
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Math. Pures Appl. 95 (2011) 627–671

www.elsevier.com/locate/matpur

Existence, uniqueness and asymptotic stability of time periodic
traveling waves for a periodic Lotka–Volterra competition system

with diffusion

Guangyu Zhao, Shigui Ruan ∗

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA

Received 30 April 2010

Available online 19 November 2010

Abstract

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive
Lotka–Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c∗ such that for
each wave speed c � c∗, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding
kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving
frame coordinate. We also show that the traveling wave solutions with wave speed c < c∗ are asymptotically stable in certain sense.
In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c∗.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie l’existence, l’unicité, et la stabilité asymptotique des ondes progressives périodiques pour un système compétitif de
Lotka–Volterra avec diffusion. Sous certaines conditions, on démontre qu’il existe une vitesse maximale c∗ telle que pour chaque
vitesse c < c∗, il existe une onde périodique progressive en temps connectant deux solutions semi-triviales correspondant à la
cinétique du système. On démontre que cette onde (modulo les translations) est unique et est monotone dans le repère lié à l’onde.
On montre que les ondes avec une vitesse c < c∗ sont asymptotiquement stables (en un certain sens). Enfin, on établit la non
existence des ondes périodiques progressives pour des vitesses c > c∗.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we are concerned with time periodic traveling wave solutions to the diffusive Lotka–Volterra compe-
tition system:
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ut = uxx + u

(
r1(t) − a1(t)u − b1(t)v

)
,

vt = dvxx + v
(
r2(t) − a2(t)u − b2(t)v

)
,

(1.1)

where u = u(t, x) and v = v(t, x) denote the densities of two competing species in location x ∈ R and at time t ∈ R+,
d > 0, and ri , ai , bi (i = 1,2) are T -periodic continuous functions of t , ai , bi are positive in [0, T ], while ri may
change sign. Nonlinear periodic diffusion systems like (1.1) describe the evolution of two competing species u and v

naturally stemming from population dynamics, where the data depend periodically on time. Time periodic traveling
waves to system (1.1) are solutions of the form,(

u(t, x)

v(t, x)

)
=
(
X(t, x − ct)

Y (t, x − ct)

)
, (1.2)

satisfying (
X(t + T , z)

Y (t + T , z)

)
=
(
X(t, z)

Y (t, z)

)
,

(
X(t,±∞)

Y (t,±∞)

)
:= lim

z→±∞

(
X(t, z)

Y (t, z)

)
=
(
u±(t)

v±(t)

)
,

where c is an a priori unknown constant, referred to as the wave speed, z = x − ct is the co-moving frame coordinate,

and
( u+(t)

v+(t)

)
and

( u−(t)

v−(t)

)
are periodic solutions of the corresponding kinetic system:⎧⎪⎨⎪⎩

du

dt
= u

(
r1(t) − a1(t)u − b1(t)v

)
,

dv

dt
= v

(
r2(t) − a2(t)u − b2(t)v

)
.

(1.3)

There have been many interesting studies on traveling wave solutions to diffusive Lotka–Volterra competition
systems for which the corresponding kinetic systems are autonomous (see [7,9,11,15,16,24,25,27,28,38,39] and
references therein). Recently, an interest in periodic traveling waves of the form (1.2) has been developed, which
was stimulated by the observation of periodic traveling waves in a large number of mathematical models arising in
various disciplines. Alikakos, Bates and Chen [2] established the existence, uniqueness and stability of time peri-
odic traveling wave solutions for a single reaction diffusion equation with periodic bistable nonlinearities. The time
periodic traveling wave solutions were also employed to study the development of interfaces for related higher dimen-
sional equations in bounded domains. Nolen and Xin [35] proved the existence of periodic traveling waves in mean
zero space–time periodic shear flows for the KPP nonlinearities. They also utilized a variational principle to char-
acterize the minimal front speed. Liang and Zhao [30] extended the theory of spreading speeds and traveling waves
for monotone autonomous semiflows to periodic semiflows in the monostable case (see also [29]). These abstract
results were applied to certain periodic diffusive equations. Most recently, Hamel [18] and Hamel and Roques [19]
presented a systematic analysis on the qualitative behavior, uniqueness and stability of monostable pulsating fronts
for reaction–diffusion equations in periodic media with KPP nonlinearities. The established results provide a com-
plete classification of all KPP pulsating fronts (see [4–6,40] for other related results). Although the study of traveling
wave solutions, mostly for the autonomous case, has a longstanding history, there are still very few studies devoted to
time periodic traveling wave solutions for diffusive systems with time-periodic reaction terms. Unlike the autonomous
case, the presence of time dependent nonlinearities poses significant difficulties and requires new approaches.

In the present work, we consider (1.1) focusing on the case that∫ T

0 r1(t) dt

T
> max

0�t�T

(
b1

b2

)∫ T

0 r2(t) dt

T
> 0, 0 <

∫ T

0 r2(t) dt

T
� min

0�t�T

(
a2

a1

)∫ T

0 r1(t) dt

T
, (1.4)

which implies that (1.3) has only three nonnegative T -periodic solutions (0,0), (p(t),0), and (0, q(t)), where p(t)

and q(t) are explicitly given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p(t) = p0e

∫ t
0 r1(s) ds

1 + p0
∫ t

0 e
∫ s

0 r1(τ ) dτ a1(s) ds
, p0 = e

∫ T
0 r1(s) ds − 1∫ T

0 e
∫ s

0 r1(τ ) dτ a1(s) ds
,

q(t) = q0e
∫ t

0 r2(s) ds

1 + q0
∫ t

0 e
∫ s

0 r2(τ ) dτ b2(s) ds
, q0 = e

∫ T
0 r2(s) ds − 1∫ T

0 e
∫ s

0 r2(τ ) dτ b2(s) ds
.

(1.5)
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Note that (p(t),0) is globally stable in the interior of the positive quadrant R2+ := {(u, v) | u � 0, v � 0} (see [10] or
[22]). Assume that the inequalities in (1.4) hold, we are primarily interested in periodic traveling waves of (1.1) with
(u+(t), v+(t)) = (p(t),0) and (u−(t), v−(t)) = (0, q(t)). Now let (U(t, z),W(t, z)) be defined as follows:

U(t, z) = X(t, z)

p(t)
, W(t, z) = q(t) − Y(t, z)

q(t)
. (1.6)

Substituting (1.6) into (1.1) yields that⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ut = Uzz + cUz + U

[
a1(t)p(t)(1 − U) − b1(t)q(t)(1 − W)

]
,

Wt = dWzz + cWz + (1 − W)
[
a2(t)p(t)U − b2(t)q(t)W

];(
U(t, z),W(t, z)

)= (
U(t + T , z),W(t + T , z)

)
,

lim
z→−∞(U,W) = (0,0), lim

z→∞(U,W) = (1,1).

(1.7)

The main focus of this paper is on the existence and uniqueness of solutions to (1.7) and their various qualitative
properties. The paper is organized as follows. In Section 2, under certain conditions, we establish the existence of
c∗ < 0 such that there exists, for any c � c∗, a solution to (1.7) which is monotone in z. In Section 3, we study the
uniqueness of solutions of (1.7) for c � c∗ that are constrained to [0,1]× [0,1]. To this end, we consider a generalized
reaction–diffusion system that retains the most essential features of (1.7). We adopt a dynamical approach to obtain
the exact exponential decay rate of a solution as it approaches its unstable limiting state. With this asymptotic property,
we employ the sliding method to establish the uniqueness of the aforementioned solution. In addition, we show that
the components of such a solution are monotone with respect to the variable z. We also show that the wave speed c∗
obtained in Section 1 is the maximal speed such that (1.7) has no solutions with nonzero wave speed c > c∗ that are
nondecreasing with respect to z. In Section 4, under the same conditions presented in Section 3, we utilize the methods
similar to those given in [19] to study the asymptotic stability of time periodic traveling wave solutions of{

ut = uxx + u
[
a1(t)p(t)(1 − u) − b1(t)q(t)(1 − v)

]
,

vt = dvxx + (1 − v)
[
a2(t)p(t)u − b2(t)q(t)v

]
.

(1.8)

We first consider the solutions of (1.8) with initial data decaying exponentially as x → −∞. We then establish the
convergence of such solutions to the periodic traveling waves of (1.8) with speed c < c∗ at large time, which indicates
that these solutions propagate with constant speed at a long time.

For future reference, we denote a vector by printing a letter in boldface u = (u1, . . . , ui, . . . , un), where ui stands
for the ith component of u. The following notation shall be adopted. Let I , Γ ⊆ R be two (possibly unbounded)
intervals and M ⊆ Rn. Denote by C(I × Γ,M) the space of continuous functions u : I × Γ → M , Cb(I × Γ,M) is
the space of functions u ∈ C(I × Γ,M) with |u|∞ < ∞, Ck,l(I × Γ,M) is the space of functions u ∈ C(I × Γ,M)

such that u(·, x) is k-time continuously differentiable and u(t, ·) is l-time continuously differentiable, Ck,l
b (I ×Γ,M)

is the space of functions u ∈ Ck,l(I ×Γ,M) such that all partial derivatives of u are uniformly bounded. In particular,
given α ∈ ]0,1[, we set:

[u]α = sup

{ |u(t, x) − u(τ, y)|
|t − τ |α/2 + |x − y|α , t, τ ∈ I, x, y ∈ Γ, (t, x) �= (τ, y)

}
.

Denote by C
α/2,α
b (I ×Γ,M) the space of functions u ∈ Cb(I ×Γ,M) such that [u]α < ∞ and C

1+α/2,2+α
b (I ×Γ,M)

the space of functions u ∈ C
1,2
b (I × Γ,M) such that [ut ]α < ∞, [ux]α < ∞, and [uxx]α < ∞. In case that M = Rn,

and no confusion occurs, we shall set Cb(I × Γ ) := Cb(I × Γ,Rn), Cα/2,α
b (I × Γ ) := C

α/2,α
b (I × Γ,Rn), etc. We

also set [a, b]2 := [a, b] × [a, b], where −∞ � a < b < ∞. We use the notation,

h = 1

T

T∫
0

h(t) dt,

for the average of a function h that is integrable in [0, T ].
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2. Existence of periodic traveling wave solutions

This section is devoted to the existence of time periodic traveling wave solutions to (1.1) connecting the semi-trivial
periodic solutions (0, q(t)) and (p(t),0) of (1.3). Here p(t) and q(t) are given by (1.5). Throughout this section, we
always assume that

(A1) ri , ai, bi ∈ Cθ(R,R) for some θ with 0 < θ < 1, ri(t +T ) = ri(t), ai(t +T ) = ai(t), bi(t +T ) = bi(t), i = 1,2.
(A2) ri > 0, and ai(t) > 0, bi(t) > 0 for all t , i = 1,2. Moreover, r1 > maxt (

b1
b2
)r2 and mint (

a2
a1
)r1 � r2.

We thereafter consider ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ut = Uzz + cUz + U

[
a1(t)p(t)(1 − U) − b1(t)q(t)(1 − W)

]
,

Wt = dWzz + cWz + (1 − W)
[
a2(t)p(t)U − b2(t)q(t)W

];(
U(t, z),W(t, z)

)= (
U(t + T , z),W(t + T , z)

)
,

lim
z→−∞(U,W) = (0,0), lim

z→∞(U,W) = (1,1).

(2.1)

Definition 2.1. ([12]) If u ∈ Rn and v ∈ Rn, the relation u < v (u � v respectively) is to be understood componentwise:
ui < vi (ui � vi ) for each i. The other relations, such as “max”, “min”, “sup”, and “inf”, are similarly to be understood
componentwise.

Definition 2.2. ([12]) A vector valued function w = (w1, . . . ,wn) ∈ C1,2(I ×Γ,Rn) is called a regular super-solution
of

∂ui

∂t
= di(z)

∂2ui

∂z2
+ ci(z)

∂ui

∂z
+ fi(t, u1, . . . , un), i = 1, . . . , n, (2.2)

provided that

di(z)
∂2wi

∂z2
+ ci(z)

∂wi

∂z
+ fi(t,w1, . . . ,wn) − ∂wi

∂t
� 0 for (t, z) ∈ I × Γ.

It is called a regular sub-solution of (2.2) if the above inequalities are reversed. Here di , ci ∈ Cθ(Γ,R), and fi ∈
Cθ,1(I × Rn,R) for some θ with 0 < θ < 1. In particular, there exists ω > 0 such that di(z) � ω for all i and z ∈ Γ .

Definition 2.3. ([12]) A vector valued function v ∈ C(I × Γ,Rn) is said to be an irregular super-solution of (2.2)
if there exist regular super-solutions w1, . . . ,wk of (2.2) such that v = min{w1, . . . ,wk}. It is called an irregular
sub-solution of (2.2) if there exist regular sub-solutions v1, . . . ,vk of (2.2) such that v = max{v1, . . . ,vk}.

Lemma 2.4. Suppose that there exist u ∈ C
γ/2,γ
b ([0, T + ε)× (−∞, z0]) and u ∈ C

γ/2,γ
b ([0, T + ε)× R) such that u

and u are the irregular super- and sub-solutions of

∂ui

∂t
= di(z)

∂2ui

∂z2
+ ci(z)

∂ui

∂z
+ fi(t, u1, . . . , un), i = 1, . . . , n, (2.3)

respectively, and u � u for all (t, z) ∈ [0, T + ε)× (−∞, z0]. Here 0 < γ < 1, ε > 0, z0 ∈ R; di , ci and fi satisfy the
assumptions given in Definition 2.2 with I = R and Γ = R, u = min{w1, . . . ,wk}, and u = max{w1, . . . ,wk}; wl and
wl are respectively the regular super- and sub-solutions of (2.3) (l = 1, . . . , k). Moreover, assume that fi(t,0) = 0,
fi(· + T ,u) = fi(·,u), and ∂fi

∂uj
� 0 in

∏n
i=1[ωi,ωi], i �= j , for all t ∈ R, where ωi = infui , ωi = supui . In addition,

for each l ∈ {1, . . . , k}, {(t, z) | ωi � wl
i � ωi} = {(t, z) | ωj � wl

j � ωj } and {(t, z) | ωi � wl
i � ωi} = {(t, z) |

ωj � wl
j � ωj }, i �= j . Assume further that u � 0, u(0, z) � u(T , z), u(T , z) � u(0, z), and u(t, z0) � 0 for all

t ∈ [0, T + ε). Then there exists a positive solution u∗ ∈ C
1,2
b (R×R) to (2.3) such that u∗(·+T , z) = u∗(·, z), u∗ � u

for all (t, z) ∈ [0, T ]×R, and u∗ � u for all (t, z) ∈ [0, T ]× (−∞, z0]. In addition, if u is nondecreasing with respect
to z, and di and ci are constants, then either (u∗

i )z > 0 or (u∗
i )z ≡ 0.
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Proof. The proof is based on the monotone iterations for parabolic systems. Set u = u0. Inductively, we define um by:⎧⎪⎨⎪⎩
∂um+1

j

∂t
= dj (z)

∂2um+1
j

∂z2
+ ci(z)

∂um+1
j

∂z
− Kum+1

j + fj

(
t,um

)+ Kum
j ;

um+1
j (0, x) = um

j (T , x).

(2.4)

Here K is a positive constant with K � max(t,u)∈[0,T ]×Σ | ∂fj

∂uk
| for any j , Σ :=∏n

i=1[ωi,ωi], and um is understood
as a mild solution of (2.4) whose components are given by:

um+1
j (t, z) = Gj(t)u

m
j (T , z) +

t∫
0

Gj(t − s)
[
Kum

j + fj

(
t,um

)]
ds,

where Gj(t) is the analytic semigroup generated by the linear differential operator Aj : D(Aj ) → Cb(R) defined by

D(Aj ) =
{
Cb(R)

⋂
1�p<∞

W
2,p
loc (R), Aju = dj (z)uzz + cj (z)uz − Ku ∈ Cb(R)

}
.

