the Plücker embedding using some character (l1, . . . , ln), we

have Gelfand-MacPherson correspondence [Kap93, Theorem 2.4.7]:

⊕
d≥0

H0((P1)n,O(dl1, . . . , dln))PGL2 =
⊕
d≥0

H0(Gr(2, n),O(d))(Gm)n .

That is,
⊕

d≥0H
0((P1)s,O(dl1, . . . , dln))PGL2 can be seen as a subring of the homogeneous

coordinate ring of the Grassmannian, k[pik]/(pikprl−pirpkl+pilpkr), where pik = xiyk−xkyi are

the Plücker minors. The d-th graded piece corresponds to polynomials in pik having multi-degree

dl1, . . . , dln in x1, y1; . . . ;xn, yn.

Lemma 2.5.5. Suppose we have a linearization L giving Xss = Xs and with an unstable locus

having an irreducible component of codimension 1. Then Y = (P1)n //L PGL2 is a smooth

projective toric variety.

Proof. Given that Xs = Xss, Y is the (smooth) geometric quotient Xss/G. By the description

of the unstable locus, we can assume d1 + d2 >
∑
i≥3 di without loss of generality. That is, Xss

does not intersect the big diagonal {p1 = p2} ⊂ (P1)n. Call V = 0×∞× (P1)n−2 and consider

Gm as the subgroup of PGL2 given by t 0

0 t−1

 . (2.5.1)

Observe Gm acts on V , and the linearization L = OX(d1, . . . , dn) restricts to a Gm-linearization

of L|V = OV (d3, . . . , dn), which corresponds to the character t 7→ td1−d2 . By the stability

condition, we see that every stable G-orbit intersects V . Further, V ∩Xss is precisely the semi-

stable locus V ss = V s for the Gm-linearization of L|V . In fact, Z = (0,∞, z3, . . . , zn) ∈ V is

unstable if and only if there is some I ′ ⊂ {3, . . . , n} such that one of the following holds:

(a) d2 +
∑
i∈I′ di > d1 +

∑
i/∈I′ di and zi =∞ for all i ∈ I ′, or

(b) d2 +
∑
i∈I′ di < d1 +

∑
i/∈I′ di and zi = 0 for all i /∈ I ′.
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Since d1 + d2 >
∑
i≥3 di, this is the same stability condition for the PGL2 action. Observe Gm

acts freely on V ss, and V ss //Gm is a geometric quotient.

We note that in fact the GIT quotients X //G and V //Gm coincide. To see this, we can

look at the coordinate rings of invariants. First, observe that pi1 = xiy1 − yix1 restricts to

xi on V , while p2i restricts to yi. Call 2δ = d1 + d2 −
∑
i≥3 di > 0. Then the restriction⊕

k≥0H
0(X,L⊗k)PGL2 →

⊕
k≥0H

0(V,L|⊗kV )Gm is an isomorphism of graded rings, with inverse

given in degree k by

R(xi, yi) 7→ pδk21R(pi1, p2i),

for a polynomial R(x3, y3; . . . ;xn, yn) ∈ H0(V,OV (kd3, . . . , kdn))Gm .

Now let the torus T = (Gm)n−2 act on V = (P1)n−2, by (2.5.1) in each component. Then

V ss = Xss ∩ V is invariant under the action of T . In fact, suppose z = (0,∞, z3, . . . , zn) ∈ Xus.

Then zi = α for every i ∈ I, for some I such that
∑
i/∈I di >

∑
i∈I di. Since d1 + d2 >

∑
i≥3 di,

either 1 ∈ I, in which case α = 0, or 2 ∈ I, in which case α = ∞. But both 0 and ∞ are fixed

by Gm, so t · z will still be unstable for any t ∈ T .

Further, T acts on V ss with an open dense orbit, say T · (0,∞, 1, . . . , 1). We conclude that

the (n− 3)-dimensional torus T/Gm acts on Y = V ss/Gm with an open dense orbit. Therefore

Y is a toric variety.

Another proof of the previous lemma can be found in [Sch17, Theorem 2], using the point of

view of variation of GIT.

Now suppose Xus has codimension ≥ 2. We claim that any ample line bundle on Y is the

descent of an ample line bundle OX(d′1, . . . , d
′
n) on X living in the same GIT chamber as L, in

the sense of [DH98].

Lemma 2.5.6. Suppose Xus has codimension at least 2 and let L be an ample line bundle on

Y = X //L PGL2, where L is such that Xs = Xss. Then L is the descent of an ample line bundle

L′ = OX(d′1, . . . , d
′
n) such that Y = X //L′ PGL2.

Proof. Since the action of G is free on Xss = Xs, by Kempf’s descent lemma, every line bundle

on X descends to a line bundle on Y , and in fact π∗ is an isomorphism from PicY to the

G-equivariant Picard group PicGXss = PicXss, with inverse L′ 7→ π∗(L′)G. Further, every

PGL2-linearized line bundle on Xss extends uniquely to a PGL2-linearized line bundle on X by

the codimension hypothesis (see e.g. [Dol03, §7]).

For any v = (v1, . . . , vn) ∈ Zn, PGL2 acts naturally on the global sections H0(X,OX(v)).

Let R be the Zn-graded ring R =
⊕

v∈Zn Rv, where Rv = H0(X,OX(v))PGL2 . Notice Rv =

0 if
∑
vi is odd or if some vi < 0. If L = OX(w) is the linearization, then by definition

31



Y = X //L PGL2 = Proj
⊕

k≥0Rkw. From the previous observation, every PGL2-linearized

line bundle OX(v) descends to a line bundle Lv on Y , and by the codimension hypothesis,

Rv = H0(Y,Lv). On the other hand, given a line bundle L on Y , L must be Lw′ for some

w′ ∈ Zn. If Lw′ is ample, then Y = Proj
⊕

k≥0(Y,L⊗kw′ ) = Proj
⊕

k≥0Rkw′ . From this we see

that the w′i are nonnegative, and in fact w′i > 0 since dimY = n − 3. That is, L′ = OX(w′) is

ample and Y = X //L′ PGL2.

Remark 2.5.7. In the situation of Lemma 2.5.6, we have codimXus ≥ 2 and PicY = PicGX,

so the quotient X //L′ PGL2 can only be isomorphic to Y = X //L PGL2 if L and L′ live in the

same GIT chamber (cf. [Has03, Proposition 5.1]). Observe that such L′, descending to an ample

line bundle on Y , cannot be in one of the GIT walls, because the ample cone of Y is open in

PicY = PicGX. In particular, L′ admits no strictly semi-stable locus.

If we want to show vanishing for Hi(Y,ΩjY ⊗L), by Corollary 2.2.2 and Lemma 2.3.1, we need

to compute Hi(X,ΛjLX ⊗ L) = Hi(F ·)G, where F · is given by (2.3.1). From Corollary 2.5.3,

we know Hi(F ·)G = 0 for i 6= 0, j, so it remains to show that the maps of G-invariant global

sections (H0(X,ΩX ⊗ L)⊗ Sj−1g∨)G → (H0(X,L)⊗ Sjg∨)G are surjective. The following two

propositions show this holds when j = 1 and 2.

Proposition 2.5.8. Let L = OX(d1, . . . , dn) be a linearization with no strictly semi-stable locus.

The map H0(X,ΩX ⊗ L)G → (H0(X,L)⊗ g∨)G is surjective.

Proposition 2.5.9. Let L = OX(d1, . . . , dn) be a linearization with no strictly semi-stable locus.

The map (H0(X,ΩX ⊗ L)⊗ g∨)G → (H0(X,L)⊗ S2g∨)G is surjective.

In order to prove these two propositions, we will first investigate invariant global sections.

Observe that for a given line bundle O(P1)s(l1, . . . , ls) on (P1)s, global sections can be written

as H0((P1)s,O(P1)s(l1, . . . , ls)) = Vl1 ⊗ · · · ⊗ Vls , where Vl is the irreducible (l + 1)-dimensional

representation of sl2. We can also identify Vl with the space of degree l polynomials in two

variables, Vl = 〈xl, xl−1y, . . . , yl〉, with the action given by g · p(x, y) = p(g−1 · (x, y)), for

g ∈ PGL2. In particular, from Gelfand-MacPherson correspondence, the vector space (Vl1 ⊗

· · ·⊗Vls)PGL2 can be identified with the elements of multi-degree (l1, . . . , ls) in the homogeneous

coordinate ring of the Grassmannian k[pik]/(pikprl − pirpkl + pilpkr).

Remark 2.5.10. For l = 2, write V2 = 〈x2
0, x0y0, y

2
0〉. We have g ∼= V2 as g-representations,

by identifying the bases {E,H,F} and {y2
0 , 2x0y0,−x2

0}. If we further use the isomorphism of

g-representations g ∼= g∨, we get {X0, Y0, Z0} = {x2
0, x0y0, y

2
0}.

Let us use this identification of g∨ ∼= V2. The map ΩX → g∨ is then determined by the n

sections si = x2
iZ0 − 2xiyiY0 + y2

iX0 = (x0yi − xiy0)2 ∈ (H0(X,OX(0, . . . , 2, . . . , 0))⊗ g∨)G, by
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taking X0 = x2
0, Y0 = x0y0, Z0 = y2

0 , where {X0, Y0, Z0} is the basis of g∨ dual to {−E,H,F},

and H0(X,OX(0, . . . , 2, . . . , 0)) = V2 = 〈x2
i , xiyi, y

2
i 〉.

We see further that the symmetric powers Smg∨ split canonically as V2m ⊕ Sm−2g∨ as g-

representations, for m ≥ 2. Indeed, let P2 = P(g), so that Smg∨ = H0(P(g),OP2(m)), and let

C = P1 be the G-invariant conic in P2 defined by X0Z0 − Y 2
0 = 0. The curve C is given in

coordinates by the rational normal curve embedding (x2 : xy : y2). Using the tautological short

exact sequence and tensoring with OP2(m), we get

0→ OP2(m− 2)→ OP2(m)→ OC(2m)→ 0. (2.5.2)

Taking global sections we get 0 → Sm−2g∨ → Smg∨ → V2m → 0. By semisimplicity of

sl2, this splits in a unique way. Observe that the map Sm−2g∨ → Smg∨ is multiplication by

X0Z0 − Y 2
0 , while the map Smg∨ → V2m sends precisely {X0, Y0, Z0} to {x2

0, x0y0, y
2
0}, where

we write V2m = 〈x2m
0 , . . . , y2m

0 〉. Now consider again the complex F · from (2.3.1), with its

differentials H0(Ωj−m+1
X ⊗L)⊗Sm−1g∨ → H0(Ωj−mX ⊗L)⊗Smg∨. Using the splittings Srg∨ =

V2r ⊕ Sr−2g∨, compose with the inclusion V2m−2 ↪→ Sm−1g∨ and the projection Smg∨ → V2m

to get a map H0(Ωj−m+1
X ⊗L)⊗ V2m−2 → H0(Ωj−mX ⊗L)⊗ V2m. That is, the map making the

following diagram commute

H0(Ωj−m+1
X ⊗ L)⊗ Sm−1g∨ H0(Ωj−mX ⊗ L)⊗ Smg∨

H0(Ωj−m+1
X ⊗ L)⊗ V2m−2 H0(Ωj−mX ⊗ L)⊗ V2m.

This way we get a new complex

F̄ · =
[
0→ H0(X,ΩjX ⊗ L)→ H0(X,Ωj−1

X ⊗ L)⊗ V2 → · · · → H0(X,L)⊗ V2j → 0
]
, (2.5.3)

which we can think of as a “partial” version of F ·. Observe that, by commutativity of the

diagram above, F̄ · is indeed a chain complex.

By the discussion above, the differential maps in F̄ · correspond to multiplication by si =

(x0yi − xiy0)2, where xi, yi are coordinates in the i-th component, and x0, y0 correspond to the

terms V2m = 〈x2m
0 , . . . , y2m

0 〉. In what follows next, we will study the complex F̄ ·, and then we

will see that from this we can get back some information about the original complex F · from

(2.3.1).

