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a b s t r a c t

Coinfection of hosts with multiple strains or serotypes of the same agent, such
as different influenza virus strains, different human papilloma virus strains, and
different dengue virus serotypes, is not only a very serious public health issue but
also a very challenging mathematical modeling problem. In this paper, we study a
time-periodic two-strain SIS epidemic model with diffusion and latent period. We
first define the basic reproduction number Ri

0 and introduce the invasion number
R̂i

0 for each strain i (i = 1, 2), which can determine the ability of each strain
to invade the other single-strain. The main question that we investigate is the
threshold dynamics of the model. It is shown that if Ri

0 ⩽ 1(i = 1, 2), then the
disease-free periodic solution is globally attractive; if Ri

0 > 1 ⩾ Rj
0(i ̸= j, i, j =

1, 2), then competitive exclusion, where the jth strain dies out and the ith strain
persists, is a possible outcome; and if R̂i

0 > 1(i = 1, 2), then the disease persists
uniformly. Finally we present the basic framework of threshold dynamics of the
system by using numerical simulations, some of which are different from that of
the corresponding multi-strain SIS ODE models.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

There are many examples of simultaneous infection of hosts with multiple strains or serotypes of the
same agent, such as coinfection of different influenza virus strains (Greenbaum et al. [1]), different human
papilloma virus strains (Chaturvedi et al. [2], and different dengue virus serotypes (Ferguson et al. [3]).
It is very key to study the dynamics of coinfection since antimicrobials, which can be used to treat one
infection, may affect the others. Various mathematical models have been proposed to study the dynamics
of coinfection of multiple strains (Bremermann and Thieme [4], Martcheva [5]), in particular of two strains
(Alizon [6], Allen et al. [7], Blyuss and Kyrychko [8], Gao et al. [9]).
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With the purpose of understanding the influence of spatial heterogeneity of environment and spatial
movement to the geographic spread of infectious diseases, reaction–diffusion equations have been frequently
used. These studies mainly focus on the existence, uniqueness, the asymptotic profile of the steady states,
existence and asymptotic spreading speed of traveling waves, and so on. We refer to the monograph of
Murray [10], the surveys of Fitzgibbon and Langlais [11] and Ruan and Wu [12], Wang et al. [13] and the
references cited therein for related results and references.

To incorporate diffusion and spatial heterogeneity explicitly, Tuncer and Martcheva [14] considered the
following two-strain diffusive SIS epidemic model with space-dependent transmission parameters⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
∂tS = dS∆S − (β1(x)I1(x,t)+β2(x)I2(x,t))S(x,t)

S(x,t)+I1(x,t)+I2(x,t)
+γ1(x)I1(x, t) + γ2(x)I2(x, t), x ∈ Ω , t > 0,

∂
∂tI1 = d1∆I1 + β1(x)S(x,t)I1(x,t)

S(x,t)+I1(x,t)+I2(x,t) − γ1(x)I1(x, t), x ∈ Ω , t > 0,
∂
∂tI2 = d2∆I2 + β2(x)(x,t)I2(x,t)

S(x,t)+I1(x,t)+I2(x,t) − γ2(x)I2(x, t), x ∈ Ω , t > 0

(1.1)

under the non-flux boundary conditions

∂

∂n
S = ∂

∂n
I1 = ∂

∂n
I2 = 0, x ∈ ∂Ω , t > 0. (1.2)

They firstly defined the basic reproduction number for each strain by Ri0(i = 1, 2) and introduced the
invasion numbers of the two strains R̂i0(i = 1, 2), respectively. Then they showed that the disease-free
equilibrium (DFE) is globally stable if R0 := max{R1

0, R
2
0} < 1 and conversely unstable if R0 > 1. They

also showed that if both R̂1
0 > 1 and R̂2

0 > 1 hold, then there is a coexistence steady state. Finally,
they investigated various competition exclusion scenario between the two strains and the stability of the
coexistence equilibrium by numerical investigations.

Ackleh et al. [15] considered the threshold dynamics of (1.1)–(1.2) with a bilinear disease transmission
term. They took into account the following two cases: (a) all coefficients are spatially homogeneous. In this
case they showed that the DFE is globally attractive if R0 < 1, and one strain may outcompete the other
one and cause it to extinction if R0 > 1; (b) all coefficients are spatially inhomogeneous and the diffusion
rates are equal; namely, dS = d1 = d1 = d. In this situation, both competitive exclusion and coexistence
may occur. Further studies of model (1.1)–(1.2) can be found in Wu et al. [16], who studied, among other
things, what characteristics of the model imply coexistence, and the model exhibits competitive exclusion
under what conditions.

As reported by Altizer et al. [17], host–pathogen interactions can be affected by the seasonality, for
example, contact rates, host social behavior, host immune response, and host births and deaths. Thus,
it is crucial to introduce temporal heterogeneity into epidemic models, which can be described by non-
autonomous evolution equations. Peng and Zhao [18] established the spatial dynamics of a time-periodic
SIS epidemic model with diffusion in terms of the basic reproduction number and showed that temporal
periodicity and spatial heterogeneity can strengthen the persistence of the infectious disease. Wang et al. [19]
took into account the dynamics of an almost periodic SIS epidemic model with diffusion. Their results
emphasized that due to the interaction of temporal almost periodicity and spatial heterogeneity, the
persistence of the disease may be strengthened.

Latent period refers to the period between the moment of being infected and the moment of becoming
infectious. Many infectious diseases have a latent period (such as chicken pox, cholera, measles, influenza
etc.); that is, other susceptible individuals are not infected by the infected ones until some time later. How
the latent period of an infectious disease affects the transmission dynamics of the disease, in particular the
spatial spread of the disease, is a challenging and very interesting problem. There are many papers focusing
on reaction–diffusion epidemic models with fixed latent period, see Bai et al. [20], Guo et al. [21], Li and
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Zou [22], Liang et al. [23,24], Lou and Zhao [25], Wang and Zhao [26], Zhang and Wang [27,28], Zhang
et al. [29], Zhao et al. [30,31], Zhao et al. [32], Zhao et al. [33] and the references therein.

In the paper, we incorporate the demographic structure, spatial diffusion, temporal heterogeneity and
latent period into system (1.1)–(1.2) and then study the threshold dynamics of the generalized model. In
Section 2, we propose a time-periodic two-strain SIS epidemic model with diffusion and latent period (2.5).
In Section 3, we consider the threshold dynamics of (2.5); namely, if the basic reproduction number of the ith
strain Ri0 is less than or equal to 1 for i = 1, 2, then the disease-free periodic solution is globally attractive;
if Ri0 > 1 ⩾ Rj0 (i ̸= j, i, j = 1, 2), then competitive exclusion, where the jth strain dies out and the ith
strain persists, is a possible outcome; and if R̂i0 > 1(i = 1, 2), then the disease is uniformly persistent. In
Section 4, we give the basic framework of threshold dynamics of the system by numerical simulations, in
which all coefficients are only dependent upon the time variable t (time-periodic). At last, a brief discussion
is given.

2. Model formulation

Assume that the pathogenic microorganism and its genetic variant or subtype spread in one population,
which leads to two different infectious classes. Assume that the population lives in a bounded domain Ω ∈ Rn

and the boundary ∂Ω is smooth. One supposes that a susceptible individual can be infected by only one
virus strain and a recovered individual does not have immunity and can be infected again. Moreover, the
two different infectious classes consist of two different latent groups and two different infective groups,
respectively. Thus, we divide the population into five compartments: the susceptible group S(x, t), two latent
groups Li(x, t)(i = 1, 2), and two infective groups Ii(x, t)(i = 1, 2), where x is the position and t represents
the time.

Denote the densities of the two different infectious classes with infection age a ⩾ 0 and at position x ∈ Ω̄

and time t ⩾ 0 by E1(x, a, t) and E2(x, a, t), respectively. The constant Di denotes the diffusion rate of
the ith infectious class for i = 1, 2; d(x, t) is the natural death rate at location x and time t; the functions
δi(x, a, t)(i = 1, 2) represent the recovery rates of the two infectious classes with infection age a at location
x and time t; κi(x, a, t)(i = 1, 2) represent the mortality rates induced by the disease. We take into account
the following model⎧⎪⎨⎪⎩

(
∂
∂t + ∂

∂a

)
Ei = Di∆Ei − (d(x, t) + κi(x, a, t) + δi(x, a, t))Ei(x, a, t),

x ∈ Ω , a > 0, t > 0,
∂
∂nEi = 0, x ∈ ∂Ω , a > 0, t > 0,

(2.1)

where i = 1, 2, n denotes the outward normal. Suppose that τi(i = 1, 2) are the average latency periods of
the two different infectious diseases, respectively. It follows from the definitions of Li and Ii that

Li(x, t) =
∫ τi

0
Ei(x, a, t)da, Ii(x, t) =

∫ +∞

τi

Ei(x, a, t)da, i = 1, 2. (2.2)

Furthermore, suppose that κi and δi satisfy

κi(x, a, t) = κi(x, t), ∀x ∈ Ω , t ⩾ 0, a ∈ [0,∞)

and
δi(x, a, t) =

{
0, ∀x ∈ Ω , a ∈ [0, τi), t ⩾ 0,
δi(x, t), ∀x ∈ Ω , a ∈ [τi,+∞), t ⩾ 0, i = 1, 2.

Integrating (2.1) on a and using (2.2) yield

∂

∂t
Ii = Di∆Ii − (d(x, t) + κi(x, t) + δi(x, t)) Ii(x, t) + Ei(x, τi, t) − Ei(x,∞, t)
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and
∂

∂t
Li = Di∆Li − (d(x, t) + κi(x, t))Li(x, t) + Ei(x, 0, t) − Ei(x, τi, t),

respectively. Assume that Ei(x,∞, t) = 0. In particular, we adopt Ei(x, 0, t) with the following form

Ei(x, 0, t) = βi(x, t)S(x, t)Ii(x, t)
S(x, t) + I1(x, t) + I2(x, t) , i = 1, 2,

due to the fact that the contact of the susceptible and infectious individuals yields the new infected
individuals, where βi(x, t) ⩾ 0 is the infection rate.

Suppose the growth of a population N(x, t) is described by the demographic equation

∂

∂t
N = DN∆N + µ(x, t) − d(x, t)N(x, t),

where DN , µ(·, ·) and d(·, ·) denote the diffusion, recruiting and death rates, respectively. Furthermore, we
suppose that the disease does not transmit vertically. Thus, we can use the following system to describe the
infection dynamics⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t) + δ1(x, t)I1(x, t) + δ2(x, t)I2(x, t)

− β1(x,t)S(x,t)I1(x,t)
S(x,t)+I1(x,t)+I2(x,t) − β2(x,t)S(x,t)I2(x,t)

S(x,t)+I1(x,t)+I2(x,t) ,
∂
∂tLi = Di∆Li − (d(x, t) + κi(x, t))Li(x, t) − Ei(t, τi, x) + βi(x,t)S(x,t)Ii(x,t)

S(x,t)+I1(x,t)+I2(x,t) ,

i = 1, 2,
∂
∂tIi = Di∆Ii − (d(x, t) + κi(x, t) + δi(x, t)) Ii(x, t) + Ei(x, τi, t), i = 1, 2.

(2.3)

The following assumptions are needed in the sequel:

(H) Assume that DS , Di > 0 for i = 1, 2; the functions d(·, ·), µ(·, ·), δi(·, ·)(i = 1, 2), κi(·, ·)(i = 1, 2)
and βi(·, ·)(i = 1, 2) are Hölder continuous functions on Ω̄ × R and are periodic in time with period
T > 0. d(·, ·) is positive and µ(·, ·), δi(·, ·)(i = 1, 2), κi(·, ·)(i = 1, 2) and βi(·, ·)(i = 1, 2) are non-negative
non-trivial on Ω̄ × R.