Thanks to Theorems 5.1.3 and 5.1.4 of [32], u1 ∈ C
α/2,α
b ([0, T ] × R) ∩ C

1+α/2,2+α
b ([ε,T ] × R) with some

α ∈ ]0,1[ for every ε ∈ ]0, T [, and u1 satisfies the first equation of (2.4) in (0, T ] × R, whence, for each m � 2,
um ∈ C

1+α/2,2+α
b ([0, T ] × R) satisfies (2.4) in [0, T ] × R.

We now show that u1 � u for all (t, z) ∈ [0, T ] × R. Let

L = ∥∥u − u1
∥∥
C([0,T ]×R,Rn)

, vr = u − u1 + L

� + r2

(
z2 + � + Nt

)
eμt , r > 0,

where � = (max1�i�n |ci |∞ + 1)2, μ > 1, and N > 2 max1�i�n |di |∞ are fixed constants such that
2(max1�i�n |di |∞ + max1�i�n |ci |∞|z|)−μ(z2 +�)−N < 0 for all z ∈ R. Clearly, vr (0, z) > 0 for all z satisfying
|z| � r . Furthermore, vr (t,±r) > 0 for any t ∈ [0, T ]. In fact, it holds that vr (t, z) > 0 for all (t, z) ∈ [0, T ] × [−r, r].
Assume to the contrary that this is not true, then there exists a point (t∗, z∗) ∈ (0, T ]×]−r, r[ and at least a component
vr
i such that

vr
i

(
t∗, z∗)= 0 and vr (t, z) � 0 for all (t, z) ∈ [0, t∗]× [−r, r].

Since u is an irregular super-solution of (2.3) and u = min{w1, . . . ,wk}, we may assume without loss of generality
that ui(t

∗, z∗) = w1
i (t

∗, z∗). Now let:

ŵ = w1 − u1 + L

� + r2

(
z2 + � + Nt

)
eμt .

Obviously, ŵi(t
∗, z∗) = 0 and ŵ � 0 for all (t, z) ∈ [0, t∗] × [−r, r]. In addition, for any (t, z) ∈ (0, t∗] × ]−r,−r[, it

is straightforward to verify that

dj (z)
∂2ŵj

∂z2
+ cj (z)

∂ŵj

∂z
− Kŵj − ∂ŵj

∂t

� dj (z)
∂2(w1

j − u1
j )

∂z2
+ cj (z)

∂(w1
j − u1

j )

∂z
− K

(
w1

j − u1
j

)− ∂(w1
j − u1

j )

∂t

+ L

� + r2
eμt

[
2 max

1�j�n
|dj |∞ + 2 max

1�j�n
|cj |∞|z| − (K + μ)

(
z2 + � + Nt

)− N
]

<K
(
uj − w1

j

)+
1∫

0

∂ufj

(
t, sw1 + (1 − s)u

)
ds
(
u − w1), j = 1, . . . , n.

Since ui(t
∗, z∗) = w1

i (t
∗, z∗) and ωi � ui(t

∗, z∗) � ωi , it follows from the assumption that ωj � w1
j (t

∗, z∗) � ωj

with j �= i. This implies that sw1 + (1 − s)u|(t∗,z∗) ∈∏n
k=1[ωk,ωk] for any s ∈ [0,1]. Consequently,
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di(z)

∂2ŵi

∂z2
+ ci(z)

∂ŵ

∂z
− Kŵi − ∂ŵi

∂t

]∣∣∣∣
(t∗,z∗)

< 0.

On the other hand, since ŵi attains its local minimum at (t∗, z∗), we have:

∂2ŵi(t
∗, z∗)

∂z2
� 0,

∂ŵi(t
∗, z∗)

∂z
= 0 and

∂ŵi(t
∗, z∗)

∂t
� 0.

Hence it follows that 0 � di(z)
∂2ŵi (t

∗,z∗)
∂z2 − ∂ŵi (t

∗,z∗)
∂t

< 0, which is a contradiction. This contradiction confirms

that vr (t, z) > 0 for all (t, z) ∈ [0, T ] × [−r, r]. Since vr → u − u1 uniformly in [0, T ] × [−√
r,

√
r] as r → ∞,

we infer that u − u1 � 0. Meanwhile, it follows from the comparison principle that u1 � 0, which along with the
assumption shows that u1(t, z0) � u(t, z0) for all t ∈ [0, T ]. As u1(0, z) � u(0, z), repeating the same argument in
[−r, z0] with r > |z0| yields that u � u1 for all (t, x) ∈ [0, T ] × (−∞, z0]. In a similar fashion, it can be shown that
0 � um+1 � um � u for all (t, x) ∈ [0, T ] × R, and u � um for all (t, x) ∈ [0, T ] × (−∞, z0] (m � 1). That is, the
sequence {um} is uniformly bounded.

Consequently, for any m � 2, Theorems 5.1.2 and 5.13 together with Theorem 5.1.4 in [32] imply that∥∥um
∥∥
C1+α/2,2+α([0,T ]×R,Rn)

� C
(
M + max

(t,u)∈[0,T ]×Σ

∣∣∂uf (t,u)
∣∣)

for certain positive constants C, M , and α ∈ ]0,1[ depending only upon di , ci , and ‖u‖Cγ/2,γ . Therefore, there exists
a subsequence of {um}, still labeled by {um}, such that it converges in C

1,2
loc ([0, T ]×R,Rn) to a function denoted by u∗.

Clearly u∗ satisfies (2.3) in [0, T ] × R. Since um+1(0, z) = um(T , z), we find that u∗(0, z) = u∗(T , z). Moreover,
observe that

∂um+1
j

∂t

∣∣∣∣
t=0

=
[
dj (z)

∂2um+1
j

∂z2
+ cj (z)

∂um+1
j

∂z
− Kum+1

j + fj

(
t,um

)+ Kum
j

]∣∣∣∣
t=0

=
[
dj (z)

∂2um
j

∂z2
+ cj (z)

∂um
j

∂z
− Kum

j + fj

(
t,um−1)+ Kum−1

j

]∣∣∣∣
t=T

= ∂um
j

∂t

∣∣∣∣
t=T

(m � 1).

Therefore, by taking the limits in these equations, we obtain that u∗
t (0, z) = u∗

t (T , z). Namely, u∗ satisfies the periodic
boundary conditions. Thus, u∗ can be continued to a smooth T -periodic solution to (2.3).

Now it remains to prove the second part of this lemma. Since di and ci are independent of z, we see that for any
s ∈ R, um+1

j (t, z+ s) satisfies (2.3) with um+1
j (0, z+ s) = um

j (T , z+ s). As u0(t, z+ s) � u0(t, z) for any s > 0. The

comparison principle yields that um+1
j (t, z + s) � um+1

j (t, z) as long as s � 0. Invoking Helly’s theorem, upon taking
a subsequence of {um}, still labeled by {um}, we can actually show that

lim
m→∞

∥∥um − u∗∥∥
C([0,T ]×R,Rn)

= 0

(see Theorem 3.2 in [41]). Thus, u∗(t, ·) is nondecreasing. Since ∂fi

∂uj
(t,u∗) � 0 with i �= j , the conclusion follows

from the (strong) maximum principle immediately. �
Theorem 2.5. Suppose that (A1) and (A2) are satisfied. Assume that 0 < d � 1 and a1(t)p(t) − b1(t)q(t) �
a2(t)p(t)− b2(t)q(t) � 0 for any t ∈ [0, T ]. Then, for each c < −2

√
(a1p − b1q), there exists (Uc,Wc) ∈ C

1,2
b (R ×

R,R2) such that (Uc,Wc) and c solve (2.1). Moreover, (Uc
z ,W

c
z ) > (0,0) for all (t, z) ∈ R × R.

Proof. We utilize Lemma 2.4 to establish the existence of a periodic traveling wave solution of (2.1). In order to apply
Lemma 2.4, a pair of ordered (irregular) super- and sub-solutions is needed. Set:

κ0 := 1

T

T∫
0

[
a1(t)p(t) − b1(t)q(t)

]
dt, ϕ(t) = exp

( t∫
0

[
a1(s)p(s) − b1(s)q(s)

]
ds − tκ0

)
.
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It is clear that

κ0ϕ(t) = [
a1(t)p(t) − b1(t)q(t)

]
ϕ(t) − ϕ′(t).

Let w(t, z) = mϕ(t)eλcz and (U,W) = min{(w,w), (1,1)}, where λc = −c−
√

c2−4κ0
2 , c < −2

√
κ0, and m > 0 is an

arbitrary constant.
We first show that (U,W) is an irregular super-solution of{

Ut = Uzz + cUz + U
[
a1(t)p(t)(1 − U) − b1(t)q(t)(1 − W)

]
,

Wt = dWzz + cWz + (1 − W)
[
a2(t)p(t)U − b2(t)q(t)W

]
.

(2.5)

Since (1,1) is obviously a solution of (2.5), it suffices to show that (u, v) = (w,w) is a super-solution of (2.5). In fact,
a simple calculation yields that

wzz + cwz − wt + w
(
a1p(1 − w) − b1q(1 − w)

)
� wzz + cwz − wt + w(a1p − b1q)

= mϕeλcz
(
λ2
c + cλc + κ0

)= 0,

dwzz + cwz − wt + (1 − w)(a2pw − b2qw) � wzz + cwz − wt + w(a2p − b2q)

� mϕeλcz
(
λ2
c + cλc + κ0

)= 0.

Moreover, we observe that {(t, z) | 0 � u � 1} = {(t, z) | 0 � v � 1}.
Next we construct a sub-solution. Let ψd(t) be the periodic solution of

a2(t)p(t)ϕ(t) − (
b2(t)q(t) + κ0 + (1 − d)λ2

c

)
v − dv

dt
= 0, d ∈ (0,1].

Notice that ψd exists and is unique since b2(t)q(t) + κ0 + (1 − d)λ2
c > 0. In particular, ψd is strictly positive since

a2pϕ > 0 for all t ∈ R. Next we fix ε such that ε ∈ ]0,min{λc,

√
c2−4κ0

2 }[ and let ϑ = −[(λc + ε)2 + c(λc + ε)+ κ0].
Clearly ϑ > 0. Fix n1 and n2 such that n1 � 1 and n2 = max{n1, n1 maxt

ψd

ψ1
}. Set:

Λϑ = ϑ min{n1 mint ϕ, n2 mint ψ1}
(1 + n2 maxt {ψ1

ψd
})maxt (ϕ2 + ψ2

d )maxt (a1p + a2p + b1q)
,

(
U(t, z),W(t, z)

)= δ

(
eλczϕ(t)

(
1 − n1e

εz
)
, eλczψd(t)

(
1 − n2

ψ1(t)

ψd(t)
eεz
))

,

where δ ∈ (0,Λϑ ]. Notice that (U,W) � (0,0) for all z � z0 = − lnn1
ε

. Moreover, when (t, z) ∈ R × (−∞, z0], we
have:

U
[
a1p(1 − U) − b1q(1 − W)

]+ Uzz + cUz − Ut

= δeλcz
{
(a1p − b1q)ϕ

(
1 − n1e

εz
)− a1pδeλcz

[
ϕ
(
1 − n1e

εz
)]2 − ϕ′(1 − n1e

εz
)

+ (
λ2
c + cλc

)
ϕ − n1ϕe

εz
[
(λc + ε)2 + c(λc + ε)

]}+ b1q(UW)

� δeλcz

{
(a1p − b1q)ϕ − κ0ϕ − ϕ′ − n1e

εz
[
(a1p − b1q)ϕ + (λc + ε)2 + c(λc + ε)ϕ − ϕ′]

− δϕeλcz
(
1 − n1e

εz
)[

a1pϕ
(
1 − n1e

εz
)+ b1qψd

∣∣∣∣1 − n2
ψ1

ψd

eεz
∣∣∣∣]}

= δeλcz

{
n1ϑϕeεz − δϕeλcz

(
1 − n1e

εz
)[

a1pϕ
(
1 − n1e

εz
)+ b1qψd

∣∣∣∣1 − n2
ψ1

ψd

eεz
∣∣∣∣]}� 0,

and

(1 − W)[a2pU − b2qW ] + dWzz + cWz − Wt

= δeλcz

{
a2pϕ

(
1 − n1e

εz
)− b2q

(
ψd − n2e

εzψ1
)− δa2peλcz

[
ϕ
(
1 − n1e

εz
)
ψd

(
1 − n2

ψ1

ψd

eεz
)]
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+ (
dλ2

c + cλc

)
ψd − n2ψ1e

εz
[
d(λc + ε)2 + c(λc + ε)

]− (
ψ ′

d − n2ψ
′
1e

εz
)}+ b2q(W)2

� δeλcz

{
a2pϕ − (

b2q + κ0 + (1 − d)λ2
c

)
ψd − ψ ′

d − δa2peλcz

[
ϕ
(
1 − n1e

εz
)
ψd

(
1 − n2

ψ1

ψd

eεz
)]}

− n2δe
(λc+ε)z

{
a2pϕ − [

b2q − (λc + ε)2 − c(λc + ε)
]
ψ1 − ψ ′

1 + (d − 1)(λc + ε)2ψ1
}

� δeλcz

{
n2ϑψ1e

εz − δa2peλcz

[
ϕ
(
1 − n1e

εz
)
ψd

(
1 − n2

ψ1

ψd

eεz
)]}

� 0.

Thus, (U,W) is a (regular) sub-solution of (2.5) in R × (−∞, z0].
Note that both (U,W) and (U,W) are periodic in t , and (U,W) is nondecreasing with respect to z. Moreover, as m

is arbitrary, we have that (U,W) � (U,W) for all (t, z) ∈ R × R as long as m is sufficiently large. Therefore,
Lemma 2.4 implies that for each c < −2

√
κ0, there exists (Uc,Wc) ∈ C

1,2
b (R×R,R2) such that (Uc,Wc) and c solve

(2.5) and (Uc(· + T , z),Wc(· + T , z)) = (Uc(·, z),Wc(·, z)). In addition, (Uc
z ,W

c
z ) > (0,0) for all (t, z) ∈ R × R. It

remains to show that

lim
z→−∞

(
Uc(t, z),Wc(t, z)

)= (0,0), lim
z→∞

(
Uc(t, z),Wc(t, z)

)= (1,1).

Notice that for each t ∈ R, limz→±∞(Uc(t, z),Wc(t, z)) exist since (Uc
z ,W

c
z ) > (0,0). Let(

Uc(t,±∞),Wc(t,±∞)
)= lim

z→±∞
(
Uc(t, z),Wc(t, z)

)
,

respectively. It is easy to see that(
Uc(· + T ,∞),Wc(· + T ,∞)

)= (
Uc(·,∞),Wc(·,∞)

)
.

Thanks to the regularity of (Uc,Wc) with respect to t and the compactness of [0, T ], we find that (Uc(t, z),

Wc(t, z)) → (Uc(t,±∞),Wc(t,±∞)) uniformly in t ∈ R as z → ±∞. Since

lim
z→−∞(U,W) = lim

z→−∞(U,W) = (0,0),

it follows that (Uc(t,−∞),Wc(t,−∞)) = (0,0). On the other hand, since there exists z∗ � z0 such that
(0,0) < (U,W) � (Uc,Wc) � (U,W) for all z ∈ (−∞, z∗], and (0,0) � (Uc,Wc) � (1,1) for all (t, z) ∈ R × R,
we have (0,0) < (Uc(t,∞),Wc(t,∞)) � (1,1) for all t ∈ R. Moreover, Barbǎlat’s lemma shows that
limz→∞(Uc

zz,W
c
zz) = limz→∞(Uc

z ,W
c
z ) = (0,0). Thus, (Uc(t,∞),Wc(t,∞)) is a positive periodic solution of⎧⎪⎨⎪⎩

du

dt
= u

[
a1(t)p(t)(1 − u) − b1(t)q(t)(1 − v)

]
,

dv

dt
= (1 − v)

[
a2(t)p(t)u − b2(t)q(t)v

]
.