2.5.2 Computations in (P1)n+1

Now for j > 0, we consider the diagonal action of PGL2 on (P1)n+1 = P1 × X. Using

coordinates x0, y0;xi, yi, take si = (x0yi − xiy0)2 ∈ H0(P1 × X,O(2; 0, . . . , 2, . . . , 0))PGL2 for

i = 1, . . . , n. We choose the polarization V = O(2j; d1, . . . , dn) = OP1(2j)� L.
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Proposition 2.5.11. Suppose L = OX(d1, . . . , dn) is a polarization on X with no strictly semi-

stable locus, and let V = OP1(2j) � L as above. Let M be the scheme-theoretic intersection⋂
(si = 0) ⊂ P1 ×X. Then M is a local complete intersection and H0(M,V|M ) has no PGL2-

invariants.

Proof. Write Di = (x0yi − xiy0 = 0) so that M =
⋂

2Di, while
⋂
Di is the small diagonal

P1 ⊂ (P1)n+1. Then M =
⋂

2Di is a local complete intersection, having codimension n. For a

reduced divisor D ⊂ V , we have a tautological short exact sequence

0→ OD(−D)→ O2D → OD → 0. (2.5.4)

Claim. For every 0 ≤ m ≤ n and every I ⊂ {1, . . . ,m}, the sheaf

O⋂
i≤mDi∩

⋂
i>m 2Di(−

∑
i∈I

Di)⊗ V (2.5.5)

has no PGL2-invariant global sections.

Given the claim, the proposition is proved by taking m = 0 in (2.5.5). To prove the claim

we use (2.5.4) on
⋂
i≤m+1Di ∩

⋂
i>m+1 2Di ⊂

⋂
i≤mDi ∩

⋂
i>m+1 2Di, to get

0→ O⋂
i≤m+1Di∩

⋂
i>m+1 2Di(−Dm+1)→ O⋂

i≤mDi∩
⋂
i>m 2Di → O⋂

i≤m+1Di∩
⋂
i>m+1 2Di → 0.

Now tensor with V(−
∑
i∈I Di) and take PGL2-invariant global sections. The claim will

then be proved if we show O⋂
i≤m+1Di∩

⋂
i>m+1 2Di(−

∑
i∈I′ Di) has no invariant global sections

for every I ′ ⊂ {1, . . . ,m+ 1}. That is, the claim is true for m if it is true for m+ 1. Therefore,

we can do induction on n−m, so that all we need to show is that

H0(O⋂
i≤nDi

(−
∑
i∈I

Di)⊗ V)G = 0

for any I ⊂ {1, . . . , n}.

Recall
⋂
i≤nDi = P1 is the small diagonal, and O(P1)n+1(−Di) = O(−1; 0, . . . ,−1, . . . , 0), so

that O⋂
i≤nDi

(−
∑
i∈I Di)⊗V = OP1(2j +

∑
i≤n di− 2|I|). The PGL2-invariant global sections

of this sheaf are homogeneous polynomials in x and y of degree 2j +
∑
i≤n di − 2|I| that are

restrictions to the small diagonal of polynomials in pik = xiyk − xkyi. Of course, any such

polynomial will restrict to 0 in the diagonal, unless it has degree 0. But 2j +
∑
i≤n di − 2|I|

cannot be zero. This follows from the following claim.

Claim.
∑n
i=1 di ≥ 2n. In particular 2j +

∑n
i=1 di − 2|I| > 0 for every I ⊂ {1, . . . , n}.

Let us prove this claim. Without loss of generality, we may assume d1 ≤ . . . ≤ dn. Choose

0 ≤ m ≤ n such that d1 = . . . = dm = 1, dm+2 ≥ 2 and m has the same parity as n. Observe

34



that, since
∑
di is even and L has no strictly semi-stable locus, as a consequence of Remark

2.5.4 we must have

dn + dn−2 + . . .+ dm+2 > dn−1 + . . .+ dm+3 + dm+1 +m. (2.5.6)

In fact, if dn + dn−2 + . . . + dm+2 − (dn−1 + . . . + dm+3 + dm+1) = r ≤ m, we would have

dn + dn−2 + . . .+ dm+2 = (dn−1 + . . .+ dm+3 + dm+1) + (d1 + . . .+ dr), and then writing each

of the remaining dr+1 = dr+2 = . . . = dm = 1 at either side of this equation we would get∑
i/∈I di =

∑
i∈I di, where I = {1, . . . , r} ∪ {r + 1, r + 3, . . .} ∪ {m + 1,m + 3, . . . , n − 1}, a

contradiction. In particular, from (2.5.6) we have dn > dm+1 + m. Then
∑
di = m + dm+1 +∑n−1

i=m+2 di + dn > 2(m+ dm+1) +
∑n−1
i=m+2 di. Since dm+1 ≥ 1 and dn−1 ≥ . . . ≥ dm+2 ≥ 2, this

is at least 2m + 2 + 2(n −m − 2) = 2n − 2. Thus
∑n
i=1 di > 2n − 2, so in fact

∑n
i=1 di ≥ 2n.

This completes the proof.

Corollary 2.5.12. With the same hypotheses, Hi(F̄ ·)G = 0 for i > 1.

Proof. Since M =
⋂

(si = 0) is a local complete intersection, the augmented Koszul complex

determined by s1, . . . , sn,

0→ O(−
n∑
i=1

2Di)→ · · · →
⊕
O(−2Di)→ O → OM → 0

is acyclic, and so is the complex

K · =
[
0→ V(−

∑
2Di)→ · · · →

⊕
V(−2Di)→ V → V ⊗OM → 0

]
. (2.5.7)

We consider this complex having nonzero terms in degrees −n to 1. This means that for −n ≤

p ≤ 0, the term Kp is precisely

⊕
|I|=−p

V(−
∑
i∈I

2Di) = OP1(2j + 2p)� (Ω−pX ⊗ L).

Take the spectral sequence Epq1 = Hq((P1)n+1,Kp), which converges to Hp+q((P1)n+1,K·) = 0.

We get

Hq((P1)n+1,Kp) =



H0(X,Ω−pX ⊗ L)⊗ V2j+2p if q = 0, −j ≤ p ≤ 0

H0(X,Ω−pX ⊗ L)⊗H1(P1,OP1(2j + 2p)) if q = 1, p < −j

Hq(M,V|M ) if p = 1

0 otherwise

(2.5.8)

and the sequence has the following shape

· · · E−j−2,1
1 E−j−1,1

1 0 · · · · · · 0 H1(M,V|M )

· · · 0 E−j,01 E−j+1,0
1 · · · E0,0

1 H0(M,V|M ).
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The complex F̄ · from (2.5.3) is the same as the (shifted) naive truncation of E·,01 [−j] obtained

by omitting the last term H0(M,V|M ) of E·,01 , since the differentials are determined precisely

by the sections si.

We see that for q = 0 and p > −j + 1, the sequence degenerates at E2 and we get

0 = Hi−j(P1 × X,K·) = Hi(F̄ ·), for 1 < i < j (even before taking invariants). Further,

since H0(M,V|M )G = 0 by the previous proposition, the complex of G-invariants (E·,01 [−j])G is

precisely (F̄ ·)G, so Hj((F̄ ·)G) = 0 too, that is, Hj(F̄ ·)G = 0.

2.5.3 Directed graphs as invariant sections

Given aG-linearized ample line bundle L = OX(d1, . . . , dn) onX, let us use the identifications

H0(X,L) = Vd1 ⊗ · · · ⊗ Vdn , and H0(X,ΩX ⊗L) =
⊕n

i=1 Vd1 ⊗ · · · ⊗ Vdi−2 ⊗ · · · ⊗ Vdn . We also

use g∨ = V2 and S2g∨ = V0 ⊕ V4 as g-representations. Then to show Propositions 2.5.8 and

2.5.9, we need to investigate the maps

n⊕
i=1

(Vd1 ⊗ · · · ⊗ Vdi−2 ⊗ · · · ⊗ Vdn)G
t1−→ (V2 ⊗ Vd1 ⊗ · · · ⊗ Vdn)G (2.5.9)

and

n⊕
i=1

(V2 ⊗ Vd1 ⊗ · · · ⊗ Vdi−2 ⊗ · · · ⊗ Vdn)G
t2−→ (V4 ⊗ Vd1 ⊗ · · · ⊗ Vdn)G ⊕ (V0 ⊗ Vd1 ⊗ · · · ⊗ Vdn)G

(2.5.10)

and show that both are surjective. In view of Gelfand-MacPherson correspondence, we will work

with these invariants using the language of graphs (as in [HMSV05] and [HMSV09]).

Notation 2.5.13. Let J be a directed graph with vertices V (J) and edges E(J). Let w ∈ V (J)

be a vertex. By deg(w) we mean the number of edges touching w. We say that two vertices w

and v are adjacent if there is an edge between them. An edge going from w to v will be denoted

by w → v.

A directed graph J can be represented by a 2×m tableau, where m = |E(J)|. A diagrama1 . . . am

b1 . . . bm


represents the graph with edges ai → bi.

Definition 2.5.14. Let l = (l1, . . . , lr) ∈ Zr≥0, with
∑
li even. We call Fl the free vector

space generated by directed graphs J having r vertices, say V (J) = {w1, . . . , wr}, with degrees

deg(wi) = li. We denote by F′l the quotient of Fl by the following relations:
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(a) If K is obtained from J by reversing the direction of one edge, then K = −J . In particular,

any graph having a self-loop is equal to zero in F′l.

(b) The relation J = H +K, whenever H and K are obtained by replacing a 2× 2 submatrix

as follows:· · · a · · · b · · ·

· · · c · · · d · · ·

 =

· · · a · · · c · · ·

· · · b · · · d · · ·

+

· · · a · · · b · · ·

· · · d · · · c · · ·


We observe that the space F′l is exactly identified with the ring of invariants (Vl1 ⊗ · · · ⊗

Vlr )
PGL2 . A Plücker minor pik = xiyk−xkyi corresponds to an edge wi → wk, and the relations

defining F′l are precisely pik = −pki and the Plücker relations. Plücker relation is drawn as

follows:

= +

If
∑
li is odd or if one li < 0, we just set F′l = 0. Then for fixed r, we can put all the spaces

F′l together in a Zr-graded ring F′ =
⊕

l∈Zr F
′
l. This is the same construction as the ring R

defined in the proof of Lemma 2.5.6. In this language, the product of two graphs J1 and J2

consists of a graph having edges E(J1J2) = E(J1)∪E(J2). An element J ∈ F′l is a graph if it is

written as a product of Plücker minors pik. In general, an element of F′l is a polynomial in pik,

this is, a linear combination of graphs.

We will be mostly interested in the spaces F′l when l = (2m, d1, . . . , dn). For the graphs in

F′l, we label the n+ 1 vertices as w0, w1, . . . , wn, so that degw0 = 2m, degwi = di for i ≥ 1. We

call V (J)0 the set of vertices adjacent to w0, and for wi we call e(w0, wi) the number of edges

between w0 and wi.

Definition 2.5.15. Let l = (2m, d1, . . . , dn) and let J be a directed graph in Fl, as above. A

2-coloring of J is an assignment c : V (J) − {w0} → {0, 1} such that c(a) 6= c(b) for every two

adjacent vertices a and b, and also
∑
wi∈c−1(0) e(w0, wi) =

∑
wi∈c−1(1) e(w0, wi) = m.

Example 2.5.16. The graph given byw0 w0 w0 w0 w1 w2 w3

w1 w1 w2 w3 w2 w4 w4


admits a 2-coloring:

w0

w2

w3

w4

w1
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If m = 1, we can think of a 2-coloring as a bipartition of the graph obtained by deleting w0

and replacing the edges coming from it by an edge joining the two vertices wi1 , wi2 ∈ V (J)0. In

this bipartition wi1 and wi2 must be in different blocks. In particular, if a graph J ∈ F′(2,d1,...,dn)

has a double edge coming from w0, this is, if wi1 = wi2 , then J cannot admit a 2-coloring. For

coloring purposes, the directions of the edges are irrelevant.

Remark 2.5.17. Suppose L = OX(d1, . . . , dn) is such that Xss = Xs. Then no graph J ∈

F(2m,d1,...,dn) admits a 2-coloring. Indeed, if J had a 2-coloring, then we can call I = {i | c(wi) =

0} ⊂ {1, . . . , n}, so that
∑
i∈I di =

∑
i/∈I di.