Next, we derive the functions Ei(t, τi, x)(i = 1, 2). Letting vi(x, a, ξ) = Ei(x, a, a + ξ)(i = 1, 2), we
investigate solutions of (2.1) along the line t = a+ ξ for any ξ ⩾ 0. For a ∈ (0, τi], we have{

∂
∂avi = Di∆vi − (d(x, a+ ξ) + κi(x, a+ ξ)) vi(x, a, ξ),
vi(x, 0, ξ) = Ei(x, 0, ξ) = βi(x,ξ)S(x,ξ)Ii(x,ξ)

S(x,ξ)+I1(x,ξ)+I2(x,ξ) .

It follows that

vi(x, a, ξ) =
∫
Ω

Γi(x, y, ξ + a, ξ) βi(y, ξ)S(y, ξ)Ii(y, ξ)
S(y, ξ) + I1(y, ξ) + I2(y, ξ)dy, i = 1, 2,

where Γi(x, y, ξ + a, ξ) with x, y ∈ Ω and t > s ⩾ 0 denotes the fundamental solution of the operator
∂t − Di∆ − (d(·, t) + κi(·, t)) with no-flux boundary condition. Since d(·, · + T ) = d(·, ·) and κi(·, · + T ) =
κi(·, ·)(i = 1, 2) in Ω × [0,∞), one has Γi(x, y, t, s) = Γi(x, y, t + T, s + T ) for all x, y ∈ Ω and t > s ⩾ 0.
Consequently, we have

Ei(x, a, t) =
∫
Ω

Γi(x, y, t, t− a) βi(y, t− a)S(y, t− a)Ii(y, t− a)
S(y, t− a) + I1(y, t− a) + I2(y, t− a)dy

due to Ei(x, a, t) = vi(x, a, t− a). Let a = τi, then

Ei(x, τi, t) =
∫
Ω

Γi(x, y, t, t− τi)
βi(y, t− τi)S(y, t− τi)Ii(y, t− τi)

S(y, t− τi) + I1(y, t− τi) + I2(y, t− τi)
dy. (2.4)
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Substituting (2.4) into (2.3), one gets the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t) + δ1(x, t)I1(x, t) + δ2(x, t)I2(x, t)

− β1(x,t)S(x,t)I1(x,t)
S(x,t)+I1(x,t)+I2(x,t) − β2(x,t)S(x,t)I2(x,t)

S(x,t)+I1(x,t)+I2(x,t) , x ∈ Ω , t > 0,
∂
∂tIi = Di∆Ii − (d(x, t) + κi(x, t) + δi(x, t)) Ii(x, t)

+
∫
Ω
Γi(x, y, t, t− τi) βi(y,t−τi)S(y,t−τi)Ii(y,t−τi)

S(y,t−τi)+I1(y,t−τi)+I2(y,t−τi)dy, x ∈ Ω , t > 0 i = 1, 2,
∂
∂nS = ∂

∂nIi = 0, x ∈ ∂Ω , t > 0, i = 1, 2,

(2.5)

where we omit the Li(x, t)(i = 1, 2) equations from (2.3) because they can be decoupled.
Let τ = max{τ1, τ2}. Denote X := C(Ω̄ ,R3) with the supremum norm ∥ · ∥X. Let Cτ := C([−τ, 0],X) with

the norm ∥ϕ∥ = maxθ∈[−τ,0] ∥ϕ(θ)∥X, ∀ϕ ∈ Cτ . Let X+ := C(Ω̄ ,R3
+) and C+

τ := C([−τ, 0],X+). Clearly, the
Banach spaces (X,X+) and (Cτ ,C+

τ ) are strongly ordered. For a function u(t) : [−τ, σ) → X with σ > 0,
denote ut ∈ Cτ by

ut(θ) = u(t+ θ), θ ∈ [−τ, 0].

Similarly, define Y := C(Ω̄ ,R) and Y+ := C(Ω̄ ,R+). Moreover, consider the equation⎧⎪⎨⎪⎩
∂
∂tw = DS∆w − d(x, t)w(x, t), x ∈ Ω , t > 0,
∂
∂nw = 0, x ∈ ∂Ω , t > 0,
w(x, 0) = ϕS(x), x ∈ Ω , ϕS ∈ Y+,

(2.6)

where DS > 0 and d(x, t) is positive and Hölder continuous on Ω̄ × R, and T -periodic in t. By Hess [34,
Chapter II] with (2.6), we have that there is an evolution operator VS(t, s) : Y → Y for 0 ⩽ s ⩽ t satisfying
VS(t, t) = I, VS(t, s)VS(s, ρ) = VS(t, ρ) for 0 ⩽ ρ ⩽ s ⩽ t, and VS(t, 0)(ϕS)(x) = w(x, t;ϕS) for x ∈ Ω , t ⩾ 0
and ϕS ∈ Y. Here w(x, t;ϕS) is the solution of (2.6). Similarly, we consider the equation⎧⎪⎨⎪⎩

∂
∂t w̄i = Di∆w̄i − (d(x, t) + κi(x, t) + δi(x, t))w̄i(x, t), x ∈ Ω , t > 0, i = 1, 2,
∂
∂n w̄i = 0, x ∈ ∂Ω , t > 0, i = 1, 2,
w̄i(x, 0) = ϕi(x), x ∈ Ω , ϕi ∈ Y+, i = 1, 2,

(2.7)

where Di > 0, d(x, t), κi(x, t) and δi(x, t) satisfy the assumption (H). System (2.7) can determine the
evolution operators Vi(t, s)(i = 1, 2), which have the similar properties as VS(t, s). By [35, Lemma 6.1],
we have VS(t, s) = VS(t+ T, s+ T ) and Vi(t, s) = Vi(t+ T, s+ T ) for (t, s) ∈ R2

+ with t ⩾ s and i = 1, 2 due
to the periodicity of coefficients. In addition, VS(t, s) and Vi(t, s)(t > s) are compact, strongly positive and
analytic operators on Y+. Together with [35, Theorem 6.6] with α = 0, we know that there are Q ⩾ 1 and
c0 ∈ R satisfying

∥VS(t, s)∥, ∥Vi(t, s)∥ ⩽ Qe−c0(t−s) for all t, s ∈ R with t ⩾ s, i = 1, 2.

Let F = (FS , F1, F2) : [0,∞) × C+
τ → X be

FS(t, ϕ) =µ(·, t) − β1(·, t)ϕS(·, 0)ϕ1(·, 0)
ϕS(·, 0) + ϕ1(·, 0) + ϕ2(·, 0) − β2(·, t)ϕS(·, 0)ϕ2(·, 0)

ϕS(·, 0) + ϕ1(·, 0) + ϕ2(·, 0)
+ δ1(·, t)ϕ1(·, 0) + δ2(·, t)ϕ2(·, 0),

Fi(t, ϕ) =
∫
Ω

Γi(·, y, t, t− τi)
βi(y, t− τi)ϕS(y,−τi)ϕi(y,−τi)

ϕS(y,−τi) + ϕ1(y,−τi) + ϕ2(y,−τi)
dy

for ϕ = (ϕS , ϕ1, ϕ2) ∈ C+
τ , t > 0, x ∈ Ω̄ and i = 1, 2. Let

U(t, s) :=

⎛⎝ VS(t, s) 0 0
0 V1(t, s) 0
0 0 V2(t, s)

⎞⎠ .
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Clearly, U(t, s) is an evolution operator from X to → X for (t, s) ∈ R2 with t ⩾ s. Define AS(t) and Ai(t) by

D(AS(t)) =
{
ψ ∈ C2(Ω̄) | ∂

∂n
ψ = 0 on ∂Ω

}
,

AS(t)ψ(x) = DS∆ψ(x) − d(x, t)ψ(x), ∀ψ ∈ D(AS(t))

and

D(Ai(t)) =
{
ψ ∈ C2(Ω̄) | ∂

∂n
ψ = 0 on ∂Ω

}
,

Ai(t)ψ(x) = Di∆ψ(x) − (d(x, t) + κi(x, t) + δi(x, t))ψ(x), ∀ψ ∈ D(Ai(t)),

respectively, where i = 1, 2. Let

A(t) :=

⎛⎝ AS(t) 0 0
0 A1(t) 0
0 0 A2(t)

⎞⎠
and u(x, t) := (S(x, t), I1(x, t), I2(x, t)). Then (2.5) can be rewritten into the abstract equation{

∂u(x,t)
∂t = A(t)u(x, t) + F (t, ut), x ∈ Ω , t > 0,

u(x, ζ) = ϕ(x, ζ), x ∈ Ω , ζ ∈ [−τ, 0].
(2.8)

It is also expressed as the integral form

u(t, ϕ) = U(t, 0)ϕ(0) +
∫ t

0
U(t, s)F (s, us)ds, t ⩾ 0, ϕ ∈ C+

τ . (2.9)

We call a solution of (2.9) a mild solution of (2.8).

Theorem 2.1. For each ϕ ∈ C+
τ , system (2.5) admits a unique mild solution u(t, ϕ) on [0,+∞) with

u0 = ϕ. Moreover, system (2.5) generates a T-periodic semiflow Φt(·) := ut(·) : C+
τ → C+

τ , namely,
Φt(ϕ)(x, s) = ut(ϕ)(x, s) = u(x, t + s;ϕ) for any ϕ ∈ C+

τ , t ⩾ 0, x ∈ Ω̄ and s ∈ [−τ, 0). In addition,
ΦT : C+

τ → C+
τ admits a global compact attractor.

Proof. We firstly prove the existence of mild solutions u(t, ϕ) of (2.5). Consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tv

+
S = DS∆v

+
S + µ(x, t) − d(x, t)v+

S (x, t) + δ1(x, t)v+
1 (x, t) + δ2(x, t)v+

2 (x, t),
x ∈ Ω , t > 0,

∂
∂tv

+
i = Di∆v

+
i − (d(x, t) + κi(x, t) + δi(x, t)) v+

i (x, t)
+
∫
Ω
Γi(x, y, t, t− τi)βi(y, t− τi)v+

i (y, t− τi)dy, x ∈ Ω , t > 0, i = 1, 2,
∂
∂nv

+
S = ∂

∂nv
+
i = 0, x ∈ ∂Ω , t > 0, i = 1, 2,

v+
S (x, s) = ϕS(x, s), v+

i (x, s) = ϕi(x, s), x ∈ Ω , s ∈ [−τ, 0], i = 1, 2.

(2.10)

According to Fitzgibbon [36, Theorem 4.2], one has that (2.10) admits a unique mild solution v+(x, t;ϕ)
:= (v+

S (x, t;ϕ), v+
1 (x, t;ϕ), v+

2 (x, t;ϕ))T on t ≥ −τ , where

v+
S (x, s;ϕ) = ϕS(x, s), v+

i (x, s;ϕ) = ϕi(x, s), ∀x ∈ Ω̄ , s ∈ [−τ, 0).

For each φ = (φS , φ1, φ2) ∈ C+
τ , define B+(t, φ) = (B+

S , B
+
1 , B

+
2 )T by

B+
S (t, φ) := µ(·, t) + δ1(·, t)φ1(·, 0) + δ2(·, t)φ2(·, 0),

B+
i (t, φ) :=

∫
Ω

Γi(·, y, t, t− τi)βi(y, t− τi)φi(y,−τi)dy.
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Similarly, define B−(t, φ) = (B−
S , B

−
1 , B

−
2 )T by

B−
S (t, φ) := − β1(·, t)φS(·, 0)φ1(·, 0)

φS(·, 0) + φ1(·, 0) + φ2(·, 0) − β2(·, t)φS(·, 0)φ2(·, 0)
φS(·, 0) + φ1(·, 0) + φ2(·, 0)

and B−
i (t, φ) ≡ 0 for i = 1, 2. Then v+(t) satisfies

v+(t) = U(t, s)v+(s) +
∫ t

s

U(t, r)B+(r, vr)dr.