(2.6)

Due to (A1) and (A2), (1.3) has three and only three nonnegative periodic solutions (p(t),0), (q(t),0), and (0,0),
where p(t) and q(t) are given by (1.5). Under the transformations in (1.6), these periodic states are converted to
(1,1), (0,0) and (0,1), respectively. They constitute all the periodic solutions of (2.6) confined within [0,1] × [0,1].
Consequently, (Uc(t,∞),Wc(t,∞)) = (1,1). The proof is completed. �
Theorem 2.6. Suppose that all the assumptions in Theorem 2.5 are satisfied. Assume that c = c∗ = −2

√
(a1p − b1q).

Then there exists (Uc∗
,Wc∗

)∈C
1,2
b (R×R,R2) such that (Uc∗

,Wc∗
) and c∗ solve (2.1). Moreover,

(Uc∗
z ,Wc∗

z )>(0,0) for all (t, z) ∈ R × R.

Proof. Let (Uc,Wc) be the time periodic wave solution of (2.1) with c < c∗. Since |Uc| and |Wc| are uniformly
bounded, it follows from parabolic estimates that∥∥Uc

∥∥
C

1+ α
2 ,2+α

(R×R,R)
+ ∥∥Wc

∥∥
C

1+ α
2 ,2+α

(R×R,R)
< ∞ uniformly for c ∈ [c∗ − 1, c∗),
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for some α ∈ ]0,1[. Let {cn} be any sequence with cn ∈ [c∗ − 1, c∗) such that cn → c∗ as n → ∞. By taking a
subsequence of {(Ucn,Wcn)} if necessary (which will be denoted by {(Ucn,Wcn)} for convenience), we infer that
{(Ucn,Wcn)} converges in C

1,2
loc (R

2,R) × C
1,2
loc (R

2,R) to a function denoted by (Uc∗
,Wc∗

). By taking the limits in
(2.5), we see that (Uc∗

,Wc∗
) satisfies (2.5). In addition, by Helly’s theorem, we can conclude that

lim
n→∞

[∥∥Ucn − Uc∗∥∥
C([0,T ]×R,R)

+ ∥∥Wcn − Wc∗∥∥
C([0,T ]×R,R)

]= 0. (2.7)

This further implies that limn→∞[‖Ucn −Uc∗‖C(R×R,R) + ‖Wcn −Wc∗‖C(R×R,R)] = 0 since (Ucn,Wcn) is periodic
in t . Clearly, (Uc∗

(t + T , ·),Wc∗
(t + T , ·)) = (Uc∗

(t, ·),Wc∗
(t, ·)) and (Uc∗

z ,Wc∗
z ) � (0,0). Since (Uc∗

(t, z + s),

Wc∗
(t, z + s)) is a solution as well, where s > 0 is arbitrary, the (strong) maximum principle implies that ei-

ther (Uc∗
z ,Wc∗

z ) > (0,0) or (Uc∗
z ,Wc∗

z ) ≡ (0,0). In light of (2.7) and the fact that limz→−∞(Ucn,Wcn) = (0,0)
and limz→∞(Ucn,Wcn) = (1,1) for each n, there exists M > 0 such that (Uc∗

,Wc∗
) � ( 1

4 ,
1
4 ) for all (t, z) ∈

R × (−∞,−M] while (Uc∗
,Wc∗

) � ( 1
2 ,

1
2 ) for all (t, z) ∈ R × [M,∞). Hence we must have (Uc∗

z ,Wc∗
z ) > (0,0).

Moreover, it is easy to see that

lim
z→−∞

(
Uc∗

,Wc∗)= (0,0), lim
z→∞

(
Uc∗

,Wc∗)= (1,1).

The proof is completed. �
Corollary 2.7. Suppose that (A1) is satisfied. Assume that r1 and r2 are strictly positive in [0, T ] such that
a1(t)mint

r1
a1

� b2(t)maxt
r2
b2

for all t ∈ [0, T ]. Moreover, assume that 0 < d � 1, a2(t)
a1(t)

� 1 >
b1(t)
b2(t)

, and

[b2(t) − b1(t)]mint
r2
b2

� [a2(t) − a1(t)]maxt
r1
a1

for all t ∈ [0, T ]. Then, for each c � c∗ = −2
√
(a1p − b1q),

there exists (Uc,Wc) ∈ C
1,2
b (R × R) such that (Uc,Wc) and c solve (2.1). In addition, (Uc

z ,W
c
z ) > (0,0) for all

(t, z) ∈ R × R.

Proof. Let p(t) and q(t) be given by (1.5). Since p(t) and q(t) are periodic functions that satisfy:

p′(t) = p(t)
(
r1(t) − a1(t)p(t)

)
, q ′(t) = q(t)

(
r2(t) − b2(t)q(t)

)
,

respectively, the comparison principle implies that

min
0�t�T

r1(t)

a1(t)
� p(t) � max

0�t�T

r1(t)

a1(t)
, min

0�t�T

r2(t)

b2(t)
� q(t) � max

0�t�T

r2(t)

b2(t)
. (2.8)

This together with the assumption implies that

a1(t)p(t) � a1(t) min
0�t�T

r1(t)

a1(t)
� b2(t) max

0�t�T

r2(t)

b2(t)
� b2(t)q(t).

As r1 = a1p and r2 = b2q , by the assumption that a2(t)
a1(t)

� 1 >
b1(t)
b2(t)

for all t ∈ R, we readily verify that (A2) holds. It
follows from the assumption and (2.8) that[

b2(t) − b1(t)
]
q(t) �

[
b2(t) − b1(t)

]
min

0�t�T

r2(t)

b2(t)
�
[
a2(t) − a1(t)

]
max

0�t�T

r1(t)

a1(t)
�
[
a2(t) − a1(t)

]
p(t).

Namely, a1(t)p(t) − b1(t)q(t) � a2(t)p(t) − b2(t)q(t) for all t ∈ [0, T ]. In addition, we have
a2(t)p(t) � a1(t)p(t) � b2(t)q(t). Therefore, the conclusion follows from Theorems 2.5 and 2.6. �
3. Uniqueness and monotonicity of periodic traveling wave solutions

In this section we study the uniqueness and monotonicity of periodic traveling waves of (2.1). We consider the
following general system: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = uzz + cuz + g(t, u, v),

vt = dvzz + cvz + h(t, u, v),

(0,0) � (u, v) � (1,1);(
u(t, z), v(t, z)

)= (
u(t + T , z), v(t + T , z)

)
,

lim
z→−∞(u, v) = (0,0), lim

z→∞(u, v) = (1,1),

(3.1)
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where 0 < d � 1, g ∈ Cθ,2(R × R2,R), h ∈ Cθ,2(R × R2,R) for some θ ∈ ]0,1[, and g(t + T ,u, v) = g(t, u, v),
h(t + T ,u, v) = h(t, u, v) for any (t, u, v) ∈ R × R2.

Throughout this section, we assume that

(H1) g(t,1,1) = h(t,0,0) = h(t,1,1) = 0 for any t ∈ R. Moreover, g(t,0, v) ≡ 0 for all (t, v) ∈ R × R+, and
gu(t,0,0) > 0.

(H2) gv(t, u, v) � 0 for all (t, u, v) ∈ R × R+ × R, and hu(t, u, v) � 0 for all (t, u, v) ∈ R × R × [0,1].

In what follows, we set:

κ = gu(t,0,0), φ(t) = e
∫ t

0 gu(s,0,0) ds−κt , c∗ = −2
√
κ, λc = −c − √

c2 − 4κ

2
if c � c∗. (3.2)

(H3) hv(t,0,0) < 0 and hu(t,0,0) � 0.
(H4) Let:

w =
{
(meλczφ(t),meλczφ(t)), (t, z) ∈ R × R, if c < c∗,
((m − nz)eλczφ(t), (m − nz)eλczφ(t)), (t, z) ∈ R × (−∞, m

n
− 2√

κ
], if c = c∗,

where m and n are arbitrary positive constants. Assume that w is a (regular) super-solution of{
ut = uzz + cuz + g(t, u, v),

vt = dvzz + cvz + h(t, u, v).
(3.3)

(H5) Let ν be a characteristic exponent of

dw
dt

− A(t)w = 0,

where A(t) = ( gu(t,1,1) gv(t,1,1)
hu(t,1,1) hv(t,1,1)

)
. Let

( ϕ1(t)

ϕ2(t)

)
be the eigensolution associated with ν. Assume that ν < 0, and

both ϕ2 and ϕ2 are strictly positive in [0, T ].

Lemma 3.1. Suppose that (u, v) ∈ C1,2(R × R, [0,1)2) is a regular sub-solution of (3.3) and is T -periodic in t .

Assume that (u, v) ∈ C
θ/2,θ
b (R × R) is T -periodic in t , and (u(t, ·), v(t, ·)) is nondecreasing, where 0 < θ < 1. In ad-

dition, there exists σ ∈ R such that (u(t, z), v(t, z)) = (1,1) for any (t, z) ∈ R ×[σ,+∞). Moreover, (u(t, z), v(t, z))
satisfies: {

ut � uzz + cuz + g(t, u, v),

vt � dvzz + cvz + h(t, u, v),

whenever (u, v) � (1,1), and {(t, z) ∈ R2 | u(t, z) < 1} = {(t, z) ∈ R2 | v(t, z) < 1}. If there exists σ < σ such that
(u(t, σ ), v(t, σ )) < (u(t, σ ), v(t, σ )) for all t ∈ R. Then (u, v) < (u, v) for any (t, z) ∈ R × [σ,+∞).

Proof. The proof is similar to that of Lemma 3.1(1) of [18]. Define:

θ∗ = inf
{
θ ∈ [0,∞)

∣∣ u(t, z − θ) � u(t, z) for all (t, z) ∈ R × [σ + θ,+∞)
}
,

θ∗ = inf
{
θ ∈ [0,∞)

∣∣ v(t, z − θ) � v(t, z) for all (t, z) ∈ R × [σ + θ,+∞)
}
.

From the assumptions it follows that (u(t, z− θ), v(t, z− θ)) < (u(t, z), v(t, z)) for all (t, z, θ) ∈ R×[σ + θ,+∞)×
[σ − σ,+∞). Thus, θ∗, θ∗ ∈ [0, σ − σ). Assume without loss of generality that θ∗ = max{θ∗, θ∗}. We claim that
θ∗ = 0.

Assume to the contrary that θ∗ �= 0. Then there exist two sequences {θn}n∈N and {(tn, zn)}n∈N such that θn → θ∗
as n → ∞, 0 < θn < θ∗, zn � σ + θn, and

u(tn, zn − θn) > u(tn, zn), lim
n→∞

[
u(tn, zn − θn) − u(tn, zn)

]= 0.
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Notice that {zn} is bounded and hence there exists a subsequence of {zn}, still labeled by {zn}, such that zn → z∗ ∈
[σ + θ∗,+∞) as n → ∞. Since (u, v) and (u, v) are T -periodic in t , we may assume without loss of generality that
tn ∈ [0, T ] for each n, and that tn → t∗ as n → ∞. Thus, u(t∗, z∗ − θ∗) = u(t∗, z∗) and v(t∗, z∗ − θ∗) � v(t∗, z∗). In
view of the assumptions, we have:(

u
(
t∗, σ

)
, v
(
t∗, σ

))
<
(
u
(
t∗, σ

)
, v
(
t∗, σ

))
�
(
u
(
t∗, σ + θ∗), v(t∗, σ + θ∗)). (3.4)

Therefore, z∗ > σ + θ∗. In particular, since u(t∗, z∗ − θ∗) = u(t∗, z∗) < 1 and (u(t, ·), v(t, ·)) is monotone and (u, v)

is Hölder continuous, [t∗ − ε, t∗ + ε] × [σ + θ∗, z∗ + ε] ⊂ {(t, z) | u < 1} for some ε > 0 which is sufficiently small.
Write, (

u−θ∗
(t, z), v−θ∗

(t, z)
)= (

u
(
t, z − θ∗), v(t, z − θ∗)), (ũ, ṽ) = (

u−θ∗ − u,v−θ∗ − v
)
.

Note that (ũ(t, z), ṽ(t, z)) � (0,0) for any (t, z) ∈ R × [σ + θ∗,+∞) and ũ(t∗, z∗) = 0. Since gv � 0, we have:[ 1∫
0

gu

(
t, τu−θ∗ + (1 − τ)u, tv−θ∗ + (1 − τ)v

)
dτ

]
ũ + ũzz + cũz − ũt � 0 in {u < 1} ∩ R × [σ + θ∗,+∞),

it then follows from the (strong) maximum principle that u(t, z − θ∗) = u(t, z) for all (t, z) ∈ (−∞, t∗] × [σ +
θ∗, z∗]∩{(t, z) | u < 1}. Therefore, we have u(t∗, σ ) = u(t∗, σ +θ∗), which however contradicts (3.4). Hence θ∗ = 0.
Moreover, thanks to the maximum principle, it is easy to see that (u, v) < (u, v) for all (t, z) ∈ R × [σ,+∞). The
proof is completed. �
Lemma 3.2. ([13]) Let the differential operators Lk := ∑n

i,j=1 a
k
i,j (t,x) ∂2

∂xi∂xj
+∑n

i=1 b
k
i

∂
∂xi

− ∂
∂t

(k = 1,2, . . . , l)

be uniformly parabolic in an open domain ]τ,M[ × Ω of (t,x) ∈ R × Rn, that is, there is α0 > 0 such that
ak
i,j (t,x)ξiξj � α0

∑n
i=1 ξ

2
i for any n-tuples of real numbers (ξ1, ξ2, . . . , ξn), where −∞ < τ < M � ∞ and Ω is

open and bounded. Suppose that ak
i,j , b

k
i ∈ C(]τ,M[ × Ω,R) and max(t,x)∈]τ,M[×Ω |bk

i (t,x)| + |ak
i,j (t,x)| � β0 for

some β0 > 0. Assume that w = (w1,w2, . . . ,wl) ∈ C([τ,M) × Ω,Rl ) ∩ C1,2(]τ,M[ × Ω,Rl) satisfies:

l∑
s=1

ck,s(t,x)ws + Lkwk � 0, (t, x) ∈ ]τ,M[ × Ω, k = 1,2, . . . , l, (3.5)

where ck,s ∈ C(]τ,M[ × Ω,R) and ck,s � 0 if k �= s, and max(t,x)∈]τ,M[×Ω |ck,s(t,x)| � γ0 (k, s = 1,2, . . . , l) for
some γ0 > 0. Let D and U be domains in Ω such that D ⊂⊂ U , dist(D, ∂U) > �, and |D| > ε for certain positive
constants � and ε. Let θ be a positive constant with τ + 4θ < M . Then there exist positive constants p, ω1 and ω2,
determined only by α0, β0, γ0, �, ε, n,diamΩ and θ , such that

inf]τ+3θ,τ+4θ[×D
wk � ω1

∥∥(wk)
+∥∥

Lp(]τ+θ,τ+2θ[×D)
− ω2 max

j=1,...,k
sup

∂P (]τ,τ+4θ[×U)

(wj )
−.

Here (wk)
+ = max{wk,0}, (wk)

− = max{−wk,0}, and ∂P (]τ, τ + 4θ [ × U) = {τ } × U ∪ [τ, τ + 4θ ] × ∂U . More-
over, if all inequalities in (3.5) are replaced by equalities, then the conclusion holds with p = ∞, and with ω1, ω2
independent of ε.