Lemma 2.5.18. The image of the map t1 from (2.5.9) consists of the vector subspace generated

by graphs having a double edge coming from w0.

Proof. By the explicit description of F̄ · in (2.5.3), we know the maps Vd1⊗· · ·⊗Vdi−2⊗· · ·⊗Vdn →

V2 ⊗ Vd1 ⊗ · · · ⊗ Vdn are given by multiplication by si = (x0yi − xiy0)2. Taking invariants we

get maps F′(d1,...,di−2,...,dn) → F′(2,d1,...,dn). We identify F′(d1,...,di−2,...,dn) = F′(0,d1,...,di−2,...,dn) by

adding an extra vertex w0 with degw0 = 0. Then multiplication of a graph J by si corresponds

to adding two extra edges to J , both going from w0 to wi.

Notation 2.5.19. Let l = (2m, d1, . . . , dn). A cycle is a sequence of vertices wi1 , . . . , wir such

that each wik is adjacent to wik+1
, and wir is adjacent to wi1 . We say that the cycle is central

if it involves the vertex w0. We call r the length of the cycle. A subgraph C determined by the

cycle wi1 , . . . , wir will be denoted by (wi1 , . . . , wim) if the signs of the edges are given by

C =

wi1 wi2 · · · wir−1
wir

wi2 wi3 · · · wir wi1

 .
For a cycle we do not require that all the vertices wik be different. We observe that rotating

the indices i1, . . . , ir does not change the cycle, while reversing an arrow switches the sign.

Remark 2.5.20. Let l = (0, d1, . . . , dn) and J a graph in F′l. It is a well-known fact that J admits

a 2-coloring if and only if it does not contain a cycle of odd length. This fact is sometimes

referred to as Kőnig’s Theorem.

Lemma 2.5.21. Suppose J ∈ F′(2,d1,...,dn) is a graph having a central cycle of even length. Then

J is in the image of the map t1 from (2.5.9).

Proof. We can assume w0, . . . , wr is a cycle in J , where r is odd. Let J0 be the subgraph given

by the cycle, J0 = (w0, . . . , wr), so that J is a multiple of J0, say J = J0H. It suffices to show

that J0 can be written as a linear combination of graphs having a double edge from w0. Consider
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the Plücker relation wr w1

w0 w2

 =

wr w0

w1 w2

+

wr w1

w2 w0


or

w0 w1

w2

wr−1

wr =

w0 w1

w2

wr−1

wr +

w0 w1

w2

wr−1

wr

so that we have J0 = J1 + J ′1, where J ′1 has a double edge between w0 and w1. Then J ≡ J1H

mod im(t1). On the other hand, J1 is equivalent to the cycle −(w1, w0, w2, . . . , wr). Similarly,

given a cycle Ji = (−1)i(w1, . . . , wi, w0, wi+1, . . . , wr), we use the Plücker relation onwi wi+1

w0 wi+2


to obtain J ≡ (−1)i+1Ji+1H mod im(t1). We conclude J ≡ (−1)rJrH ≡ −J mod im(t1),

since r is odd and Jr = (w1, . . . , wr, w0) = J0. Then J ∈ im(t1), as desired.

Now we have the tools to show Proposition 2.5.8.

Proof of Proposition 2.5.8. Let K · be the complex (2.5.7), where V is the sheaf OP1(2) � L =

O(P1)n+1(2; d1, . . . , dn), and consider the spectral sequence Epq1 = Hq((P1)n+1,Kp) from (2.5.8):

· · · E−3,0
1 E−2,0

1 0 · · ·

· · · 0 E−1,0
1 E0,0

1 H0(M,V|M ).

The restriction of d−1,0
1 to invariant sections is t1. We need to show it is surjective. The

second page of the spectral sequence has the following shape:

· · · E−3,0
2 E−2,0

2 0 · · ·

· · · 0 E−1,0
2 E0,0

2 H0(M,V|M )

d2 d2

We want to describe the restriction of the map d−2,0
2 to invariant sections, that is (d−2,0

2 )G :

(E−2,0
2 )G → (E0,0

2 )G. Observe (E0,0
2 )G = (E0,0

1 )G/ im(t1) since H0(M,V|M )G = 0. The whole

sequence degenerates at E3, so d−2,0
2 must be an isomorphism, in particular surjective. Therefore,

any J ∈ (E0,0
1 )G can be written as a sum J ′ + J ′′, where J ′ ∈ im(t1) and J ′′ ∈ im((d−2,0

2 )G).

The map d−2,0
2 is obtained by doing a bi-complex resoultion of K−2 → K−1 → K0 that

computes cohomologies of Kp, and then chasing the diagram. Since, for each q and p, Hq(P1 ×

X,OP1(2+2p)�(Ω−pX ⊗L)) = Hq(P1,OP1(2+2p))⊗H0(X,Ω−p⊗L), it suffices to use resolutions
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of OP1(2 + 2p) and then tensor with H0(X,Ω−pX ⊗L), for p = −2,−1, 0. We use the usual Čech

resolution, given by Sx0×Sy0 → Sx0y0 , where S = k[x0, y0] and that, when restricted to rational

functions of a given degree l, it computes the cohomologies of OP1(l) (see e.g. [Har77, §III.5.1]).

We have

(Sx0y0)−2 ⊗H0(X,Ω2
X ⊗ L) (Sx0y0)0 ⊗H0(X,ΩX ⊗ L) (Sx0y0)2 ⊗H0(X,L)

(Sx0 × Sy0)−2 ⊗H0(X,Ω2
X ⊗ L) (Sx0 × Sy0)0 ⊗H0(X,ΩX ⊗ L) (Sx0 × Sy0)2 ⊗H0(X,L).

f f

h

f

h

f

h

Write H0(X,Ω2
X⊗L) =

⊕
l>k Vd1⊗· · ·⊗Vdk−2⊗· · ·⊗Vdl−2⊗· · ·⊗Vdn and H0(X,ΩX⊗L) =⊕

i Vd1 ⊗ · · · ⊗ Vdi−2 ⊗ · · · ⊗ Vn, so that the map K−2 → K−1 is
∑
fkl, where each fkl is

multiplication by sl onto the k-th component and multiplication by −sk onto the l-th component.

The map t : K−1 → K0 is
∑
ti where ti is multiplication by si. Recall si = p2

0i = (x0yi−xiy0)2.

Let u ∈ (Sx0y0)−2 ⊗ (Vd1 ⊗ · · · ⊗ Vdk−2 ⊗ · · · ⊗ Vdl−2 ⊗ · · · ⊗ Vdn). We have fkl(u) =

(. . . , sku, . . . ,−slu, . . .), with zeros in the remaining coordinates. Write

u =
P

xm0
+

Q

ym0
+

R

x0y0

for some polynomials P , Q, R, whose homogeneous degrees with respect to x0, y0 are m − 2,

m−2, 0, respectively. Then sku = h(v) for some v ∈ (Sx0×Sy0)0⊗ (Vd1⊗· · ·⊗Vdl−2⊗· · ·⊗Vn),

and we can choose

v =

(
Q
sk
xm0

+R
x2
ky0

x0
−Rxkyk,−P

sk
ym0
−Rx0y

2
k

y0
+Rxkyk

)
.

Similarly, we find v′ such that −slu = h(v′). To find d−2,0
2 (u) we then need to compute f(v) +

f(v′) = slv + skv
′. We get slv + skv

′ = (b, b), where

b = R

(
y0

x0
(slx

2
k − skx2

l ) + skxlyl − slxkyk
)
.

Simplifying we get b = R(x0yl−xly0)(x0yk−xky0)(xlyk−xkyl) = p0lp0kplkR. Now H0(P1×X,V)

is identified with the diagonal of (Sx0 × Sy0)2 ⊗ H0(X,L) so, if we call v̄ ∈ E−2,0
2 the class

represented by v, we have d−2,0
2 (v̄) = p0lp0kplkR, a multiple of p0lp0kplk. If v̄ was invariant, then

d−2,0
2 (v̄) is a linear combination of graphs having p0lp0kplk as a subgraph, this is, graphs that

have a central cycle w0, wl, wk of length three:

w0

wl

wk

Therefore, modulo im(t1), every J ∈ F′(2,d1,...,dn) is a linear combination of graphs of the

form p0lp0kplkR. Then it suffices to show that all such graphs are in the image of t1. Given
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J = p0lp0kplkR, call J ′ ∈ F′(0,d1,...,dn) the graph obtained by replacing the two edges w0 → wk,

w0 → wl by an extra wl → wk, this is, J ′ = p2
lkR. Observe that a 2-coloring of J ′ would need to

have c(wk) 6= c(wl), so it would give a 2-coloring on J . Since L has no strictly semi-stable locus,

J and J ′ do not admit a 2-coloring and by Remark 2.5.20 J ′ must contain some odd cycle, say

(wi1 , . . . , wir ). Note that any two vertices that are adjacent on J ′ are adjacent on J too, so in

fact (wi1 , . . . , wir ) is an odd cycle in J , that is not central. Apply the Plücker relationwl wi1

wk wi2

 =

wl wk

wi1 wi2

+

wl wi1

wi2 wk


or

w0

wk

wl wi1

wi2

=

wk

wl wi1

wi2

+

wk

wl wi1

wi2

to get J = H + K, where H contains the cycle w0, wk, wi2 , . . . , wir , wi1 , wl and K contains

the cycle w0, wl, wi2 , . . . , wir , wi1 , wk, both of even length r + 3. By Lemma 2.5.21, J ∈ im(t1).

We conclude t1 is surjective.

Next, we investigate the map t2 from (2.5.10). According to the splitting S2g∨ = V4 ⊕ V0

we write t2 = (t, t′), and further t =
∑
ti, t′ =

∑
t′i, where ti : F′(2,d1,...,di−2,...,dn) → F′(4,d1,...,dn)

and t′i : F′(2,d1,...,di−2,...,dn) → F′(0,d1,...,dn). Let us describe these maps in terms of graphs with

vertices {w0, w1, . . . , wn}.

Lemma 2.5.22. Let J be a graph in F′(2,d1,...,dn). Write J as a polynomial, J = p0kp0lH. Then

ti(J) = p2
0iJ , while t′i(J) = 2

3pikpilH. This is, ti adds a double edge w0 → wi to the graph while,

up to a constant, t′i replaces the edges w0 → wk, w0 → wl by wi → wk and wi → wl:

w0 wi 7→
w0 wi ⊕ w0

wi

Proof. By the explicit description of F̄ · from (2.5.3), we know ti is multiplication by (x0yi −

xiy0)2 = p2
0i, which corresponds to adding two edges, both from w0 to wi.

Consider the splitting S2g∨ = V4⊕ V0 obtained from (2.5.2). Here V0 is the one-dimensional

vector space with the trivial action. The projection π : S2g → V0 is the unique g-equivariant

map that satisfies π ◦ ı = IdV0 , where ı : V0 ↪→ S2g∨ is the inclusion from (2.5.2), namely, ı

is multiplication by X0Z0 − Y 2
0 . We find π explicitly, and it is defined as follows: for P =

αY 2
0 + βX0Z0 + . . . ∈ S2g∨, π(P ) = 1

3 (2β − α). It is easy to check that π is indeed a g-

equivariant map: observe, for instance, that E · (X0Y0) = F · (Y0Z0) = −X0Z0 − 2Y 2
0 , and
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π(−X0Z0 − 2Y 2
0 ) = 0. Indeed, this together with the fact that all monomials other than X0Z0

and Y 2
0 map to zero ensures that π(g ·P ) = 0 ∀g ∈ g, P ∈ S2g∨, so π is a map of representations.

Further, we see that π(X0Z0 − Y 2
0 ) = 1, and then π ◦ ı = IdV0

. By uniqueness, π must be the

desired map.

