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Abstract. Based on the fact that HIV/AIDS manifests different transmission

characteristics and pathogenesis in different age groups, and the proportions of

youth and elderly HIV infected cases in total are increasing in China, we clas-
sify the whole population into three age groups, youth (15-24), adult (25-49),

and elderly (>50), and establish a three-age-class HIV/AIDS epidemic model

to investigate the transmission dynamics of HIV/AIDS in China. We derive
the explicit expression for the basic reproduction number via the next gener-

ation matrix approach. Qualitative analysis of the model including the local,

global behavior and permanence is carried out. In particular, numerical simu-
lations are presented to reinforce these analytical results and demonstrate HIV

epidemiological discrepancy among different age groups. We also formulate an

optimal control problem and solve it using Pontryagins Maximum Principle
and an efficient iterative numerical methods. Our numerical results of opti-

mal controls for the elderly group indicate that increasing the condom use and
decreasing the rate of the formerly HIV infected persons converted to AIDS

patients are important measures to control HIV/AIDS epidemic among elderly

population.

1. Introduction. Since the discovery of HIV (human immunodeficiency virus) in
the early 1980s, the disease has spread in successive waves to most regions around
the global. In the world, about 36.9 million people are infected with HIV, and
an estimated 1.1 million people died due to AIDS (acquired immune deficiency
syndrome) in 2017 [46]. It is one of the top ten infectious diseases and a leading
cause of death in mainland China, as reported by the China Center for Disease
Control and Prevention (China, CDC). The cumulative total number of reported
HIV/AIDS infection was 89,067 as of December 2004 [15], a figure that increased to
820, 756 as of June 2018 [6]. Meanwhile, HIV/AIDS manifests different transmission
characteristics and pathogenesis in different age groups, and the proportions of
youth and elderly HIV infected cases in total are increasing in China [48, 28, 27, 55].
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The elderly population, defined as people aged 50 and over in the HIV/AIDS
literature [50, 3], has not been regarded as one of the major groups affected by
HIV infection for a long time. More evidences, however, show that the rate of HIV
infection has substantially increased among the elderly people [39, 22, 11]. Data
reported by the Chinese National HIV/AIDS Information System indicate that both
the total number of HIV/AIDS cases and the number of HIV/AIDS cases among
the elderly population have been increasing in recent years ([16], Fig.1). In 2007,
the elderly population accounted for 10.06% of the total cases of HIV/AIDS [50].
This proportion is quite close to the American level [3], higher than that in Asia,
Africa, and Latin America, and even Australia. According to the annual statistics
in 2012 [48], the fraction of elderly people with HIV/AIDS increased to 23.68%
among the total HIV/AIDS reported cases, this ratio (see Table 2) was 25.61%,
26.60%, 29.24%, 28.71%, 30.35% in 2013, 2014, 2015, 2016, 2017, respectively.

Several facts contributed to the rapid transmission of HIV among the elderly
population. Firstly, the fraction of heterosexual transmission increased from 35%
in 2005 to almost 80% in 2012 [16, 5]. The rate of non-use of condoms was as
high as 85% among the elderly people [14] and thus raised the likelihood of HIV
infection. Secondly, the symptoms of HIV infection among the elderly population
were easily confused with some geriatric diseases and thus the HIV virus was rarely
tested [20]. The elderly people do not usually seek medical advice until evident
symptoms of AIDS show up at the late stage of the disease, and the death rate of
AIDS among the elderly population was 2.4 times the rate among people under 50
years of age [33]. Thirdly, chronic HIV infection usually advances to AIDS as time
goes by. Statistics show that the development of AIDS from former HIV carriers
increased from 10894 in 2012 [28] to 18231 in 2017 [27] in China.

In fact, there are many researches focus on HIV/AIDS transmission among
adolescent group [18, 25, 37]. Compared with the elderly group, the number
of HIV/AIDS reported among young people (15-24 years old) increased rapidly
from 2012 to 2014 and has basically the same rate as the increasing prevalence of
HIV/AIDS in China [23], the HIV/AIDS cases of young group increased from 4186
in 2005 [55] to 212500 in 2017 (see Fig.1 (a)). Different from the elderly group,
the transmission rate of heterosexual and homosexual sexual behavior was 17% and
81% among young people, respectively [24]. These data show that the increase in
the number of HIV infected adolescents in recent years is mainly due to homosexual
sexual transmission. China National Health and Family Planning Commission data
indicate that the proportion of students in HIV/AIDS infected among young people
has risen from 5.8% in 2008 to 16.6% in 2014, and adolescent students have a higher
prevalence than other populations [24]. To sum up, the epidemic transmission char-
acteristics of HIV in different age groups are not the same. Therefore, it is very
meaningful to study HIV transmission with different age groups.

Mathematical models have been used extensively to study the dynamics of HIV/
AIDS among high risk groups [40, 2, 47, 53, 54]. Bacaer et al. used a mathemat-
ical model to study the transmission of HIV/AIDS among IDUs (injecting drugs
users) and sex workers in Kunming, the provincial capital of Yunnan [2]. Xiao et
al. constructed an HIV/AIDS model with 31 patches to understand the epidemic
trend in China [47]. Zhang et al. divided the total population which is restricted
within high risk population into two subgroups: IDUs and people engaged in PECS
(commercial sex) which includes FSWs (female sex workers), and clients of FSWs.
Due to this category, the predicting results have some differences with the actual
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cases in Yunnan [53]. Zhang et al. developed a mathematical model on the trans-
mission dynamics of HIV. In a case study for Yunnan, China, they divided the total
population into four compartments: IDUs (injecting drugs users), FSWs (female
sex workers), Clients of FSWs and MSM (men who have sex with men) [54]. Those
models are all established to study HIV transmission among high-risk groups. Al-
though HIV exhibits different transmission characteristics in different age groups,
there has been very little research on modeling HIV transmission with different age
groups.
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Figure 1. (a): The new HIV/AIDS infection cases among youth (15-
24) from 2005 to 2017 (see Table 2), (b): The new HIV/AIDS infection
cases among elderly (≥ 50) from 2005 to 2017 (see Table 2).

In this paper, inspired by the above studies, we divide the whole population
into three age compartments: youth group (15-24), adult group (25-49) and elderly
group ( ≥ 50), then propose a HIV/AIDS model with three-age-classes. After
calculating the basic reproduction number R0, we prove the global stability of the
disease-free equilibrium when R0 < 1, and analyze the persistence of the disease
when R0 > 1. In addition, under certain conditions, we show that there is a
unique endemic equilibrium which is globally attractive if R0 > 1. Furthermore, the
optimal control for HIV transmission and AIDS among aged population is discussed.
Simulations are also conducted to illustrate the theoretical results.

The paper is organized as follows. Section 2 presents the mathematical model.
The stability of the disease-free equilibrium is proved in Section 3. The uniform
persistence of the system and the global attractivity of the endemic equilibrium are
discussed in Section 4 and Section 5, respectively. Section 6 focuses on the opti-
mal control strategy under the objective function. Section 7 deals with numerical
simulations and sensitivity analysis. Findings and conclusions are summarized in
Section 8.
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2. Model formulation. In order to take account of the variable properties of HIV
transmission among different age groups in China, and based on the fact that the
main transmission route of HIV is sexual transmission [28, 27], we divide the whole
population into three groups: youth (15-24), adult (25-49) and elder (≥ 50), the
population sizes in those three classes are denoted by Ny, Na, Ne respectively.
In each class, the sub-population is composed of three compartments: susceptible
(Si), infective without clinic symptom (Ii) and AIDS (the people infected HIV with
clinic symptom, i.e., the gradual loss of immune function, various opportunistic
infections or malignant tumors appear in the body) with low sexual behavior (Ai),
i = y, a, e. In the column of Figure 2, the incidence rates from Iy, Ia, Ie to
Sy, Sa, Se are β11Iy/Ny, β22Ia/Na, and β33Ie/Ne, respectively. The incidence rate
from Iy to Sa is β12Iy/Na (green imaginary line), the incidence rates from Ia to Sy,
Se are β21Ia/Ny and β23Ia/Ne, respectively. (red imaginary line), and the incidence
rates from Ie to Sa is β32Ie/Na (purple imaginary line). Hence the term(β11Iy +
β21Ia)Sy/Ny indicates the new infections in the Sy compartment. Similarly, (β22Ia+
β12Iy)Sa/Na and (β33Ie + β23Ia)Se/Ne are indicate the new infection in Sa and Se
compartment, respectively. αy denotes transfer rate of individuals aging from the
youth to the adult and αa represents the transfer rate of individuals aging from the
adult to the elderly.

According to the character of HIV, the incubation period of HIV is 2-20 years
or more [1], ry, βy represent the transfer rate from Iy to Ay and Aa, respectively.
Similarly, ra, re, βa are defined. The parameters in model (1) are described in
Table 1. Finally, through there were a few sexually transmitted HIV cases among
children under 15 years old [1, 45], we do not consider this age group in our model.

Figure 2. The diagram of transmission among three epidemiological classes.