Proof. See Lemma 3.6 of [13] for a proof. �
Lemma 3.3. Suppose that (H1)–(H4) are satisfied. Assume that (u, v) ∈ C

1,2
b (R × R) and c solve (3.1). Then there

exist positive constants Ki (i = 1,2,3) and M > 0 such that for all (t, z) ∈ R × (−∞,−M],
K1e

λcz � u(t, z) � K2e
λcz, 0 < v(t, z) � K3e

λcz, if c < c∗, (3.6)

and

K1|z|eλcz � u(t, z) � K2|z|eλcz, 0 < v(t, z) � K3|z|eλcz, if c = c∗. (3.7)
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Proof. Thanks to (H1), (3.1) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut = uzz + cuz +
1∫

0

(
gu(t, τu, τv) dτ

)
u +

1∫
0

(
gv(t, τu, τv) dτ

)
v,

vt = dvzz + cvz +
1∫

0

(
hu(t, τu, τv) dτ

)
u +

1∫
0

(
hv(t, τu, τv) dτ

)
v.

(3.8)

Let D = ]z− 1
4 , z+ 1

4 [, U = ]z− 1
2 , z+ 1

2 [, Ω = ]z− 1, z+ 1[ with z ∈ R, τ = 0, and θ = T . Since u(·, z) and v(·, z)
are periodic and u and v are both positive and bounded by 1, applying Lemma 3.2 to (3.8) yields,(

u(t, z), v(t, z)
)
� N1

(
u
(
t ′, z

)
, v
(
t ′, z

))
for all z ∈ R and all t, t ′ ∈ R, (3.9)

where N1 is a positive constant independent of u and v. Now let

α = hv(t,0,0), φ̃(t) = exp

( t∫
0

hv(s,0,0) ds − tα

)
, û =

T∫
0

u

φ
dt, v̂ =

T∫
0

v

φ̃
dt. (3.10)

Then a straightforward calculation yields,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ûzz + cûz + κû +
T∫

0

g(t, u, v) − gu(t,0,0)u

φ
dt = 0,

dv̂zz + cv̂z + αv̂ +
T∫

0

hu(t,0,0)u

φ̃
dt +

T∫
0

h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v

φ̃
dt = 0.

(3.11)

Note that α < 0 because of (H3). Moreover, thanks to (H1), it is not difficult to see that∣∣[g(t, u, v) − gu(t,0,0)u
]
φ−1

∣∣� C
(|u|2 + |u||v|),∣∣[h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v

]
φ̃−1

∣∣� C
(|u|2 + |uv| + |v|2)

for some constant C > 0, which is independent of u,v, t and z. In view of (3.9) and the positivity of u and v, it follows
that

T∫
0

∣∣[g(t, u, v) − gu(t,0,0)u
]
φ−1

∣∣dt � C
(|û|2 + |û||v̂|),

T∫
0

∣∣[h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v
]
φ̃−1

∣∣dt � C
(|û|2 + |û||v̂| + |v̂|2),

for some positive constant C independent of t and z. Hence, we have:

T∫
0

∣∣[g(t, u, v) − gu(t,0,0)u
]
φ−1

∣∣dt = o
(|û|) as z → −∞. (3.12)

Furthermore, choose ε > 0 such that ε � −α
2 . Then there exists Mε > 0 such that

T∫
0

∣∣hu(t,0,0)uφ̃−1
∣∣dt +

T∫
0

∣∣[h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v
]
φ̃−1

∣∣dt � Cεû + εv̂, z � −Mε,
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where Cε = max0�t�T [hu(t,0,0) + ε]φ̃−1. Consequently,

dv̂zz + cv̂z + α

2
v̂ + Cεû � 0, z � −Mε. (3.13)

In order to prove (3.6) and (3.7), we need to distinguish between two cases.
Case I. c < c∗ = −2

√
κ . We begin by showing that

û(z) = m1e
λcz + O

(
e(λc+ε)z

)
as z → −∞ (3.14)

for certain positive constants m1 and ε. In view of (3.12), from the standard differential equation theory (see Theo-
rem 2.4 of [17]), it follows that û = O(e(λc−δ)z) as z → −∞, where δ > 0 is sufficiently small such that δ < λc

2 . Since
û = O(e(λc−δ)z) as z → −∞, there exist positive constants Cδ and Mδ such that û � Cδe

(λc−δ)z whenever z � −Mδ .
Assume without loss of generality that Mε � Mδ , then it is easy to verify that for any m � 2CεCδ

α
, w = me(λc−δ)z

satisfies:

dwzz + cwz + α

2
w + Cεû � 0, z � −Mε. (3.15)

Since v̂ is bounded, we can select an mδ > 0 such that mδe
−(λc−δ)Mε � v̂(−Mε).

We next show that wδ = mδe
(λc−δ)z � v̂(z) for all z � −Mε , namely, infz�−Mε

{wδ − v̂} � 0. Suppose that this
is not true, then, since wδ − v̂ → 0 as z → −∞, there exists a finite point z∗ < −Mε such that wδ(z

∗) − v̂(z∗) =
infz�−Mε

{wδ − v̂} < 0. Notice that

d(w − v̂)zz + c(wδ − v̂)z + α

2
(wδ − v̂) � 0, z � −Mε.

As wδ − v̂ attains its global minimum in (−∞,−Mε] at z = z∗, we have that (w− v̂)zz(z
∗) � 0 and (w− v̂)z(z

∗) = 0,
which forces that α

2 (wδ − v̂)(z∗) � 0. This is clearly impossible since α
2 < 0. Therefore, v̂(z) � mδe

(λc−δ)z when
z � −Mε . In other words, v̂ = O(e(λc−δ)z) as z → −∞. This implies that

T∫
0

∣∣[g(t, u, v) − gu(t,0,0)u
]
φ−1

∣∣dt = O
(
e2(λc−δ)z

)
as z → −∞.

Hence, (3.14) follows from Proposition 6.1 of [33] (see also [34]). Clearly, m1 � 0 since û > 0. If m1 > 0, then for
sufficient large m, it is easy to see meλcz satisfies (3.15) for z � 0 with |z| sufficiently large, and by arguing in the same
way, we can infer that v̂(z) = O(eλcz) as z → −∞. Furthermore, (3.14) implies that there exist positive constants C

and K such that

inf
t∈[0,T ]u(t, z) � 2C

T
sup

t∈[0,T ]
φ(t)eλcz, sup

t∈[0,T ]
u(t, z) � C

2T
inf

t∈[0,T ]φ(t)eλcz

whenever z � −K . Thus the first compound inequality of (3.6) follows from (3.9) immediately provided that m1 �= 0.
Likewise, we can show that 0 < v(t, z) � K3e

λcz for some constant K3 > 0 for z � 0 with |z| sufficiently large.
Therefore, to obtain (3.6), it suffices to show that m1 �= 0. To this end, we adopt a technique developed in [18]

to reach a contradiction by assuming m1 = 0 (see Propositions 3.2 and 3.3 of [18]). Assume by contradiction that
m1 = 0. Then, (3.14) together with (3.9) yields that there exist positive constants C and K such that supt∈R u(t, z) �
Ce(λc+ε)z whenever z � −K , where ε > 0 is sufficiently small. Moreover, with the same reasoning, we can show
that v̂ = O(e(λc+ε)z) as z → −∞, which along with (3.9) implies that supt∈R v(t, z) = O(e(λc+ε)z) as z → −∞.
Therefore, there exists a sequence {(tn, zn)}n∈N ∈ R × R− such that

zn → −∞, εn = u(tn, zn)e
−λczn → 0, εn = v(tn, zn)e

−λczn → 0 as n → ∞.

Since both εn and εn are positive, it follows from (3.9) that(
u(t, zn), v(t, zn)

)
� N1

(
εne

λczn, εne
λczn

)
<

2N1(εn + εn)φ(t)

inft∈[0,T ] φ(t)

(
eλczn, eλczn

)
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for all n ∈ N and all t ∈ R. Next we let:(
un(t, z), vn(t, z)

)= min

{
2N1(εn + εn)φ(t)

inft∈[0,T ] φ(t)

(
eλcz, eλcz

)
, (1,1)

}
.

Clearly, (u(t, zn), v(t, zn)) < (un(t, zn), vn(t, zn)) for all t ∈ R, (un, vn) ∈ C(R × R) is T -periodic in t , and
(un(t, ·), vn(t, ·)) is nondecreasing. In addition, there exists σn for which (un(t, z), vn(t, z)) = (1,1) for all
(t, z) ∈ R × [σn,+∞). Notice that {(t, z) | un < 1} = {(t, z) | vn < 1} since un = vn for all (t, z) ∈ R × R. Moreover,
due to (H4), (un, vn) is a regular super-solution of (3.3) whenever (un, vn) < (1,1). Thus, (un(t, ·), vn(t, ·)) has all
the properties specified by Lemma 3.1. Hence Lemma 3.1 implies that

0 <
(
u(t, z), v(t, z)

)
<
(
un(t, z), vn(t, z)

)= min

{
2N1(εn + εn)φ(t)

inft∈[0,T ] φ(t)

(
eλcz, eλcz

)
, (1,1)

}
,

for all (t, z) ∈ R × [zn,+∞). Since zn → −∞ and εn + εn → 0 as n → ∞, it follows that (u(t, z), v(t, z)) = (0,0)
for any (t, z) ∈ R × R−, which is impossible. Thus, m1 �= 0.

Case II. c = c∗ = −2
√
κ . The proof is similar to case I. Since c = −2

√
κ , λ2 + cλ + κ = 0 has a repeated root

λc = √
κ . Similar as deriving (3.14), we have:

û(z) = m1|z|eλcz + O
(
eλcz

)
as z → −∞

for some positive constant m1. Notice that m|z|eλcz satisfies (3.15) provided that m is sufficiently large and z is
negative. Thus, it follows from the same reasoning that v̂ = O(|z|eλcz) as z → −∞ if m1 �= 0. Furthermore, thanks to
(3.9), (3.7) follows provided that m1 �= 0. Thus, to show (3.7), we need to prove that m1 �= 0.

Assume by contradiction again that m1 = 0. Then, we have that û = O(eλcz), v̂ = O(eλcz) as z → −∞, which
with (3.9) implies that supt∈R u(t, z) = O(eλcz), supt∈R v(t, z) = O(eλcz) as z → −∞. Hence, there exists a sequence
(tn, zn)n∈N ∈ R × R− such that

zn → −∞, εn = u(tn, zn)|zn|−1e−λczn → 0, εn = v(tn, zn)|zn|−1e−λczn → 0 as n → ∞.

Using (3.9) again, we find that(
u(t, zn), v(t, zn)

)
� N1

(
εn|zn|eλczn, εn|zn|eλczn

)
<

2N1(εn + εn)|zn|φ(t)

inft∈[0,T ] φ(t)

(
eλczn, eλczn

)
(3.16)

for all n ∈ N and all t ∈ R.
Now let θn be the least positive number such that

N1(εn + εn)|zn|eλc
θn
2 θn

(θn − zn)
= 1. (3.17)

It is easy to see that the sequence {θn}n∈N converges to +∞ as n → +∞. Next we set:

u∗
n(t, z) = v∗

n(t, z) = 2N1(εn + εn)|zn|
inft∈[0,T ] φ(t)(θn − zn)

(θn − z)eλczφ(t).

Notice that

u∗
n(t,0) = v∗

n(t,0) = 2N1(εn + εn)|zn|θn
inft∈[0,T ] φ(t)(θn − zn)

φ(t) = 2φ(t)

inft∈[0,T ] φ(t)
e−λc

θn
2

and

u∗
n

(
t,

θn

2

)
= v∗

n

(
t,

θn

2

)
= N1(εn + εn)|zn|θn

inft∈[0,T ] φ(t)(θn − zn)
eλc

θn
2 φ(t) = φ(t)

inft∈[0,T ] φ(t)
� 1.

In addition, (
u∗
n

)
z
= (

v∗
n

)
z
= eλczφ(t)

2N1(εn + εn)|zn|
inft∈[0,T ] φ(t)(θn − zn)

[
λc(θn − z) − 1

]
� 0,
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for all (t, z) ∈ R × (−∞, θn
2 ] provided that n is sufficiently large. Apparently, (u∗

n, v
∗
n) � (0,0) for all

(t, z) ∈ R × (−∞, θn
2 ]. Now we let:

(un, vn) = min
{(

u∗
n(t, z), v

∗
n(t, z)

)
, (1,1)

}
if z � θn

2
and (un, vn) = (1,1) if z � θn

2
.

It is clear that (un, vn) ∈ C(R × R, [0,1]2) is T -periodic in t and is nondecreasing in z for n sufficiently large, and
(un, vn) = (u∗

n, v
∗
n) as long as (un, vn) < (1,1). Furthermore, {(t, z) | un < 1} = {(t, z) | vn < 1} ⊆ R × (−∞, θn

2 ],
and by virtue of (H4), (u∗

n(t, z), v
∗
n(t, z)) is a super-solution of (3.3) whenever (t, z) ∈ R × (−∞, θn

2 ]. Thus, (un, vn)

enjoys all the properties required by Lemma 3.1 when n is sufficiently large. In particular, (3.16) shows that
(u(t, zn), v(t, zn)) < (un(t, zn), vn(t, zn)). Therefore, if n is sufficiently large, applying Lemma 3.1 with σ = zn yields
that (u(t, z), v(t, z)) < (un(t, z), vn(t, z)) for any (t, z) ∈ R × [zn,+∞). Since (u∗

n(t,0), v∗
n(t,0)) < (1,1), we have

(un(t,0), vn(t,0)) = (u∗
n(t,0), v∗

n(t,0)). Hence(
u(t,0), v(t,0)

)
<
(
u∗
n(t,0), v∗

n(t,0)
)= 4φ(t)

inft∈[0,T ] φ(t)
e−λc

θn
2 (1,1).

As limn→∞ e−λc
θn
2 = 0, it follows that (u(t,0), v(t,0)) = (0,0), so we reached a contradiction, which implies that

m1 �= 0. Therefore, (3.7) follows. This completes the proof. �
Proposition 3.4. Suppose that all assumptions of Lemma 3.3 are satisfied. Let (u, v) ∈ C

1,2
b (R × R) and c solve (3.1).

Then there exist positive constants M1 and M such that for all (t, z) ∈ R × (−∞,−M],∣∣uz(t, z)
∣∣� M1e

λcz,
∣∣vz(t, z)∣∣� M1e

λcz, if c < c∗, (3.18)

and ∣∣uz(t, z)
∣∣� M1|z|eλcz,

∣∣vz(t, z)∣∣� M1|z|eλcz, if c = c∗. (3.19)

Proof. Thanks to (3.8) and the interior parabolic Lp-estimates (see Theorem 7.22 of [31]), for any z ∈ R and any
p ∈ ]3,∞[, we have:[ 2T∫

T

z+ 1
2∫

z− 1
2

(∣∣uss(τ, s)
∣∣p + ∣∣us(τ, s)

∣∣p + ∣∣uτ (τ, s)
∣∣p)ds dτ] 1

p

� C

[ 2T∫
0

z+1∫
z−1

(|u|p + |v|p)ds dτ] 1
p

,

[ 2T∫
T

z+ 1
2∫

z− 1
2

(∣∣vss(τ, s)∣∣p + ∣∣vs(τ, s)∣∣p + ∣∣vτ (τ, s)∣∣p)ds dτ]
1
p

� C

[ 2T∫
0

z+1∫
z−1

(|u|p + |v|p)ds dτ] 1
p

for some positive constant C independent of u, v, t and z. In view of (3.6) and (3.7), there exists M > 0 such that[ 2T∫
0

z+1∫
z−1

(|u|p + |v|p)ds dτ] 1
p

� C′ sup
(t,z)∈[0,2T ]×[z−1,z+1]

(|u| + |v|)� M ′|z|ιeλcz, z � −M

for certain positive constants C′ and M ′, which are independent of z, where ι = 0 if c < c∗ and ι = 1 if c = c∗. As a
result, we have:[ 2T∫

T

1
2∫

− 1
2

(∣∣uηη(τ, η + z)
∣∣p + ∣∣uη(τ, η + z)

∣∣p + ∣∣uτ (τ, η + z)
∣∣p)dη dτ

] 1
p

� M ′|z|ιeλcz, z � −M,

[ 2T∫
T

1
2∫

− 1
2

(∣∣vηη(τ, η + z)
∣∣p + ∣∣vη(τ, η + z)

∣∣p + ∣∣vτ (τ, η + z)
∣∣p)dη dτ

] 1
p

� M ′|z|ιeλcz, z � −M.
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Consequently, the Sobolev embedding theorem implies that{∣∣us(τ, s)
∣∣
C([T ,2T ]×[z− 1

2 ,z+ 1
2 ]) + ∣∣vs(τ, s)∣∣C([T ,2T ]×[z− 1

2 ,z+ 1
2 ])
}

� M1|z|ιeλcz, z � −M,

for some positive constants M1 (see [1] or [21]). Since both u and v are T -periodic in t , (3.18) and (3.19) follow. The
proof is complete. �

Next we proceed to establish the exact exponential decay rate for a solution of (3.1) as z → −∞. To achieve this
goal, we employ a dynamical system approach by using the variable z as an evolution variable (see [36,37,41]). Let
A : D(A) ⊂ Y → Y be the linear operator defined by:

A :=
(

0 I

∂t − gu(t,0,0) −c

)
. (3.20)

Here Y = L2
T × L2

T , L2
T := {j (t + T ) = j (t),

∫ T

0 |j (t + s)|2 ds < ∞} equipped with the norm ‖j‖L2
T

=
(
∫ T

0 |j (s)|2 ds) 1
2 . It is easy to see that A is closed and densely defined with the domain D(A) = H 1

T × L2
T ,

H 1
T = {j ∈ L2

T , supt

∫ T

0 |j ′(t + s)|2 ds < ∞}, where ′ stands for the weak derivative of j . Now let w = uz, then
the first equation of (3.1) can be cast as a first order system:

d

dz

(
u

w

)
= A

(
u

w

)
+
(

0
gu(t,0,0)u − g(t, u, v)

)
.