Now look at t′ =
∑
t′i. Each t′i is given by multiplication by x2

iZ0−2xiyiY0 +y2
iX0 followed

by the projection π from S2g∨. Suppose J ∈ (V2 ⊗ Vd1 ⊗ · · · ⊗ Vdi−2 ⊗ · · · ⊗ Vdn)PGL2 =

F′(2,d1,...,di−2,...,dn) is a directed graph, written as J = (Ax2
0 +Bx0y0 +Cy2

0)H = (AX0 +BY0 +

CZ0)H for some polynomials A,B,C and H. Multiplying by x2
iZ0−2xiyiY0 +y2

iX0 and looking

at the terms involving X0Z0 and Y 2
0 , we find t′i(J) = 2

3 (Ax2
i + Bxiyi + Cy2

i )H. Now, since J

is actually a PGL2-invariant section, it has to be of the form J = (x0yk − xky0)(x0yl − xly0)H.

That is, J is a graph where the two edges coming from w0 are w0 → wk and w0 → wl (up to

sign). Then we have A = ykyl, B = −(ykxl + ylxk), C = xkxl and we compute

t′i(J) =
2

3
(xiyl − xlyi)(xiyk − xkyi)H.

That is, up to multiplication by 2/3, the map t′i precisely erases the edges w0 → wk, w0 → wl,

and replaces them by wi → wk, wi → wl.

Since multiplying everything in F′(0,d1,...,dn) by a constant does not change the image of

the map t2, from now on we just ignore the constant 2/3 appearing in t′. Now we can prove

Proposition 2.5.9.

Proof of Proposition 2.5.9. Write t2 = (t, t′), according to the decomposition in (2.5.10). By

Corollary 2.5.12, t is surjective. Then it suffices to show that, for any graph H ∈ F′(0,d1,...,dn) =

F′(d1,...,dn), we have (0, H) ∈ im(t2).

Step 1. Let J be a graph in F′(4,d1,...,dn) having a subgraph B of the form

B1,2,3 =

w0 w1 w2 w0 w0

w1 w2 w0 w3 w3

 .
That is, B1,2,3 has a cycle (w0, w1, w2) and a double edge between w0 and w3 (and similarly,

Bi1,i2,i3 denotes a permutation of indices in the expression above).

B1,2,3 =
w0

w1

w2

w3

Then we show (J, 0) ∈ im(t2), or in other words, J ∈ t2(ker t′). For this, write J = B1,2,3H

and let P = (w0, w1, w2) ∈ F′(2,2,2,0,...,0) and P ′ = (w0, w3, w1) ∈ F′(2,2,0,2,...,0). We see that

t2(PH − P ′H) = (B1,2,3H −B3,1,2H, 0), this is, B1,2,3H ≡ B3,1,2H mod t2(ker t′).
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w0

w1

w2

w3
− w0

w1

w2

w3
7→

w1

w2

w3
−

w1

w2

w3
⊕ 0

On the other hand, take B1,2,3 and apply the Plücker relation to the edgesw0 w1

w3 w2


to obtain B1,2,3 = B3,2,1 +B1,3,2.

w1

w2

w3
=

w1

w2

w3
+

w1

w2

w3

Also, we know B1,2,3 = −B2,1,3 by reversing the arrows. Combining all these, we get that

B1,2,3H ≡ B3,2,1H + B1,3,2H ≡ 2B3,2,1H ≡ −2B2,3,1H ≡ −2B1,2,3H mod t2(ker t′). Thus we

obtain 3B1,2,3H ∈ t2(ker t′), so (J, 0) ∈ im(t2).

Step 2. Let J be a graph in F′(4,d1,...,dn) having a subgraph C of the form

C1,...,r =

w0 w1 w2 w0 w3 · · · wr

w1 w2 w0 w3 w4 · · · w0


for r odd. That is, C1,...,r has cycles (w0, w1, w2) and (w0, w3, . . . , wr).

C1,...,r =

w1

w2

w3w4

wr

Then we see (J, 0) ∈ im(t2). Indeed, by Lemma 2.5.21, the even cycle (w0, w3, . . . , wr) can be

written as a sum of graphs having double edges coming from w0. Using this, C1,...,r is written as

a sum of graphs containing subgraphs of the form B from Step 1. By Step 1, we get J ∈ t2(ker t′).

Step 3. Let J be a graph in F′(4,d1,...,dn) having a subgraph B of the form

B1,...,r =

w0 w1 · · · wr−1 w0 w0

w1 w2 · · · w0 wr wr

 (2.5.11)

with r odd. That is, B1,...,r has an odd cycle (w0, . . . , wr−1) and a double edge between w0 and

wr.
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=B1,...,r wr

w1

w2

w3

w0

We show (J, 0) ∈ im(t2). If r = 3, this is Step 1. Now suppose this is true for r − 2. Write

J = C1,...,rH and do the Plücker relation to the edgesw0 w1

wr w2


to obtain B1,...,r = Br,2,...,r−1,1 + C, where C is a graph of the form given in Step 2.

wr

w1

w2

w3

w0 = wr

w1

w2

w3

w0
+ wr

w1

w2

w3

w0

Therefore, B1,...,rH ≡ Br,2,...,r−1,1H mod t2(ker t′). On the other hand, if we use Plücker onw1 w3

w2 w4


we get B1,...,r = −B1,3,2,4,...,r +B′, where B′ is a graph containing B1,4,5,...,r as a subgraph.

wr

w1

w2

w3

w4

w0 = wr

w1

w2

w3

w4

w0
+ wr

w1

w2

w3

w4

w0

By induction hypothesis, B1,...,rH ≡ −B1,3,2,4,...,rH mod t2(ker(t′)).

Now, using the same argument as in Step 1, let P = (w0, . . . , wr−1), P ′ = (w0, w2, . . . , wr),

and we see that t2(PH − P ′H) = (B1,...,rH − B2,...,r,1H, 0), so that B1,...,rH ≡ B2,...,r,1H

mod t2(ker t′).

w0

w1

w2

wr−1

wr − w0

w1

w2

wr−1

wr
7→ w0

w1

w2

wr−1

wr − w0

w1

w2

wr−1

wr
⊕ 0

We combine all the equivalences above to obtain B1,...,rH ≡ B2,1,3,...,rH ≡ −B1,2,3,...,rH

mod t2(ker t′), and then (J, 0) ∈ im(t2).
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Step 4. Now let H ∈ F′(0,d1,...,dn) be any graph. Then (J,H) ∈ im(t2) for some J containing a

subgraph B of the form (2.5.11) from Step 3. Indeed, since H does not admit a 2-coloring, by

Remark 2.5.20 it must contain an odd cycle, say C = (w1, . . . , wr) is a subgraph of H, H = CP

for some P . But then (B1,...,rP,H) = t2(C ′P ), where C ′ is the cycle (w0, w1, . . . , wr−1).

w0

w1

w2

wr−1

wr 7→ w0

w1

w2

wr−1

wr ⊕ w0

w1

w2

wr−1

wr

The graph J = B1,...,rP is in t2(ker t′) by Step 3. Finally, since both (J,H) and (J, 0) ∈

im(t2), we obtain (0, H) ∈ im(t2), so this concludes the proof.

2.5.4 Main result

Now we can prove the main result.

Proof of Theorem 2.1.1. If Xus has codimension 1, then we are done by Lemma 2.5.5 and the

fact that every smooth projetive toric variety satisfies Bott vanishing (see the references given

in §1 or Theorem 2.4.6). Otherwise, by Lemma 2.5.6 it suffices to show vanishing for ΩjY ⊗ L,

where L is the descent of the polarization L. If j = 0, then Hi(Y,L) = Hi(X,L)G which is

certainly 0 for i > 0. Assume j ≥ 1.

From Corollary 2.2.2, Hi(Y,ΩjY ⊗L) = Hi(X,ΛjLX⊗L). This is zero for i 6= 0, j by Corollary

2.5.3. By Lemma 2.3.1, we need to show Hj(F ·)G = 0, where F · is given by (2.3.1). That is, we

need to show that the map

(H0(X,ΩX ⊗ L)⊗ Sj−1g∨)G
tj−→ (H0(X,L)⊗ Sjg∨)G

is surjective for every j. Propositions 2.5.8 and 2.5.9 show this is true for j = 1 and j = 2. Now

we do induction on j. Let j ≥ 3. Consider the short exact sequence from (2.5.2), giving rise to

the splitting Smg∨ = V2m ⊕ Sm−2g∨ for m ≥ 2. We use (2.5.2) for m = j and m = j − 1. Take

its pullback to X × P(g) and tensor with the pullbacks of ΩX ⊗L and L, respectively. Then we

have a commutative diagram

0 (ΩX ⊗ L)�OP(g)(j − 3) (ΩX ⊗ L)�OP(g)(j − 1) (ΩX ⊗ L)�OP1(2j − 2) 0

0 L�OP(g)(j − 2) L�OP(g)(j) L�OP1(2j) 0.

The vertical maps are given by the section s ∈ H0(X × P(g), TX � g∨) defining the map

ΩX → g∨, as usual. Taking global sections we see that the map H0(X,ΩX ⊗ L)⊗ Sj−1g∨
dj−→
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H0(X,L)⊗ Sjg∨ splits as

H0(X,ΩX ⊗ L)⊗ V2(j−1) ⊕ H0(X,ΩX ⊗ L)⊗ Sj−3g∨

H0(X,L)⊗ V2j ⊕ H0(X,L)⊗ Sj−2g∨.

t
t′ tj−2

By induction hypothesis, the restriction tGj−2 of tj−2 to invariant sections is surjective, while

the restriction tG is surjective by Corollary 2.5.12. As a consequence, tGj = (tG, t′G + tGj−2) is

surjective. This completes the proof.

2.6 A note on Fano varieties

As mentioned in the beginning of the present Chapter, (non-toric) Fano varieties satisfying

Bott vanishing are particularly interesting. We have TY = Ωn−1
Y ⊗K∨Y , so if K∨Y is ample and Y

satisfies Bott vanishing, then H1(Y, TY ) must be zero, and Y must be rigid. In particular, Bott

vanishing holds for at most finitely many smooth complex Fano varieties in each dimension.

If Y = (P1)n //PGL2 is as in Theorem 2.1.1 and it is non-toric, then PicY is the G-ample

cone of (P1)n (see the proof of Lemma 2.5.6) and KY is the descent of KX = OX(−2, . . . ,−2). If

Y is Fano, then by Lemma 2.5.6 it has to be the quotient (P1)n //OX(2,...,2) PGL2. Observe that

OX(2, . . . , 2) has no strictly semi-stable locus if and only if n is odd. In other words, Theorem

2.1.1 provides us with exactly one non-toric example of a Fano variety satisfying Bott vanishing

in each even dimension. In the case of dimension 2, this was the quintic del Pezzo surface.

An interesting non-example comes from a Fano threefold that contains the quintic del Pezzo

surface as a hyperplane section. Let M be the Fano threefold over C of index 2 and degree 5,

with Picard number 1. The canonical line bundle is KM = OM (−2), where OM (1) is the ample

generator of the Picard group. M is a rigid Fano threefold, isomorphic to a linear section of the

Grassmannian Gr(2, 5) ⊂ P9 by a subspace P6 ⊂ P9. The quintic del Pezzo surface V can be

realized as a divisor in the linear system |OM (1)|. It can be computed that the Hodge numbers

of M are h0,0(M) = h1,1(M) = 1 and zero otherwise, in particular h1,2(M) = 0. The description

of M can be found in [KPS18, §5.1] or [Muk88, §4].

This variety M does not satisfy Bott vanishing. Indeed, we claim that H1(M,Ω2
M (1)) has di-

mension at least 3. Observe that by Serre duality, this is the same as saying that H2(M,ΩM (−1))

has dimension ≥ 3. To show this, we follow a strategy similar to [JR07, Lemma 1.2], using the

dualized tangent sequence

0→ OV (−1)→ ΩM |V → ΩV → 0 (2.6.1)
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and the ideal sequence tensored with ΩM

0→ ΩM (−1)→ ΩM → ΩM |V → 0. (2.6.2)

By the Kodaira-Akizuki-Nakano vanishing theorem [Laz04, Theorem 4.2.3], we know that

H1(M,ΩM (−1)) = 0. Using the fact that h0,0(M) = h1,1(M) = 1, h1,2(M) = 0 and sequence

(2.6.2), we get an exact sequence

0→ H1(M,ΩM )→ H1(V,ΩM |V )→ H2(M,ΩM (−1))→ 0,

so h2(ΩM (−1)) = h1(ΩM |V )− 1. It suffices to check that h1(ΩM |V ) ≥ 4.