By the above notations and assumptions, the model is given by the following
nine ordinary differential equations
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

dSy(t)

dt
= Λ− αySy(t)− µySy(t)− φy(t)Sy(t),

dIy(t)

dt
= φy(t)Sy(t)− αyIy(t)− ryIy(t)− µyIy(t)− βyIy(t),

dAy(t)

dt
= ryIy(t)− µyAy(t)− dyAy(t)− αyAy(t),

dSa(t)

dt
= αySy(t)− αaSa(t)− µaSa(t)− φa(t)Sa(t),

dIa(t)

dt
= φa(t)Sa(t) + αyIy(t)− αaIa(t)− raIa(t)− µaIa(t)− βaIa(t),

dAa(t)

dt
= βyIy(t) + raIa(t) + αyAy(t)− µaAa(t)− αaAa(t)− daAa(t),

dSe(t)

dt
= αaSa(t)− µeSe(t)− φe(t)Se(t),

dIe(t)

dt
= φeSe(t) + αaIa(t)− µeIe(t)− reIe(t),

dAe(t)

dt
= βaIa(t) + reIe(t) + αaAa(t)− µeAe(t)− deAe(t),

(1)

where φy(t) = (β11Iy(t)+β21Ia(t))/Ny(t), φa(t) = (β22Ia(t)+β12Iy(t))/Na(t), φe(t)
= (β33Ie(t) + β23Ia(t))/Ne(t), β11 = δ11(1 − c11), β12 = δ12(1 − c12), β21 = δ21(1 −
c21), β22 = δ22(1 − c22), β23 = δ23(1 − c23), β33 = δ33(1 − c33). Youth, adult, and
elderly classes have different mortality rates µy, µa, µe, and AIDS related death
rate dy, da, de, respectively. The other parameters are listed in Table 1.

3. Mathematical analysis.

3.1. Basic properties. In this subsection, the basic dynamical features of model
(1) will be explored. We claim the following lemma.

Lemma 3.1. The solution (Sy(t), Iy(t), Ay(t), Sa(t), Ia(t), Aa(t), Se(t), Ie(t), Ae(t))
of system (1) with nonnegative initial values eventually enters

D =
{

(Si, Ii, Ai)|Si, Ii, Ai > 0, i = y, a, e, 0 6 Ny 6 N̄y, 0 6 Na 6 N̄a, 0 6 Ne 6 N̄e
}
,

(2)

where

Na = Sa + Ia +Aa, Ny = Sy + Iy +Ay, Ne = Se + Ie +Ae,

N̄y =
Λ

ξ1
, N̄a =

Λm1

ξ1ξ2
, N̄e =

Λm1m2

µeξ1ξ2
, ξ1 = αy + µy, ξ2 = αa + µa,

m1 = 3αy + βy, m2 = 3αa + βa.

Proof. Adding the three equations in the youth class in model (1), we have
dNy

dt 6
Λ − ξ1Ny. According to the standard comparison theorem [8], there exists t1 > 0

such that Ny(t) 6 Λ
ξ1

, for t > t1. It follows from system (1) that dNa

dt 6 m1Ny−ξ2Na
for t > t1. Then there exists t2 > t1 such that Na 6 Λm1

ξ1ξ2
, for t > t2. Similarly,

there exists t3 > t2 such that Ne 6 Λm1m2

µeξ1ξ2
, for t > t3. Therefore, solutions of

system (1) are uniformly ultimately bounded. This completes the proof.

In what follows, we consider only solutions with initial conditions inside the
region D .
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3.2. Disease-free equilibrium E0 and basic reproduction number R0. The
system (1) always has the disease-free equilibrium E0 = (S0

y , 0, 0, S0
a, 0, 0, S0

e , 0,

0), where S0
y = N̄y, S

0
a =

αyS
0
y

αa+µa
, S0
e =

αaS
0
a

µe
.

We first denote z(t) = (Iy(t), Ay(t), Ia(t), Aa(t), Ie(t), Ae(t), Sy(t), Sa(t), Se(t)).
According to the concepts of the next generation matrix [9, 10], system (1) can be
rewritten as follows:

ż = F (z)− V (z),

where

F =



φySy
0

φaSa + αyIy
0

φeSe + αaIa
0
0
0
0


,V =



(αy + ry + µy + βy)Iy
(µy + dy + αy)Ay − ryIy

(αa + ra + µa + βa)Ia − αyIy
(µa + da + αa)Aa − βyIy − raIa − αyAy

(µe + re)Ie − αaIa
(µe + de)Ae − reIe − βaIa − αaAa
−Λ + αySy + µySy + φySy
−αySy + αaSa + µaSa + φaSa
−αaSa + µeSe + φeSe


.

The Jacobian matrices of F and V at E0 respective are

DF (E0) =

(
F 0
0 0

)
, DV (E0) =

(
V 0
∗ ∗

)
,

F =


β11 0 β21 0 0 0
0 0 0 0 0 0

β12 + αy 0 β22 0 0 0
0 0 0 0 0 0
0 0 β23 + αa 0 β33 0
0 0 0 0 0 0

 ,

V =


η1 0 0 0 0 0
−ry η2 0 0 0 0
−αy 0 η3 0 0 0
−βy −αy −ra η4 0 0

0 0 −αa 0 η5 0
0 0 −βa −τa −re η6

 ,

where

η1 = αy + ry + µy + βy, η2 = µy + dy + αy, η3 = αa + ra + µa + βa,

η4 = µa + da + αa, η5 = µe + re, η6 = µe + de.

Hence

FV−1 =


A11 0 A13 0 0 0
0 0 0 0 0 0
A31 0 A33 0 0 0
0 0 0 0 0 0
∗ 0 ∗ 0 A55 0
0 0 0 0 0 0

 ,
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where

A11 =
β11

η1
+
β21αy
η1η3

, A13 =
β21

η3
, A31 =

(β12 + αy)

η1
+
β22αa
η1η3

, A33 =
β22

η3
, A55 =

β33

η5
.

(3)

Then the characteristic equation of FV−1 is derived as

λ3(λ−A55) ((λ−A11)(λ−A33)−A31A13) = 0.

Then we obtain the basic reproduction number

R0 = max
{
R

(1)
0 , R

(2)
0

}
,

where

R
(1)
0 = A55, R

(2)
0 =

1

2

(
A11 +A33 +

√
(A11 +A33)2 + 4(A31A13 −A11A33)

)
.

(4)

3.3. The global stability of E0. The main focus of this subsection is to analyze
the local and global behavior of the disease-free equilibrium E0 of model (1). First,
we state and prove the result about local asymptotic stability for the disease-free
equilibrium E0.

Theorem 3.2. The disease-free equilibrium E0 is locally asymptotically stable pro-
vided that R0 < 1.

Proof. The 9× 9 Jacobian matrix J(E0) can be presented as follows:

J(E0) =

(
M6×6 06×3

∗3×6 N3×3

)
, (5)

where

M6×6 =


−(αy + µy) −β11 0 0 −β21 0

0 β11 − η1 0 0 β21 0
0 ry −η2 0 0 0
σy −β12 0 −(αa + µa) −β22 0
0 β12 + αy 0 0 β22 − η3 0
0 βy αy 0 ra −η4

 , (6)

N3×3 =

 −µe −β33 0
0 β33 − η5 0
0 re −(µe + de)

 . (7)

The eigenvalues of (5) are determined by those of (6), (7), it suffices to prove
that all eigenvalues of above matrices have negative real parts when R0 < 1. The
characteristic equation of N3×3 in (7): (λ+µe)(λ+µe + re−β33)(λ+µe + de) = 0,
it is easy to show that all eigenvalues of the characteristic equation have negative

real part from (3) and (4) when R
(1)
0 < 1. Next, we calculate the eigenvalues of the

following characteristic equation of M6×6 in (6):

(λ+η4)(λ+αa+µa)(λ+η2)(λ+αy+µy) ((λ+ a1)(λ+ a2)− β21(β12 + αy)) = 0, (8)

where a1 = η1−β11, a2 = η3−β22. We claim that all roots of (8) have negative real
parts. To achieve this goal, it suffices to show a1, a2 > 0, a1a2−β21(β12 +αy) > 0.
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If R
(2)
0 < 1, it follows from the expression of R

(2)
0 in (4) that

1 > R
(2)
0 =

1

2

(
A11 +A33 +

√
(A11 +A33)2 + 4(A31A13 −A11A33)

)
=

1

2

(
A11 +A33 +

√
(A11 −A33)2 + 4A31A13

)
>

1

2

(
A11 +A33 +

√
(A11 −A33)2

)
> max{A11, A33},

it implies that A11 < 1 and A33 < 1. From (3), we obtain a1 > 0 and a2 > 0.

As R
(2)
0 < 1, it implies that A13A31 < 1 − (A11 + A33) + A11A33. From (3), we

obtain that

a1a2−β21(β12 + αy) = (η1 − β11)(η3 − β22)− β21(β12 + αy)

= η1η3

((
1− β11

η1

)(
1− β22

η3

)
− β21(β12 + αy)

η1η3

)
> η1η3((1−A11)(1−A33)−A13A31)

> η1η3(1− (A11 +A33) +A11A33 −A13A31) > 0.