Let w(x, t) ≡ (0, 0, 0), ∀(x, t) ∈ Ω̄ × [−τ,∞). Similarly, we define wt ∈ Cτ by

wt(θ) = w(t+ θ), ∀θ ∈ [−τ, 0].

Then the function w(t) satisfies

w(t) = U(t, s)w(s) +
∫ t

s

U(t, r)B−(r, wr)dr.

Let B(t, φ) = F (t, φ). Thus, for every t > 0 and wt(·, ·) ⩽ φ(·, ·) ⩽ v+
t (·, ·) on Ω̄ × [−τ, 0], one has

lim
h→0+

1
h

dist
(
v+(t) − φ(0) + h[B+(t, v+

t ) −B(t, φ)], X+) = 0

and
lim
h→0+

1
h

dist
(
φ(0) − w(t) + h[B(t, φ) −B−(t, wt)], X+) = 0.

Due to Martain and Smith [37, Proposition 3], we know that (2.5) admits a unique mild solution u(x, t;ϕ)
on t ∈ [0,∞) with u0(·, ·;ϕ) = ϕ. We also have that u(x, t;ϕ) is classic for t > τ by the analyticity of U(t, s).

Let

P (t) =
∫
Ω

(
S(x, t) +

2∑
i=1

(Li(x, t) + Ii(x, t))
)
dx.

Then one has

dP (t)
dt

⩽
∫
Ω

µ(x, t)dx− d̄min

∫
Ω

(
S(x, t) +

2∑
i=1

(Li(x, t) + Ii(x, t))
)
dx

⩽µ̄max − d̄minP (t), t > τ,

(2.11)

where µ̄max = sup{µ(t, x)}|Ω | (|Ω | is a measure of Ω) and d̄min = inf(x,t)∈Ω×[τ,τ+T ] d(x, t). Using the
comparison principle for the above equation (2.11), we obtain that there is a constant M0 = µ̄max

d̄min
> 0 so

that for each ϕ ∈ C+
τ , there exists an l = l(ϕ) ∈ N large enough satisfying

P (t) ⩽M0 + 1, ∀t ⩾ lT + τ.

By the uniform boundedness of Γi(x, y, t, t− τi) and βi(x, t) for any x, y ∈ Ω and t ∈ [τi, τi + T ], one has⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂tIi ⩽ Di∆Ii −

(
d(x, t) + κi(x, t) + δi(x, t)

)
Ii(x, t)

+
∫
Ω
Γi(x, y, t, t− τi)βi1(y, t− τi)Ii(y, t− τi)dy

⩽ Di∆Ii(x, t) −
(
d(x, t) + κi(x, t) + δi(x, t)

)
Ii(x, t) + B̃

∫
Ω
Ii(y, t− τi)dy

x ∈ Ω , t > lT + τ,
∂
∂nIi = 0, x ∈ ∂Ω , t > lT + τ,

where
B̃ := sup

t∈[τi,τi+T ], x,y∈Ω

Γi(x, y, t, t− τi)βi1(y, t− τi).
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By the comparison principle, there is a B > 0, which is independent upon the initial value ϕ ∈ C+
τ , such

that for each ϕ ∈ C+
τ , there is l̃(ϕ) ∈ N with l̃(ϕ) ≫ l(ϕ) large enough satisfying Ii(x, t;ϕ) ⩽ B for x ∈ Ω̄ ,

t ⩾ l̃T + τ and i = 1, 2.
For B > 0 given above, consider the following equation⎧⎪⎨⎪⎩

∂
∂tuS = DS∆uS + µ(x, t) − d(x, t)uS(x, t) +B(δ1(x, t) + δ2(x, t)),

x ∈ Ω , t > lT + τ,
∂
∂nuS = 0, x ∈ ∂Ω , t > l̃T + τ.

(2.12)

Since the S-equation of system (2.5) can be dominated by (2.12) for any t > l̃T+τ , there is Bs > 0 such that
for each ϕ ∈ C+

τ , there is ls = ls(ϕ) ∈ N with ls > l̃(ϕ) satisfying S(x, t;ϕ) ⩽ Bs for x ∈ Ω̄ and t ⩾ lsT + τ .
Define Φt : C+

τ → C+
τ by Φt(ϕ)(x, s) = ut(ϕ)(x, s) = u(x, t+s;ϕ) for x ∈ Ω̄ , t > 0 s ∈ [−τ, 0] and ϕ ∈ C+

τ .
Similar to the proof of Zhang et al. [29, Lemma 2.1] one can show that {Φt}t⩾0 is a T -periodic semiflow
on C+

τ . According to the above discussion, one knows that Φt is point dissipative. Let n0T > 2τ . Then
Φn0
T = un0T is compact. Following from Magal and Zhao [38, Theorem 2.9], we have that ΦT : C+

τ → C+
τ

admits a compact global attractor. □

Remark 2.2. In the following, we always denote τ := max{τ1, τ2} and let n0 ∈ N satisfy n0T > 2τ .

3. Threshold dynamics

In this section, we firstly analyze the dynamics of single-strain SIS epidemic models and then study the
dynamics of the two-strain SIS model (2.5).

3.1. Threshold dynamics of single-strain SIS epidemic models

We investigate the dynamics of single-strain SIS models in this subsection. We fix i ∈ {1, 2} and let
Ij(x, t) ≡ 0, ∀(x, t) ∈ Ω̄ × R+, j = 1, 2 and j ̸= i. Then system (2.5) reduces to the following single-strain
model ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t) + δi(x, t)Ii(x, t)

− βi(x,t)S(x,t)Ii(x,t)
S(x,t)+Ii(x,t) , t > 0, x ∈ Ω ,

∂
∂tIi = Di∆Ii − (d(x, t) + κi(x, t) + δi(x, t)) Ii(x, t)

+
∫
Ω
Γi(x, y, t, t− τi)βi(y,t−τi)S(y,t−τi)Ii(y,t−τi)

S(y,t−τi)+Ii(y,t−τi) dy, x ∈ Ω , t > 0,
∂
∂nS = ∂

∂nIi = 0, x ∈ ∂Ω , t > 0.

(3.1)

Let CT (Ω̄ × R,R) be the set of all continuous and T -periodic functions from Ω̄ × R to R with norm
∥ρ∥CT

= maxx∈Ω̄,t∈[0,T ] |ρ(x, t)| for any ρ ∈ CT . Let

C+
T := {ρ ∈ CT : ρ(t)(x) ⩾ 0,∀t ∈ R, x ∈ Ω̄},

which is the positive cone of CT . Define Q = C([−τ, 0],Y) with the norm ∥ρ∥Q := maxθ∈[−τ,0] ∥ρ(θ)∥Y for any
ρ ∈ Q. Set Q+ := C([−τ, 0],Y+), then (Q,Q+) is a strongly ordered Banach space. Let P := C(Ω̄ ,R2) with
the supremum norm ∥ · ∥P. Let Dτ := C([−τ, 0],P) with the norm ∥ϕ∥ = maxθ∈[−τ,0] ∥ϕ(θ)∥P, ∀ϕ ∈ Dτ . Let
P+ := C(Ω ,R2

+) and D+
τ := C([−τ, 0],P+), then (P,P+) and (Dτ ,D+

τ ) are strongly ordered Banach spaces.
Setting Ii(x, t) ≡ 0 on Ω̄ × R+, we get the following equation for S(x, t):{

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t), x ∈ Ω , t > 0,
∂
∂nS = 0, x ∈ ∂Ω . t > 0,

(3.2)
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By Lemma 2.1 of [29], there is a unique positive solution S∗(x, t) of (3.2) which is T -periodic with respect to
t ∈ R and globally asymptotically stable. Consequently, we call the function (S∗, 0) the disease-free periodic
solution of (3.1). Linearizing the second equation of system (3.1) at (S∗, 0), we get the linear equation⎧⎪⎨⎪⎩

∂
∂tωi = Di∆ωi − ri(x, t)ωi(x, t)

+
∫
Ω
Γi(x, y, t, t− τi)βi(y, t− τi)ωi(y, t− τi)dy, x ∈ Ω , t > 0,

∂
∂nωi = 0, x ∈ ∂Ω , t > 0,

(3.3)

where ri(x, t) = d(x, t)+κi(x, t)+δi(x, t). Let ψi(x, s) ∈ CT (Ω̄ ×R,R) be the initial distribution of infectious
individuals of the ith component at the spatial position x ∈ Ω̄ and time s ∈ R. One defines an operator
Ci : CT (Ω̄ × R,R) → CT (Ω̄ × R,R) by(

Ciψi
)
(x, t) =

∫
Ω

Γi(x, y, t, t− τi)βi(y, t− τi, )ψi(y, t− τi)dy.

Fix t ∈ R. Due to the synthetical influence of mobility, recovery and mortality, the term Vi(t −
τi, s)ψi(s)(x)(s < t − τi) indicates the density of those infective individuals at location x who were
infective at time s and retain infective at time t − τi when time evolved from s to t − τi. Furthermore,∫ t−τi

−∞ (Vi(t − τi, s)ψi(s))(x)ds denotes the density distribution of the accumulative infective individuals at
position x and time t− τi for all previous time s < t− τi. Hence, the term∫

Ω

Γi(x, y, t, t− τi)βi(y, t− τi)ψi(s)(y)dsdy

=
∫
Ω

Γi(x, y, t, t− τi)βi(y, t− τi)
∫ +∞

τi

(Vi(t− τi, t− s)ψi(t− s))(y)dsdy

=
∫ +∞

τi

∫
Ω

Γi(x, y, t, t− τi)βi(y, t− τi)(Vi(t− τi, t− s)ψi(t− s))(y)dsdy

represents the density of new infected individuals at time t and location x. Consequently, the next generation
infection operator can be defined by

Li(ψi)(x, t) =
∫ +∞

τi

∫
Ω

Γi(x, y, t, t− τi)βi(y, t− τi) (Vi(t− τi, t− s)ψi(t− s)) (y)dsdy, i = 1, 2.

Obviously, Li is a bounded and positive linear operator on CT (Ω̄ ×R,R). Similar to [39–41], define the basic
reproduction number Ri0 for strain i by

Ri0 := r(Li), (3.4)

where r(Li) denotes the spectral radius of Li. Here we would like to refer readers to [20,23,24,42] for the latest
progress on the theory of the basic reproduction number of the time-periodic reaction–diffusion epidemic
models with latent period.

We define another operator L̂i(ψi)(t, x) : CT (Ω̄ × R,R) → CT (Ω̄ × R,R) by

L̂i(ψi)(x, t) =
∫ ∞

τi

Vi(t, t− s) (Ciψi) (t− s)(x)ds, t ∈ R, s ⩾ 0. (3.5)

Clearly, the linear operator L̂i defined on CT (Ω̄ × R,R) is bounded, positive and compact. Let

Ãi(ψi)(x, t) = (Ciψi)(x, t) and B̃i(ψi)(x, t) =
∫ ∞

τi

(Vi(t, t− s+ τi)ψi(t− s+ τi)) (x)ds.

Since Li = ÃiB̃i and L̂i = B̃iÃi, it follows that Ri0 = r(Li) = r(L̂i) for i = 1, 2.
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Using a similar argument as above, there are constants Qi > 1 and ci ∈ R satisfying

∥Vi(t, s)∥ ⩽ Qie
ci(t−s) for all t, s ∈ R with t ⩾ s.

Obviously, c∗
i := ω̄(Vi) ⩽ ci, where ω̄(Vi) denotes the exponential growth bound of the operator Vi(t, s),

namely,
ω̄(Vi) = inf{ω | ∃M ⩾ 1 : ∀s ∈ R, t ⩾ 0 : ∥Vi(t+ s, s)∥ ⩽Meωt}.

