PRACTICE PROBLEMS FOR THE FINAL EXAM

1. Let C be the portion of the helix $r(t) = \cos t \, i + \sin t \, j + 4t \, k$ between $t = 0$ and $t = \pi$, and let $F = x \, i + z \, k$. Evaluate $\int_C F \cdot dr$.

2. Compute work done by vector field $F = (-yx^2 + e^{x^2}) \, i + (xy^2 - e^{y^2}) \, j$ in moving an object along the circle $x^2 + y^2 = 1$ once in the counterclockwise direction.

3. Let $F = ye^{xy} \, i + (xe^{xy} - z^3) \, j + (2\sin z - 3yz^2) \, k$. (a) Evaluate curl F. (b) Find a function f such that $F = \nabla f$. (c) Find work done by F along the straight line segment from $(0, 5, 0)$ to $(1, 0, \pi)$.

4. Find the work done by the force field $F(x, y, z) = z \, i + x \, j + y \, k$ in moving a particle from the point $(3, 0, 0)$ to the point $(0, \pi/2, 3)$ (a) along a straight line and (b) along the helix $x = 3\cos t$, $y = t$, $z = 3\sin t$. Is this force field conservative? Justify your answer.

5. Consider the vector field

$$F = \frac{-y}{x^2 + y^2} \, i + \frac{x}{x^2 + y^2} \, j.$$

(a) Evaluate directly the line integral of F along the unit circle, once around in the counterclockwise direction. Is F conservative?
(b) Compute the curl of F. Why does your answer not contradict Green’s theorem?

6. Let C_1 be the unit circle $x^2 + y^2 = 1$ and C_2 the concentric circle of radius two. Orient both C_1 and C_2 counterclockwise. Suppose that $F = P \, i + Q \, j$ is a vector field in plane such that

$$\int_{C_1} F \cdot n \, ds = 10 \quad \text{and} \quad \int_{C_2} F \cdot dr = 17.$$

(a) If F is smooth in the plane, compute $\iint_D \text{div} \, F \, dA$, where D is the domain defined by the inequality $x^2 + y^2 \leq 1$.
(b) If F is smooth on the annulus bounded by C_1 and C_2 and $Q_x = P_y$ everywhere on the annulus, compute $\int_{C_2} F \cdot dr$.
7. Find the center of mass:
 (a) of the thin wire of density 1 bent into the shape of cycloid \(\mathbf{r}(t) = (t - \sin t) \mathbf{i} + (1 - \cos t) \mathbf{j}, \ 0 \leq t \leq 2\pi. \)
 (b) of the part of the spherical surface \(x^2 + y^2 + z^2 = 25 \) above the plane \(z = 3 \),
 assuming that its density at \((x, y, z)\) equals \(z \).

8. Evaluate surface integral \(\iint_S x^2y \, dS \) over the portion \(S \) of the cylinder \(x^2+y^2 = 4 \) between the planes \(z = 0 \) and \(z = 3 \).

9. Find the flux of \(\mathbf{F} = x \mathbf{i} + x \mathbf{j} + y \mathbf{k} \) across the hemisphere \(x^2 + y^2 + z^2 = 25 \),
 \(y \geq 0 \), oriented in the direction of the positive \(y \)-axis.

10. Use Stokes’ Theorem to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \),
 where \(\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + xz \mathbf{k} \) and \(C \) is the triangle with the vertices \((1,0,0)\), \((0,1,0)\) and \((0,0,1)\) oriented
 counterclockwise as viewed from above.

11. Use the divergence theorem to calculate the outward flux of \(\mathbf{F}(x, y, z) = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k} \)
 across the surface of the solid bounded by the cylinder \(x^2 + y^2 = 1 \) and
 the planes \(z = 0 \) and \(z = 2 \).

12. Compute the outward flux of \(\mathbf{F}(x, y, z) = (x^2 + y^2 + z^2)^{-3/2}(x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \)
 across the ellipsoid \(4x^2 + 9y^2 + 6z^2 = 36 \). (Hint: wouldn’t it be easier to compute
 the flux across a sphere?)

SOLUTIONS

1. \(8\pi^2 \). 2. \(\pi/2 \). 3. (a) 0; (b) \(e^{xy} - yz^3 - 2 \cos z + C; \) (c) 4.

4. (a) \((3\pi - 9)/2 \). (b) \(-3\pi/4 \). The force field is not conservative because \(\int_C \mathbf{F} \cdot d\mathbf{r} \)
 is not path independent.

5. (a) \(2\pi \), \(\mathbf{F} \) is not conservative. (b) \(\text{curl} \ \mathbf{F} = 0 \). This does not contradict Green’s
 Theorem because \(\mathbf{F} \) is not continuous at the origin.

6. (a) 10; (b) 17. 7. (a) \((\pi, 4/3) \); (b) \((0,0,49/12) \). 8. 0. 9. \(250\pi/3 \).

10. \(-1/2 \). 11. \(11\pi \). 12. \(4\pi \).