Above all, the roots of (6) and (7) have negative real parts, it implies that E0 is
locally asymptotically stable. This completes the proof.

In the next, we prove the global stability of disease free equilibrium E0. For this
purpose, we first introduce the following system

dX
dt

= P (X, I),

dI
dt

= G(X, I), G(X, 0) = 0,

(9)

where X ∈ Rn denotes (its components) the compartment of uninfected individuals
and I ∈ Rm denotes (its components) the compartment of infected individuals
including latent, infectious,etc. U(X∗, 0) denotes the disease-free equilibrium of
system (9).

By the similar arguments as those in [4], the following Lemma is valid.

Lemma 3.3. The disease-free equilibrum U(X∗, 0) of system (9) is globally asymp-
totically stable provided that R0 < 1, and the following assumptions are satisfied

(C1) For system dX
dt = P (X, 0), X∗ is globally asymptotically stable,

(C2) Ḡ(X, I) = HI − G(X, I), Ḡ(X, I) ≥ 0 for (X, I) ∈ Ω, H = D IG(X∗, 0) (the
derivative of G(X, I) with respect to I at U(X∗, 0)), and −H is an non-singular
M-matrix.

Theorem 3.4. The disease-free equilibrium E0 of system (1) is globally asymptot-
ically stable provided that R0 < 1.

Proof. In order to prove this result, it suffices to show that system (1) satisfies
the above two conditions in Lemma 3.3. System (1) can be re-written in the
form of (9) by using the similar method in [4], then X = (Sy, Sa, Se), I =
(Iy, Ay, Ia, Aa, Ie, Ae). U(X∗, 0) = E0 (the disease-free equilibrium of system
(1)), where X∗ = (S0

y , S
0
a, S

0
e ). Furthermore, P (X, 0), G(X, I) can be expressed as
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follows

P (X, 0) =

 Λ− αySy − µySy
αySy − αaSa − µaSa

αaSa − µeSe

 , (10)

G(X, I) =


φySy − αyIy − ryIy − µyIy − βyIy
ryIy − µyAy − dyAy − αyAy

φaSa + αyIy − αaIa − raIa − µaIa − βaIa
βyIy + raIa + αyAy − µaAa − αaAa − daAa

φeSe + αaIa − µeIe − reIe
βaIa + reIe + αaAa − µeAe − deAe

 . (11)

From (10), the global stability of X∗ of the system dX
dt = P (X, 0) is easy to check.

Hence, condition (C1) is satisfied.
Next, we prove that model (1) satisfies condition (C2). From (11), the expressions

of −H, Ḡ(X, I) are given by

−H =


−(β11 − η1) 0 −β21 0 0 0

−ry η2 0 0 0 0
−(β12 + αy) 0 −(β22 − η3) 0 0 0

−βy −αy −ra η4 0 0
0 0 −(β23 + αa) 0 −(β33 − η5) 0
0 0 −βa −αa −re η6

 , Ḡ(X, I) =


(Ny − Sy)φy

0
(Na − Sa)φa

0
(Ne − Se)φe

0

 .

(12)

Since 0 ≤ Si ≤ Ni (i = y, a, e), it follows from (12) that Ḡ(X, I) ≥ 0. Further, it
is suffices to show that −H in (12) is an non-singular M-matrix when R0 < 1. In
fact, it is obvious that −H has positive diagonal entries and negative off-diagonal
entries. Next, we prove that all eigenvalues of −H have positive real parts when
R0 < 1. The characteristic equation of −H is derived as

(λ− η2)(λ− η4)(λ− η6)(λ− (η5−β33))(λ2− (a1 +a2)λ+a1a2−β21(β12 +αy)) = 0. (13)

It follows from the process of the proof for Theorem 3.4 that all eigenvalues of (13)
have positive real parts. Thus, we obtain that −H is an non-singular M -matrix.
This completes the proof of Theorem 3.4.

4. Permanence of the disease. In this section, we investigate permanence of the
disease for system (1), We first introduce the following notations which will be used
throughout this section

X = {(Sy, Iy, Ay, Sa, Ia, Aa, Se, Ie, Ae)|Si, Ii, Ai > 0, i = y, a, e},
X0 = {(Sy, Iy, Ay, Sa, Ia, Aa, Se, Ie, Ae) ∈ X| Ii, Ai > 0, i = y, a, e},
∂X0 = X \X0.

It is obvious that X and X0 are positivity invariant of system (1). In the follow-
ing, we will show that system (1) is uniformly persistent with respect to (X0, ∂X0).
For this purpose, we denote

M∂ = {(Si(0), Ii(0), Ai(0)) ∈ ∂X0|Φt(Si(0), Ii(0), Ai(0)) ∈ ∂X0,∀ t > 0, i = y, a, e},
(14)

here Φt : X → X is the semiflow defined by system (1). Now, we give the following
Lemma

Lemma 4.1. {(Sy, 0, 0, Sa, 0, 0, Se, 0, 0)|Sy, Sa, Se > 0} = M∂ .
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Proof. For convenience, let M = {(Sy, 0, 0, Sa, 0, 0, Se, 0, 0)|Sy, Sa, Se > 0}.
We will show that M ⊂M∂ and M∂ ⊂ M. For the former part, it is obvious, so we
will prove the latter part, which means that if (Sy(0), Iy(0), Ay(0), Sa(0), Ia(0),
Aa(0), Se(0), Ie(0), Ae(0)) ∈ M∂ , then Iy(0) = Ay(0) = Ia(0) = Aa(0) = Ie(0) =
Ae(0) = 0. By contradiction, assume at least one of Ii(0) or Ai(0) (i = y, a, e) is
greater than zero, for example, Iy(0) > 0, then we can get Ay, Ia(t), Aa(t), Ie(t),
and Ae(t) are all greater than zero in certain interval, such as [0, T1]. In fact, for

t ∈ [0, T1], from the inequality
dIy(t)
dt |(1) > −η1Iy(t), we have

Iy(t) > q1 > 0, for t ∈ [0, T1],

where q1 = Iy(0). Substituting q1 into equations for Ia(t) and Ay(t), for t ∈ [0, T1],
yields

dIa(t)

dt
|(1) > αyq1 − η3Ia(t),

dAy(t)

dt
|(1) > ryq1 − η2Ay(t),

then Ia(t) > q2 > 0, Ay(t) > q3 > 0, for t ∈ [0, T1], where q2 =
αyq1
η3

(1 −
e−η3T1), q3 =

ryq1
η2

(1 − e−η2T1). It follows from the inequality dAa(t)
dt |(1) > βyq1 +

raq2 +αyq3−η4Aa(t) that Aa(t) > βyq1+raq2+αyq3
η4

(1− e−η4T1) := q4 > 0. Similarly,

we have Ie(t) >
αaq2
η5

(1− e−η5T1) := q5 > 0, Ae(t) >
βaq2+req5+αaq4

η6
(1− e−η6T1) :=

q6 > 0.
Consequently, Iy(0) > 0 implies that Ay > 0, Ia(t) > 0, Aa(t) > 0, Ie(t) > 0,

and Ae(t) > 0 for t ∈ [0, T1]. From the definition of M∂ in (14), we know that any
point in ∂X0 with Iy(t) > 0 can not belong to M∂ . The similar idea and procedure
show that any point in ∂X0 other than (Sy, 0, 0, Sa, 0, 0, Se, 0, 0) can not
belong to M∂ . Hence, it is now obvious that Lemma 4.1 holds.

Lemma 4.2. The disease-free equilibrium E0 of system (1) is weak repeller for X0,
i.e.

lim sup
t→∞

dist(Φ(t), E0) > 0,

where Φ(t)=(Sy(t), Iy(t), Ay(t), Sa(t), Ia(t), Aa(t), Se(t), Ie(t), Ae(t)) is an arbitrar-
ily solution of system (1) with any initial value in X0.