Since the operator Vi(t, s) is strongly positive and compact on Y for t > s, then the Krein–Rutman theorem
implies that the principle eigenvalue of Vi(T, 0), defined by r(Vi(T, 0)), is positive. Following from Hess [34,
Lemma 14.2], one has r(Vi(T, 0)) < 1. By Thieme [43, Proposition 5.6], we further have c∗

i < 0. For each
σ ∈ (c∗

i ,∞), for ψi ∈ CT (R × Ω̄ ,R) define(
L̂iσψi

)
(x, t) :=

∫ ∞

τi

e−σs(Vi(t, t− s) (Ciψi) (t− s))(x)ds, (3.6)

which is a linear operator. Obviously, L̂i0 = L̂i. By [34], we know that for σ ∈ (c∗
i ,∞), the operator L̂iσ is

bounded. In addition, the operator L̂iσ is also compact since Vi(t, s) with t > s is compact. For σ ∈ (c∗
i ,∞),

let ρi(σ) be the spectral radius of L̂iσ. It is obvious that Ri0 = r(Li) = r(L̂i) = ρi(0). The following lemma
gives some properties of ρi(σ).

Lemma 3.1. One has

(i) ρi(σ) is non-increasing and continuous in σ ∈ (c∗
i ,∞);

(ii) ρi(∞) = 0;
(iii) ρi(σ) = 1 has at most one solution on σ ∈ (c∗

i ,∞); ρi is either strictly decreasing in σ ∈ (c∗
i ,∞), or

strictly decreasing in σ ∈ (c∗
i , bi) for some bi > c∗

i , and ρi(σ) = 0 in σ ∈ [bi,∞).

The proof of the lemma is similar to [44, Lemma 1] and [29, Lemma 3.2] and we omit the details.
For ϵ > 0, consider equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂
∂tω

ϵ
i = Di∆ω

ϵ
i − ri(x, t)ωϵi(x, t)

+
∫
Ω
Γi(x, y, t, t− τi) (βi(y, t− τi) + ϵ)ωϵi(y, t− τi)dy, x ∈ Ω , t > 0,

ωϵi(x, s) = ϕi(x, s), ϕi ∈ Q, x ∈ Ω , s ∈ [−τi, 0],
∂
∂nω

ϵ
i = 0, x ∈ ∂Ω , t > 0.

(3.7)

Define the Poincaré map Pϵ
i : Q → Q of (3.7) by Pϵ

i (ψi) = ωϵi,T (ψi) for any ψi ∈ Q, where ωϵi,t is the solution
map of (3.7), and ωϵi,T (ψi)(x, s) = ωϵi(x, s + T ;ψi) for any (x, s) ∈ Ω̄ × [−τ, 0]. Define (Pϵ

i )n0 : Q → Q
by (Pϵ

i )n0(ψi) = ωϵi(x, n0T + s;ψi) for any (x, s) ∈ Ω̄ × [−τ, 0]. By using arguments similar to Jin and
Zhao [45, Proposition 3], we have that ωϵi,t(x, s;ψi) > 0 for t > τ , ψi ∈ Q+ with ψi ̸≡ 0 and ωϵi,t(·, ·;ψi) is
strongly positive for t > 2τ . In addition, ωϵi,t is compact on Q+ for t > 2τ . Therefore, (Pϵ

i )n0 = (ωϵi,T )n0 is
strongly positive and compact. According to [46, Lemma 3.1], one has that Pϵ

i admits a positive and simple
eigenvalue defined by ri,ϵ0 and a strongly positive eigenfunction denoted by ψi, such that Pϵ

i (ψi) = ri,ϵ0 ψi and
the modulus of any other eigenvalue is less than ri,ϵ0 . Especially, we substitute Pi and ri0 with P0

i and ri,00
if ϵ = 0, respectively. Let ωϵi(x, t;ψi) be the solution of (3.7) with ωϵi(·, ·;ψi) = ψi(·, ·) on Ω̄ × [−τ, 0]. Due
to the strong positivity of ψi, we can get ωϵi(·, ·;ψi) ≫ 0. Let µi,ϵ = ln ri,ϵ

0
T and Vϵi (x, t) = e−µi,ϵtωϵi(x, t;ψi)

for x ∈ Ω̄ and t > −τ . Similar to Jin and Zhao [45, Lemma 3.2] and Xu and Zhao [47, Theorem 2.1],
we conclude that eµi,ϵtVϵi (x, t) is a solution of (3.7) and Vϵi (x, t) is a nonnegative and nontrivial T -periodic
function. Moreover, one has Vϵi (x, t) > 0 for all x ∈ Ω̄ and t ∈ R because Vi(t, s) is strongly positive. To sum
up the above argument, one has the following lemma.
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Lemma 3.2. Let µi,ϵ = ln ri,ϵ
0
T . Then there is a T -periodic function Vϵi (x, t), which is strongly positive, such

that eµi,ϵtVϵi (x, t) is a solution of (3.7).

Similar to Zhang et al. [29, Lemmas 3.3 and 3.4], we can obtain the following lemma and theorem.

Lemma 3.3. Let µi = ln ri
0

T . If ri0 > r(Vi(ω, 0)), then ρ(µi) = 1.

Theorem 3.4. one has
(i) Ri0 > 1 if and only if ri0 > 1;
(ii) Ri0 = 1 if and only if ri0 = 1;
(iii) Ri0 < 1 if and only if ri0 < 1.

In the following, the threshold dynamics of system (3.1) are established.

Lemma 3.5. For the initial value ψ := (ψS , ψi) ∈ D+
τ , suppose that (S(x, t;ψ), Ii(x, t;ψ)) is the solution of

(3.1). Then
(i) If Ii(x, t0;ψ) ̸≡ 0 for some t0 ⩾ 0, then one has Ii(x, t;ψ) > 0 for all x ∈ Ω̄ and t > t0;
(ii) For any ψ ∈ D+

τ , one has S(·, t;ψ) > 0, ∀t > 0, and lim inft→∞ S(x, t;ψ) ⩾ Q uniformly for x ∈ Ω̄ ,
where the constant Q > 0 is independent of ψ.

Proof. By Theorem 2.1, it is clear that Ii(x, t;ψ) satisfies{
∂
∂tIi ⩾ Di∆Ii − ri(x, t)Ii(x, t), x ∈ Ω , t > 0,
∂
∂nIi = 0, x ∈ ∂Ω , t > 0.

If Ii(x, t;ψ) ̸≡ 0 for some t0 ⩾ 0 and i = 1, 2, then by the maximum principle [34, Proposition 13.1], one has
Ii(x, t;ψ) > 0 for any x ∈ Ω̄ and t > t0.

Assume that w(x, t) solves the equation⎧⎪⎨⎪⎩
∂
∂tw = DS∆w + µ(x, t) − (d(x, t) + β1(x, t) + β2(x, t))w(x, t), x ∈ Ω , t > 0,
∂
∂nw = 0, x ∈ ∂Ω , t > 0,
w(x, 0) = ϕS(x, 0), x ∈ Ω .

(3.8)

Then S(x, t) ⩾ w(x, t) for any x ∈ Ω̄ and t > 0 by the comparison principle. Let w∗(x, t) be the unique
positive T -periodic solution of (3.8). Then according to [29, Lemma 2.1], one has

lim inf
t→∞

S(x, t) ⩾ lim inf
t→∞

w∗(x, t) uniformly for x ∈ Ω̄ . □

Based on Theorem 2.1, there is Bs > 0 so that for every ψ ∈ C+
τ , there exists a ls ∈ N large enough

satisfying S(x, t;ψ) ⩽ Bs for any x ∈ Ω̄ , t > lsT + τ . Consider equation⎧⎪⎨⎪⎩
∂
∂twi = Di∆wi − ri(x, t)wi(x, t) +

∫
Ω
Γi(x, y, t, t− τi)Bsβi(y,t−τi)wi(y,t−τi)

Bs+wi(y,t−τi) dy,

x ∈ Ω , t > 0,
∂
∂nwi = 0, x ∈ ∂Ω , t > 0.

(3.9)

Lemma 3.6. Assume that wi(x, t;ψi) is the solution of (3.9) with wi(x, s) = ψi(x, s), ∀x ∈ Ω̄ , s ∈
[−τ, 0], ψi ∈ Q+. If Ri0 = 1 and βi(x, t) > 0 for any x ∈ Ω̄ and t ∈ R+, then wi(x, t) ≡ 0 is globally
attractive on Ω̄ × R+.
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Proof. By a straightforward computation, one has that (3.9) is dominated by (3.7). Note that Pin0 is
defined as before. If βi(x, t) > 0, ∀x ∈ Ω̄ , t ∈ R, then the Poincaré map Pin0 is strongly positive and
compact. Then Pin0 has a simple eigenvalue denoted by (ri0)n0 and a strongly positive eigenfunction defined
by ψi ∈ Q and the modulus of any other eigenvalue is less than (ri0)n0 . In view of Theorem 3.4, we have
ri0 = 1 if Ri0 = 1. In particular, we have µi = 0 if Ri0 = 1. As the previous argument (see Lemma 3.2), there
is a strongly positive periodic T -periodic function V∗

i (x, t) satisfying equation (3.7) with ϵ = 0. Then for
each initial value ψi(x, s) ∈ Q (x ∈ Ω , s ∈ [−τ, 0]), there is a number κ > 0 satisfying ψi(x, s) ⩽ κV∗

i (x, s)
for any x ∈ Ω and s ∈ [−τ, 0]. By the parabolic comparison principle, one has wi(x, t;ψi) ⩽ κV∗

i (x, t) for
any (x, t) ∈ Ω × R+. Especially, Sn0

i (ϕi) := wi(x, n0T + s;ψi) ⊂ [0, κV∗
i ]Q,∀x ∈ Ω , s ∈ [−τ, 0], where

[0, κV∗
i ]Q := {u ∈ Q : 0 ⩽ u(x, s) ⩽ κV∗

i (x, s), ∀x ∈ Ω̄ , s ∈ [−τ, 0]}.

It is clear that the positive orbit γ+(ϕi) := {Skn0
i (ϕi) : ∀k ∈ N} of Sn0

i (·) is precompact. In addition, Sn0
i

maps [0, κV∗
i ]Q into [0, κV∗

i ]Q and Sn0
i (·) is monotone. Then applying Zhao [48, Theorem 2.2.2], we obtain

the conclusion. □

Theorem 3.7. Suppose that (S(x, t;ψ), Ii(x, t;ψ)) is the solution of (3.1) with the initial value ψ =
(ψS , ψi) ∈ Dτ . Then one has:

(1) if Ri0 < 1, then the T -periodic solution (S∗, 0) is globally attractive;

(2) if Ri0 = 1 and βi(x, t) > 0 for x ∈ Ω̄ and t ∈ R, then the T -periodic solution (S∗, 0) is globally attractive;

(3) if Ri0 > 1, then there is a M > 0 so that for any ψ ∈ D+
τ , one has

lim inf
t→∞

S(x, t;ψ) ⩾M and lim inf
t→∞

Ii(x, t;ψ) ⩾M uniformly for x ∈ Ω̄ .

Proof. 1 Assume that Ri0 < 1. By Theorem 3.4, one has ri0 < 1. For ϵ > 0, consider equation⎧⎪⎨⎪⎩
∂
∂tω

ϵ
i = Di∆ω

ϵ
i − ri(x, t)ωϵi (x, t)

+
∫
Ω
Γi(x, y, t, t− τi)(βi(y, t− τi) + ϵ)ωϵi (y, t− τi)dy, x ∈ Ω , t > 0,

∂
∂nω

ϵ
i = 0, x ∈ ∂Ω , t > 0,

(3.10)

See Lemma 3.2 for the definitions of µϵi and ri,ϵ0 . Since ri0 < 1, there is a constant ϵ0 > 0 satisfying ri,ϵ0 < 1
for ϵ ∈ [0, ϵ0). Fix ϵ ∈ [0, ϵ0). Then one has µi,ϵ := ln ri,ϵ

0
T < 0. It follows from Lemma 3.2 that there is a

function Vϵi (x, t), which is T -periodic and strongly positive, such that ωϵi (x, t) = eµ
i,ϵtVϵi (x, t) satisfies (3.10).