Now take sequence (2.6.1) and observe OV (−1) = KV by adjunction. Since h2,1(V ) =

h1,2(V ) = 0, we get

0→ H1(V,ΩM |V )→ H1(V,ΩV )→ H2(V,KV )→ H2(V,ΩM |V )→ 0.

From the Hodge numbers of V , h1,1(V ) = 10− 5 = 5, h2,2(V ) = 1, we see

h2(ΩM |V ) + 5 = h1(ΩM |V ) + 1.

In particular, h1(ΩM |V ) ≥ 4, proving the claim and the fact that M does not satisfy Bott

vanishing.

2.7 Further open questions

It is worth asking whether similar techniques can be applied to find vanishing results in

other spaces. The fact that we can recover a new proof for the toric case seems to be especially

encouraging.

A question that arises immediately is what can be said about GIT quotients of X = (Pm)n

by the action of PGLm+1. The main hurdle would occur when dealing with chain complexes of

invariant sections of the form H0(X,OX(d1, . . . , dn))PGLm+1 . Gelfand-MacPherson correspon-

dence is still valid, and these sections occur in the coordinate ring of a Grassmannian Gr(m+1, n),

but it is unclear a priori how to manage them, since here we cannot use the description of sl2-

representations. In particular, we do not have the description of these sections as graphs. It

would be interesting to see what can be said in this and other similar cases.

Another interesting question is the following: If f : X → Y is a birational morphism of

smooth projective varieties and X satisfies Bott vanishing, is it true that Y satisfies Bott van-

ishing? In [HK99], Hu and Keel show that any such morphism can be realized as a variation of

GIT. It would be good to know if the methods used can be applied to study this question.
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The theory of windows [HL15,BFK19] does not only allow to compute cohomology spaces in

GIT quotients via quantization, but it provides a description of the whole derived category of

X //G, and its relationships with the derived category of the quotient stack [X/G]. As we have

seen an application to toric varieties, it is worth asking whether something can be said about

the derived categories of other Mori Dream Spaces. As we know by Hu and Keel’s work [HK00],

a Mori Dream Space is the GIT quotient of the spectrum of its Cox ring. Halpern-Leistner’s

results can be applied to the GIT quotient of a singular variety X, provided that X satisfies

a technical condition. This condition is stated in terms of a Kempf-Ness stratification of the

unstable locus. Namely, given a one-parameter subgroup λ, its fixed locus Z and the closed

immersion σ : Z ↪→ S into the corresponding Kempf-Ness stratum S, it is required that the

restriction of the relative cotangent complex σ∗L·S/X have non-negative weights with respect to

λ (see [HL15, §2.1] for details). It would be relevant to determine which Mori Dream Spaces

have a Cox ring that satisfies this hypothesis, and then apply the theory of windows to study

those spaces.
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C H A P T E R 3

MODULI OF BUNDLES ON A CURVE

3.1 Moduli of slope-stable rank-two bundles on a curve.

A vector bundle V over a smooth projective curve C is said to be slope-semistable (or just

semistable) is for every nontrivial vector sub-bundle W ⊂ V one has

degW

rkW
≤ deg V

rkV
.

The bundle is stable if the inequality is strict. For a given line bundle Λ, there is a moduli space

MC(2,Λ) parametrizing semi-stable vector bundles on rank 2 on C [Ses67]. If deg Λ is odd, this

is a smooth projective variety and it carries a universal family E , also called a Poincaré bundle

[Ram73, Definition 2.10], and its Picard group is isomorphic to Z [DN89].

Remark 3.1.1. The space MC(2,Λ) only depends on the parity of deg Λ. Indeed, twisting V by

a line bundle Λ′ produces a vector bundle V ′ with determinant Λ⊗ (Λ′)2. We will be interested

in the case that Λ is of odd degree.

Fix a line bundle Λ of degree one. If C has genus g ≥ 2, it is known that there is a fully faithful

functor from the derived category of C to that of MC(2,Λ). This embedding is achieved by the

Fourier-Mukai transform ΦE associated to the Poincaré bundle E on C ×MC(2,Λ), normalized

so that Θ = c1(E|x×M ) is an ample generator of PicMC(2,Λ). This result was proved by

Fonarev and Kuznetsov [FK18] in the case of a generic curve, and by Narasimhan [Nar17,Nar18]

in the general case. Moreover, the blocks given by Θ−1,OMC(2,Λ),ΦE(D
b(C)) constitute the

start of a semi-orthogonal decomposition. Narasimhan conjectured that Db(MC(2,Λ)) has a

semi-orthogonal decomposition consisting of blocks of the form

Db(pt), Db(pt), Db(C), Db(C), . . . , Db(C(g−2)), Db(C(g−2)), Db(C(g−1)) (3.1.1)

where C(i) denotes the i-th symmetric power of C. In [Lee18], Lee proves a decomposition

of the motive of MC(2,Λ) that is compatible with this conjecture. In [BM19], Belmans and

Mukhopadhyay find four terms that are the start of a semi-orthogonal decomposition of MC(2,Λ)

for a curve of genus g � 0.
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3.2 Thaddeus’ spaces of bundles on a curve.

Let C be a smooth projective curve of genus at least 2 over C. In [Tha94], Thaddeus intro-

duces moduli spaces Mσ(Λ) that parametrize pairs (E, φ), where E is a rank-two vector bundle

with determinant Λ, and φ ∈ H0(E) is a section, satisfying the following stability condition: for

every line subbundle L ⊂ E, one must have

degL ≤1

2
degE − σ if φ ∈ H0(L),

degL ≤1

2
degE + σ if φ /∈ H0(L).

It can be shown that for a given line bundle Λ of degree d and σ ∈ (0, d/2] the moduli space

Mσ(Λ) exists as a projective variety and, in the case there is no strictly semi-stable locus, it is

smooth and it carries a universal bundle F with a universal section φ̃ : C ×Mσ(Λ)→ F .

The moduli spaces Mσ(Λ) can be obtained as GIT quotients as follows. If d� 0, a bundle E

in a stable pair is generated by global sections, and we call χ = H0(E) = d+2−2g. Then Mσ(Λ)

is a GIT quotient of U × PCχ by SLχ, where U ⊂ Quot is the locally closed subscheme of the

Grothendieck Quot scheme [Gro95] corresponding to locally free quotients OχC � E inducing an

isomorphism s : Cχ ∼−→ H0(E) and such that Λ2E = Λ. Such an isomorphism s : Cχ ∼−→ H0(E)

induces a map Λ2Cχ → H0(Λ), and we get an inclusion U×PCχ ↪→ PHom(Λ2Cχ, H0(Λ))×PCχ,

where a quotient s : OχC � E on the left is sent to the induced map in the first coordinate. Then

Mσ(Λ) can be seen as the GIT quotient of a closed subset of PHom×PCχ by SLχ, where the

linearization is given by O(χ+ 2σ, 4σ). Here we write PHom for PHom(Λ2Cχ, H0(Λ)).

For arbitrary d, we pick any effective divisor D on C with degD � 0, and Mσ(Λ) can be

seen as the closed subset of Mσ(Λ(2D)) consisting of pairs (E, φ) such that φ|D = 0. This way,

Mσ(Λ) a GIT quotient by SLχ, with χ′ = d + 2 − 2g + 2 degD, now of the closed subset of

U ′ × PCχ
′

determined by the condition that φ vanishes along D. [Tha94, §1].

Remark 3.2.1. Scalar matrices in SLχ act trivially on U × PCχ, so the action factors through

the quotient SLχ → PGLχ. If we replace O(χ + 2σ, 4σ) by its χ-th power, this bundle carries

a PGLχ-linearization and Mσ(Λ) can also be written as a GIT quotient X //PGLχ. For the

quotient stacks we will always use PGLχ instead of SLχ, that is, X will denote [X/PGLχ].

Thaddeus also describes how Mσ(Λ) varies with σ. For fixed Λ, these spaces are all GIT

quotients of the same scheme, with different stability conditions. The GIT walls occur when

σ ∈ d/2 + Z, and for 0 ≤ i ≤ w = b(d − 1)/2c we have different GIT chambers with moduli

spaces M0,M1, . . . ,Mw, where Mi = Mσ(Λ) for σ ∈ (max(0, d/2 − i − 1), d/2 − i). These Mi

are smooth projective rational varieties of dimension d + g − 2. Indeed, M0 = PH1(Λ−1) is a

projective space, M1 is a blow-up of M0 along a copy of C embedded by the complete linear
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system of ωC ⊗ Λ, and the remaining ones are small modifications of M1.

More precisely, for each 0 ≤ i ≤ w = b(d−1)/2c there are projective bundles PW+
i and PW−i

over the symmetric product C(i), of (projective) ranks d + g − 2i − 2, i − 1, respectively, with

embeddings PW+
i ↪→Mi and PW−i ↪→Mi−1, and such that PW+

i parametrizes the pairs (E, φ)

appearing in Mi but not in Mi−1, while PW−i parametrizes those appearing in Mi−1 but not in

Mi. We have a diagram

M̃2 M̃3 M̃w

M1 M2 · · · Mw

M0 N

(3.2.1)

where M̃i is both the blow-up of Mi−1 along PW−i and the blow-up of Mi along PW+
i , N is

the moduli space of ordinary slope-semi-stable vector bundles and the map Mw → N is an

“Abel-Jacobi” map with fiber PH0(E) over a vector bundle E. If d ≥ 2g − 1 this last map is

surjective, and if d = 2g − 1 then is a birational morphism (see [Tha94, §3] for details).

The Picard group of M1 = BlCM0 is generated by a hyperplane section H in M0 = Pd+g−2

and the exceptional divisor E1. Since the maps Mi 99KMi+1 are small birational modifications

for each i ≥ 1, there are natural isomorphisms PicM1
∼= PicMi, i ≥ 1.

Notation 3.2.2. For each m, n, O1(m,n) will denote the line bundle OM1
((m+n)H−nE1), and

Oi(m,n) will denote the image of O1(m,n) under the isomorphism PicM1
∼= PicMi.

Suppose d� 0. Then for σ /∈ d/2 + Z the universal bundle F on Mi descends from F(1) on

U × PCχ × C, where Oχ � F is the universal quotient over U × C, and the universal section

φ̃ comes from the universal section of F(1). Let π : C × Mi → Mi be the projection. For

every i ≥ 1, the line bundle detπ!F descends from O(0, χ) on PHom×PCχ. On M1, detπ!F

corresponds to OM1((g− d− 1)H + (d− g)E1). For x ∈ C, call Fx = F |{x}×M . The line bundle

detFx = Λ2Fx does not depend on x, and it is the descent of O(1, 2). On M1, it corresponds to

OM1
(E1 −H) [Tha94, §5].

Definition 3.2.3. If V is a vector bundle over Y × T and π : Y × T → T is the projection,

the determinant of cohomology of V is defined as the line bundle detπ!V . It can be shown

that this definition extends to a morphism from the K-group, K(Y × T ) → PicY , so that if

0→ V ′ → V → V ′′ → 0 is a short exact sequence of sheaves, then detπ!V ∼= detπ!V
′⊗detπ!V

′′

[KM76].

Notation 3.2.4. We will denote ζ−1 := detπ!F = Oi(−1, g − d), and ΛM := Λ2Fx = Oi(0,−1).

Also, call θ := ζ2 ⊗ ΛχM = Oi(2, d− 2), where χ = d+ 2− 2g (cf. [Nar17, Proposition 2.1]).
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3.2.1 Semi-orthogonal blocks on M1

As before, let E1 ⊂ M1 be the exceptional locus of the blow-up M1 → M0 along C ⊂ M0.

By Orlov’s blow-up formula (Theorem 1.2.15), for any integer k we have a fully faithful functor

Φk : Db(C) ↪→ Db(M1), corresponding to the Fourier-Mukai transform given by OZ(kE1), where

Z = C ×C E1. Observe this is supported precisely on the zero locus of the universal section

φ̃ : OC×M1 → F , and it is a local complete intersection. Indeed, pairs (E, φ) in PW+
1 = E1

consist of extensions

0→ OC(x)→ E → Λ(−x)→ 0

with the canonical section φ ∈ H0(C,OC(x)) vanishing on x ∈ C [Tha94, §3.2], and in fact φ̃

cannot have zeros outside this locus, since M1\E1 consists of extensions 0→ OC → E → Λ→ 0

together with a (constant) section φ ∈ H0(C,OC) [Tha94, §3.1]. Therefore we can write a Koszul

resolution [
Λ2F∨ → F∨

φ̃−→ OC×M1

]
∼−→ OZ . (3.2.2)

Now consider a different functor, determined by the universal bundle F on C ×M1 and the

corresponding Fourier-Mukai transform ΦF = p∗(q
∗(·)⊗ F ) : Db(C)→ Db(M1).