Proof. By Leenheer and Smith (Proof of Lemma 3.5 in [19]), we only need prove
W s(E0) ∩ X0 = ∅, where W s(E0) is stable manifold of E0. If it is not true, then
there exists a solution (Sy, Iy, Ay, Sa, Ia, Aa, Se, Ie, Ae) in X0 such that

Si(t)→ S0
i , Ii(t)→ 0, Ai(t)→ 0 as t→∞, i = y, a, e. (15)

Thus, by (15) there exists a T and small enough ε̄ > 0 such that Ai(t) < ε̄, Ii(t) < ε̄
for all t > T . The equation

dS̃y(t)

dt
= Λ− (αy + µy) S̃y − ε̄(β11 + β21), (16)

has an equilibrium S̃∗y(ε̄), which is globally stable and limε̄→0 S̃
∗
y = S0

y . Then for
any solution of (16), there exists a T4 > T and small enough positive ε1 such that

S̃y(t) > S̃∗y(ε̄)− ε1 holds when t > T4. By the comparison principle, there exists a

small enough ε2 > 0 such that Sy(t) > S̃y(t) > S0
y − ε2.
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For the equation

dS̃a(t)

dt
= αy(S0

y − ε2)− (αa + µa) S̃a − ε̄(β12 + β22),

there also exists T5 > T4 and small enough ε3 such that Sa(t) >
αyS

0
y

µa+αa
−ε3 = S0

a−ε3

for t > T5. The same produce applies to Se(t) yielding that Se(t) > S0
e − ε4 for

t > T6 (T6 > T5) and small enough positive ε4.
In order to use comparison theorem, we replace Ii, Ai (i = 1, 2, 3) with some new

variables xj (j = 1, 2, 3, 4, 5, 6) in system (1), respectively. Accordingly, for any
large enough t > 0, we consider the following auxiliary system which is associated
with D .

dx1

dt
= (β11x1 + β21x3)

(
1− ε2

S0
y

)
− αyx1 − ryx1 − µyx1 − βyx1,

dx2

dt
= ryx1 − µyx2 − dyx2 − αyx2,

dx3

dt
= (β12x1 + β22x3)

(
1− ε3

S0
a

)
+ αyx1 − αax3 − rax3 − µax3 − βax3,

dx4

dt
= βyx1 + rax3 + αyx2 − µax4 − αax4 − dax4,

dx5

dt
= (β23x2 + β33x5)

(
1− ε4

S0
e

)
+ αax2 − µex5 − rex5,

dx6

dt
= βax4 + rex5 + αax4 − µex6 − dex6,

(17)

The Jacobian matrix of system (17) at the disease-free equilibrium E0 is

J = J0 −
ε2

S0
y

Q1 −
ε3

S0
a

Q2 −
ε4

S0
e

Q3,

where

J0 =


β11 − η1 0 β21 0 0 0

ry −η2 0 0 0 0
(β12 + 2αy) 0 β22 − η3 0 0 0

βy αy ra −η4 0 0
0 0 (β23 + 2αa) 0 β33 − η5 0
0 0 βa αa re −η6

 ,

Q1 =


β11 0 β21 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (18)

Q2 =


0 0 0 0 0 0
0 0 0 0 0 0
β12 0 β22 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , Q3 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 β23 0 0 β22 0
0 0 0 0 0 0

 .
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Let s(J) = max{<λ|λ ∈ σ(J)}, where <λ denotes the real part of λ, and σ(J) is
the set of eigenvalues of matrix J . From (8), (18), we know that if R0 > 1, then
s(J0) > 0, and s(J) > 0 for ε2, ε3, ε4. In fact, J is a quasi-positive matrix (the
matrix has nonnegative off-diagonal entries), and there exists a vector ρ > 0 such
that Jρ = s(J)ρ (See Corollary 3.2 in [38]). Then, (x1(t), x2(t), x3(t), x4(t), x5(t),
x6(t)) → ∞ as t → ∞. By the comparison principle, we have (Iy(t), Ay(t), Ia(t),
Aa(t), Ie(t), Ae(t)) → ∞ as t → ∞, which is a contradiction. This completes the
proof of Lemma 4.2.

Theorem 4.3. If R0 > 1, then system (1) is uniform persistence with respect to
(X0, ∂X0), i.e., there exists ς > 0 such that the solution of system (1) with any
initial values in X0 satisfies

lim inf
t→∞

Ii(t) > ς, lim inf
t→∞

Ai(t) > ς, i = y, a, e.

Proof. It is obvious that both X and X0 are positively invariant and Φt is com-
pact and point dissipative, which implies that there exists a global attractor for Φt,
then condition (C1) in [56] is satisfied. Lemma 4.1 implies that M∂ is the maximal
compact invariant set of Φt in ∂X0. Choosing the Morse decomposition (See Def-
inition 1.2.4 in [56]) of M∂ as {E0}, thus ∪X∈M∂

ω(X) = {E0}, which means {E0}
is isolated. It is easy to see that weak uniform persistence of Φt in Lemma 4.2,
which implies the solution of system (1) from X0 can not run to the boundary, i.e.,
W s(E0) ∩ X0 = ∅, then condition (C2) is also satisfied. By Theorem 1.3.1 in [56]
with L = X0, system (1) is uniformly persistent with respect to (X0, ∂X0). This
completes the proof of the Theorem.

To sum up, by Lemma 3.1 and Theorem 4.3, we obtain the permanence of the
disease.

Theorem 4.4. If R0 > 1, then system (1) has at least one endemic equilibrium.

Proof. For the existence of endemic equilibrium in system (1), from those equations
in system (1), it revealed thatX0 is a positively invariant set for Φt, so Φt(X0) ⊂ X0

for t > 0. Furthermore, Φt is point dissipative (it is equal to the solution of system
(1) is ultimately bounded, this conclusion has been proved in Lemma 3.1), Φt is
compact for each t > 0, and Φt is uniformly persistent in regard to (X0, ∂X0) (it
has been obtained in Theorem 4.3). Based on the above results, Φt has a stationary
coexistence state in X0, i.e., there exists at least one endemic equilibrium for Φt

(Theorem 1.3.7 in [56]). This completes the proof Theorem 4.4.

Figure 3 (a), (b), (c), (d) show that the solutions of system (1) with different
initial values eventually converge when R0 > 1, which give us the hint that there
may be one and only one endemic equilibrium and that it may be globally attractive
if R0 > 1.

5. The global attractivity of the endemic equilibrium: A special case. We
first assume that some parameters of system (1) satisfy the following assumption in
this section.

Assumption 5.1. Assume that β21 = β12 = β23 = β32 = 0, βy < αy, and βa < αa
in system (1).
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Figure 3. Dynamics of the solutions of system (1) when R0 = 1.73415,
where the variables and parameters are given in Table 1.

Theorem 5.2. If Assumption 5.1 and R̃0 > 1 are satisfied, then there exists a
unique endemic equilibrium E∗=(S∗y , I∗y , A∗y, S∗a, I∗a , A∗a, S∗e , I∗e , A∗e) of system (1)
and E∗ is globally attractive, where

R̃0 = max{R1, R2, R3}, R1 =
β11

η̄1
, R2 =

β22

η̄3
, R3 =

β33

η5
,

η̄1 = ry + µy + βy, η̄3 = ra + µa + βa.

Proof. Substituting E∗ into system (1) under the Assumption 5.1 yields

Λ− αyS∗
y − µyS∗

y −
β11I

∗
yS

∗
y

N∗
y

= 0,
β11I

∗
yS

∗
y

N∗
y

− αyI∗y − ryI∗y − µyI∗y − βyI∗y = 0,

ryI
∗
y − µyA∗

y − dyA∗
y − αyA∗

y = 0, αyS
∗
y − αaS∗

a − µaS∗
a −

β22I
∗
aS

∗
a

N∗
a

= 0,

β22I
∗
aS

∗
a

N∗
a

− raI∗a − µaI∗a − βaI∗a = 0, βyI
∗
y + raI

∗
a + αyA

∗
y − µaA∗

a − αaA∗
a − daA∗

a = 0,

αaS
∗
a − µeS∗

e −
β33I

∗
eS

∗
e

N∗
e

= 0,
β33I

∗
eS

∗
e

N∗
e

− µeI∗e − reI∗e = 0,

βaI
∗
a + reI

∗
e + αaA

∗
a − µeA∗

e − deA∗
e = 0,

(19)
where N∗i = S∗i +I∗i +A∗i , i = y, a, e. After a careful calculation for the first, second
and third equations of (19), we obtain
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A∗y =
ry
η2
I∗y , I

∗
y =

Λ− (αy + µy)S∗y
η̄1

, S∗y =
Λ

η̄1(R1−1)
1+ry/η2

+ αy
.

Then S∗a , A
∗
a can be derived from the forth, fifth and sixth equations of (19), namely,

A∗a = (βyI
∗
y + raI

∗
a + αyA

∗
y)/η4, S∗a = (αyS

∗
y + αyI

∗
y + η̄3)/(αa + µa), where I∗a is

the root of the following quadratic equation

a0(I∗a)2 + a1I
∗
a + a2 = 0, (20)

where

a0 = η̄3

(
β22

αa + µa
+ 1 +

ra
η4
− η̄3

αa + µa

)
> 0,

a1 = −
(
β22αyS

∗
y

αa + µa
+
η̄3β12I

∗
y

αa + µa
+

(
βyI
∗
y + αyA

∗
y

η4
+

αyS
∗
y

αa + µa

)
η̄3

)
,

a2 = −
(
β12 + αy

(
1 +

βyI
∗
y + αyA

∗
y

η4

))
< 0.