For x ∈ Ω and t ⩾ 0, one has⎧⎪⎨⎪⎩
∂
∂tIi ⩽ Di∆Ii − ri(x, t)Ii(x, t)

+
∫
Ω
Γi(x, y, t, t− τi)[βi(y, t− τi) + ϵ]Ii(y, t− τi)dy, x ∈ Ω , t > 0,

∂
∂nIi = 0, x ∈ ∂Ω , t > 0.

For any given initial distribution ψ ∈ D+
τ , due to the boundedness of Ii(x, t;ψ), there is some α > 0 such that

Ii(x, t;ψ) ⩽ αeµ
ϵ
i tVϵi (x, t) for x ∈ Ω̄ and t ∈ [−τ, 0]. By the comparison theorem (see Martin and Smith [37,

Proposition 3]), we have Ii(x, t;ψ) ⩽ α eµ
ϵ
i tVϵi (x, t) for any x ∈ Ω̄ and t > 0. Because of µϵi < 0, we have

that Ii(x, t;ψ) → 0 as t → ∞ uniformly x ∈ Ω̄ . Therefore, the S equation in (2.5) is asymptotic to (3.2). By
Zhang et al. [29, Lemma 2.1], we get that the solution S∗(x, t) of (3.2) is globally attractive. Consequently,
similar to these arguments of [29, Theorem 4.3 (i)], we have

lim
t→∞

∥S(·, t;ψ) − S∗(·, t)∥C(Ω̄) = 0.
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(2) Suppose that Ri0 = 1 and βi(x, t) > 0 for x ∈ Ω̄ , t ∈ R. Using (3.9) and the Ii-equation of system
(3.1), one gets wi(x, t) ⩾ Ii(x, t;ψ) for x ∈ Ω̄ and t > lsT + τ , where ls is defined by Theorem 2.1. Using
(3.9), one has that Ii(x, t;ψ) → 0 as t → ∞ uniformly x ∈ Ω̄ . Similar to (i), one has

lim
t→∞

∥S(·, t;ψ) − S∗(·, t)∥C(Ω̄) = 0.

(3) Suppose Ri0 > 1. Then ri0 > 1. Let

Wi
0 = {ψ = (ψS , ψi) ∈ D+

τ : ψi(·, 0) ̸≡ 0}

and
∂Wi

0 := D+
τ \W0 = {ψ = (ψS , ψi) ∈ D+

τ : ψi(·, 0) ≡ 0}.

Assume ψ ∈ Wi
0. By Lemma 3.5, one gets Ii(x, t;ψ) > 0 for x ∈ Ω̄ and t > 0. Thus, for any k ∈ N, one

has Ψk
n0T

(Wi
0) ⊆ (Wi

0), where Ψt : D+
τ → D+

τ is defined by Ψt(ψ)(x, s) = (S(x, t+ s;ψ), Ii(x, t+ s;ψ)) and
(S(x, t;ψ), Ii(x, t;ψ)) is the solution of (3.1) with initial data ψ = (ψS , ψi) ∈ Dτ . Define

M∂ := {ψ ∈ ∂Wi
0 : Ψk

n0T (ψ) ∈ ∂Wi
0,∀k ∈ N}.

Let M := (S∗, 0̂). Here 0̂ denotes a function which is identical to 0 for [−τ, 0]. Denote ω(ψ) be the omega
limit set of the orbit γ+ := {Ψk

n0T
(ψ) : ∀k ∈ N}. For any ψ ∈ M∂ , one has Ψk

n0T
(ψ) ∈ ∂Wi

0, ∀k ∈ N.
Thus, one concludes that Ii(x, t;ψ) ≡ 0 for x ∈ Ω̄ and t ⩾ 0. Following from [29, Lemma 2.1], one has
limt→∞ ∥S(·, t;ψ) − S∗(·, t)∥C(Ω̄) = 0. Consequently, one gets ω(ψ) = {M}, ∀ψ ∈ M∂ .

Now, we have a claim as follows:

Claim. M is a uniform weak repeller for Wi
0 in the sense that, for some θ0 > 0,

lim sup
k→∞

∥Ψk
n0T (ψ) − M∥ ⩾ θ0, ∀ψ ∈ Wi

0.

We firstly take into account a linear equation with a parameter θ > 0 as follows

∂

∂t
vθi =Di∆v

θ
i − ri(x, t)vθi (x, t)

+
∫
Ω

Γi(x, y, t, t− τi)
βi(y, t− τi)(S∗(y, t− τi) − θ)

S∗(y, t− τi)
vθi (y, t− τi)dy,

x ∈ Ω , t > 0.

(3.11)

Define the Poincaré map (E iθ)n0 : Q+ → Q+ of (3.11) by (E iθ)n0(ψi) = vθi,n0T
(ψi), where vθi,n0T

(ψi)(x, s) =
vθi (x, s + n0T ;ψi) for (x, s) ∈ Ω̄ × [−τ, 0], and vθi (x, t;ψi) is the solution of (3.11) with vθi (x, s) = ψi(x, s)
for all (x, s) ∈ Ω̄ × [−τ, 0]. The map (E iθ)n0 is positive and compact. The Krein–Rutman theorem (see, for
example Hess [34, Theorem 7.1]) implies that (E iθ)n0 admits a positive and simple eigenvalue defined by
r̃iθ and a positive eigenfunction denoted by φ̃i ∈ Q satisfying (E iθ)n0(φ̃i) = r̃iθφ̃i. Since ri0 > 1 and hence
(ri0)n0 > 1, there is θ1 > 0 satisfying r̃iθ > 1 for θ ∈ (0, θ1). Fix θ̄ ∈ (0, θ1). In view of the continuous
dependence of solutions on the initial data, there is θ0 ∈ (0, θ1) satisfying

∥(S(·, ·), Ii(·, ·)) − (S∗(·, ·), 0)∥C(Ω̄, t∈[0,n0T ]) < θ̄ (3.12)

if |(ϕS(x, s), ϕi(x, s)) − (S∗(x, s), 0)| < θ0, ∀x ∈ Ω̄ , s ∈ [−τ, 0].
Next, we show the claim by contradiction. Suppose

lim sup
k→∞

∥Ψk
n0T (ψ) − M∥ < θ0
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for some ψ ∈ Wi
0; that is, there is a k̃1 ∈ N satisfying

|(S(x, kn0T + s;ψ), Ii(x, kn0T + s;ψ)) − (S∗(x, s), 0)| < θ0

for any x ∈ Ω̄ , s ∈ [−τ, 0] and k > k̃1. Following from (3.12), one has that 0 < Ii(x, t, ψ) < θ̄ and
S∗(x, t;ψ) − θ̄ < S(x, t;ψ) < S∗(x, t;ψ) for any x ∈ Ω̄ , t ⩾ k̃1n0T + τ . Consequently, Ii(x, t;ψ) satisfies

∂

∂t
Ii ⩾ Di∆Ii − ri(x, t)Ii(x, t)

+
∫
Ω

Γi(x, y, t, t− τi)
βi(y, t− τi)(S∗(y, t− τi) − θ̄)Ii(y, t− τi)

S∗(y, t− τi)
dy

for any x ∈ Ω , t > (k̃1 + 1)n0T . Since Ii(x, t+ s;ψ) > 0 for x ∈ Ω̄ , t > τ and s ∈ [−τ, 0], there exists κ > 0
satisfying

Ii((x, k̃1 + 1)n0T + s;ψ) ⩾ κφ̃i(x, s), x ∈ Ω̄ , s ∈ [−τ, 0],

where φ̃i is the eigenfunction corresponding to the eigenvalue r̃i
θ̄
. Due to the comparison principle, we have

Ii(x, t+ s;ψ) ⩾ κvi(x, t− (k̃1 + 1)n0T + s; φ̃i), ∀x ∈ Ω̄ , t ⩾ (k̃1 + 1)n0T, s ∈ [−τ, 0], .

It follows that

Ii(x, kn0T + s;ψ) ⩾ κvi(x, (k − k̃1 − 1)n0T + s; φ̃i)) = κ(r̃iθ)(k−k̃1−1)φ̃i(x, s) (3.13)

for any x ∈ Ω̄ , k > k̃1 + 1, s ∈ [−τ, 0]. Since φ̃i(x, s) is positive for (x, s) ∈ Ω̄ × [−τ, 0], we can get
φ̃i(xi, si) > 0 for some (xi, si) ∈ Ω̄ × [−τ, 0]. Thus, it follows from (3.13) that Ii(xi, kT + si;ψ) → +∞ as
k → ∞. Clearly, there is a contradiction due to the boundedness of Ii(x, t+ s;ψ). The claim is proved.

Based on the above claim, it is observed that M is isolated and invariant for Ψn0T in Wi
0, and

W s(M) ∩ Wi
0 = ∅, where W s(M) denotes the stable set of M. According to the acyclicity theorem

on uniform persistence for maps (see, for example [48, Theorem 1.3.1 and Remark 1.3.1]), one has that
Ψn0T : D+

τ → D+
τ is uniformly persistent on (Wi

0, ∂Wi
0); that is, there is a δ̃ > 0 satisfying

lim inf
k→∞

d(Ψk
n0T , ∂W

i
0) ⩾ δ̃, ∀ϕ ∈ Wi

0.

By [48, Theorem 3.1.1], we further have that the semiflow Ψt : D+
τ → D+

τ is uniformly persistent on
(Wi

0, ∂Wi
0). Then by the compactness of Ψn0T , Ψn0T is a κ-condensing. Therefore, Magal and Zhao [38,

Theorem 4.5] implies that Ψn0T : Wi
0 → Wi

0 with ρ(φ) = d(φ, ∂Wi
0) has a global attractor Z0.

Next, define p : Q+ → [0,∞) by

p(ψi) = min
x∈Ω̄

ψi(x, 0), ∀ψi ∈ Q+.

Since Z0 = Ψn0T (Z0), we have that ψi(·, 0) > 0, ψ ∈ Z0. Let Bi :=
⋃
t∈[0,n0T ] Ψt(Z0). It then follows

that Bi ⊂ Wi
0 and limt→∞ d(Ψt(ψ),Bi) = 0 for all ψ ∈ Wi

0. Since Bi is a compact subset of Wi
0, one has

minψ∈Bi
p(ψ) > 0. Thus, there is a δ∗ > 0 satisfying lim inft→∞ Ii(·, t;ψ) ⩾ δ∗. Combining Lemma 3.5, we

get the persistence statement in the second result. The proof is completed. □

Remark 3.8. Consider the following equation{
∂
∂t S̄i = DS∆S̄i + µ(x, t) − d(x, t)S̄i(x, t) − βi(x, t)S̄i(x, t), x ∈ Ω , t > 0,
∂
∂n S̄i = 0, x ∈ ∂Ω , t > 0.

(3.14)
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By [29, Lemma 2.1], we know that Eq. (3.14) has a unique positive and globally attractive T -periodic solution
S∗
i (x, t) in Y+. Since S(x, t;ψ) satisfies the inequality{

∂
∂tS ≥ DS∆S + µ(x, t) − d(x, t)S(x, t) − βi(x, t)S(x, t), x ∈ Ω , t > 0,
∂
∂nS = 0, x ∈ ∂Ω , t > 0,

then the comparison principle implies

lim inf
t→∞

(S(x, t) − S∗
i (x, t)) ≥ 0 uniformly for x ∈ Ω̄ .