We will take the Laplace transform of this system to obtain the asymptotic expansion of u. To this end, we first
examine the spectrum of A.

Lemma 3.5. Let A be defined by (3.20). Then σ(A) = σp(A) = {λ ∈ C | λ2 + cλ = −κ + 2πni
T

, n ∈ N}, where

i = √−1. Moreover, λc ∈ σp(A) and ker(λcI − A) = span
{( φ

λcφ

)}
. In particular, ker(λcI − A)n = ker(λcI − A)

for n = 2, . . . , provided c < c∗. If c = c∗, then ker(λcI − A) ⊂ ker(λcI − A)2, ker(λcI − A)2 \ ker(λcI − A) =
span

{( φ

(λc−1)φ

)}
, and ker(λcI − A)n = ker(λcI − A)2 for n = 3, . . . .

Proof. Let L :H 1
T → L2

T be defined by:

L := ∂t − gu(t,0,0).

Notice that λ ∈ ρ(A) if and only if λ2 + cλ ∈ ρ(L). Indeed, if λ ∈ ρ(A), then for any
( p1
p2

) ∈ Y , there exists
( up

wp

)
satisfying, {

λu − w = p1,

gu(t,0,0)u − ∂tu + cw + λw = p2,
(3.21)

which implies that gu(t,0,0)up − ∂tup + (cλ + λ2)up = (λ + c)p1 + p2. Since
( p1
p2

)
is arbitrary, λ2 + cλ ∈ ρ(L).

On the other hand, if λ2 + cλ ∈ ρ(L), then it is clear that(
u

w

)
=
( [(λ2 + cλ)I − L]−1[(λ + c)p1 + p2]
λ[(λ2 + cλ)I − L]−1[(λ + c)p1 + p2] − p1

)
solves (3.21). Thus, λ ∈ ρ(A). This also implies that λ ∈ σ(A) if and only if λ2 + cλ ∈ σ(L). Since L has
compact resolvent, for any ω ∈ C, ωI − L is Fredholm of index zero. Thus we have σ(L) = σp(L) and
σp(L) = {−κ + 2nπi

T
, n ∈ N}. In addition, if λ2 + cλ ∈ σp(L), that is, λ2 + cλ = −κ + 2nπi

T
for some n, then

φ(t)e
2nπit

T is the eigenfunction associated with λ2 + cλ. Namely,
(

φ(t)e
2nπit

T

λφ(t)e
2nπit

T

)
is the eigenfunction corresponding

to the eigenvalue λ of A. Hence the first part this lemma follows. Apparently, λc ∈ σ(A) since λ2
c + cλc + κ = 0.

If
( u1
w1

) ∈ ker(λcI − A). Then we must have that λcu1 = w1 and gu(t,0,0)u1 − ∂tu1 − κu1 = 0. Since

ker(−κI − L) = span{φ}, it follows that ker(λcI − A) = span
{( φ

λcφ

)}
.
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Now assume that c < c∗, we claim that ker(λcI − A)n = ker(λcI − A), n = 2, . . . . To this end, it suffices
to show that ker(λcI − A)2 = ker(λcI − A). Assume to the contrary that this is not true, then there exists( u2
w2

) ∈ ker(λcI − A)2 \ ker(λcI − A). Since (λcI − A)
( u2
w2

) ∈ ker(λcI − A) and ker(λcI − A) = span
{( φ

λcφ

)}
,

it follows that λcu2 −w2 = kφ and gu(t,0,0)u2 − ∂tu2 + cw2 + λcw2 = kλcφ for some nonzero constant k. Without
loss of the generality, we assume that k = 1. A direct calculation shows that −κu2 +gu(t,0,0)u2 −∂tu2 = (2λc +c)φ,
that is, (−κI − L)u2 = (2λc + c)φ. Let L∗ := −∂t − gu(t,0,0) be the formal adjoint operator of L. Note that
−κ is also an eigenvalue of L∗ and φ−1 is the corresponding eigenfunction. Therefore, the Fredholm alternative
implies that

∫ T

0 (2λc + c)φφ−1dt = (2λc + c)T = 0, this is impossible since 2λc + c = −√
c2 − 4κ < 0. Thus,

ker(λcI − A)2 = ker(λcI − A). By induction, we can show that ker(λcI − A)n = ker(λcI − A) for all n ∈ N+.
It remains to prove the assertion for the case of c = c∗. We first show that ker(λcI − A) ⊂ ker(λcI − A)2.

Again assume that
( u2
w2

) ∈ ker(λcI − A)2. Then the same arguments as the above yield that λcu2 − w2 = kφ

and −κu2 + gu(t,0,0)u2 − ∂tu2 = (2λc + c)kφ for some nonzero constant k. Since 2λc + c = 0, we have
−κu2 + gu(t,0,0)u2 − ∂tu2 = 0, this implies that u2 = mφ for some constant m and hence w2 = (mλc − k)φ.
Therefore, every element belonging to ker(λcI − A)2 must be in the form

( mφ

(mλc−k)φ

)
. Note that(

mφ

(mλc − k)φ

)
= k

(
φ

(λc − 1)φ

)
+ (m − k)

(
φ

λcφ

)
.

It then follows that

ker(λcI − A)2 = span

{(
φ

(λc − 1)φ

)
,

(
φ

λcφ

)}
.

Next, we prove that ker(λcI − A)n = ker(λcI − A)2 for all n ∈ N+ with n � 2. With the same reasoning, it is
sufficient to show that ker(λcI − A)3 = ker(λcI − A)2. Again assume by contradiction that this is not true, then there
exists

( u3
w3

) ∈ ker(λcI − A)3 \ ker(λcI − A)2. Thus,

λcu3 − w3 = mφ, gu(t,0,0)u3 − ∂tu3 + cw3 + λcw3 = (mλc − k)φ,

for some constants m and k. Note that k �= 0, otherwise, it follows from the above arguments that
( u3
w3

)
is a linear

combination of
( φ

(λc−1)φ

)
and

( φ

λcφ

)
. A straightforward computation shows that −κu3 − ∂tu3 + gu(t,0,0)u3 = −kφ.

Here we used the fact that 2λc + c = 0. Thus applying the Fredholm alternative again yields that −k = 0, which is a
contradiction. This contradiction confirms that ker(λcI − A)3 = ker(λcI − A)2. The proof is completed. �
Proposition 3.6. Let Θε = {λ ∈ C | λc − 2ε � Reλ � λc + 2ε, ε ∈ R+} be the vertical strip containing the vertical
line Reλ = λc. Then there exists ε′ ∈ ]0, λc

2 [ sufficiently small such that Θε′ ∩ σ(A) = {λc}. Furthermore, if c < c∗,
then the Laurent series for (λI − A)−1 at λ = λc is given by:

(λI − A)−1 =
∞∑
n=0

(λ − λc)
nSn+1 − (λ − λc)

−1P. (3.22)

In case that c = c∗, the Laurent series for (λI − A)−1 at λ = λc is given by:

(λI − A)−1 =
∞∑
n=0

(λ − λc)
nSn+1 − (λ − λc)

−1P − (λ − λc)
−2D. (3.23)

Here

S = 1

2πi

∫
Γ

(λI − A)−1

(λ − λc)
dλ, P = − 1

2πi

∫
Γ

(λI − A)−1 dλ, D = (A − λc)P,

and Γ : |λ − λc| = γ < 2ε′.

Proof. In terms of Lemma 3.5, λ ∈ σ(A) if and only if λ2 + cλ = −κ + 2nπi
T

. Let λ = λr + iλm, where λr, λm ∈ R.
Thus, if λ ∈ σ(A), then λr and λm have to satisfy:
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λ2
r − λ2

m + cλr + κ = 0, (2λr + c)λm = 2nπ

T
. (3.24)

Let λr = λc +ε with |ε| > 0. Then |λ2
r +cλr +κ| = |ε−√

c2 − 4κ||ε| and | 2nπ
T (2λr+c)

| = | 2nπ

T (2ε−
√

c2−4κ)
|. Hence, (3.24)

has no solution as long as ε is sufficiently small. This shows that there exists ε′ > 0 such that Θε′ ∩ σ(A) = {λc}.
Thus, λ = λc is the only singular point of λI − A in Θε′ . By [26], the Laurent series for (λI − A)−1 at λ = λc is
given by:

(λI − A)−1 =
∞∑
n=0

(λ − λc)
nSn+1 − P

(λ − λc)
−

∞∑
n=1

Dn

(λ − λc)(n+1)
.

Here P is the spectral projection. Denote the range of P by R(P ). As λc is an isolated eigenvalue of A of finite
algebraic multiplicity, λc is a pole of (λ − A)−1 (see Proposition 1.8 of [23]). In particular, by Lemma 3.5, λc is a
simple pole of (λ − A)−1 and R(P ) = ker(λcI − A) provided c < c∗. Thus, if c < c∗, then Dn = 0 for all n ∈ N+,
and (3.22) follows. In case that c = c∗, λc is a pole of (λ− A)−1 of order 2 and R(P ) = ker(λcI − A)2. Then Dn = 0
for all n � 2, which yields (3.23). The proof is completed. �
Remark 3.7. Let λ ∈ ρ(A) and λ = μ + iη with μ,η ∈ R. Denote by S the subspace of elements in Y of the form( 0
j

)
and let (λI − A)−1

S be the restriction of (λI − A)−1 to S . Then we notice that for certain positive constants C

and Σ , ∥∥(λI − A)−1
S
∥∥� C

|η| if |η| � Σ,

provided that μ ∈ [λc − 2ε′, λc + 2ε′]. Indeed, if
( u
w

) = (λI − A)−1
S
( 0
j

)
, then w = λu and u = (λ2 + cλ − L)−1j .

Define:

〈ı, j 〉 :=
T∫

0

ı(t)j (t)

φ2(t)
dt, ı, j ∈ L2

T

C
,

where L2
T

C
is the complexification of L2

T and j stands for the complex conjugate of j . Then

Re
〈
(L + κI)j, j

〉= Re

T∫
0

[
j ′

φ
− gu(t,0,0)j − κj

φ

]
j

φ
dt

= Re

T∫
0

[(
j

φ

)′
− j

(
1

φ

)′
− gu(t,0,0)j − κj

φ

]
j

φ
dt

= Re

T∫
0

(
j

φ

)′
j

φ
dt = 0.

Similarly, we can show that Re〈−(L + κI)j, j 〉 = 0. In view of Proposition C.7.2 of [20], both −(L + κI) and
L + κI are m-accretive and {Reλ �= 0} ⊆ ρ(L + κI). Hence we have that ‖(λ2 + cλ − L)−1‖ � M

|Re(λ2+cλ+κ)| for

some constant M > 0 as long as Re(λ2 + cλ + κ) �= 0. Using the fact that λ2
c + cλc = −κ , we find that∥∥(λI − A)−1

S
∥∥� M(|μ + iη| + 1)

|μ2 − λ2
c − c(λc − μ) − η2| .

Let !(μ) = μ2 − λ2
c − c(λc − μ). Then ! is bounded for μ ∈ [λc − 2ε′, λc + 2ε′]. Consequently,

lim|η|→∞ |!(μ)−η2|
(|μ+iη|+1)|η| = 1 uniformly for μ ∈ [λc − 2ε′, λc + 2ε′]. Therefore, there exist positive constants Σ and

C such that
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∥∥(λI − A)−1
S
∥∥� C

|η| if |η| � Σ,

whenever μ ∈ [λc − 2ε′, λc + 2ε′].

Theorem 3.8. Suppose that (H1)–(H4) are satisfied. Let c � c∗ = −2
√
κ . Assume that (u, v) ∈ C

1,2
b (R × R) and c

solve (3.1). Then

lim
z→−∞

u(t, z)

k1eλczφ(t)
= 1, lim

z→−∞
v(t, z)

k1eλczφd(t)
= 1, uniformly in t ∈ R, if c < c∗, (3.25)

lim
z→−∞

uz(t, z)

k1eλczφ(t)
= λc, lim

z→−∞
vz(t, z)

k1eλczφd(t)
= λc, uniformly in t ∈ R, if c < c∗, (3.26)

and

lim
z→−∞

u(t, z)

k1|z|eλczφ(t)
= 1, lim

z→−∞
v(t, z)

k1|z|eλczφd(t)
= 1, uniformly in t ∈ R, if c = c∗, (3.27)

lim
z→−∞

uz(t, z)

k1|z|eλczφ(t)
= λc, lim

z→−∞
vz(t, z)

k1|z|eλczφd(t)
= λc, uniformly in t ∈ R, if c = c∗, (3.28)

for some positive constant k1. Here⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φd(t) = φd(0)e
∫ t

0 (hv(s,0,0)−�)ds +
t∫

0

e
∫ t
s (hv(τ,0,0)−�)dτ hu(s,0,0)φ(s) ds,

φd(0) = (
1 − e

∫ T
0 (hv(t,0,0)−�)dt

)−1
T∫

0

e
∫ T
s (hv(τ,0,0)−�)dτ hu(s,0,0)φ(s) ds,

(3.29)

and � = κ + (1 − d)λ2
c .

Proof. The proof will be divided into two steps.
Step 1. We first show that there exists a constant k1 > 0 such that

lim
z→−∞

u(t, z)

k1eλczφ(t)
= 1 if c < c∗ and lim

z→−∞
u(t, z)

k1|z|eλczφ(t)
= 1 if c = c∗, uniformly in t.

Due to (H1), we see that [ 1∫
0

gu(t, τu, v) dτ

]
u + uzz + cuz − ut = 0.

By virtue of the (interior) parabolic Lp estimates and (3.9), it is easy to see that

sup
(t,z)∈R×R

|uzz|
|u| + |uz|

|u| � CT (3.30)

for some constant CT . Let χ(z) ∈ C3
b(R,R) such that χ ≡ 1 if z � 0 and χ ≡ 0 if z > 1, and |χ ′| + |χ ′′| + |χ ′′′| < ∞

for all z. Now set:

w = uz, u� = χu, w� = (χu)z.