It is obvious that equation (20) has a unique positive root I∗a , hence A∗a is positive.
Similarly, S∗e , I

∗
e , A

∗
e can be determined. Thus, we complete the proof of the

existence and uniqueness of the endemic equilibrium.
Next, we need to show that E∗ is globally attractive when R̃0 > 1. For this

purpose, we construct a Lyapunov function V (t) = Vy(t) + Va(t) + Ve(t), where

Vi(t) =Ni −N∗i −N∗i ln
Ni
N∗i

+
(βi + αi + 2µi)N

∗
i

βkk(I∗i +A∗i )

(
Ii − I∗i − I∗i ln

Ii
I∗i

)
+

(βi + αi + 2µi)

2ri

(
1 +

S∗i
I∗i +A∗i

)
(Ai −A∗i )2

Ni
, i = y, a, e, k = 1, 2, 3.

The time derivative of Vy(t) computed along the solutions of system (1) under
Assumption 5.1 is

dVy(t)

dt
=

(
1−

N∗
y

Ny

)
(Λ− (αy + µy)Sy − (µy + βy)Iy − (µy + dy + αy)Ay)

+
(Iy − I∗y )(βy + αy + 2µy)N∗

y

(I∗y +A∗
y)

(
Sy
Ny
−
S∗
y

N∗
y

)
+

(βy + αy + 2µy)(Ay −A∗
y)N∗

y

ryNy(I∗y +A∗
y)

dAy
dt

− (βy + αy + 2µy)

2ry

(
N∗
y

I∗y +A∗
y

)
(Ay −A∗

y)2

(Ny)2

dNy
dt

.

Using (19) and noting that

Sy
Ny
−
S∗y
N∗y

=
(I∗y +A∗y)(Sy − S∗y)− S∗y(Iy − I∗y )− S∗y(Ay −A∗y)

NyN∗y
,

Λy = (αy + µy)S∗y + (µy + βy + ry)I∗y ,

dAy
dt

= ry(Iy − I∗y )− (µy + dy + αy)(Ay −A∗y),
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we have

dVy(t)

dt
=− (αy + µy)

(Sy − S∗
y)2

Ny
− (µy + dy + αy)

(Ay −A∗
y)2

Ny

− (βy + αy + 2µy)

2ry(N∗
y )2

(
1 +

S∗
y

I∗y +A∗
y

)
(Ay −A∗

y)2

(
2(µy + dy + αy)N1 +

dNy
dt

)
−
(
µy + βy +

S∗
y(βy + αy + 2µy)

Ny(I∗y +A∗
y)

)
(Iy − I∗y )2

Ny

=− (αy + µy)
(Sy − S∗

y)2

Ny
− (µy + dy + αy)

(Ay −A∗
y)2

Ny

−
(
µy + βy +

S∗
y(βy + αy + 2µy)

Ny(I∗y +A∗
y)

)
(Iy − I∗y )2

Ny

− (βy + αy + 2µy)

2ry(N∗
y )2

(
1 +

S∗
y

I∗y +A∗
y

)
(Ay −A∗

y)2Θ(t),

where Θ(t) = Λy + (αy + µy)(Sy + Ay) + (µy + 2αy − βy)Iy. It is obvious that
dVy

dt ≤ 0, and the equality
dVy

dt = 0 holds if and only if Sy = S∗y , Iy = I∗y , Ay = A∗y.
Hence

lim
t→∞

Sy(t) = S∗y , lim
t→∞

Iy(t) = I∗y , lim
t→∞

Ay(t) = A∗y. (21)

The time derivative of Va(t) computed along the solutions of system (1) under
Assumption 5.1 is

dVa(t)

dt
=

(
1− N∗a

Na

)(
αy(Sy − S∗y) + (αa + µa)(Sa − S∗a)

+(µa + βa)(Ia − I∗a) + βy(Iy − I∗y ) + αy(Ay −A∗y)
)

+
(βa + αa + 2µa)N∗a

(I∗a +A∗a)

(
Sa
Na
− S∗a
N∗a

)
+

(βa + αa + 2µa)

raNa

(
1 +

S∗a
I∗a +A∗a

)
(Aa −A∗a)

dAa
dt

− (βa + αa + 2µa)

2ra

(
1 +

S∗a
I∗a +A∗a

)
(Aa −A∗a)2

(Na)2

dNa
dt

,

=− (αa + µa)
(Sa − S∗a)2

Na
−
(
µa + βa +

S∗a(βa + αa + 2µa)

Na(I∗a +A∗a)

)
(Ia − I∗a)2

Na

− (µa + da + αa)
(Aa −A∗a)2

Na
− (βa + αa + 2µa)

2ra(N∗a )(I∗a +A∗a)
(Aa −A∗a)2Γ1(t)

+
(Sa − S∗a) + (Ia − I∗a) + (Aa −A∗a)

Na
Γ2(t)

+
(βa + αa + 2µa)

ra(N∗a )2

(
1 +

S∗a
I∗a +A∗a

)
(Aa −A∗a)Γ3(t),

(22)

where

Γ1(t) = αySy + βyIy + αyAy + (αa + µa)(Sa +Aa) + (µa + 2αa − βa)Ia,

Γ2(t) = αy((Sy − S∗y) + βy(Iy − I∗y ) + αy(Ay −A∗y),

Γ3(t) = βy(Iy − I∗y ) + ra(Ia − I∗a) + αy(Ay −A∗y).

(23)
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In fact, if (21) holds, then there exists a large enough t1 such that dVa

dt ≤ 0 for

t > t1, and the equality dVa

dt = 0 holds if and only if Sa = S∗a , Ia = I∗a , Aa = A∗a.
Hence

lim
t→∞

Sa(t) = S∗a , lim
t→∞

Ia(t) = I∗a , lim
t→∞

Aa(t) = A∗a.

Similarly, it follows from Eq. (22)-(23) that

dVe(t)

dt
= −µe(Se − S

∗
e )2

Ne
−
(
µe + βa +

2S∗
eµa

Ne(I∗e +A∗
e)

)
(Ie − I∗e )2

Na
− (µe + de)

(Ae −A∗
e)

2

Ne

− 2µe
2re(N∗

e )2

(
1 +

S∗
e

I∗e +A∗
e

)
(Ae −A∗

e)
2
(
µeNe + αaSa + βaIa + αaAa

)

+
(Se − S∗

e ) + (Ie − I∗e ) + (Ae −A∗
e)

Ne
(αa(Sa − S∗

a) + βa(Ia − I∗a) + αa(Aa −A∗
a))

+
(βa + 2µe)

re(N∗
e )2

(
1 +

S∗
e

I∗e +A∗
e

)
(Ae −A∗

e) (βa(Ia − I∗a) + re(Ie − I∗e ) + αa(Aa −A∗
a)) ,

and there exists t2 > t1 such that dVe

dt ≤ 0 for t > t2, with dVe

dt = 0 at Se =
S∗e , Ie = I∗e , Ae = A∗e. Hence, lim

t→∞
Se(t) = S∗e , lim

t→∞
Ie(t) = I∗e , lim

t→∞
Ae(t) = A∗e.

Above all, we claim that E∗ is globally attractive. This completes the proof of the
Theorem.

One of the most significant concerns about HIV is its ability to infect susceptible
population, we show in Theorem 3.4 that the population remains in the absence of
HIV and the disease will be eventually extinct if R0 < 1, which is a critical threshold
to determine the condition for the disease outbreak. In Theorem 4.3, we claim that
the disease will be always persistent when R0 > 1. Finally, the disease probably
becomes epidemic at certain level, which corresponds to the endemic equilibrium in
Theorem 4.4 and Theorem 5.2.

6. Optimal control. In this section, we propose and analyze an optimal control
problem applied to the HIV dynamics described by system (1). Compared with
new youth cases, the new elderly infected cases increase rapidly, which is shown
in Table 2. The proportion of the elderly cases in total increases from 6.30% in
2005 to 30.35% in 2017. This indicates that older people have increasingly risk of
HIV/AIDS infection. Further, in the aged group, the condom use rate just reaches
15% or less [14] at the time of sexual behavior, which increases HIV infection in
the elderly people group dramatically. The increasing number of HIV infected
individuals moves to and becomes AIDS patients also results in the raise of elderly
HIV/AIDS infected cases [28, 27]. Hence, some measures must be taken for the HIV
transmission of the elderly. For this purpose, we take optimal control measures to
reduce the number of HIV infected and AIDS patients among elderly, namely our
goal here is to find one optimal control strategy for Ia individuals move to Ae
individuals that will minimize the transfer rate, the other optimal control strategy
for decrease HIV transmission, such as increases condom use. We introduce time-
dependent controls u1(t) and u2(t). This results in the following system
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

dSy(t)

dt
= Λ− αySy(t)− µySy(t)− φy(t)Sy(t),

dIy(t)

dt
= φy(t)Sy(t)− αyIy(t)− ryIy(t)− µyIy(t)− βyIy(t),

dAy(t)

dt
= ryIy(t)− µyAy(t)− dyAy(t)− αyAy(t),

dSa(t)

dt
= αySy(t)− αaSa(t)− µaSa(t)− φa(t)Sa(t),

dIa(t)

dt
= φa(t)Sa(t) + αyIy(t)− αaIa(t)− raIa(t)− µaIa(t)− βa(1− u2(t))Ia(t),

dAa(t)

dt
= βyIy(t) + raIa(t) + αyAy(t)− µaAa(t)− αaAa(t)− daAa(t),

dSe(t)

dt
= αa(t)Sa(t)− µeSe(t)− φe(t)Se(t)(1− u1(t)),

dIe(t)

dt
= φe(t)Se(t)(1− u1(t)) + αaIa(t)− µeIe(t)− reIe(t),

dAe(t)

dt
= βa(1− u2(t))Ia(t) + reIe(t) + αaAa(t)− µeAe(t)− deAe(t),

(24)
where the parameters are as defined in Table (1). The control functions u1 and u2

are bounded Lebesgue integrable functions and represent the condom use and re-
move from Ie(t) to Ae(t) suppressing control measures, respectively. The coefficient
(1 − u1(t)), represents the control effect that reduces HIV transmission of elderly,
while the coefficient (1−u2(t)) gives the effect of treatment that reduces the transfer
from Ie(t) to Ae(t). If u1 = 0, u2 6= 0, then there is only enhance treatment for HIV
infection elderly and no inhibition of transmission. If u1 6= 0, u2 = 0, then there
is only inhibition of transmission and no control measure for enhance treatment of
HIV infection individuals among elderly. If u1 = 0 and u2 = 0, then there is no
inhibition of transmission and remove from Ie(t) to Ae(t).