Moreover, by Theorem 2.1, there is a B > 0 such that for each ϕ ∈ C+
τ , there is li ∈ N satisfying

Ii(x, t;ϕ) ⩽ B for all x ∈ Ω̄ and t ⩾ liT + τ. (3.15)

For the sake of convenience, let Fi(x, t) = S∗
i (x, t) +B for (x, t) ∈ Ω̄ × R+ and i = 1, 2.

3.2. Threshold dynamics of a two-strain SIS model

In this subsection, we study the dynamics of (2.5). The following lemma is similar to Lemma 3.5.

Lemma 3.9. Suppose that (S(·, ·;ϕ), I1(·, ·;ϕ), I2(·, ·;ϕ)) is a solution of (2.5) with the initial data ϕ :=
(ϕS , ϕ1, ϕ2) ∈ C+

τ . Then

(i) If there is some t0 ⩾ 0 satisfying I1(x, t0;ϕ) ̸≡ 0 (I2(x, t0;ϕ) ̸≡ 0), then

I1(x, t;ϕ) > 0 (I2(x, t;ϕ) > 0), ∀x ∈ Ω̄ , t > t0;

(ii) For any ϕ ∈ C+
τ , one has S(·, t;ϕ) > 0, ∀t > 0, and lim inft→∞ S(x, t;ϕ) ⩾ Q uniformly for x ∈ Ω̄ ,

where the constant Q > 0 is independent of ϕ.

Next, we define the so-called invasion numbers R̂i0 for the ith strain (i = 1, 2). Consider the following
system⎧⎪⎪⎨⎪⎪⎩

∂
∂tui = Di∆ui − ri(x, t)ui(x, t)

+
∫
Ω
Γi(x, y, t, t− τi)βi(y, t− τi)

S∗
j (y,t−τi)

Fj(y,t−τi)ui(y, t− τi)dy, x ∈ Ω , t > 0,
∂
∂nui = 0, x ∈ ∂Ω , t > 0

(3.16)

for i ̸= j and i, j = 1, 2. Define the Poincaré map P̂i : Q → Q of (3.16) by P̂i(ϕi) = ui,T (ϕi) for all ϕi ∈ Q,
where ui,T (ϕi)(x, s) = ui(x, s + T ;ϕi) for any (x, s) ∈ Ω̄ × [−τ, 0], and ui(x, t;ϕi) is the solution of (3.16)
with initial value ϕi ∈ Q. Denote the spectral radius of P̂i by ρ0

i . Let

(
L̃iϕi

)
(x, t) =

∫ +∞

τi

∫
Ω

Γi(x, y, t, t− τi)βi(y, t− τi)
S∗
j (y, t− τi)

Fj(y, t− τi)
× Vi(t− τi, t− s)ϕi(t− s)(y)dsdy, ∀ϕi ∈ CT (Ω̄ × R,R).

Obviously, the linear operator L̃i on CT (Ω̄ ×R,R) is bounded and positive. Following [39–41], we define the
invasion number for the ith strain by

R̂i0 := r(L̃i). (3.17)

Similar to Zhang et al. [29, Lemma 3.4], one has the following results.
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Theorem 3.10. One has
(i) R̂i0 > 1 if and only if ρ0

i > 0;
(ii) R̂i0 = 1 if and only if ρ0

i = 0;
(iii) R̂i0 < 1 if and only if ρ0

i < 0.

Proposition 3.11. If R̂i0 > 1, then Ri0 > 1 for i = 1, 2.

3.2.1. Competitive exclusion and coexistence
Now we present the competitive exclusion and coexistence of (2.5) by virtue of R1

0, R2
0, R̂1

0 and R̂2
0.

Theorem 3.12. Assume that R2
0 > 1 > R1

0. Suppose that (S(·, ·;ϕ), I1(·, ·;ϕ), I2(·, ·;ϕ)) is the solution of
(2.5) with the initial data ϕ := (ϕS , ϕ1, ϕ2) ∈ C+

τ . Then there is a P > 0 such that for each ϕ ∈ C+
τ with

ϕ2(·, 0) ̸≡ 0, one has limt→∞ I1(x, t;ϕ) = 0 and

lim inf
t→∞

I2(x, t;ϕ) ⩾ P uniformly for x ∈ Ω̄ . (3.18)

Proof. As that in Theorem 3.7(1), we can prove limt→∞ I1(x, t;ϕ) = 0 by virtue of R1
0 < 1. In the following

we show (3.18).
Let W0 = {ϕ ∈ C+

τ : ϕ2(·, 0) ̸≡ 0} and ∂W0 := C+
τ \W0 = {ϕ ∈ C+

τ : ϕ2(·, 0) ≡ 0}. Define
M∂ := {ϕ ∈ ∂W0 : Φkn0T

(ϕ) ∈ ∂W0,∀k ∈ N}, where Φkn0T
(ϕ)(·, ·) = u(·, · + n0T ;ϕ) on Ω̄ × [−τ, 0) and

u(x, t;ϕ) is the solution of (2.5). Denote the omega limit set of the orbit γ+ := {Φkn0T
(ϕ) : ∀k ∈ N} by ω(ϕ).

Let E := (S∗, 0̂, 0̂). For any ϕ ∈ M∂ , one has Φkn0T
(ϕ) ∈ ∂W0, ∀k ∈ N. Therefore, I2(·, ·;ϕ) ≡ 0 for any

ϕ ∈ M∂ . Following from Zhang et al. [29, Lemma 2.1], one has that

lim
t→∞

∥S(·, t, ϕ) − S∗(·, t)∥ = 0.

Thus, ω(ϕ) = {E} for any ϕ ∈ M∂ .
Now we give a claim as follows.

Claim. E is a uniform weak repeller for W0 in the sense that for some ϵ0 > 0,

lim sup
k→∞

∥Φkn0T (ϕ) − E∥ ⩾ ϵ0, ∀ϕ ∈ W0.

For ϵ > 0, consider the equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂
∂t ū

ϵ
2 = D2∆ū

ϵ
2 − r2(x, t)ūϵ2(x, t)

+
∫
Ω
Γ2(x, y, t, t− τ2)β2(y, t− τ2)ūϵ2(y, t− τ2)S

∗(y,t−τ2)−ϵ
S∗(y,t−τ2)+ϵdy,

x ∈ Ω , t > 0,
∂
∂n ū

ϵ
2 = 0, x ∈ ∂Ω , t > 0.

(3.19)

Let ūϵ2(x, t;ϕ2) be the solution of (3.19) with ūϵ2(·, ·) = ϕ2(·, ·) on Ω̄ × [−τ, 0]. Define the Poincaré map
T ϵ

2 : Q+ → Q+ of (3.19) by (T ϵ
2 )n0(ϕ2) = ūϵ2,n0T

(ϕ2), where ūϵ2,n0T
(ϕ2)(·, ·) = ūϵ2(·, · + n0T ;ϕ2) on

Ω̄ × [−τ, 0]. Obviously, (T ϵ
2 )n0 is positive and compact. The Krein–Rutman theorem once again implies

that (T ϵ
2 )n0 admits a positive and simple eigenvalue r̂2

ϵ and a positive eigenfunction φ̂2 ∈ Y, such that
(T ϵ

2 )n0 (φ̂2) = r̂2
ϵ φ̂2. Due to R2

0 > 1 (hence,
(
r2

0
)n0 > 1), there is ϵ̄ > 0 satisfying r̂2

ϵ > 1 for ϵ ∈ (0, ϵ̄). Fix
ϵ̂ ∈ (0, ϵ̄). Then there is ϵ0 ∈ (0, ϵ̄) satisfying

∥(S(·, ·), I1(·, ·), I2(·, ·)) − (S∗(·, ·), 0, 0)∥C(Ω̄, t∈[0,n0T ]) < ϵ̂

if |ϕ(x, s) − (S∗(x, s), 0, 0)| < ϵ0, ∀x ∈ Ω̄ , s ∈ [−τ, 0].
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To show the claim, we suppose by contradiction that lim supk→∞ ∥Φkn0T
(ϕ) − E∥ < ϵ0 for some ϕ ∈ W0.

Then there is an integer k̃1 ∈ N satisfying S(x, t;ϕ) > S∗(x, t;ϕ) − ϵ̂ and 0 < Ii(x, t;ϕ) < ϵ̂ for x ∈ Ω̄ ,
t ⩾ k̃1n0T − τ and i = 1, 2. Consequently, I2(·, ·;ϕ) satisfies⎧⎪⎨⎪⎩

∂
∂tI2 ⩾ D2∆I2 − r2(x, t)I2(x, t)

+
∫
Ω
Γ2(x, y, t, t− τ2)β2(y, t− τ2)S

∗(y,t−τ2)−ϵ0
S∗(y,t−τ2)+ϵ0

I2(y, t− τ2)dy, x ∈ Ω̄ ,
∂
∂nI2 = 0, x ∈ ∂Ω , t > k̃1.

for any t > k̃1n0T . Since I2(x, t;ϕ) > 0 for x ∈ Ω̄ and t > τ , there is a constant κ > 0 satisfying

I2(x, (k̃1 + 1)n0T + s;ϕ) ⩾ κφ̂2(x, s), x ∈ Ω̄ , s ∈ [−τ, 0].

Here φ̂2 is the eigenfunction to the eigenvalue r̂2
ϵ̂ . According to the comparison principle, one has

I2(x, t+ s;ϕ) ⩾ κūϵ̂2(x, t− (k̃1 + 1)n0T + s; φ̂2), ∀x ∈ Ω̄ , t > (k̃1 + 1)n0T.

It follows that

I2(x, kT + s;ϕ) ⩾ κūϵ̂2(x, (k − k̃1 − 1)n0T + s; φ̂2) = κ(r̂2
ϵ̂ )(k−k̃1−1)φ̂2(x, s), (3.20)

where we selected k > (k̃1 + 1). By the positivity of φ̂2(x, s) on (x, s) ∈ Ω̄ × [−τ, 0], we can obtain that
φ̂2(x2, s2) > 0 for some x2 ∈ Ω̄ and s2 ∈ [−τ, 0]. Thus, (3.20) implies that I2(x2, kT + s2;ϕ) → +∞ as
k → ∞. By the boundedness of I2(·;ϕ), there is a contradiction.

Denote the stable set of E by W s(E). From the claim, E is invariant and isolated for Φn0T in W0 and
W s(E) ∩ W0 = ∅. Theorem 1.3.1 and Remark 1.3.1 of [48]) indicate that Φn0T : C+

τ → C+
τ is uniformly

persistent on (W0, ∂W0); namely, there is a δ̃ > 0 satisfying

lim inf
k→∞

d(Φkn0T (ϕ), ∂W0) ⩾ δ̃, ∀ϕ ∈ W0.

Due to [48, Theorem 3.1.1], the semiflow Φt : C+
τ → C+

τ is also uniformly persistent on (W0, ∂W0). In
addition, Φn0T is a κ-condensing map due to the compactness of Φn0T . Therefore, by [38, Theorem 4.5], one
has that Φn0T : W0 → W0 with ρ(x) = d(x, ∂W0) has a global attractor Z0.

Clearly, ϕ1(·, ·) ≡ 0 on Ω̄ ×R for any ϕ ∈ Z0. In order to prove the theorem, we use the argument similar
to Lou and Zhao [49, Theorem 4.1]. Define p : Q → R+ by

p(ϕ2) = min
x∈Ω̄

ϕ2(x, 0), ∀ϕ ∈ Q.