A direct computation shows that

w�
z + cw� − u�

t = −gu(t,0,0)u� + χ
[
gu(t,0,0)u − g(t, u, v)

]+ χ ′′u + 2χ ′uz + cχ ′u. (3.31)

Let

g̃(t, z) = χ
[
gu(t,0,0)u − g(t, u, v)

]+ χ ′′u + 2χ ′uz + cχ ′u. (3.32)
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Then, as shown before, by using z as an evolution variable, we can rewrite (3.31) as a first order system,

d

dz

(
u�
w�

)
= A

(
u�
w�

)
+
(

0
g̃(t, z)

)
,

where (u�,w�) : z → (u�(·, z),w�(·, z)) ∈ Y . Once again, we distinguish between two cases.
Case I. c < c∗ = −2

√
κ . Thanks to (3.6) and (3.30), there exist positive constants C and M such that

supt∈R(|u�
z | + |w�

z |) � Ceλcz as long as z � −M , which implies that (e−λzu�, e−λzw�) ∈ W 1,1(R, Y ) ∩ W 1,∞(R, Y )

provided λ ∈ [λc − 2ε′, λc), where ε′ is given in Proposition 3.6. In addition, Proposition 3.6 shows that λ ∈ ρ(A) if
λc − 2ε′ � Reλ < λc. Hence we can take the two-sided Laplace transform of (u�,w�) with respect to z and obtain
that ( ∫

R e−λsu�(·, s) ds∫
R e−λsw�(·, s) ds

)
= F(λ) := (λI − A)−1

(
0∫

R e−λs g̃(·, s) ds
)
,

where λc − 2ε′ � Reλ < λc. It follows from (3.6), (3.18), and (3.32) that sup(t,z)∈R2(|g̃| + |g̃z|) < ∞ and
supt∈R |g̃| + |g̃z| = O(e2λcz) as z → −∞. This implies that both

∫
R e−λs g̃ ds and

∫
R e−λs g̃z ds are analytic for λ

with Reλ ∈ ]0, λc + 2ε′[. Let λ = μ + iη with μ,η ∈ R. Note that
∫

R e−λs g̃ ds = ∫
R e−iηse−μsg̃ ds is identical with

the Fourier transform of e−μsg̃ if μ is regarded as fixed. It is clear that e−μsg̃ ∈ W 1,1(R,L2
T )∩W 1,∞(R,L2

T ) for any

μ ∈ [ε′, λc + 3ε′
2 ], in particular, ‖e−μsg̃‖W 1,1(R,L2

T ) are uniformly bounded for all μ ∈ [ε′, λc + 3ε′
2 ], we then have that∥∥∥∥∫

R

e−λs g̃ ds

∥∥∥∥
L2

T

� C

|η| , λ = μ + iη,

for some positive constant C, where μ ∈ [ε′, λc + 3ε′
2 ]. It then follows from Remark 3.7 that∥∥∥∥(λI − A)−1

(
0∫

R e−λs g̃ ds

)∥∥∥∥
Y

� C1

|η|2 , λ = μ + iη, |η| � Σ, (3.33)

for some constants C1 and λ with μ ∈ [λc − ε′, λc + 3ε′
2 ] \ {λc}. This implies that F(μ+ iη) ∈ L1(R, Y )∩L∞(R, Y )

for fixed μ ∈ [λc − ε′, λc + 3ε′
2 ] \ {λc}.

Now select μ such that μ ∈ [λc − ε′, λc). By taking the inverse Laplace transform of F, we obtain that(
u�(·, z)
w�(·, z)

)
= 1

2πi

μ+i∞∫
μ−i∞

eλz(λI − A)−1G(λ)dλ,

where G(λ) = ( 0∫
R e−λs g̃ ds

)
. Since (u,w) ≡ (u�,w�) for all z � 0, we have:

(
u(·, z)
w(·, z)

)
= 1

2πi

μ+i∞∫
μ−i∞

eλz(λI − A)−1G(λ)dλ, z � 0. (3.34)

By virtue of (3.33), we find that

lim
η→±∞

λc+ε′∫
μ

∥∥e(τ+iη)z
(
(τ + iη)I − A)−1

G(τ + iη)
∥∥
Y
dτ = 0, z � 0. (3.35)

Furthermore, it follows from (3.22) that

(λI − A)−1G(λ) =
∞∑
n=0

(λ − λc)
nSn+1G(λ) − PG(λc)

(λ − λc)
+ P [G(λc) − G(λ)]

(λ − λc)
, |λ − λc| � γ < 2ε′.

As shown above, G(λ) is analytic for λ with Reλ ∈ ]0, λc + 2ε′[ and PG ∈ ker(λcI − A) = span
{( φ

λcφ

)}
. Thanks to

(3.35), by shifting the path of integral in (3.34) to Reλ = λc + ε′ and using the residue theorem, we obtain that
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(
u(t, z)

w(t, z)

)
= k1e

λcz

(
φ(t)

λcφ(t)

)
+ e(λc+ε′)z

2π

+∞∫
−∞

eiηz
((
λc + ε′ + iη

)
I − A)−1

G
(
λc + ε′ + iη

)
dη,

for z � 0, where k1 ∈ R is a constant. Let ς(t, z) = u(t, z) − k1e
λczφ(t) for all (t, z) ∈ R × R−. Since ς(t, z) is

T -periodic in t , (3.33) implies that( z+1∫
z−1

2T∫
0

∣∣ς(τ, s)∣∣2 dτ ds

) 1
2

� Ce(λc+ε′)z, z � 0

for some positive constant C, which is independent of z.
In addition, notice that ς(t, z) is a bounded periodic solution of[

g(t, u, v) − gu(t,0,0)u
]+ gu(t,0,0)ς + ςzz + cςz − ςt = 0, (t, z) ∈ R × R−.

In light of (3.6), we see that [g(t, u, v) − gu(t,0,0)u] = O(e2λcz) as z → −∞. It then follows from the interior
parabolic estimates that

( z+ 1
2∫

z− 1
2

2T∫
T

∣∣ςss(τ, s)
∣∣2 dτ ds + ∣∣ςs(τ, s)

∣∣2 dτ ds + ∣∣ςτ (τ, s)
∣∣2 dτ ds

) 1
2

� Ce(λc+ε′)z, z � 0.

Here C is a positive constant independent of z. Thus, the Sobolev embedding theorem implies that there exists some
positive constant C such that supt∈[0,T ] |ς(t, z)| � Ce(λc+ε′)z for all z ∈ R−. This implies that k1 � 0 since u > 0.
By (3.6) and the fact that ς is also T -periodic in t , we infer that k1 > 0, and

lim
z→−∞

u(t, z)

k1eλczφ(t)
= 1 uniformly in t ∈ R.

Now let ς̃ (t, z) = uz(t, z) − k1λce
λczφ(t) for all (t, z) ∈ R × R−. As w(t, z) = uz(t, z) for all (t, z) ∈ R × R−, it

follows from (3.33) that ( z+1∫
z−1

2T∫
0

∣∣ς̃ (t, z)∣∣2 dt dz) 1
2

� Ce(λc+ε′)z, z � 0,

for some positive constant C. Moreover, ς̃ (t, z) satisfies that[
gu(t, u, v)uz − gu(t,0,0)uz + gv(t, u, v)vz

]+ gu(t,0,0)ς̃ + cς̃z − ς̃t = 0.

Due to (3.6) and (3.18), [gu(t, u, v)uz − gu(t,0,0)uz + gv(t, u, v)vz] = O(e2λcz) as z → −∞. With the same
reasoning, we can infer that supt∈[0,T ] |ς̃ (t, z)| � C′e(λc+ε′)z for some positive constant C′ and z � 0. Therefore,

lim
z→−∞

uz(t, z)

k1φ(t)eλcz
= λc uniformly in t ∈ R.

Case II. c = c∗ = −2
√
κ . The proof for this case is almost same as in Case I. Notice that

(λI − A)−1G(λ) =
∞∑
n=0

(λ − λc)
nSn+1G(λ) − PG(λc)

(λ − λc)
+ P [G(λc) − G(λ)]

(λ − λc)

− DG(λc)

(λ − λc)2
+ D[G(λc) − G(λ)]

(λ − λc)2
, |λ − λc| � γ < 2ε′.

Since PG ∈ ker(λcI − A)2 = span
{( φ

λcφ

)
,
( φ

(λc−1)φ

)}
and DG = (A − λcI)PG ∈ ker(λcI − A) = span

{( φ

λcφ

)}
, we

find that
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u(t, z)

w(t, z)

)
= −k1ze

λcz

(
φ(t)

λcφ(t)

)
+ k2e

λcz

(
φ(t)

(λc − 1)φ(t)

)
+ k3e

λcz

(
φ(t)

λcφ(t)

)

+ e(λc+ε′)z

2π

+∞∫
−∞

eiηz
((
λc + ε′ + iη

)
I − A)−1

G
(
λc + ε′ + iη

)
dη, z � 0,

for certain constants k1, k2 and k3. In view of (3.7) and (3.19), by the same reasoning, we readily conclude that k1 > 0,
and

lim
z→−∞

u(t, z)

k1|z|eλczφ(t)
= 1, lim

z→−∞
uz(t, z)

k1|z|eλczφ(t)
= λc uniformly in t ∈ R.

Step 2. It remains to prove the claimed asymptotic behaviors for v. We start with the case that c < c∗. Again let
α = hv(t,0,0). By (H3), we have � = (d − 1)λ2

c − κ + α < 0. Therefore, the following equation,[
hv(t,0,0) − κ + (d − 1)λ2

c

]
w + hu(t,0,0)φ − wt = 0

has a unique periodic solution φd(t) given by (3.29). Then k1e
λczφd(t) satisfies:

hv(t,0,0)w + hu(t,0,0)k1e
λczφ + dwzz + cwz − wt = 0. (3.36)

Now let ξ(t, z) = [v(t, z) − k1e
λczφd(t)]φ̃(t)−1 and ζ(t, z) = [u(t, z) − k1e

λczφ(t)]φ̃(t)−1 for all (t, z) ∈ R × R−,
where φ̃(t) = exp(

∫ t

0 hv(τ,0,0) dτ − αt). Then we find that

R(t, z) + αξ + dξzz + cξz − ξt = 0, z � 0, (3.37)

where R(t, z) = [h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v]φ̃−1 + hu(t,0,0)ζ . Due to Lemma 3.3,
it is clear that supt∈R |ξ(t, z)| = O(eλcz) and supt∈R |ζ(t, z)| = O(e(λc+ε′)z) as z → −∞. Moreover,
supt∈R[h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v] = O(e2λcz) as z → −∞. Therefore, there exist two positive constants
M and CM such that |R(t, z)| � CMe(λc+ε′)z for all t ∈ R whenever z � −M .

We next show that supt∈R |ξ(t, z)| = o(eλcz) as z → −∞. To this end, we use the arguments similar to those
given in the proof of Lemma 3.3. Fix δ with 0 < δ � ε′ such that d(λc + δ)2 + c(λc + δ) + α < 0 and write
Λδ = d(λc + δ)2 + c(λc + δ) + α. Then it is easy to see that ±Ce(λc+δ)z respectively satisfy that

R(t, z) + αw + dwzz + cwz − wt � 0 (� 0), z � −M, (3.38)

where C � CM|Λδ | . As |ξ(t, z)| is bounded for all (t, z) ∈ R × R−, there exists Cδ � CM|Λδ | such that

Cδe
−(λc+δ)M � |ξ(t,−M)| for all t ∈ R. We now claim that

−Cδe
(λc+δ)z � ξ(t, z) � Cδe

(λc+δ)z for all (t, z) ∈ R × (−∞,M]. (3.39)

Indeed, let w±(t, z) = ±Cδe
(λc+δ)z − ξ(t, z). Then we obviously have:

αw− + dw−
zz + cw−

z − w−
t � 0, αw+ + dw+

zz + cw+
z − w+

t � 0 for all (t, z) ∈ R × (−∞,M].
Since w± are both T -periodic in t , it is sufficient to show that w+(t, z) � 0(w−(t, z) � 0) for all
(t, z) ∈ [0,2T ] × (−∞,−M]. We shall only provide a proof for w+(t, z) � 0. Assume to the contrary that
inf(t,z)∈[0,2T ]×(−∞,−M] w+(t, z) < 0. Then by virtue of the fact that limz→−∞ supt∈[0,2T ] w+(t, z) = 0, there
exists a point (t, z) with 0 < t < 2T and z < −M such that w+(t, z) = inf(t,z)∈[0,2T ]×(−∞,−M] w+(t, z). This
gives rise to that [αw+ + dw+

zz + cw+
z − w+

t ]|(t,z) > 0, which is a contradiction. Hence, w+(t, z) � 0 for all
(t, z) ∈ [0,2T ] × (−∞,−M]. Similarly, we have w−(t, z) � 0 for all (t, z) ∈ [0,2T ] × (−∞,−M]. Thus, (3.39)
holds. Since ξ(t, z) = [v(t, z) − k1e

λczφd(t)]φ̃(t)−1, it follows that

lim
z→−∞

v(t, z)

k1eλczφd(t)
= 1, uniformly in t ∈ R, if c < c∗.

The proof for vz is similar. Let ξ̃ (t, z) = [vz(t, z) − k1φd(t)λce
λcz]φ̃(t)−1 and

ζ̃ (t, z) = [uz(t, z) − k1φ(t)λce
λcz]φ̃(t)−1. Then ξ̃ satisfies:

R̃(t, z) + αξ̃ + dξ̃zz + cξ̃z − ξ̃t = 0, z � 0,
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where R̃(t, z) = {[hu(t, u, v) − hu(t,0,0)]uz + [hv(t, u, v) − hv(t,0,0)]vz}φ̃−1 + hu(t,0,0)ζ̃ . Following the same
lines as the above, we can deduce that supt∈R |ξ̃ (t, z)| = O(e(λc+δ)z) as z → −∞. Therefore, we have:

lim
z→−∞

vz(t, z)

k1eλczφd(t)
= λc, uniformly in t ∈ R, if c < c∗.

We now consider the case that c = c∗. Let ψ̃d(t) be the periodic solution of

hu(t,0,0)φ + 2(1 − d)φd + [
hv(t,0,0) − κ + (d − 1)λ2

c

]
w − dw

dt
= 0.

Note that ψ̃d(t) exists and is unique since hv(t,0,0) − κ + (d − 1)λ2
c < 0. It is straightforward to check that

k1e
λcz(|z|φd(t) + λcψ̃d(t)) solves:

hv(t,0,0)w + hu(t,0,0)k1e
λcz
(|z| + λc

)
φ + dwzz + cwz − wt = 0, (t, z) ∈ R × R−.

Accordingly, we set:

ξ(t, z) = v − k1e
λcz(|z|φd + λcψ̃d(t))

φ̃
, ζ(t, z) = u − k1e

λcz(|z| + λc)φ

φ̃
, (t, z) ∈ R × R−.

Then we obtain (3.37) again. Notice that supt∈R |ξ(t, z)| = O(|z|eλcz), and supt∈R |ζ(t, z)| = O(eλcz) as
z → −∞. Therefore, supt∈R |R(t, z)| = O(eλcz) as z → −∞. Consequently, ±Ceλcz satisfy (3.38) respectively
provided that C is sufficiently large. With the same reasoning, we can deduce that supt∈R |ξ(t, z)| = O(eλcz) and
supt∈R |ξz(t, z)| = O(eλcz) as z → −∞. Hence, we have:

lim
z→−∞

v(t, z)

k1|z|eλczφd(t)
= 1, lim

z→−∞
vz(t, z)

k1|z|eλczφd(t)
= λc, uniformly in t ∈ R, if c = c∗.