Proposition 3.2.5. The functor ΦF is fully-faithful.

We need a few lemmas first.

Lemma 3.2.6. Suppose 0 < k ≤ d+g−2 and 0 ≤ l ≤ d+g−4. Then Hi(M1,O1(−kH+lE1)) =

0 ∀i ≥ 0.

Proof. Consider the short exact sequence

0→ OM1 → OM1(E1)→ Oπ(−1)→ 0, (3.2.3)

where E1 = PW+
1 and π : E1 → C is the Pr-bundle, r = d + g − 4. OM1

(−kH) is Γ-acyclic

provided 0 < k ≤ d + g − 2 = dimM1. Then twisting (3.2.3) by OM1(−kH) and taking a

long exact sequence in cohomology gives Γ-acyclicity of OM1(−kH + E1) for such k. Similarly,

twisting by powers of OM1
(E1) and using induction, we get that RΓ(OM1

(−kH + lE)) = 0 as

well, since Oπ(−l) is Γ-acyclic for 0 < l ≤ d+ g − 4.

Lemma 3.2.7. RΓ(Λ−1
M ) = 0.

Proof. Recall Λ−1
M = OM1(H − E1). Since the embedding C

|ωC⊗Λ|
↪−−−−−→ M0 = P3g−3 is given by

a complete linear system [Tha94, §3.4], the image of C is not contained in any hyperplane and
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thus H0(M1,OM1
(H − E1)) = 0. Now use the exact sequence

0→ OM1
(H − E1)→ OM1

(H)→ OE1
(H)→ 0. (3.2.4)

Observe that Hi(M1,OE1
(H)) = Hi(C,ωC ⊗ Λ), because C ↪→ M0 is given by |ωC ⊗ Λ|. Since

degωC ⊗ Λ > degωC , we have H1(C,ωC ⊗ Λ) = 0. On the other hand, H0(M1,OM1(H)) =

Cd+g−1 and H>0(M1,OM1
(H)) = 0. Taking a long exact sequence in cohomology from (3.2.4)

we get

0→ H0(M1,OM1
(H))→ H0(C,ωC ⊗ Λ)→ H1(M1,Λ

−1
M )→ 0 (3.2.5)

and Hi(M1,Λ
−1
M ) = 0 for i 6= 1. Now by Riemann-Roch H0(C,ωC ⊗ Λ) = Cd+g−1, so the first

map in (3.2.5) is an isomorphism and H1(M1,Λ
−1
M ) = 0, proving the lemma.

Lemma 3.2.8. Let x ∈ C. Then RΓ(F∨x ) = 0, while RΓ(Fx) = C, with H0(M1, Fx) = C given

by restriction of the universal section φ̃ : OC×M1
→ F to x×M1.

Proof. Consider the resolution (3.2.2) and restrict to x×M1 to get

[
Λ−1
M → F∨x → OM1

] ∼−→ OPrx (3.2.6)

where Prx is the fiber over x ∈ C ⊂ M0 along the blow-up π : M1 → M0. We twist by

ΛM = OM1(E1 −H) to get [
OM1

φ̃−→ Fx → ΛM

]
∼−→ OPrx(−1), (3.2.7)

using the facts that F∨x ⊗ ΛM = Fx and that OM1(H) restricts trivially to the fiber OPrx .

Since the right hand side is Γ-acyclic we see that, applying RΓ or, equivalently, taking a long

exact sequence in cohomology, yields H0(M1, Fx) = C, H>0(M1, Fx) = 0. In other words,

RΓ(Fx) = C. Further, the isomorphism H0(M1,OM1)
φ̃−→ H0(M1, Fx) from (3.2.7) is provided

precisely by the universal section.

To show that RΓ(F∨x ) = 0, we apply RΓ to (3.2.6). We know that RΓ(OM1
) = RΓ(OPr ) =

C, while RΓ(Λ−1
M ) = 0 by Lemma 3.2.7. Then the claim will be proved if we show that

H0(M1, F
∨
x ) = 0, as this would also imply that H1(M1, F

∨
x ) = 0. Any global section s ∈

H0(M1, F
∨
x ), composed with F∨x → OM1 gives a constant section OM1 → OM1 vanishing along

the locus Z, hence identically 0. But then by exactness of 0 → Λ−1
M → F∨x → OM1

, the section

s : OM1
→ F∨x must lift to a section OM1

→ Λ−1
M . But Λ−1

M has no global sections, again by

Lemma 3.2.7.

Proof of Proposition 3.2.5. By Bondal-Orlov’s criterion (Theorem 1.2.14), in order to show fully

faithfulness of ΦF we only need to consider the sheaves ΦF (Ox) = Fx for closed points x ∈ C.
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On the other hand, consider the functor Φ1 from Theorem 1.2.15. Observe that the Fourier-

Mukai kernel of Φ1 is OZ(E1), so we can compute Φ1(Ox) = ΦOZ(E1)(Ox) for a point x ∈ C by

restricting (3.2.2) to x ×M1 and twisting by OM1
(E1). As before, let Prx denote the fiber over

x ∈ C ⊂ M0 along the blow-up. The fact that OM1
(H) restricts trivially to this fiber implies

that both ΛM and OM1(E1) restrict to OPrx(−1) there and we get

ΦOZ(E1)(Ox) ∼= [OM1
→ Fx → ΛM ]

∼= OPrx(−1),

as in (3.2.7).

Since we already know that Φ1 is fully faithful, we have

HomDb(M1)(Φ1(Ox),Φ1(Oy)[i]) =


0 if x 6= y

0 if x = y and k 6= 0, 1

C if x = y and k = 0, 1.

(3.2.8)

But RHomDb(M1)(Φ1(Ox),Φ1(Oy)) ∼= RΓ◦RHom (Φ1(Ox),Φ1(Oy)) can also be obtained as fol-

lows: take RHom (Φ1(Ox),Φ1(Oy)) ∼= Φ1(Ox)∨⊗L Φ1(Oy) as an inner tensor product obtained

from the double complex
OM1 F∨x ⊗ ΛM ΛM

Λ−1
M ⊗ Fy F∨x ⊗ Fy Fy

Λ−1
M F∨x OM1

(3.2.9)

which produces the total complex

[
Λ−1
M → F∨x ⊕ F∨y → O⊕2

M1
⊕ (F∨x ⊗ Fy)→ Fx ⊕ Fy → ΛM

] ∼= Φ1(Ox)∨ ⊗L Φ1(Oy), (3.2.10)

again using Fx ∼= F∨x ⊗ ΛM .

The hypercohomologyRΓ of (3.2.10) can be computed taking a spectral sequence, by applying

RΓ to each individual term. On the other hand, we know that RΓ of this complex is given by

(3.2.8). We will combine these to show that

RΓ(F∨x ⊗ Fy) =


0 if x 6= y

C⊕ C[−1] if x = y.

By Lemma 3.2.6, RΓ(ΛM ) = 0, and by Lemma 3.2.7 RΓ(Λ−1
M ) = 0. Also, Lemma 3.2.8

computes hypercohomology of both Fx and F∨x . Summing up, applying RΓ to (3.2.10) yields a
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spectral sequence Ep,q2 of the form

...
...

...
...

...

0 0 H1(F∨x ⊗ Fy) 0 0

0 0 H0(OM1
)⊕2 ⊕H0(F∨x ⊗ Fy) H0(Fx)⊕H0(Fy) 0,

where the map H0(M1,OM1)⊕2 → H0(M1, Fx)⊕H0(M1, Fy) is the isomorphism C2 ∼−→ C2 given

by the universal section in each coordinate, by Lemma 3.2.8. Since this spectral sequence must

converge to (3.2.8), we must have that, if x 6= y, Hi(M1, F
∨
x ⊗ Fy) = 0 ∀i, while H0(M1, F

∨
x ⊗

Fx) = H1(M1, F
∨
x ⊗ Fx) = C and Hi(M1, F

∨
x ⊗ Fx) = 0 for i 6= 0, 1. This completes the

proof.

Let us denote by D the essential image of ΦF in Db(M1). By Proposition 3.2.5, D ∼= Db(C)

is an admissible subcategory of Db(M1) (cf. §1.2.1), and the same will be true for the image of

ΦF⊗p∗(L), where L is any line bundle on M1, since this image is just D ⊗ L. Also, the fact that

M1 is a rational variety ensures that Hi(M1,OM1) = 0 for i 6= 0, so that every line bundle on

M1 is an exceptional object. Moreover, if g ≥ 3 we can use these to find a sequence of blocks

Db(pt), Db(C), Db(pt), Db(C) that are part of a semi-orthogonal decomposition.

Proposition 3.2.9. Suppose d = 2g−1 and g ≥ 3 and call D = ΦF (Db(C)). Then the sequence

θ−1, D ⊗ ζ ⊗ θ−1, OM1
, D ⊗ ζ

is part of a semi-orthogonal decomposition of Db(M1).

Proof. All these are admissible subcategories by Proposition 3.2.5 and by the fact that line

bundles are exceptional objects on M1. Here by abuse of notation we write L for the full

triangulated subcategory 〈L〉. Since skyscraper sheaves Ox ∈ Db(C) of closed points are a

spanning class of Db(C) [Huy06, Proposition 3.17], by Lemma 1.2.8 all we need to check is that

the sequence of bundles

θ−1, Fx ⊗ ζ ⊗ θ−1, OM1
, Fy ⊗ ζ

is semi-orthogonal for every two closed points x, y ∈ C, that is, that there are no Ext groups

from right to left. Using RHom = RΓ ◦RHom , this is equivalent to showing that the following

objects are Γ-acyclic:

(a) F∨x ⊗ ζ−1

(b) Fx ⊗ ζ ⊗ θ−1
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(c) θ−1

(d) F∨y ⊗ ζ−1 ⊗ θ−1

(e) F∨x ⊗ Fy ⊗ θ−1

(f) F∨y ⊗ ζ−1.

Recall the definitions of ΛM , ζ and θ (see Notation 3.2.4). When d = 2g − 1, we have

ΛM = OM1
(−H + E1)

ζ = OM1(gH − (g − 1)E1)

θ = ζ2 ⊗ ΛM = OM1
((2g − 1)H − (2g − 3)E1).

We also see that θ−1⊗Λ−1
M ⊗ζ−1 = OM1

(−(3g−2)H+(3g−5)E1) = ωM1
, the canonical bundle.

Thus, by Serre duality, Γ-acyclicity of (d) F∨y ⊗ζ−1⊗θ−1 is equivalent to that of Fy⊗Λ−1
M = F∨y ,

and that was established in Lemma 3.2.8. Observe also that (f) is redundant with (a), which is

in turn equivalent to (b), simply because F∨x ⊗ ζ−1 = Fx ⊗ Λ−1
M ⊗ ζ−1 = Fx ⊗ ζ ⊗ θ−1.

Therefore, it remains to prove that (a) F∨x ⊗ζ−1, (c) θ−1 and (e) F∨x ⊗Fy⊗θ−1 are Γ-acyclic.

That RΓ(θ−1) = 0 follows from Lemma 3.2.6, since 0 < 2g− 1 ≤ 3g− 3 and 0 ≤ 2g− 3 ≤ 3g− 5

whenever g ≥ 2. For the remaining ones, we use the Koszul resolution (3.2.2) and its restriction

to x×M1. Twisting by ζ−1, we get[
ΛM1

⊗ ζ−1 → F∨x ⊗ ζ−1 → ζ−1
] ∼−→ OPrx(1− g),

where r = d + g − 4 = 3g − 5. The right hand side is Γ-acyclic, since g − 1 ≤ 3g − 5 provided

g ≥ 3. On the other hand, we see that ΛM ⊗ ζ−1 = OM1(−(g + 1)H + gE1) is Γ-acyclic by

Lemma 3.2.6, because g ≥ 3 ensures that both 0 < g+ 1 ≤ 3g− 3 and 0 ≤ g ≤ 3g− 5. Similarly,

we obtain that ζ−1 = OM1
(−gH + (g − 1)E1) is also Γ-acyclic, and therefore we conclude that

RΓ(F∨x ⊗ ζ−1) = 0.