Since Z0 = Φn0T (Z0), one has that ϕ2(·, 0) > 0, ϕ ∈ Z0. Let B0 :=
⋃
t∈[0,n0T ] Φt(Z0). It then follows that

B0 ⊂ W0 and limt→∞ d(Φt(ϕ),B0) = 0, ∀ϕ ∈ W0. Because B0 is compact, there is minϕ∈B0 p(ϕ2) > 0. Then,
by Lemma 3.5, there is a P > 0 satisfying lim inft→∞ I2(·, t;ϕ) ⩾ P. □

Theorem 3.13. Suppose that R2
0 > 1 = R1

0 and β1(·, ·) > 0 on Ω̄ × [0,∞). Then there is a P > 0 such
that, if ϕ ∈ C+

τ satisfies ϕ2(·, 0) ̸≡ 0, then

lim
t→∞

I1(x, t;ϕ) = 0 and lim inf
t→∞

I2(x, t;ϕ) ⩾ P uniformly for x ∈ Ω̄ .

Proof. The proof is similar to that in Theorem 3.12 and the details are omitted. □

The following theorems are similar to Theorems 3.12 and 3.13.
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Theorem 3.14. Suppose that R1
0 > 1 > R2

0. Then there is a P1 > 0 such that, if any ϕ ∈ C+
τ satisfies

ϕ1(·, 0) ̸≡ 0, then limt→∞ I2(x, t;ϕ) = 0 and lim inft→∞ I1(x, t;ϕ) ⩾ P1 uniformly for x ∈ Ω̄ .

Theorem 3.15. Suppose that R1
0 > 1 = R2

0 and β2(·, ·) > 0 on Ω̄ × [0,∞). Then there is a P1 > 0 such
that, if ϕ ∈ C+

τ satisfies ϕ1(·, 0) ̸≡ 0, then limt→∞ I2(x, t;ϕ) = 0 and limt→∞ inf I1(x, t;ϕ) ⩾ P1 uniformly
for x ∈ Ω̄ .

Finally, one establishes the persistence of (2.5).

Theorem 3.16. Assume R̂1
0 > 1 and R̂2

0 > 1. Then there is an η > 0 such that, if any ϕ = (ϕS , ϕ1, ϕ2) ∈ C+
τ

satisfies ϕ1(·, 0) ̸≡ 0 and ϕ2(·, 0) ̸≡ 0, then

lim inf
t→∞

S(x, t) ⩾ η, lim inf
t→∞

Ii(x, t) ⩾ η, i = 1, 2, uniformly for x ∈ Ω̄ .

Proof. Due to Proposition 3.11 and R̂i0 > 1(i = 1, 2), one has Ri0 > 1(i = 1, 2). Let

Z0 := {ϕ ∈ C+
τ |ϕ1(·, 0) ̸≡ 0 and ϕ2(·, 0) ̸≡ 0}, ∂Z0 := {ϕ ∈ C+

τ |ϕ1(·, 0) ≡ 0 or ϕ2(·, 0) ≡ 0}

and
Z∂ := {ϕ ∈ ∂Z0 : Φkn0T (ϕ) ∈ ∂Z0, ∀k ∈ N}.

Denote E0 = {(S∗, 0̂, 0̂)}, E1 = {(ϕS , ϕ1, 0̂)|∀(ϕS , ϕ1) ∈ B1}, E2 = {(ϕS , 0̂, ϕ2) |∀(ϕS , ϕ2) ∈ B2}, where
Bi(i = 1, 2) is defined in Theorem 3.7 and 0̂ denotes the constant function identically zero in Y. It can be
seen that Φt(Z0) ∈ Z0, ∀t > 0. Next, we show the following claims.

Claim 1.
⋃
ϕ∈Z∂

ω̄(ϕ) = E0
⋃
E1
⋃
E2, ∀ϕ ∈ Z∂ , where ω̄(ϕ) is the omega limit set of the orbit γ+(ϕ) :=

{Φkn0T
(ϕ) : ∀k ∈ N} of system (2.5) for ϕ ∈ Z∂ .

From the definition of Z∂ , we have u(kn0T + ·;ϕ) := Φkn0T
(ϕ) ∈ ∂Z0, ∀k ∈ N, which further implies that

either I1(·, ·;ϕ) ≡ 0 or I2(·, ·;ϕ) ≡ 0 on R+ × Ω̄ . In fact, if there exist ti > 0 such that Ii(·, ti;ϕ) ̸≡ 0 on
x ∈ Ω̄ , i = 1, 2, then the strong positivity of Vi(t, s)(t > s) implies that Ii(x, t;ϕ) > 0 for all x ∈ Ω̄ and
t > ti, which contradicts the fact that Φkn0T

∈ ∂Z0, ∀k ∈ N. If I1(·, ·;ϕ) ≡ 0 on Ω̄×R+, then by Theorem 3.7,
ω̄(ϕ) ∈ E0

⋃
E2. If I2(·, ·;ϕ) ≡ 0 on Ω̄ × R+, then one has ω̄(ϕ) ∈ E0

⋃
E1. Therefore, Claim 1 holds.

Claim 2. E0 is a uniformly weak repeller for Z0 in the sense that

lim sup
k→∞

∥Φkn0T (ϕ) − E0∥ ⩾ θ0, ∀ϕ ∈ Z0

for some θ0 > 0 small enough.

The proof of the claim is completely similar to those in Theorems 3.7 and 3.12, so we omit it.

Claim 3. Each Ei (i = 1, 2) is a uniformly weak repeller for Z0 in the sense that there is a ϵ0 > 0 small
enough satisfying

lim sup
k→∞

∥Φkn0T (ϕ) − Ei∥ ⩾ ϵ0, ∀ϕ ∈ Z0.

We only give the proof for E1. For ϵ > 0, consider the following equation⎧⎪⎨⎪⎩
∂
∂t ū

ϵ
2 = D2∆ū

ϵ
2 +

∫
Ω
Γ2(x, y, t, t− τ2)β2(y, t− τ2)S

∗
1 (y,t−τ2)−ϵ
F1(y,t−τ2)

uϵ2(y, t− τ2)dy − r2(x, t)ūϵ2(x, t), ∀x ∈ Ω , t > 0,
∂
∂n ū

ϵ
2 = 0, ∀x ∈ ∂Ω , t > 0,

(3.21)
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where u∗
S̄

(x, t) is the unique positive periodic solution of (3.14) and B > 0 satisfies (3.15). Let ūϵ2(x, t;ϕ2)
be the solution of (3.21) with ūϵ2(·, ·) = ϕ2(·, ·) on Ω̄ × [−τ, 0]. Define the Poincaré map An0,ϵ

2 : Q → Q
of (3.21) by An0,ϵ

2 (ϕ2) = ūϵ2,n0T
(ϕ2), where ūϵ2,n0T

(ϕ2)(x, s) = ūϵ2(x, s + n0T ;ϕ2) for (x, s) ∈ [−τ, 0] × Ω̄ .
Clearly, An0,ϵ

2 is positive and compact. Then An0,ϵ
2 admits a positive and simple eigenvalue r̆2

ϵ and a positive
eigenfunction φ̆2 ∈ Q satisfying An0,ϵ

2 (φ̆2) = r̆2
ϵ φ̆2. Due to ρ2

0 > 0 (since R̂0
i > 1, see Theorem 3.10), there is

ϵ̂ > 0 satisfying r̆2
ϵ > 0 for ϵ ∈ (0, ϵ̂). Given ϵ̄ ∈ (0, ϵ̂). Then there exists ϵ0 ∈ (0, ϵ̂) satisfying

∥Φkn0T (ϕ) − E1∥ < 1
2 ϵ̄, ∀t ∈ [0, n0T ], x ∈ Ω̄ , (3.22)

if ∥ϕ(x, s) − E1∥ < ϵ0, ∀x ∈ Ω̄ , s ∈ [−τi, 0].
Now we show that E1 is a uniformly weak repeller for Z0 by contradiction. Suppose on the contrary that

lim sup
t→∞

∥Φkn0T (ϕ) − E1∥ < ϵ0

for some ϕ ∈ Z0. Combining (3.22) and Remark 3.8, we then have that there is K0 ∈ N large enough
satisfying

S(x, t;ϕ) ≥ S∗
1 (x, t) − ϵ̄, 0 < I1(x, t;ϕ) < B, 0 < I2(x, t;ϕ) < ϵ̄ (3.23)

for any x ∈ Ω̄ and t ⩾ K0n0T . On the other hand, I2 satisfies

∂

∂t
I2 ⩾D2∆I2 − r2(x, t)I2(x, t)

+
∫
Ω

Γ2(x, y, t, t− τ2)β2(y, t− τ2) (S∗
1 (y, t− τ2) − ϵ̄)

F1(y, t− τ2) I2(y, t− τ2)dy

for t > K0n0T . As the proofs of Theorem 3.7(3) and 3.12, there exists (x2, s2) ∈ Ω × [−τ, 0] such that
I2(x2, kT + s2;ϕ) → ∞ if k → ∞, which contradicts with (3.23). As a consequence, Claim 3 holds.

By the above discussion, E := E0
⋃
E1
⋃
E2 is isolated and invariant for Φn0T in Z0 and W s(E)

⋂
Z0 = ∅,

where W s(E) denotes the stable set of E . It follows from the acyclicity theorem on uniform persistence for
maps (see [48]) that Φn0T : C+

τ → C+
τ is uniformly persistent on (Z0, ∂Z0). Thus, there is δ̃ > 0 so that

lim inf
k→∞

d(Φkn0T (ϕ), ∂Z0) ⩾ δ̃, ∀ϕ ∈ Z0.

Furthermore, the semiflow Φt : C+
τ → C+

τ is also uniformly persistent on (Z0, ∂Z0). It follows that Φn0T is
α-condensing. Thus, Φn0T has a global attractor A0 in Z0.

We further apply the similar argument as that in [49, Theorem 4.1] to complete the proof of the conclusion.
Define p : C+

τ → R+ by

p(ϕ) = min
{

min
x∈Ω̄

ϕ1(x, 0), min
x∈Ω̄

ϕ2(x, 0)
}
, ∀ϕ ∈ C+

τ .

Since A0 = Φn0T (A0), where A0 is a global attractor of Φn0T , we have that ϕi(·, 0) > 0 for all ϕ ∈ A0. Let
B0 :=

⋃
t∈[0,n0T ] Φt(A0). It follows that B0 ⊂ A0 and

lim
t→∞

d(Φt(ϕ),B0) = 0 ∀ ϕ ∈ A0.

Since B0 is compact, one gets minϕ∈B0 p(ϕ) > 0. Therefore, there is δ∗ > 0 satisfying lim inft→∞ Ii(x, t;ϕ) ⩾
δ∗. This completes the proof. □
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3.2.2. Global extinction
Finally, we show that the periodic solution (S∗, 0, 0) of (2.5) is globally attractive if Ri0 ⩽ 1 for all i = 1, 2.

We give the following three theorems without proofs.

Theorem 3.17. Suppose that Ri0 < 1 for i = 1, 2. Then the periodic solution (S∗, 0, 0) of (2.5) is globally
attractive.

Theorem 3.18. Suppose that Ri0 = 1 and βi(·, ·) > 0 on Ω̄ × [0,∞) for both i = 1, 2. Then the periodic
solution (S∗, 0, 0) of (2.5) is globally attractive.

Theorem 3.19. Let Ri0 < 1, Rj0 = 1 and βj(x, t) > 0 on Ω̄ × [0,∞), i, j = 1, 2, i ̸= j. Then the periodic
solution (S∗, 0, 0) of (2.5) is globally attractive.

4. Numerical simulations

In this section, we give some numerical simulations to illustrate the results established in Section 3.
More precisely, we show the potential dynamical outcomes of system (2.5), in which all coefficients are
only dependent upon the time variable t. Furthermore, we always choose D := 0.04 = DS = D1 = D2,
τ := 1.1 = τ1 = τ2 and the initial conditions to be as follows:

S(s, x) = 2 + 0.3 cosx, I1(s, x) = 2 + 0.2 cosx, I2(s, x) = 2 + 0.1 sin x,

where s ∈ [−τ, 0] and x ∈ Ω . In the following we always take Ω = [0, 100]. In addition, we truncate the time
domain R+ by [0, 300]. Define the uniform partition of domain Ω = [0, 100] by:

0 = z1 < z2 < z3 < · · · < z2n−1 < z2n < z2n+1 = 100,

where h = 100/n and zi = z1 + (i − 1)h, i = 1, 2, . . . , 2n + 1. The time domain [0, 300] can be treated
similarly.