Note that for nonnegative initial conditions and bounded Lebesgue measurable
controls, the state system admits nonnegative bounded solutions. We formulate an
similar form in [34, 32] objective functional for the control system (24), with the
goal of minimizing HIV infection individuals and AIDs patients among elderly over
a finite time horizon [0, tf ]

J(Ie, Ae, u) =

∫ tf

0

(
w1I

2
e (t) + w2A

2
e(t) +

w3

2
u2

1(t) +
w4

2
u2

2(t)
)
dt, (25)

where u(t) = (u1(t), u2(t)), positive constants w1 and w2 represent the balancing
factors associated to the total numbers of new HIV infections, AIDS patients among
the elderly group, respectively. The balancing factors associated to the cost com-
ponent u2

1(t) and u2
2(t), are denoted by a positive constant w3 and w4, respectively.

We consider the following set of admissible (bounded) control functions

Ω = {u = (u1, u2) ∈ L∞(0, tf )× L∞(0, tf )|u1(t), u2(t) ∈ [0, 1],∀ t ∈ [0, tf ]} ,

where u1(t) and u2(t) are Lebesgue measurable with upper bounds. Thus, the
optimal control problem consists of determining the vector function (S̄y, Īy, Āy,
S̄a, Īa, Āa, S̄e, Īe, Āe) associated with an admissible control pair u∗1, u

∗
2 on the
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time interval [0, tf ] minimizing the objective functional (25), i.e.,

J(Ie(u
∗), Ae(u

∗), u∗) = min
Ω
J
(
Ie(u), Ae(u), u

)
. (26)

According to the Pontryagin Maximum Principle [35], the Hamitlonian is con-
structed from system (24) with the underlying state dynamic attached

H =w1I
2
e (t) + w2A

2
e(t) +

w3

2
(u1)2 +

w4

2
(u2)2 + λ1

dSy
dt

+ λ2
dIy
dt

+ λ3
dAy
dt

+ λ4
dSa
dt

+ λ5
dIa
dt

+ λ6
dAa
dt

+ λ7
dSe
dt

+ λ8
dIe
dt

+ λ9
dAE
dt

.

Theorem 6.1. There exists a pair of optimal controls u∗1, u∗2 and corresponding
solution vector (S̄y, Īy, Āy, S̄a, Īa, Āa, S̄e, Īe, Āe) that minimizes J(Ie, Ae, u)
over Ω. Furthermore, there exist adjoint functions λ̄k, k = 1, 2, . . . , 9, with
transversality conditions λ̄k(tf ) = 0, k = 1, 2, . . . , 9, as follows:

dλ1

dt
= (αy + µy) λ̄1 + (λ̄1 − λ̄2)f1 − λ̄4αy,

dλ2

dt
=(λ̄1 − λ̄2)β11S̄yf2 + λ̄2(αy + ry + µy + βy)− ryλ̄3 − βyλ̄6

+ (λ̄4 − λ̄5)β12f3 − αyλ̄5,

dλ3

dt
=(λ̄2 − λ̄1)f4 + (µy + dy + αy)λ̄3 − αyλ̄6,

dλ4

dt
= (αa + µa) λ̄4 + (λ̄4 − λ̄5)f5 − αaλ̄7,

dλ5

dt
=(αa + re + µe + βa(1− u2(t)))λ̄5 + (λ̄4 − λ̄5)f6 − raλ̄6

− αaλ̄8 − βa(1− u2(t))λ̄9 + (λ̄1 − λ̄2)f7 + (λ̄7 − λ̄8)f8,

dλ6

dt
=(µa + da + αa)λ̄6 − αaλ̄9 + (λ̄5 − λ̄4)f9,

dλ7

dt
=µeλ̄7 + (λ̄7 − λ̄8)f10,

dλ8

dt
=(λ̄7 − λ̄8)f11 + (µe + re)λ̄8 − reλ̄9 + 2w1Īe,

dλ9

dt
=(µe + de)λ̄9 + 2w2Āe + (λ̄8 − λ̄7)f12,

where N̄i = S̄i + Īi + Āi, i = y, a, e.

f1 =

(
β11Īy + β21Īa

) (
N̄y − S̄y

)
N̄2
y

, f2 =
N̄y − Īy

N̄2
y

, f3 =
S̄a

N̄a
, f4 =

(β11Īy + β21Īa)S̄y

N̄2
y

,

f5 =
(β12Īy + β22Īa)(N̄a − S̄a)

N̄2
a

, f6 =
β22S̄aN̄a − (β12Īy + β22Īa)S̄a

N̄2
a

, f7 =
β21S̄y

N̄y
,

f8 =
β23(1 − u1(t))S̄e

N̄e
, f9 =

(β12Īy + β22Īa)S̄a

N̄2
a

, f10 =
(β33Īe + β23Īa)(1 − u1(t))(N̄e − S̄e)

N̄2
e

,

f11 =
β33(1 − u1(t))S̄e(N̄e − β23Īa − β33Īe)

N̄2
e

, f12 =
(β23Īa + β33Īe)(1 − u1(t))S̄e

N̄2
e

.
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Also, the optimal control functions u∗1, u
∗
2 are given by

u∗1(t) = min

{
max

{
0,

S̄e
w3N̄e

(λ̄8 − λ̄7)(β23Īa + β33Īe)

}
, 1

}
,

u∗2(t) = min

{
max

{
0,

βa
w4

(λ̄9 − λ̄5)Īa

}
, 1

}
.

(27)

Proof. The existence of optimal control u(t) due to the convexity of the integrand of
(25) with respect to u1(t), u2(t), a priori boundedness of the state solutions is given
by Corollary 4.1 [13], and the Lipschitz property of the state system with respect
to the state variables. We obtain the adjoint and control system by Pontryagin’s
Maximum principle.

The control system

dSy
dt

=
∂H

∂λ1
,
dIy
dt

=
∂H

∂λ2
,
dAy
dt

=
∂H

∂λ3
,
dSa
dt

=
∂H

∂λ4
,
dIa
dt

=
∂H

∂λ5
,

dAa
dt

=
∂H

∂λ6
,
dSe
dt

=
∂H

∂λ7
,
dIe
dt

=
∂H

∂λ8
,
dAe
dt

=
∂H

∂λ9
.

The adjoint system

dλ1

dt
= −∂H

∂Sy
,
dλ2

dt
= −∂H

∂Iy
,
dλ3

dt
= −∂H

∂Ay
,
dλ4

dt
= −∂H

∂Sa
,
dλ5

dt
= −∂H

∂Ia
,

dλ6

dt
= −∂H

∂Aa
,
dλ7

dt
= −∂H

∂Se
,
dλ8

dt
= −∂H

∂Ie
,
dλ9

dt
= −∂H

∂Ae
,

with zero final time conditions. To get the characterizations of the optimal control
given by (27), we obtain

∂H

∂u1
= 0,

∂H

∂u2
= 0.

Using the bounds on the controls, we obtain the desired characterization (27).
We study numerically the optimal control problem (26) in the next section.

7. Application to the control of HIV/AIDS among the aged group in
China. In this section, we use model (1) to predict the HIV/AIDS trend among
three-age-classes in China. Firstly, we collect and settle the HIV/AIDS data in
China, estimate the parameters and initial values of model (1). Secondly, we per-
form some sensitivity analyses to analyze the effects of the parameter values on the
basic reproduction of system (1). At last, we solve the optimal control problem in
(25) by numerical simulation.

7.1. Estimation of the model parameters and initial values. National
death rates of youth, adult, and elderly are respective taken to be µy = 0.765,
µa = 1.852, and µe = 2.07 in [7]. Average incubation period of youth, adult, and
elderly are respective taken to be ry = 1/12.5, ra = 1/10, re = 1/7.9 per year in [1],
corresponding to the incubation expectancies of youth, adult, and elderly equal to
1/ry = 12.5, 1/ra = 10, 1/re = 7.9 years, respectively.