Finally, to show that RΓ(F∨x ⊗ Fy ⊗ θ−1) = 0 for any two points x, y ∈ C, we use the

resolutions [
Λ−1
M → F∨x → OM1

] ∼−→ OPrx[
θ−1 → Fy ⊗ θ−1 → ΛM ⊗ θ−1

] ∼−→ OPry (2− 2g),

both of which follow from (3.2.2). The (derived) tensor product OPrx ⊗
L OPry (2 − 2g) can then

be computed as the total complex of

θ−1 Fy ⊗ θ−1 ΛM ⊗ θ−1

F∨x ⊗ θ−1 F∨x ⊗ Fy ⊗ θ−1 Fx ⊗ θ−1

Λ−1
M ⊗ θ−1 F∨y ⊗ θ−1 θ−1.

(3.2.11)
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All the terms in (3.2.11) other than F∨x ⊗Fy⊗θ−1 can be proved to be Γ-acyclic. For instance, we

already know that RΓ(θ−1) = 0, while ΛM ⊗ θ−1 = OM1(−2gH + (2g− 2)E1) and Λ−1
M ⊗ θ−1 =

OM1
(2− 2gH + (2g − 4)E1) can easily be seen to be Γ-acyclic from Lemma 3.2.6, given g ≥ 3.

Γ-acyclicity of F∨x ⊗ θ−1 is, by Serre duality, equivalent to Γ-acyclicity of (a) F∨x ⊗ ζ−1, which

has already been proved. And from

[
θ−1 → Fx ⊗ θ−1 → ΛM ⊗ θ−1

] ∼−→ OPrx(2− 2g)

we obtain RΓ(Fx ⊗ θ−1) = 0, since g ≥ 3 implies 2g − 2 ≤ 3g − 5 and so RΓ(OPrx(2− 2g)) = 0.

From this analysis we conclude that RΓ(F∨x ⊗ Fy ⊗ θ−1) = RΓ(OPrx ⊗
L OPry (2 − 2g)), so

the proposition will be proved if we show the right hand side is zero. If x 6= y, then OPrx and

OPry (2−2g) have disjoint supports, so the corresponding tensor product is zero. If x = y, observe

that, since OPrx
∼=
[
Λ−1
M → F∨x → OM1

]
, the (derived) dual O∨Prx is isomorphic to the (shifted)

complex OM1
→ Fx → ΛM concentrated in degrees 0, 1 and 2. Then

O∨Prx ⊗ Λ−1
M [2] = OPrx

and

OPrx ⊗
L OPrx(2− 2g) = RHom(OPrx ,OPrx(2− 2g)⊗ Λ−1

M [2])

= RHom(OPrx ,OPrx(3− 2g))[2].

But RHom(OPrx ,OPrx(3 − 2g)) = RΓPr (OPr (3 − 2g)) = 0 as long as 0 < 2g − 3 ≤ r = 3g − 5,

which is true in our case. This completes the proof.

3.2.2 Wall-crossing between the spaces Mi

Consider the diagram (3.2.1). The wall between two consecutive chambers Mi−1 and Mi

occurs at σ = d/2− i. The birational transformation Mi−1 99KMi is an isomorphism outside of

the loci PW−i ⊂Mi−1, PW+
i ⊂Mi, where W−i and W+

i are vector bundles over the symmetric

product C(i) of rank i and d+ g − 1− 2i, respectively. We have a diagram

M̃

Mi−1 = Mσ+ε Mσ−ε = Mi

Mσ

where M̃ is both the blow-up of Mσ+ε = Mi−1 along PW−i and the blow-up of Mσ−ε = Mi

along PW+
i . Mσ is a singular space, obtained from the contraction to C(i) of the exceptional

locus PW−i ×C(i) PW+
i ⊂ M̃ .
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When d � 0, Mσ±ε(Λ) and Mσ(Λ) are obtained as a GIT quotient of U × PCχ, with

χ = d + 2 − 2g. If we call L± the corresponding linearizations, we can write Mσ±ε(Λ) as

GIT quotients of X ⊂ U × PCχ, where X is the union of the three semi-stable loci, so that

X = Xss(L+) ∪ Xss(L−) t Xsss(L0) and Xsss(L0) = Xu(L+) ∩ Xu(L−). For L± there is no

strictly semi-stable locus and in fact PGLχ acts freely on the semi-stable locus [Tha94, §1.6], so

Xss //L± SLχ is isomorphic to the quotient stack Xss(L±) (cf. Remark 3.2.1). If d is arbitrary,

one can fix an effective divisor D on C of large degree so that these spaces are GIT quotients of

a closed subset X of U ′ × PCχ
′
, χ′ = d+ 2− 2g + 2 degD, determined by the condition that in

the pair (E′, φ′) the section φ′ vanishes along D, and a similar analysis can be done.

Using techniques from windows, and especially Theorem 1.5.1, we can obtain the following

result (cf. [Pot16, Corollary 8.1]).

Proposition 3.2.10. Let σ = d/2 − i. For 1 ≤ i ≤ (d + g − 1)/3, there is an embedding

Db(Mi−1) ↪→ Db(Mi). For i ≥ (d + g − 1)/3, there is an embedding the other way, Db(Mi) ↪→

Db(Mi−1). Moreover, when 1 < i ≤ (d + g − 1)/3 there is a semi-orthogonal decomposition

Db(Mi) = 〈Db(Mi−1), Db(C(i)), . . . , Db(C(i))〉, with d+ g − 3i− 1 copies of Db(C(i)).

Proof. Take an effective divisor D of large degree, so that Mσ ↪→M ′σ := Mσ(Λ(2D)), where M ′σ

is a GIT quotient of X ′ ⊂ U ′×PCχ
′
, χ′ = d+ 2−2g+ 2 degD, as in the discussion above. Then

write Mσ as a GIT quotient of X ⊂ X ′ by SLχ′ with strictly semi-stable locus Z corresponding

to pairs (E′, φ′), where E′ splits as E′ = L′⊕M ′, with degL′ = i+degD, degM ′ = d−i+degD,

and φ′ ∈ H0(L′) vanishes along D. The map Oχ
′

C � E′ is given by a block-diagonal matrix

(OaC � L′)⊕ (ObC �M ′).

We can write Mi−1 = Mσ+ε(Λ) = X //L+
SLχ′ and Mi = Mσ−ε(Λ) = X //L− SLχ′ . Note

that both [X/PGLχ′ ] and [X ′/PGLχ′ ] are smooth quotient stacks of dimension d + g − 2 and

d+ g − 2 + 2 degD [Tha94], and thus X and X ′ are both smooth. Since X ⊂ X ′ is cut out by

the 2 degD conditions imposed by the vanishing of a section along D, then it is a local complete

intersection. Also, Mσ±ε is isomorphic to the quotient stack [Xss(L±)/PGLχ′ ] because PGLχ′

has no stabilizers on Xss(L±).

The KN stratification of the unstable locus with respect to L± has a unique stratum S±,

consisting of the vector bundle W±i over Z. The stabilizer of Z is λ = Gm, acting on L′ ⊕M ′

by (tb, t−a), where a = h0(L′), b = h0(M ′), and one can show that the λ-weights of N∨S/X′

are all ±(a + b) = ±χ′ or 0 (see [Pot16, §7]). Then the weights of N∨S±/X are all ±χ′ and

η± = weightλ± NS±/X is just the codimension of S± ⊂ X.

Since S± is the bundle W±i on Z, we have codim(S± ⊂ X) = rkW∓i , so that η+ = iχ′ and

η− = (d+g−1−2i)χ′ and then weightλ ωX |Z = η−−η+ = (d+g−1−3i)χ′. By Theorem 1.5.1,
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and since Mσ±ε ∼= Xss(L±), we get a window embedding Db(Mσ+ε) ⊂ Db(Mσ−ε) if η+ ≤ η−

and the other way around if η+ ≥ η−.

Moreover, if G+
w = Db(Mσ+ε) is a window, determined by the range of weights [w,w+ η+) ⊂

[w,w + η−), then Theorem 1.4.6 and (1.4.1) give semi-orthogonal blocks Db(Z)v, so that

Db(Mσ−ε) = 〈G+
w , D

b(Z)w, . . . , D
b(Z)w+µ−1〉, (3.2.12)

where µ = η− − η+. In our case, Z = [Z/L], where L is the Levi subgroup, i.e. the centralizer

of λ in PGLχ′ , acting on Z. We have a short exact sequence of groups

1→ Gm → L→ PGLa × PGLb → 1

with Gm = λ acting on Z trivially and [Z/PGLa × PGLb] ∼= C(i). Then Z ∼= [C(i)/Gm],

with the trivial action of Gm, and Db(Z) = Db
Gm(C(i)), so the blocks in (3.2.12) are given by

the fully faithful images of j∗(π
∗(·) ⊗ Oπ(l)) : Db(C(i)) → Db(Mi) for l ∈ [w,w + µ), where

π : PW+
i → C(i) is the projection and j : PW+

i ↪→Mi the inclusion (cf. Example 1.5.2).

Corollary 3.2.11. If d = 2g − 1, then Db(Mi−1) ⊂ Db(Mi) for every 1 ≤ i ≤ g − 1.

Proof. Indeed, for 1 ≤ i ≤ g − 1, the inequality i < (3g − 2)/3 always holds.

Now suppose d = 2g − 1 and take the four semi-orthogonal blocks from Proposition 3.2.9.

Using Theorem 1.4.1 we can get semi-orthogonal blocks in all of the spaces Mi. For the next

lemma, we take σ = d/2 − i and write Mi−1, Mi as GIT quotients X //L± SLχ′ , as above. Let

F denote the universal bundle on each Mi, and let ΛM , ζ and θ be defined on each Mi as in

Notation 3.2.4.

Lemma 3.2.12. The objects of the form Fx, ΛM , ζ, θ on both Mi−1 and Mi are the descent of

objects F̃x, Λ̃M , ζ̃, θ̃ on Db(X) such that, up to rescaling by a constant, have λ-weights

(a) weightλ F̃x|Z = 0,−1

(b) weightλ Λ̃M |Z = −1

(c) weightλ ζ̃|Z = g − i

(d) weightλ θ̃|Z = 2g − 2i− 1,

and the windows have widths η+ = i and η− = 3g − 2− 2i.

Proof. Let σ = d/2 − i and embed ı : Mσ(Λ) ↪→ M ′σ = Mσ(Λ(2D)) for an effective divisor D,

degD � 0. M ′σ±ε = Mσ(Λ(2D)) are GIT quotients of X ′ by SLχ′ and the universal bundle F ′

on M ′σ±ε is the descent of F ′(1) on C ×X ′ ⊂ C × U ′ × PCχ
′
, where F ′ is the universal family
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on C ×U ′ [Tha94, §1.20]. The σ-strictly semi-stable locus Z ′ ⊂ X ′ corresponds to split bundles

L′ ⊕M ′ together with a section φ′ ∈ H0(L′), and the action of SLχ′ on H0(E′) is given by

(tb, t−a), where a = h0(L′), b = h0(M ′) and a+ b = h0(L′ ⊕M ′) = χ′.

Let us compute the λ-weights of F ′x(1) on Z ′, for a point x ∈ C. The fiber of F ′x over L′⊕M ′

is L′x⊕M ′x, which is acted on with weights b in the first component and −a in the second. Since

the λ-weight of OPCχ′ (1) over the section (φ′, 0) is −b, we get that the weights of F ′x(1) are 0

and −a− b = −χ′.

The bundle detπ!F
′ descends from detπ!F ′(1). On the fiber of π!F ′ over L′ ⊕M ′, λ acts

on H0(L′) ⊕ H0(M ′) with weights b and −a, with multiplicities h0(L′) = a and h0(M ′) = b,

respectively. Taking tensor product with OPCχ′ (1) shifts each weight by −b, and then taking

determinant we get weightλ detπ!F ′(1)|Z′ = 0 · a+ (−a− b) · b = −bχ′.