Table 1 lists the potential dynamical outcomes of system (2.5).
(i) Cases 1 and 2. Here we only simulate the results in Case 1. Case 2 can be treated similarly. Take

the coefficients of system (2.5) as follows:

µ = d = 0.7, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,
β1 = 0.5(1 + 0.4 × sin(0.2 ∗ tπ + 1)), β2 = (7 + 6.5 × cos(0.2 ∗ tπ + 1)), ∀t ∈ [0, 300].

It is clear that the above coefficients are 10-periodic in time t. Due to these parameters and the discussion
of Section 2, we have

Γi(x, y, τi) =1/100 × e−(µ+κi)τ

×[1 +
∞∑
n=1

(cos(nπ/100(x− y)) + cos(nπ/100(x+ y)))e−((nπ/100)2Diτ)]

for i = 1, 2 (see [21, Section 4] and [50, Section 6]). Let

fi(y, t− τi) = βi(t− τi)S(y, t− τi)Ii(y, t− τi)
S(y, t− τi) + I1(y, t− τi) + I2(y, t− τi)

, i = 1, 2.
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Fig. 1. The dynamic behavior of system (2.5) when R1
0 < 1 and R2

0 > 1.

Then it further follows from the composite Simpson’s rule ([50, A.1]) that∫ 100

0
Γi(x, y, τi)fi(y, t− τi)dy

=h/3
(
fi(z1, t− τi)Γi(x, z1, τi) + 4

n∑
m=1

fi(z2m, t− τi)Γi(x, z2m, τi)

+2
n∑

m=1
fi(z2m, t− τi)Γi(x, z2m, τi) + fi(z2n+1, t− τi)Γi(x, z2n+1, τi)

)
.

In addition, we have the basic reproduction number of Strain 1

R1
0 =

∫ T
0 β1(t)dt∫ T

0 (µ+ δ1 + κ1)dt
=
∫ 10

0 0.5(1 + 0.4 × sin(0.2 ∗ tπ + 1))dt∫ 10
0 (0.7 + 0.1 + 0.01)dt

< 1

and the basic reproduction number of Strain 2

R2
0 =

∫ T
0 β2(t)dt∫ T

0 (µ+ δ2 + κ2)dt
=
∫ 10

0 (7 + 6.5 × cos(0.2 ∗ tπ + 1))dt∫ 10
0 (0.7 + 0.13 + 0.04)dt

> 1.

Fig. 1 presents the simulations of the conclusions of Theorem 3.12. Clearly, the infectious disease of Strain
1 becomes extinct and the infectious disease of Strain 2 is persistent in this case. In particular, from Fig. 1
we find that the solution of system (2.5) converges 10-periodic and non-negative functions as t → ∞.
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Table 1
The potential dynamical outcomes of system (2.5).

Case Strain 1 Strain 2 Expected outcome Theorem(s)

1 R1
0 ⩽ 1 R2

0 > 1 I1 → 0, I2 persists 3.12 and 3.13

2 R1
0 > 1 R2

0 ⩽ 1 I1 persists, I2 → 0 3.14 and 3.15

3 R1
0 > 1 R2

0 > 1
(A) I1 persists, I2 → 0 –
(B) I1 → 0, I2 persists –
(C) I1 and I2 persist 3.16

4 R1
0 ⩽ 1 R2

0 ⩽ 1 I1 → 0, I2 → 0 3.17–3.19

Fig. 2. The dynamic behavior of system (2.5) when R1
0 = 1 and R2

0 > 1.

Furthermore, the results of Theorem 3.13 can also be simulated. We set the following coefficients in system
(2.5):

µ = d = 0.7, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,
β1 = 0.5(1.62 + 0.4 × sin(0.2 ∗ tπ + 1)), β2 = 2(7 + 6.5 × cos(0.2 ∗ tπ + 1)), ∀t ∈ [0, 300].

Obviously, we have R1
0 = 1 and R2

0 > 1. Fig. 2 shows that the infectious disease of Strain 1 becomes extinct
and the infectious disease of Strain 2 persists if R1

0 = 1 and R2
0 > 1.

(ii) Case 3. There are three potential dynamical outcomes: (A) I1 persists and I2 becomes extinct; (B) I1
becomes extinct and I2 persists; (C) both I1 and I2 persist. Here, we show (A) and (C) ((B) can be treated
similarly and thus we omit it).

Outcome (A). We take the parameters of system (2.5) as follows:
µ = d = 0.7, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,
β1 = 5 + 4.4 × sin(0.2 ∗ tπ + 1), β2 = 1.74 + 0.5 × cos(0.2 ∗ tπ + 1), ∀t ∈ [0, 300].
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Fig. 3. Outcome (A) of dynamic behavior of system (2.5) when Ri
0 > 1, i = 1, 2.

Direct computations give that Ri0 > 1 for i = 1, 2. Fig. 3 shows that the infectious disease of Strain 1 persists
and the infectious disease of Strain 2 becomes extinct.

Outcome (C). Set the parameters of system (2.5) as follows:

µ = d = 0.6, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,
β1 = 6 + 4.8 × sin(0.2 ∗ tπ + 1), β2 = 6.2 + 4.5 × sin(0.2 ∗ tπ + 1), ∀t ∈ [0, 300].

It is easy to see that Ri0 > 1, i = 1, 2. Fig. 4 shows that both I1 and I2 persist, which is completely different
from the outcome (A) though there hold R1

0 > 1 and R2
0 > 1, too.

(iii) Case 4. Firstly, we choose the following parameters of system (2.5):

µ = d = 0.7, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,

β1 = 0.81 + 0.2 × sin(0.2 × tπ + 1), β2 = 0.87 + 0.25 × cos(0.2 × tπ + 1), ∀t ∈ [0, 300].

Direct calculations show that Ri0 = 1 for i = 1, 2. Secondly, we choose the parameters in (2.5) as below:

µ = d = 0.7, δ1 = 0.1, δ2 = 0.13, κ1 = 0.01, κ2 = 0.04,

β1 = 0.5 × (1 + 0.4 sin(0.2 × tπ + 1)), β2 = 0.6 × (1 + 0.5 cos(0.2 × tπ + 1)), ∀t ∈ [0, 300].

In this case we have that Ri0 < 1 for i = 1, 2. Figs. 5 and 6 show that the disease-free periodic solution (1, 0, 0)
is globally attractive in these two subcases respectively, namely, both I1 and I2 become extinct when Ri0 ≤ 1,
i = 1, 2.
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Fig. 4. Outcome (C) of dynamic behavior of system (2.5) when Ri
0 > 1, i = 1, 2.

5. Discussion

In this paper we proposed and studied the following time-periodic two-strain SIS epidemic model⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t) + δ1(x, t)I1(x, t) + δ2(x, t)I2(x, t)

− β1(x,t)S(x,t)I1(x,t)
S(x,t)+I1(x,t)+I2(x,t) − β2(x,t)S(x,t)I2(x,t)

S(x,t)+I1(x,t)+I2(x,t) , x ∈ Ω , t > 0,
∂
∂tIi = Di∆Ii − (d(x, t) + κi(x, t) + δi(x, t)) Ii(x, t)

+
∫
Ω
Γi(x, y, t, t− τi) βi(y,t−τi)S(y,t−τi)Ii(y,t−τi)

S(y,t−τi)+I1(y,t−τi)+I2(y,t−τi)dy, x ∈ Ω , t > 0 i = 1, 2,
∂
∂nS = ∂

∂nIi = 0, x ∈ ∂Ω , t > 0, i = 1, 2.

In Section 3.1, we firstly investigated the single-strain model (3.1) and showed that the disease persists if
Ri0 > 1 and the disease becomes extinct if Ri0 ≤ 1. Consequently, in Section 3.2 we showed the dynamics
of the two-strains model, where the potential dynamical outcomes of system (2.5) are listed in Table 1 of
Section 4. In particular, when both R1

0 > 1 and R2
0 > 1 hold, the disease infected with Strain 1 and the

disease infected with Strain 2 can coexist due to the effects of time heterogeneity (time periodicity) and
spatial heterogeneity, which has been proved by Theorem 3.16 and simulated in Section 4. It should be
emphasized that such a coexistence phenomenon of (2.5) when R1

0 > 1 and R2
0 > 1 is different from those

of the ODE model with constant coefficients corresponding to (2.5). Clearly, the ODE model with constant
coefficients corresponding to (2.5) is as follows:⎧⎨⎩S

′(t) = µ− dS(t) + δ1I1(t) + δ2I2(t) − β1S(t)I1(t)
S(t)+I1(t)+I2(t) − β2S(t)I2(t)

S(t)+I1(t)+I2(t) , t > 0,

I ′
i(t) = − (d+ κi + δi) Ii(t) + e−(d+κi)τi βi(t)S(t−τi)Ii(t−τi)

S(t−τi)+I1(t−τi)+I2(t−τi) , t > 0, i = 1, 2.
(5.1)
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Fig. 5. The dynamic behavior of system (2.5) when Ri
0 = 1, i = 1, 2.

By similar arguments to those in [5, Section 5], we can show that the solution (S(t), I1(t), I2(t)) of (5.1)
always satisfies that Ii(t) goes to zero as t → ∞ if Ri0 < Rj0, i ̸= j, i, j = 1, 2. Obviously, the competitive
exclusion is the unique outcome of the dynamical behaviors of (5.1) when 1 < Ri0 < Rj0, i ̸= j, i, j.

Furthermore, we take into account the special case of (2.5) without latent period and the effects of
temporal heterogeneity. Namely, we consider the following model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tS = DS∆S + µ(x, t) − d(x, t)S(x, t) + δ1(x, t)I1(x, t) + δ2(x, t)I2(x, t)

− β1(x, t) S(x,t)I1(x,t)
S(x,t)+I1(x,t)+I2(x,t) − β2(x, t) S(x,t)I2(x,t)

S(x,t)+I1(x,t)+I2(x,t) , x ∈ Ω , t > 0,
∂
∂tIi = Di∆Ii − ri(x, t)Ii(x, t) + βi(x, t) S(x,t)Ii(x,t)

S(x,t)+I1(x,t)+I2(x,t) ,

x ∈ Ω , t > 0, i = 1, 2,
∂
∂nS = ∂

∂nIi = 0, x ∈ ∂Ω , t > 0, i = 1, 2.

(5.2)

Clearly, the results established in Sections 2–4 still hold for system (5.2). In contrast to model (1.1) studied by
Tuncer and Martcheva [14], model (5.2) (and (2.5)) studied in this paper takes into account the demographic
structure (the recruitment/birth term µ(t, x) and the natural death rate d(t, x)). Nevertheless, here we would
like to emphasize that the results of this paper cannot cover those established by Tuncer and Martcheva [14]
for model (1.1). In fact, for any number N > 0, (N/|Ω |, 0, 0) is always a disease-free equilibrium of (1.1), but
the model (5.2) (and (2.5)) studied in this paper always admits a unique disease-free steady state. Therefore,
in [14] the authors always suppose that S(x, 0)+I1(x, 0)+I2(x, 0) ≡ N > 0 on x ∈ Ω holds. Of course, under
such an assumption, it seems that the threshold dynamics similar to those in this paper can be established
for model (1.1), see Jiang et al. [42, Theorem 2.4].
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Fig. 6. The dynamic behavior of system (2.5) when Ri
0 < 1, i = 1, 2.
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