The proof is completed. �
Proposition 3.9. Suppose that (H1), (H2) and (H5) are satisfied. Let (u, v) and (u, v) ∈ C

1,2
b (R × R) be respectively

the regular super-solution and sub-solution of (3.1). In particular, both (u, v) and (u, v) are T -periodic in t , and
lim infz→∞{inft∈[0,T ](u − u)} � 0, lim infz→∞{inft∈[0,T ](v − v)} � 0. Let,

ρ∗ := sup

{
ρ
∣∣gu(t, ·, ·) − gu(t,1,1)

∣∣+ ∣∣gv(t, ·, ·) − gv(t,1,1)
∣∣� n∗|ν|

2
, ∀(t, ·, ·) ∈ R × [1 − ρ,1 + ρ]2

}
,

ρ∗ := sup

{
ρ
∣∣hu(t, ·, ·) − hu(t,1,1)

∣∣+ ∣∣hv(t, ·, ·) − hv(t,1,1)
∣∣� n∗|ν|

2
, ∀(t, ·, ·) ∈ R × [1 − ρ,1 + ρ]2

}
,

where ρ ∈ R+ and n∗ = min{mint∈R ϕ1,mint∈R ϕ2}
maxt∈R(ϕ1+ϕ2)

. If there exists z′ ∈ R such that(
u(t, z), v(t, z)

) ∈ [1 − ρ0,1
]2

and
(
u(t, z), v(t, z)

) ∈ [1 − ρ0,1
]2
,

for all (t, z) ∈ R × [z′,∞), and (u(t, z′), v(t, z′)) � (u(t, z′), v(t, z′)) for all t ∈ R, where ρ0 = min{ρ∗, ρ∗}. Then
(u(t, z), v(t, z)) � (u(t, z), v(t, z)) for all (t, z) ∈ R × [z′,+∞).

Proof. As both (u, v) and (u, v) are T -periodic in t , it suffices to prove that

inf
(t,z)∈[0,2T ]×[z′,+∞)

{u − u} � 0 and inf
(t,z)∈[0,2T ]×[z′,+∞)

{v − v} � 0. (3.40)

Let

uτ (t, z) = u(t, z) − u(t, z) + τϕ1(t), vτ (t, z) = v(t, z) − v(t, z) + τϕ2(t).

Since both u − u and v − v are bounded, there exists M > 0 such that (uτ (t, z), vτ (t, z)) � (0,0) for all (t, z) ∈
[0,2T ] × [z′,+∞) as long as τ � M . Now define:

τ ∗ = inf
{
τ ∈ [0,∞)

∣∣ (uτ (t, z), vτ (t, z)
)
� (0,0) for all (t, z) ∈ [0,2T ] × [

z′,+∞)}
.
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Notice that τ ∗ is bounded. To complete the proof, it suffices to show that τ ∗ = 0.
Assume to the contrary that this is not true. Then it is easy to see that

either inf
(t,z)∈[0,2T ]×[z′,+∞)

uτ∗
(t, z) = 0 or inf

(t,z)∈[0,2T ]×[z′,+∞)
vτ∗

(t, z) = 0.

Assume without loss of generality that inf(t,z)∈[0,2T ]×[z′,+∞) v
τ∗ = 0. Due to the fact that

lim infz→∞{inft∈[0,2T ] vτ∗} � τ ∗ mint ϕ2 > 0, there exists (t∗, z∗) ∈ (0,2T ) × (z′,∞) such that vτ∗
(t∗, z∗) = 0. On

the other hand, since

τ ∗
{
c(ϕ2)z + d(ϕ2)zz − (ϕ2)t +

[ 1∫
0

hu

(
t, su + (1 − s)u, sv + (1 − s)v

)
ds

]
ϕ1

+
[ 1∫

0

hv

(
t, su + (1 − s)u, sv + (1 − s)v

)
ds

]
ϕ2

}

= τ ∗
{
νϕ2 +

[ 1∫
0

hu

(
t, su + (1 − s)u, sv + (1 − s)v

)− hu(t,1,1) ds

]
ϕ1

+
[ 1∫

0

hv

(
t, su + (1 − s)u, sv + (1 − s)v

)− hv(t,1,1) ds

]
ϕ2

}
� 0

for all (t, z) ∈ R × [z′,∞), we have,[ 1∫
0

hv

(
t, su + (1 − s)u, sv + (1 − s)v

)
ds

]
vτ∗ + cvτ∗

z + dvτ∗
zz − vτ∗

t

� −
[ 1∫

0

hu

(
t, su + (1 − s)u, sv + (1 − s)v

)
ds

]
uτ∗ � 0

for all (t, z) ∈ R × [z′,∞). Therefore, the strong maximum principle implies that vτ∗
(t, z) ≡ 0 for all

(t, z) ∈ [0, t∗] × [z′,∞). This is impossible since vτ∗
(t, z′) > 0. Hence we must have τ ∗ = 0. The proof is com-

pleted. �
Theorem 3.10. Assume that (H1)–(H5) are satisfied. Let c � c∗ = −2

√
κ . Suppose that (u, v) ∈ C

1,2
b (R × R) and c

solve (3.1). Then (uz, vz) > (0,0) for all (t, z) ∈ R × R.

Proof. In terms of (3.26) and (3.28), there exists z ∈ R such that (uz, vz) > (0,0) for all (t, z) ∈ R × (−∞, z]. On the
other hand, since limz→∞(u, v) = (1,1), the continuity and the positivity of (u, v) imply that

min
{

inf
t∈R, z�z

u(t, z), inf
t∈R, z�z

v(t, z)
}
> 0.

Thus, there exists z∗ � z such that

max
{

sup
t∈R, z�z∗

u(t, z), sup
t∈R, z�z∗

v(t, z)
}

� min
{

inf
t∈R, z�z

u(t, z), inf
t∈R, z�z

v(t, z)
}
.

Consequently, (
u(t, z), v(t, z)

)
�
(
u(t, z + s), v(t, z + s)

)
for all (t, z, s) ∈ R × (−∞, z∗] × R+.

We next show that there exists s � 0 for which (u(t, z), v(t, z)) � (u(t, z + s), v(t, z + s)) for all (t, z) ∈ R × R.
Indeed, let z∗ � 0 be sufficiently large such that∣∣u(t, z) − 1

∣∣+ ∣∣v(t, z) − 1
∣∣� ρ0 for all (t, z) ∈ R × [

z∗,∞)
.
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Here ρ0 is specified in Proposition 3.9. Since (u(t, z), v(t, z)) is bounded in R × [z∗, z∗] (its components
are bounded in R × [z∗, z∗]), and limz→∞(u(t, z), v(t, z)) = (1,1) uniformly in t ∈ R, there exists s � 0
such that (u(t, z), v(t, z)) � (u(t, z + s), v(t, z + s)) for all (t, z, s) ∈ R × [z∗, z∗] × [s,∞). Then, Proposi-
tion 3.9 implies that (u(t, z), v(t, z)) � (u(t, z + s), v(t, z + s)) for all (t, z, s) ∈ R × [z∗,∞) × [s,∞). Hence,
(u(t, z), v(t, z)) � (u(t, z + s), v(t, z + s)) for all (t, z, s) ∈ R × R × [s,∞).

Now we define

s∗ = inf
{
s ∈ R+,

(
u(t, z), v(t, z)

)
�
(
u(t, z + η), v(t, z + η)

)
for all (t, z, η) ∈ R × R × [s,+∞)

}
.

We claim that s∗ = 0. Assume to the contrary that s∗ > 0. We next show that there exists a finite point (t ′, z′) such
that either u(t ′, z′ + s∗) = u(t ′, z′) or v(t ′, z′ + s∗) = v(t ′, z′) provided that s∗ > 0. Indeed, if s∗ > 0, let γ ∈ ]0, s∗[
be fixed, as shown before, (uz, vz) > (0,0) when (t, z) ∈ R × (−∞, z] for some z ∈ R. Hence, there exists M > 0
sufficiently large such that (u(t, z + s∗ − γ ), v(t, z + s∗ − γ )) > (u(t, z), v(t, z)) for all (t, z) ∈ R × (−∞,−M] and
(u(t, · + s∗), v(t, · + s∗)) is monotone in (−∞,−M]. Now if (u(t, z + s∗), v(t, z + s∗)) > (u(t, z), v(t, z)) for all
(t, z) ∈ R × R, then there exists δ ∈ ]0, s∗[, which is sufficiently small, such that(

u
(
t, z + s∗ − η

)
, v
(
t, z + s∗ − η

))
�
(
u(t, z), v(t, z)

)
for all (t, z, η) ∈ R × [−2M,2M] × [0, δ].

Without loss of generality, assume that δ � γ . As (u(t, · + s∗), v(t, · + s∗)) is monotone in (−∞,−M], we have:(
u
(
t, z + s∗ − η

)
, v
(
t, z + s∗ − η

))
�
(
u
(
t, z + s∗ − γ

)
, v
(
t, z + s∗ − γ

))
>
(
u(t, z), v(t, z)

)
for all (t, z, η) ∈ R × (−∞,−M] × [0, δ], and hence (u(t, z + s∗ − η), v(t, z + s∗ − η)) � (u(t, z), v(t, z)) for all
(t, z, η) ∈ R × (−∞,2M] × [0, δ]. Since 2M is sufficiently large, applying Proposition 3.9 again yields that(

u
(
t, z + s∗ − η

)
, v
(
t, z + s∗ − η

))
�
(
u(t, z), v(t, z)

)
for all (t, z, η) ∈ R × R × [0, δ].

In particular, in view of the definition of s∗, we see that(
u
(
t, z + s∗ − δ + η

)
, v
(
t, z + s∗ − δ + η

))
�
(
u(t, z), v(t, z)

)
for all (t, z, η) ∈ R × R × R+,

which is impossible since it contradicts the definition of s∗.
Therefore, there exists (t ′, z′) such that either u(t ′, z′ + s∗) = u(t ′, z′) or v(t ′, z′ + s∗) = v(t ′, z′) if s∗ �= 0.

Now write: (
us∗

(t, z), vs∗
(t, z)

)= (
u
(
t, z + s∗), v(t, z + s∗)), (

u◦, v◦)= (
us∗ − u,vs∗ − v

)
.

Clearly, if s∗ �= 0, then either u◦(t ′, z′) = 0 or v◦(t ′, z′) = 0. Assume without loss of generality that u◦(t ′, z′) = 0.
Notice that [ 1∫

0

gu

(
t, τus∗ + (1 − τ)u, τvs∗ + (1 − τ)v

)
dτ

]
u◦ + u◦

zz + cu◦
z − u◦

t � 0.

Here we have used (H2) that gv � 0 in R × R+ × R+. It then follows from the maximum principle
that u◦(t, z) ≡ 0, which is impossible since u◦ > 0 for all z � −M . Therefore, we must have s∗ = 0,
and consequently, (u(t, z), v(t, z)) � (u(t, z + s), v(t, z + s)) for any s � 0. In particular, it is clear that
(u(t, z), v(t, z)) < (u(t, z + s), v(t, z + s)) as long as s > 0. This completes the proof. �
Theorem 3.11. Assume that (H1)–(H5) are satisfied. Let c � c∗ = −2

√
κ . Suppose that (u, v) ∈ C

1,2
b (R × R) and c

solve (3.1). Then (u, v) is unique up to the translation with respect to z.

Proof. Let (u1, v1) and (u2, v2) be two solutions of (3.1) for some c � c∗. Then, in terms of Theorem 3.8, there exist
positive constants k1 and k2 such that

lim
z→−∞

u1(t, z)

k1|z|ιeλczφ(t)
= 1, lim

z→−∞
v1(t, z)

k1|z|ιeλczφd(t)
= 1, uniformly in t,

lim
z→−∞

u2(t, z)

k2|z|ιeλczφ(t)
= 1, lim

z→−∞
v2(t, z)

k2|z|ιeλczφd(t)
= 1, uniformly in t. (3.41)
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Here ι = 1 if c = c∗, and ι = 0 if c < c∗. We now proceed to establish the desired conclusion by means of the sliding
method developed in [3]. The proof will be broken up into three steps.

Step 1. We show that there exists s ∈ R such that(
u1(t, z + s), v1(t, z + s)

)
�
(
u2(t, z), v2(t, z)

)
for all (t, z) ∈ R × R. Choose s ∈ R such that k1e

λcs > k2. Thanks to (3.41), we have:

lim
z→−∞

u1(t, z + s)

k1e
λcs |z + s|ιeλczφ(t)

= 1, lim
z→−∞

v1(t, z + s)

k1e
λcs |z + s|ιeλczφd(t)

= 1.

Clearly, there exists M > 0 sufficiently large such that(
u1(t, z + s), v1(t, z + s)

)
�
(
u2(t, z), v2(t, z)

)
for all (t, z) ∈ R × (−∞,−M]

and ∣∣u1(t, z + s) − 1
∣∣+ ∣∣v1(t, z + s) − 1

∣∣+ ∣∣u2(t, z) − 1
∣∣+ ∣∣v2(t, z) − 1

∣∣� ρ0, ∀(t, z) ∈ R × [M,∞),

where ρ0 is specified in Proposition 3.9. Since both u2 and v2 are bounded in R × [−2M,2M] and
limz→∞(u1(t, z), v1(t, z)) = (1,1), there is s ∈ R such that (u1(t, z + s), v1(t, z + s)) � (u2(t, z), v2(t, z)) for all
(t, z) ∈ R × [−2M,2M]. Without loss of generality, we may assume that s � s. As (u1(t, ·), v(t, ·)) is monotone, we
have: (

u1(t, z + s), v1(t, z + s)
)
�
(
u1(t, z + s), v1(t, z + s)

)
�
(
u2(t, z), v2(t, z)

)
,

for all (t, z) ∈ R× (−∞,−M]. Hence, (u1(t, z+ s), v1(t, z+ s)) � (u2(t, z), v2(t, z)) for all (t, z) ∈ R× (−∞,2M].
In view of the selection of M , it follows from Proposition 3.9 that(

u1(t, z + s), v1(t, z + s)
)
�
(
u2(t, z), v2(t, z)

)
for all (t, z) ∈ R × R.

Step 2. Define s∗ = inf{s ∈ R | (us
1(t, z), v

s
1(t, z)) � (u2(t, z), v2(t, z)), ∀(t, z) ∈ R × R}. Here

(us
1(t, z), v

s
1(t, z)) = (u1(t, z + s), v1(t, z + s)), s ∈ R. Clearly, s∗ is bounded. In addition, (3.41) shows that

k1e
λcs

∗ � k2, otherwise, there is (t, z) such that us∗
1 (t, z) < u2(t, z). We next show that k1e

λcs
∗ = k2. Suppose that this

is not true, that is, k1e
λcs

∗
> k2. Then (us∗

1 , vs∗
1 ) > (u2, v2) for all (t, z) ∈ R × R. If not, there exists (t, z) ∈ R × R

such that either us∗
1 (t, z) = u2(t, z) or vs∗

1 (t, z) = v2(t, z). Since

1∫
0

gu

(
t, τus∗

1 + (1 − τ)u2, v
s∗
1 + (1 − τ)v2

)
dτ

[
us∗

1 − u2
]+ (

us∗
1 − u2

)
zz

+ c
(
us∗

1 − u2
)
z
− (

us∗
1 − u2

)
t
� 0,

and

1∫
0

hv

(
t, τus∗

1 + (1 − τ)u2, τv
s∗
1 + (1 − τ)v2

)
dτ

[
vs∗

1 − v2
]+ d

(
vs∗

1 − v2
)
zz

+ c
(
vs∗

1 − v2
)
z
− (

vs∗
1 − v2

)
t
� 0,

it follows from the maximum principle that either us∗
1 ≡ u2 or vs∗

1 ≡ v2, which together with (H2) implies
(us∗

1 , vs∗
1 ) ≡ (u2, v2). This is impossible since it contradicts the assumption that k1e

λcs
∗
> k2. Thus, k1e

λcs
∗
> k2

implies that (us∗
1 , vs∗

1 ) > (u2, v2) for any (t, z) ∈ R × R. Now if k1e
λcs

∗
> k2, then k1e

λc(s
∗−l) > k2 as long as

l ∈ ]0, λcs
∗ − ln k2

k1
[.