AIDS-related death rate among youth, adult, and elderly are respective assumed
to be dy = 2.3%, da = 9.7%, de = 16% in [12] and [52].

Condom use rates among youth, adult, and elderly are taken to be c11 = c12 =
57.5%, c21 = c22 = c23 = 34.5%, c33 = 20.0%, respectively. (see [51] and [17]).
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Infection rate of i group from youth, adult, and elderly are respective chosen to be
δ11 = δ12 = 0.012%, δ21 = 2.8%, δ22 = 4.2%, δ23 = 6.6%, δ33 = 7.2% in [23], [42],
and [21]. Those papers all focus on statistic and Mate analysis based on the real
demographic and epidemiological data in China, hence our parameter values are
reasonable and credible.

The annual average birth rate is 12.4% over one thousand in 2005, which is
obtained from the National Bureau of Statistics of China [7], then recruiting number
of susceptible youth is 248016514× 1.24% = 3075405, namely, Λ = 3075405.

Notice that all the parameters in Table 1 have already been fixed except αy, αa,
βy, βa. In order to estimate those parameters, we simulate system (1) starting from
the initial conditions.

The population of youth, adult, and elder groups are 248020700, 583080200 and
337676900 in 2005, respectively, which is obtained from the National Bureau of
Statistics of China [7]. Thus, we have the initial values of susceptible: Sy(0) =
248020700− 4186 = 248016514, Sa(0) = 583080200− 33430 = 583046770, Se(0) =
337676900− 2563 = 337674337.

From [48, 5], we have the annual HIV/AIDS cases in 2005 among youth, elderly
populations: Iy(0) = 3980, Ay(0) = 1206, Ie(0) = 2238, Ae(0) = 1199. Fur-
thermore, the total annual HIV and AIDS cases are 33161, and 7550 in 2005 [43],
respectively. Hence, we obtain Ia(0) = 26943, Aa(0) = 5145.

A relatively good fit to new HIV/AIDS infection cases among youth, adult, and
elderly (see Figure 5 and Figure 4) was obtain with αy = 0.025, αa = 0.043, βy =
0.03, βa = 0.041.

All the parameter values have now been fixed and are summarized in Table 1.

Table 1. The parameters and numerical values

Parameters Description Range (%) Value
(year−1)

Source

Λ Recruitment of the youth class - 3075405 Assume
µy Natural death rate of youth [0.066-0.087] 0.765‰ [7]
µa Natural death rate of adult [0.1-0.327] 1.852‰ [7]
µe Natural death rate of elderly [0.19-0.45] 2.07‰ [7]
ry Average remove rate from Iy to Ay - 1/12.5 [1]
ra Average remove rate from Ia to Aa - 1/10 [1]
re Average remove rate from Ie to Ae - 1/7.9 [1]
dy AIDS-related death rate among youth [1.0-4.3] 2.3% [12]
da AIDS-related death rate among adult [5.03-12.1] 9.7% [12]
de AIDS-related death rate among elderly [12.1-17.5] 16% [52]
c11, c12 Condom use rate of youth [34-68] 57.5% [51]
c21, c22, c23 Condom use rate of adult [30-40] 34.5% [51]
c33 Condom use rate among elderly [17.5-37.5] 20.0% [17]
αy Transfer rate of youth group - 0.043 Fit
αa Transfer rate of adult group - 0.031 Fit
δ11, δ12 Infected rate among youth [0.012-0.065] 0.014% [23]
δ21 Infected rate from adult to young [0.13− 9.9] 2.8% [42]
δ22 Infected rate among adult [0.13− 9.9] 4.2% [42]
δ23 Infected rate from adult to elderly [0.13− 9.9] 6.6% [42]
δ33 Infected rate among elderly [2.7-30.6] 25% [21]
βy Transfer rate from Iy to Aa - 0.036 Fit
βa Transfer rate from Ia to Ae - 0.041 Fit
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The annual HIV/AIDS reported data in China from 2005 (t = 0) to 2017 in
Table 1 show that the HIV/AIDS cases among elderly population increase rapidly.
We use system (1) to simulate youth, the elderly and total HIV/AIDS cases, the
numerical fitted curves of HIV/AIDS cases based on the statistical data in Table 2
are presented in Figure 5, 4, it can been seen that our model fit the reported cases
very well, and the predictions of HIV/AIDS cases among groups in the next few
years are given in Figure 5, 4. The fitting results show that the model is reasonable.
Especially, it is observed that the growth rate of HIV infected in old people will be
faster than young people in Figure 4 (b), which reveals that the elderly group will
become HIV high risk group and HIV/AIDS cases among the elderly group remain
increase rapidly unless some effective measures are taken. Sensitivity analysis of the
main parameters, analysis of optimal control and prevention measures are given in
Figure 6, 3, 8, 9, 10.

Table 2. Numbers of youth, adult, the elderly and total new reporting
HIV/AIDS cases in China (2005− 2017). Adult cases are calculated by
the total cases minus other groups cases, where the data on children
under 15 years old from 2005 to 2017 are counted in [45].

Year Total
cases

SourceThe youth
cases (pro-
portion)

SourceThe adult
cases (pro-
portion)

The elderly
cases (pro-
portion)

Source

2005 40711 [43] 4186
(10.28%)

[55] 33430
(82.12%)

2563
(6.30%)

[48]

2006 44070 [43] 4872
(11.06%)

[55] 34227
(77.67%)

3437
(7.80%)

[16]

2007 45151 [43] 5524
(12.23%)

[55] 34449
(76.30%)

4515
(10.06%)

[16]

2008 50081 [43] 6628
(13.23%)

[55] 36064
(72.01%)

6599
(13.18%)

[44]

2009 53249 [43] 7416
(13.93%)

[55] 35916
(67.45%)

9016
(16.93%)

[44]

2010 64108 [43] 7875
(13.28%)

[55] 44696
(69.72%)

11537
(18.00%)

[44]

2011 74517 [36] 8925
(11.98%)

[55] 48983
(65.73%)

16609
(22.30%)

[44]

2012 82434 [28] 10195
(12.37%)

[55] 52718
(63.95%)

19521
(23.68%)

[44]

2013 90119 [29] 10800
(13.49%)

[36] 56253
(62.42%)

23066
(25.61%)

[44]

2014 103501 [30] 15000
(14.61%)

[36] 60139
(58.10%)

27520
(26.60%)

[44]

2015 114656 [31] 16986
(14.81%)

[49] 63308
(55.22%)

33522
(29.24%)

[41]

2016 124555 [26] 18437
(15.00%)

[49] 70356
(56.49%)

35762
(28.71%)

[41]

2017 134551 [27] 21250
(15.79%)

[49] 72468
(53.86%)

40833
(30.35%)

[41]
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Figure 4. The fitting curves of total new HIV/AIDS infection cases.
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Figure 5. The fitting curves of new HIV/AIDS infection cases among
youth, elderly, adult, respectively.

7.2. Sensitivity analysis. In order to analyze the effects of the parameter values
on the basic reproduction number of system (1), we perform sensitivity analysis by
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0

Latin square sampling and partial rank correlation coefficient (PRCC) methods. In
the absence of available data on the distribution functions, we choose a uniform dis-
tribution for all input parameters with the minimum and maximum values shown in

Table 1 and tested for significant PRCCs for all parameters of R
(2)
0 (PRCCs is given

in Table 3). Figure 6 shows PRCCs values of parameters against the basic repro-
duction number, which indicates that the parameters of model (1) except δ11 and

δ12 have significant impact on the basic reproduction number R
(2)
0 . These results

indicate that decreasing the transmission rate of sexual or increasing the condom
use proportion are the most effective measures to reduce the basic reproduction
number. That is, the implement of highly condom use is a critical control measure.
So, studying the effects of changing these two parameters on the basic reproduction
number is of significantly applied value. Besides, the transfer rates βa and αa have

important impact on R
(2)
0 , it means that an important reason for HIV/AIDS cases

increasing vigorously among old people is due to the HIV cases among adult become
to HIV/AIDS among the elderly group [28, 27].

We carry out some sensitivity analyses to investigate the influence of parameters

on R
(2)
0 by three-dimensional diagram (see Figure 7, 8), the parameters values are
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Parameters p value PRCC Parameters p value PRCC
c11 0.3721 -0.1622 δ22 0.6886 0.7230
c12 0.6879 -0.2595 αy 0.6152 0.3462
c21 0.2277 -0.4457 αa 0.7502 -0.2868
c22 0.8075 -0.6452 βy 0.5915 -0.0771
δ11 0.4428 0.0172 βa 0 -0.8105
δ21 0.3971 0.5004 ry 0.2674 -0.3981
δ12 0.8916 -0.0008 ra 0.2412 -0.3063
δ23 0.8646 -0.0036 c23 0.1928 -0.0292
δ33 0.3956 0.0190 c33 0.5424 -0.0135

Table 3. The PRCC of the parameters in model (1).
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Figure 7. R
(2)
0 trends with respect to different parameters, the other

parameters are listed in Table 1.

the same as the above cases besides αa, αy in Figure 7 (a). Similarly, in Figure

7 (b), ry, βa influences on R
(2)
0 , it is shown that R

(2)
0 is an increasing function

of αy and ry, respectively, and decreasing function of βa, ra (see Figure 8 (a)).