For detF ′x, which is the descent of detF ′x(1), we see that λ acts with weights b,−a on L′x⊕M ′x

and then shifting by −b and taking determinant we get weightλ detF ′x(1)|Z′ = −a− b = −χ′.

Now for the universal bundle F over Mσ±ε(Λ), we have the following short exact sequence

[Tha94, Remark 1.19]

0→ F → ı∗F ′ → ı∗F ′|D×Mσ±ε → 0.

From this we see that ΛM = detFx ∼= detF ′x is the descent of an object with λ-weight equal

to −χ′. Also, since detπ!F
′|D×Mσ±ε = det

⊕
x∈D F

′
x = (detF ′x)degD, we get ζ−1 = detπ!F =

detπ!F
′ ⊗ (detF ′x)− degD (cf. Definition 3.2.3) is the descent of an object with λ-weight equal

to −bχ′ + degDχ′. Recall degL′ = i + degD, degM ′ = d − i + degD, so by Riemann-Roch

b = h0(M ′) = 2g − 1 − i + degD + 1 − g and the weight is χ′(degD − b) = χ′(i − g). As for

θ = ζ2 ⊗ ΛM , the weights must be (2(g − i)− 1)χ′ = (2i− 2g + 1)χ′.

Summing up, the bundles Fx, ΛM , ζ, θ on Mσ±ε are the descent of SLχ′ -equivariant bundles

F̃x, Λ̃M , ζ̃, θ̃ on X having weights that, rescaling everything by 1/χ′, are precisely

(a) weightλ F̃x|Z = 0,−1

(b) weightλ Λ̃M |Z = −1

(c) weightλ ζ̃|Z = g − i

(d) weightλ θ̃|Z = 2g − 2i− 1.

After rescaling by the same constant, the windows have widths η+ = i and η− = 3g − 2− 2i, as

computed before.
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Proposition 3.2.13. Let d = 2g − 1 and g ≥ 3. For i = 1, . . . , g − 1, the sequence

θ−1, ΦF (Db(C))⊗ ζ ⊗ θ−1, OMi
, ΦF (Db(C))⊗ ζ

is the start of a semi-orthogonal decomposition of Db(Mi).

Proof. By Proposition 3.2.9 we know this is true on M1, so we will transfer these blocks across

the walls using the windows. Recall that Corollary 3.2.11 provides fully faithful functors from

Db(M1) all the way into Db(Mg−1).

If A, B are objects in X, descending to both Mσ±ε and with λ = λ+-weights such that

−η− < weightλB|Z − weightλA|Z < η+ (3.2.13)

then Theorem 1.4.1 implies that

RHomMσ+ε(A,B) = RHomX(A,B) = RHomMσ−ε(A,B).

Indeed, the first equality follows directly from the Quantization Theorem applied on Mσ+ε, while

the second is the same theorem applied on Mσ−ε, following the fact that

weightλ− B|Z − weightλ− A|Z = −(weightλB|Z − weightλA|Z).

Fully faithfulness of ΦF then follows from the fact that, between objects of the form Fx, the

difference in weights, as given by Lemma 3.2.12, are in [0, 1], which is always both < η+ = i and

> −η− = 2 + 2i− 3g for 2 ≤ i ≤ g − 1. This way we get that

RHomM1(Fx, Fy) = RHomX(Fx, Fy) = RHomM2(Fx, Fy),

so by Theorem 1.2.14 and fully faithfullness on M1, which was proved in Proposition 3.2.5, we

obtain fully faithfullness of ΦF on M2 and similarly, by induction, ΦF : Db(C)→ Db(Mi) is fully

faithful for every i. In particular, its image is an admissible subcategory, equivalent to Db(C).

Now similarly, the objects objects of the form

(a) θ−1

(b) Fx ⊗ ζ ⊗ θ−1

(c) OMi

(d) Fy ⊗ ζ

descend from objects in X having the following weights

(a) 2i− 2g + 1
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(b) i− g + 1, i− g

(c) 0

(d) g − i, g − i− 1,

given by Lemma 3.2.12. Within each block the difference in weights is always within [0, 1], so it

always fits in a window for both Mi−1 and Mi, and we can transfer fully faithful images of these

blocks from M1 to M2 and in general between Mi−1 and Mi. Now, to see that these blocks remain

semi-orthogonal when we cross from one chamber to the next, we use Quantization Theorem

again. Recall that semi-orthogonality can be checked on closed points only (see Lemma 1.2.8 and

[Huy06, Proposition 3.17]), so it suffices to verify that, when taking morphisms from bottom

to top between the objects above, all the differences in the λ-weights satisfy the inequalities

(3.2.13).

These differences are computed to be the numbers

(a) i− g

(b) i− g + 1

(c) 2i− 2g + 1

(d) 3i− 3g + 1

(e) 3i− 3g + 2

(f) 2i− 2g

(g) 2i− 2g + 2

and it is easy to check that they are all > 2i+ 2− 3g and < i whenever 2 ≤ i ≤ g − 1. Indeed,

(a) i− g < i trivially.

(b) i− g + 1 < i trivially.

(c) 2i− 2g + 1 < i is equivalent to i < 2g − 1, which is true for i ≤ g − 1.

(d) 3i− 3g + 1 < i is equivalent to 2i < 3g − 1, which is true for i ≤ g − 1.

(e) 3i− 3g + 2 < i is equivalent to 2i < 3g − 2, which is true for i ≤ g − 1.

(f) 2i− 2g < i is equivalent to i < 2g, which is true for i ≤ g − 1.

(g) 2i− 2g + 2 < i is equivalent to i ≤ 2(g − 1), which is true for i ≤ g − 1,
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and

(a) i− g > 2i+ 2− 3g is equivalent to i < 2(g − 1), which is true for i ≤ g − 1.

(b) i− g + 1 > 2i+ 2− 3g is equivalent to i < 2g − 1, which is true for i ≤ g − 1.

(c) 2i− 2g + 1 > 2i+ 2− 3g trivially, as g > 0.

(d) 3i− 3g + 1 > 2i+ 2− 3g is equivalent to i > 1.

(e) 3i− 3g + 2 > 2i+ 2− 3g is equivalent to i > 0.

(f) 2i− 2g > 2i+ 2− 3g is equivalent to g > 2.

(g) 2i− 2g + 2 > 2i+ 2− 3g is equivalent to g > 0.

In conclusion, using induction we get that these four blocks are admissible subcategories and

define a semi-orthogonal sequence on every Mi.

Call ξ : Mg−1 → N the last map in (3.2.1), where N = MC(2,Λ) is the space of stable

rank-two vector bundles on a curve with determinant Λ, and deg Λ = 2g − 1. The Picard group

of N is generated by an ample line bundle θN , such that ξ∗θN = θ [Tha94, §5.8, 5.9]. Let E be

the universal bundle on C ×N , normalized so that detπ!E = ON and det Ex = θN (cf. [Nar17]).

Then we have the following corollary.

Corollary 3.2.14. Let E be the Poincaré bundle on the moduli space N = MC(2,Λ) over a

curve of genus ≥ 3, normalized as above. Then the sequence

θ−1, ΦE(D
b(C))⊗ θ−1

N , ON , ΦE(D
b(C))

is the start of a semi-orthogonal decomposition.

Proof. Observe that ξ∗ is fully faithful. Indeed, since ξ is a projective birational morphism

with N normal, we have ξ∗(OMg−1
) = ON [Tha94, Lemma 5.12] and then by adjointness

HomDb(Mg−1)(ξ
∗A, ξ∗B) = HomDb(N)(A, ξ∗ξ

∗B) = HomDb(N)(A,B). The pullback ξ∗(E) is

a family of vector bundles on C ×Mg−1 whose fiber over each point x × (E, φ) ∈ C ×Mg−1 is

exactly the fiber Ex. Thus, it has to coincide with the universal bundle F up to twist by a line

bundle on Mg−1, so that ξ∗E = F ⊗ L. Then ξ∗ det Ex = ΛM ⊗ L2, which by the normalization

chosen it must equal ξ∗θN = θ, so L = ζ. This shows that ξ∗(E) = F ⊗ ζ, and the result then

follows from Proposition 3.2.13.

Remark 3.2.15. If g = 2, Mg−1 = M1 and a similar argument still gives a sequence of three semi-

orthogonal blocks in N . In fact, it can be shown that this is a full semi-orthogonal decomposition

[BO95, Theorem 2.9], but our approach does not address fullness.
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3.3 Moduli of parabolic bundles on P1.

Definition 3.3.1. A rank 2 quasi-parabolic vector bundle on (P1; p1, . . . , pn) is the data of a

vector bundle V and a one-dimensional subspace Fj of each of the fibers Vj over pj . A parabolic

vector bundle has the additional data of weights aj,2 > aj,1 > 0 on each of these points. We

may assume aj,2 + aj,1 = 1 [Bau91].

A quasi-parabolic bundle is equivalent to giving a subsheaf V ′ ⊂ V that is also locally free

of rank 2 and with detV ′ = detV ⊗OC(−p1 − · · · − pn). In fact, given (V, F1, . . . , Fn), one can

define

0→ V ′
β→ V

γ→
n⊕
j=1

(Vj/Fj)⊗Opj → 0

and we have Fj = imβpj [Cas15].

For a line subbundle L ⊂ V , call L′ = L∩V ′. A parabolic structure on L is given by attaching

weights

lj =


aj,1 if Lpj 6= Fj

aj,2 if Lpj = Fj .

The parabolic degree of a parabolic vector bundle is defined in such a way that, if V ′ ⊂ V is a

rank two parabolic vector bundle and L′ ⊂ L a line subbundle, we have

Pardeg(V ′ ⊂ V ) = deg V +
∑

(aj,1 + aj,2)

Pardeg(L′ ⊂ L) = degL+
∑

lj .

Definition 3.3.2. V ′ ⊂ V is stable if for every line subbundle L ⊂ V we have Pardeg(L′ ⊂

L) < 1
2 Pardeg(V ′ ⊂ V ).

Parabolic vector bundles were introduced by Mehta and Seshadri [MS80,Ses77], in order to

generalize to curves with cusps the Narasimhan-Seshadri correspondence between stable vector

bundles on smooth projective curves and unitary representations of their fundamental groups

[NS65]. By a result of Mehta and Seshadri [MS80] and subsequent work by Bauer [Bau91], for

any set of weights α = {αj} there is a moduli space Nα of parabolic bundles of rank 2 over with

trivial determinant that are semi-stable with respect to those weights, and it has the structure

of a normal projective variety. The open subvariety of stable bundles is smooth. When C = P1,

these spaces have been extensively studied and well described. In the case that the weights are

all (0, 1/2) and n is odd, we have the following description by Casagrande.
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Theorem 3.3.3. [Cas15] Let C = P1 and fix weights aj,1 = 0, aj,2 = 1/2, with n = 2g + 1.

Then Nα is the intersection of two quadrics Q1 ∩Q2 ⊂ P2g, where

Q1 =
{∑

x2
j = 0

}
, Q2 =

{∑
λjx

2
j = 0

}
and pj = (λj : 1).

An interesting problem is to study the derived categories of Nα in the case where C = P1

and understand how these vary when we change the weight system. The spaces Nα for different

sets of weights are related to each other by GIT wall-crossing, as described by Bauer [Bau91]. It

worth asking whether one can carry out computations analogous to those in §3.2.2, by embedding

these spaces in a quotient stack X and analyzing what happens under wall-crossing. For instance,

if all αj = 1/2, then Nα is Fano, and the minimal model program can be carried out by flipping

some Pk’s in every step. When running the anti-canonical minimal model program and we move

toward the Fano model, perhaps one can find consecutive embeddings of the derived categories,

with orthogonal complements analogous to those in Proposition 3.2.10. If one wants to find

a semi-orthogonal decomposition similar to (3.1.1), a possible candidate would be a weighted

projective line C(λ, d), as defined by Geigle and Lenzing in [GL87], which can be roughly thought

of as a projective line with n marked points and weights attached to them. Variation of the

stability conditions could possibly correspond to variation of the parameters d in C(p, d).
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