Furthermore, from Figure 8 (b) we can see that R
(2)
0 is always greater than 1, it

means that the population of infected HIV among youth and adult increasing is
mainly due to sexual transmission.

7.3. Optimal control strategies. We now solve the optimal control problem pro-
posed in Section 6 for w1 = 1, w2 = 2, w3 = 1000, w4 = 950, tf = 20, and the
parameters, initial conditions in Table 1 and subsection 7.1. The optimal controls
u∗1 and u∗2 take the maximum values for interval [0, 4.444], [0, 10.36] years, respec-
tively (see Figure 9 (a)). The optimal controls u1(t) and u2(t) are decreasing func-
tions in intervals [4.44, 18], [10.3, 18], respectively. We obtain that u∗1(18) = 0.06,
u∗2(18) = 0.04924 from Figure 9 (a). From Figure 9 (b), it is revealed that the num-
ber of AIDS individuals among elderly associated with the optimal control strategies
decreases from 1460 to 460 individuals fleetly, and at the time of t = 18 years, the
number of AIDS patient among elder people associated with the optimal controls
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is almost 430. We obtain that the strategy associated with controls leads to signif-
icant decrease on the number of AIDS individuals among elderly. The maximum
value of the number of Ae also decreases significantly when the control strategies
are applied. The optimal control u2(t) implies a significant transfer of HIV infected
among adult to the AIDS people among elderly. Meanwhile, we analyze the impact
of initial values of Iy(t), Ia(t), Ie(t) on the optimal control strategies. In Figure
10(a), (b), it is shown that decrease of Ia(0), Iy(0) will shorten the duration of the
maximum values of optimal controls u∗1, u

∗
2. Conversely, the increase in the initial

value of infected individuals in the three groups will prolong the duration of the
maximum control intensity, wherein the change in the initial value of the elderly
group has great impact on the control intensity (see Figure 10 (c)). These results
indicated that the difficulty of control and the cost of control increase as the initial
value of infected individuals among the three groups. In other words, it is necessary
to take timely control measures for HIV transmission, which can improve control
efficiency while reducing control costs.

From an epidemiological point of views, the control measures must be taken
when the disease outbreaks, i.e., the basic reproduction number larger than 1 in

this paper. Hence, one interesting question is how the basic reproduction R
(1)
0 of

elderly in (4) influences on the optimal control strategies u1(t) and u2(t). To do
this, we choose the parameter δ33 = 0.172, 0.25, 0.4, re = 1/8.2, 1/7.9, 1/7.2, and
other parameters are the same in Table 1. After simple calculation, we obtain

R
(1)
0 = 1.075, 1.56, 2.5, respectively. Corresponding the optimal control strategies

u∗1 and u∗2 are showed in Fig. 11. From Fig. 11 (a) − (b), it can be seen that
the intensity of the optimal control strategies u∗1 and u∗2 will be strengthen when

the basic reproduction number R
(1)
0 increases. This is indicated that the increase

in the basic reproduction will have a negative effect on the control strategies. In
other words, the optimal controls should be strengthen when the prevalence of HIV
increases among elderly.

Finally, in order to effectively control the HIV/AIDS infection among the elderly,
we discuss the numerical solutions of the optimal system and the corresponding
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Figure 9. (a): Optimal solutions for the system (1), u∗
2 in green full

line and u∗
1 in purple full line. (b): Ae(t) trends in regard to the optimal

controls, where Ae without control strategy in red solid line, Ae under
the optimal control in blue dashed line. Other parameters are the same
in Table 1.

results of the optimal controls u1 and u2. In Figure 9 (b), the impact of the optimal
controls of the AIDS cases among the elderly is presented, it can be seen that AIDS
decreases observably among the elderly under the optimal controls. As a comparison
with the optimal controls we take in Figure 9 (b), we show the counterfactual AIDS
cases among the old people under the optimal strategy u1 or u2 only are shown
in Figure 12 and Figure 13. We observe in Figure 12 (b) that the number of old
AIDS patients Ae(t) is eventually decreasing but rising at the beginning under the
optimal control u2(t) only. This result is due to a lack of intervention in the sexual
behaviors among the elderly. In Figure 13 (b), it shows that the number of Ae(t) is
initially controlled significantly but start rising again at about the 8th year. This
may be connected to the fact that the development of chronic HIV infection to AIDS
is an important cause of the increase in the number of the aged AIDS patients. The
above results, however, do not correspond to what we purpose and expect. On the
contrary, the result depicted in Figure 9 (b) clearly suggests that the strategy we
propose in Section 5 is very efficient and effective for the control of the number of
AIDS patients among the elderly.

8. Conclusion and discussion. In this paper, the dynamics of a HIV/AIDS epi-
demic model with three-age-levels are analyzed. In fact, compartment models for
HIV transmission among high risk groups ( FSWs, MSM) have been studies by
many researchers [40, 2, 47, 53, 54]. However, to our knowledge, there are no math-
ematical models established to analyze HIV transmission among different age groups
although the spread and duration of HIV/AIDS vary considerably among people of
different ages. Our main concerns are to study the HIV transmission among differ-
ent ages and to study the effect of optimal control strategies on HIV/AIDS among



A THREE-AGE-CLASS HIV/AIDS EPIDEMIC MODEL IN CHINA 3517

0 5 10 15 20

Time (Years)

0

0.2

0.4

0.6

0.8

1
O

p
t
im

a
l 
c
o

n
t
r
o

ls

u
*

2
(I

a
(0)=25161)

u
*

1
(I

a
(0)=25161)

u
*

2
(I

a
(0)=10513)

u
*

1
(I

a
(0)=10153)

(a)

0 5 10 15 20

Time (Years)

0

0.2

0.4

0.6

0.8

1

O
p
t
im

a
l 
c
o
n
t
r
o
ls

u
*

2
(I

y
(0)=3980)

u
*

1
(I

y
(0)=3980)

u
*

1
(I

y
(0)=980)

u
*

2
(I

y
(0)=980)

(b)

0 5 10 15 20

Time (Years)

0

0.2

0.4

0.6

0.8

1

O
p
t
im

a
l 
c
o
n
t
r
o
ls

 

u
*

2
(I

e
(0)=2238)

u
*

1
(I

e
(0)=2238)

u
*

2
(I

e
(0)=5312)

u
*

1
(I

e
(0)=5312)

(c)

Figure 10. (a): Optimal control with respect to Ia(0), (b): Optimal
control with respect to Iy(0), (c): Optimal control with respect to Ie(0).
Other parameters are the same in Table 1.

the elderly population. For this purpose, the total population is divided into three
compartments including youth (15-24 years old), adult (25-49 years old) and elderly
(> 50 years old) in our model. We deduce the formula of the basic reproduction
number R0 and show that the disease-free equilibrium is globally stable if R0 < 1
and the disease is persistent when R0 > 1. Meanwhile, we prove the existence,
uniqueness and global attractivity of the endemic equilibrium in a special case.
At last, the optimal controls are given to control HIV/AIDS transmission among
elderly individuals.
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Figure 11. (a): The influence of R
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0 on u∗

1. (b): The influence of R
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0

on u∗
2, other parameters are the same in Table 1.
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Figure 12. (a): Optimal control strategy u2(t) 6= 0, u1(t) = 0. (b):
The impact on Ae(t) with the optimal control strategy u2(t) 6= 0, u1(t) =
0, other parameters are the same in Table 1.

The numerical analyses reflect the trend of HIV/AIDS among different age groups
in China based on fitting and prediction of the annual HIV/AIDS infected cases
among these groups from 2005 to 2017. The model predicts consistent increases in
the numbers of HIV/AIDS infections among all age groups in the next a few years,
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Figure 13. (a): Optimal control strategy with u1(t) 6= 0, u2(t) = 0.
(b): The impact on Ae(t) with the optimal control strategy u1(t) 6=
0, u2(t) = 0, other parameters are the same in Table 1.

with a significantly rapid increase among the elderly population. This finding indi-
cates that the elderly people have become a new high-risk group, which is in lines
with [48]. In the part of sensitivity analyses, we analyze the effects of the param-

eter values on the basic reproduction number R
(2)
0 of system (1) by Latin square

sampling and partial rank correlation coefficient (PRCC) methods, these results
indicate that decreasing the transmission rate of sexual behaviors and increasing
condom use are the two most effective measures to reduce the basic reproduction
number. More specifically, the numerical results of the optimal controls show that
strengthening treatment to reduce HIV infection individuals move to AIDS patients
and encouraging condom use is critical to the control of HIV transmission among
elderly group.
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