Let δ ∈ ]0, λcs
∗ − ln k2

k1
[ be fixed. Select θ such that θ ∈ ] k2

k1e
λc(s∗−δ)

,1[. As limz→−∞ |z+s∗−δ|
|z| = 1, there exists

Kθ > 0 for which |z+s∗−δ|
|z| � θ when z � −Kθ . Choose ε > 0 such that ε < 1

2
θk1e

λc(s
∗−δ)−k2

k1e
λc(s∗−δ)+k2

. By virtue of Theorem 3.8,

there exists Kε > 0 such that∣∣∣∣ us∗−δ
1 (t, z)

|z + s∗ − δ|ιk1eλc(s∗−δ)eλczφ(t)
− 1

∣∣∣∣+ ∣∣∣∣ vs∗−δ
1 (t, z)

|z + s∗ − δ|ιk1eλc(s∗−δ)eλczφd(t)
− 1

∣∣∣∣� ε
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and ∣∣∣∣ u2(t, z)

|z|ιk2eλczφ(t)
− 1

∣∣∣∣+ ∣∣∣∣ v2(t, z)

|z|ιk2eλczφd(t)
− 1

∣∣∣∣� ε

whenever z � −Kε . Then it is easy to see that (us∗−l
1 , vs∗−l

1 ) � (u2, v2) for each l ∈ (0, δ] provided z � −Kε − Kθ .

On the other hand, for each M > 0 with M � Kε + Kθ , there is lM > 0 such that (us∗−l
1 , vs∗−l

1 ) � (u2, v2) for all
(t, z, l) ∈ R × [−M,M] × (0, lM ] since (us∗

1 , vs∗
1 ) > (u2, v2) for any (t, z) ∈ R × R. Let M be sufficiently large

such that∣∣us∗−δ
1 (t, z) − 1

∣∣+ ∣∣vs∗−δ
1 (t, z) − 1

∣∣+ ∣∣u2(t, z) − 1
∣∣+ ∣∣v2(t, z) − 1

∣∣� ρ0, ∀(t, z) ∈ R × [M,∞),

where ρ0 is given in Proposition 3.9. Without loss of generality, assume that lM � δ. Then we have (u
s∗−lM
1 , v

s∗−lM
1 ) �

(u2, v2) for all (t, z) ∈ R × (−∞,M]. Moreover, by Proposition 3.9, we infer that (us∗−lM
1 , v

s∗−lM
1 ) � (u2, v2) for all

(t, z) ∈ R × [M,∞). Thus, there exists at least a positive number, denoted by l∗, such that (us∗−l∗
1 , vs∗−l∗

1 ) � (u2, v2)

for all (t, z) ∈ R × R. This however contradicts the definition of s∗. Therefore, k1e
λcs

∗ = k2.
Step 3. Define s∗ = sup{s ∈ R | (us

1(t, z), v
s
1(t, z)) � (u2(t, z), v2(t, z)), ∀(t, z) ∈ R × R}. Clearly, s∗ is bounded

and k1e
λcs∗ � k2. To complete the proof, it is sufficient to show that s∗ = s∗. Indeed, note that

−s∗ = inf
{−s ∈ R

∣∣ (u−s
2 (t, z), v−s

2 (t, z)
)
�
(
u1(t, z), v1(t, z)

) ∀(t, z) ∈ R × R
}
.

By interchanging the roles of (u1, v1) and (u2, v2) and following the same lines in Step 2, we can conclude that
k2e

−λcs∗ = k1, namely, k1e
λcs∗ = k2. It immediately follows that s∗ = s∗. Therefore, by the definitions of s∗ and s∗,

we have (us∗
1 (t, z), vs∗

1 (t, z)) = (u2(t, z), v2(t, z)) for all (t, z) ∈ R × R. This completes the proof. �
Theorem 3.12. Suppose that (H1)–(H3) are satisfied and d > 0. Then for any c ∈ ]c∗,0[, (3.1) has no solutions that
are nondecreasing with respect to z.

Proof. We argue by contradiction. Assume to the contrary that there exist (u, v) ∈ C
1,2
b (R2) and some c ∈ ]c∗,0[

solve (3.1). Let û and v̂ be defined by (3.10). Then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ûzz + cûz + κû +
T∫

0

g(t, u, v) − gu(t,0,0)u

φ
dt = 0,

dv̂zz + cv̂z + αv̂ +
T∫

0

hu(t,0,0)u

φ̃
dt +

T∫
0

h(t, u, v) − hu(t,0,0)u − hv(t,0,0)v

φ̃
dt = 0,

where α is given by (3.10). Write

ĝ(z) =
∫ T

0 [g(t, u, v) − gu(t,0,0)u]φ−1 dt

û
.

That is,

ûzz + cûz + κû + ĝ(z)û = 0.

Write ϑ = min{−c+
√

c2−2α
4d , −c

2 }. Let δ ∈ ]0, ϑ[ be a sufficiently small real number. Since limz→−∞ ĝ(z) = 0, we find
that û = O(e(−c−δ)z) as z → −∞. Since meϑz satisfies (3.15) provided that m is sufficiently large and z is negative.
Using (3.13) again, we can conclude that v̂ = O(eϑz) as z → −∞. Thus, ĝ(z)û(z) = O(e(−c−δ+ϑ)z) as z → −∞.
Moreover, it follows from Proposition 6.1 of [33] that

û(z) = e−cz
[
n1 cos(z

√
4κ − c + l) + n2 sin(z

√
4κ − c + l)

]+ O
(
e(−c−δ−ε+ϑ)z

)
, z → −∞,

for every ε > 0, where n1, n2, and l are certain constants. According to Theorem 4.3 of [8], there holds that either
n1n2 �= 0 or û ≡ 0. Notice that û > 0. However, if n1n2 �= 0, then we reach a contradiction since û is not monotone.
Therefore, (3.1) has no solutions that are nondecreasing in z for c ∈ ]c∗,0[. �
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Corollary 3.13. Suppose that all the assumptions of Theorem 2.5 are fulfilled. Then for each c ∈ R with |c| �
2
√
a1p − b1q , (1.8) admits a time periodic traveling wave solution (U(t, z),W(t, z)) with z = x + |c|t connect-

ing the equilibria (0,0) and (1,1) such that it is unique modulo translation and is monotone with respect to z. In

addition, for each c with 0 < |c| < 2
√
a1p − b1q , (1.8) has no time periodic traveling wave solutions connecting

(0,0) and (1,1) that are monotone in z.

Proof. Invoking Theorems 2.5, 3.11, and 3.12, it suffices to verify that (H4) and (H5) are valid for (1.8) under the
assumptions given in Theorem 2.5. It is shown in the proof of Theorem 2.5 that w = (meλczϕ(t),meλczϕ(t)) is

a super-solution of (1.8), where λc = −c−
√

c2−4a1p−b1q

2 for c < −2
√
a1p − b1q , m > 0 is an arbitrary constant, and

ϕ(t) = e
∫ t

0 [(a1p−b1q)−a1p−b1q]ds . If c = −2
√
a1p − b1q , set λc = −c

2 . Let w(t, z) = (m−nz)eλczϕ(t) and w = (w,w),
where m > 0 and n > 0 are arbitrary constants. Then it is easy to see that w is a (regular) super-solution of (1.8) in
R × (−∞, m

n
− 2√

a1p−b1q
]. In fact, note that w � 0, wz � 0, and wzz � 0 in R × (−∞, m

n
− 2√

a1p−b1q
]. Moreover, we

have that

wzz + cwz + w
[
a1p(1 − w) − b1q(1 − w)

]− wt � wzz + cwz + w(a1p − b1q) − wt � 0,

dwzz + cwz + (1 − w)(a2pw − b2qw) − wt � wzz + cwz + w(a2p − b2q) − wt � 0.

Concerning (H5), let g(t, u, v) = u(a1p(1 −u)− b1q(1 − v)), h(t, u, v) = (1 − v)(a2pu− b2qv). Then, gu(t,1,1) =
−a1p, gv(t,1,1) = b1q , hu(t,1,1) = 0, and hv(t,1,1) = b2q − a2p. Set ν = b2q − a2p. Due to the assumption,
we have ν < 0. Moreover, since a1p − b1q � a2p − b2q , it follows that −b1q � −a1p − (b2q − a2p), and hence
−a1p − ν < 0. In other words,

T∫
0

(−a1(t)p(t) − ν
)
dt < 0.

Now let ϕ2(t) = e
∫ t

0 [(b2q−a2p)−ν]ds and ϕ1(t) = ϕ1(0)e
∫ t

0 (−a1p−ν)dτ + ∫ t

0 e
∫ t
s (−a1p−ν)dτ b1qϕ2 ds, where ϕ1(0) = (1 −

e
∫ T

0 (−a1p−ν)dτ )−1
∫ T

0 e
∫ T
s (−a1p−ν)dτ b1qϕ2 ds. Clearly, both ϕ1 and ϕ2 are strictly positive periodic functions of t .

Furthermore, it is easy to see that

ν

(
ϕ1(t)

ϕ2(t)

)
=
(−a1(t)p(t) b1(t)q(t)

0 b2(t)q(t) − a2(t)p(t)

)(
ϕ1(t)

ϕ2(t)

)
−
(
ϕ′

1(t)

ϕ′
2(t)

)
.

This completes the proof. �
4. Stability of periodic traveling wave solutions

In this section, we study the asymptotic stability of a periodic traveling wave solution of{
ut = uxx + g(t, u, v),

vt = dvxx + h(t, u, v),
(4.1)

where 0 < d � 1, g,h ∈ Cθ,2(R×R2,R), g(t +T ,u, v) = g(t, u, v), and h(t +T ,u, v) = h(t, u, v) for any (t, u, v) ∈
R × R2, g(t,0,0) = g(t,1,1) = h(t,0,0) = h(t,1,1) ≡ 0 for all t ∈ R. Let (u%(t, x), v%(t, x)) be a periodic traveling
wave solution of (4.1) that connects (u, v) = (0,0) and (u, v) = (1,1) and is monotonically increasing along the mov-
ing coordinate frame, i.e., (u%(t, x), v%(t, x)) = (U(t, x−ct),W(t, x−ct)) = (U(t, z),W(t, z)) with z = x−ct . Here
(U(t, z),W(t, z)) ∈ C1,2(R × R,R2), (U,W) and c solve (3.1), and (Uz,Wz) > (0,0). To establish the asymptotic
stability of (U,W), we use the same type of methods employed in [19]. We first consider the initial value problem:⎧⎪⎪⎨⎪⎪⎩

ut = uxx + g(t, u, v),

vt = dvxx + h(t, u, v);(
u(0, x), v(0, x)

)= (
u0(x), v0(x)

)
,

(0,0) �
(
u0(x), v0(x)

)
� (1,1),

(4.2)
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where (t, x) ∈ R+ × R. Throughout this section, (H1)–(H5) given in the last section will remain valid. In addition,
we always assume that (u0(x), v0(x)) ∈ Cγ (R, [0,1]× [0,1]) with (0,0) � (u0(x), v0(x)) � (1,1), where γ ∈ ]0,1[.
We often denote by (u(t, x,u0), v(t, x, v0)) the solution of (4.2) with the initial value (u0(x), v0(x)). It is a standard
practice to show the global existence of (u(t, x,u0), v(t, x, v0)).

Proposition 4.1. Assume that (H1) and (H2) are satisfied. Let (u(t, x,uτ ), v(t, x, vτ )) ∈ C([τ,∞) × R, [0,1]2) ∩
C

1+γ /2,2+γ

b ((τ,∞) × R) be a solution of{
ut = d1uxx + c1ux + g(t, u, v),

vt = d2uxx + c2ux + h(t, u, v),
(4.3)

with (u(τ, x,uτ ), v(τ, x, vτ )) = (uτ (x), vτ (x)). Here τ ∈ R, γ ∈ (0,1), di , ci (i = 1,2) are constants; and di � k for
some positive constant k.

(i) Let (u, v), (u, v) ∈ C
1+γ /2,2+γ

b ([τ,∞) × R) be respectively the regular super- and sub-solutions of (4.3).
If (u(τ, x), v(τ, x)) � (uτ (x), vτ (x)) � (u(τ, x), v(τ, x)) for all x ∈ R, and (1,1) � (u(t, x), v(t, x)) for all
(t, x) ∈ [τ,∞) × R, then(

u(t, x), v(t, x)
)
�
(
u(t, x,uτ ), v(t, x, vτ )

)
�
(
u(t, x), v(t, x)

)
for all (t, x) ∈ [τ,∞) × R.

(ii) Let (u, v) and (u, v) ∈ C
1+γ /2,2+γ

b ((τ,∞) × {x < z∗ + ct}) ∩ Cb([τ,∞) × {x � z∗ + ct}) be respectively the
regular super- and sub-solutions of (4.3) in (τ,∞)×{x < z∗ +ct}, where z∗ ∈ R and c ∈ R are certain constants.
Assume that (

u(t, x), v(t, x)
)
�
(
u(t, x,uτ ), v(t, x, vτ )

)
�
(
u(t, x), v(t, x)

)
for all (t, x) ∈ [τ,∞)×{x = z∗ +ct}, (u(τ, x), v(τ, x)) � (uτ (x), vτ (x)) � (u(τ, x), v(τ, x)) for all x � z∗ +cτ ,
and (u(t, x), v(t, x)) � (1,1) for all (t, x) ∈ [τ,∞) × {x � z∗ + ct}. Then(

u(t, x), v(t, x)
)
�
(
u(t, x,uτ ), v(t, x, vτ )

)
�
(
u(t, x), v(t, x)

)
for all (t, x) ∈ [τ,∞) × {x � z∗ + ct}.

Proof. We present a proof for the sake of clarity and completeness although it is similar to that of Lemma 2.4. We
will need this proposition in several places. Only the first inequality of (ii) will be proved since others can be shown
in a similar fashion. Set

M = sup
(t,x)∈[τ,∞)×{x�z∗+ct}

(|u| + |v| + |u| + |v|).
Due to the assumption, 0 <M < ∞. Let

ι := max
i=1,2

{|ci | + |c|}, m := |u − u|∞ + |v − v|∞, ζι(t, z, s, η) := meω(t−η)

ι2 + s2

(
z2 + ι2 + N(t − η)

)
,

where N > 2amax (here amax := maxi=1,2{|di |}) and ω > 0 are fixed constants such that

ω � 2
(

1 + sup
(t,u,v)∈R×[0,M]×[0,M]

{|gu| + |gv| + |hu| + |hv|
})

.

Note that 2amax + 2ι|z| − N − ω
2 (z

2 + ι2) < 0 for all z ∈ R. Set

us = u − u + ζι(t, x − ct, s, τ ), vs = v − v + ζι(t, x − ct, s, τ ), s > |z∗|.
Observe that (us(τ, x), vs(τ, x)) > (0,0) for all x ∈ [−s + cτ, z∗ + cτ ], and (us(t, x), vs(t, s)) > (0,0) for all (t, x) ∈
{[τ, τ + 1] × {x = z∗ + ct}} ∪ {[τ, τ + 1] × {x = −s + ct}}. Now we show that (us, vs) � (0,0) for all (t, s) ∈
[τ, τ + 1] × [−s + ct � x � z∗ + ct]. Let



Author's personal copy

656 G. Zhao, S. Ruan / J. Math. Pures Appl. 95 (2011) 627–671

α1 =
1∫

0

gu

(
t, τu + (1 − τ)u, τv + (1 − τ)v

)
dτ, α2 =

1∫
0

gv

(
t, τu + (1 − τ)u, τv + (1 − τ)v

)
dτ,

β1 =
1∫

0

hu

(
t, τu + (1 − τ)u, τv + (1 − τ)v

)
dτ, β2 =

1∫
0

hv

(
t, τu + (1 − τ)u, τv + (1 − τ)v

)
dτ.

A straightforward computation shows that

d1u
s
xx + c1u

s
x − us

t � g(t, u, v) − g(t, u, v) + meω(t−τ)

ι2 + s2

[
2
(
amax + ι|z|)− N

]− ωζι(t, z, s, τ )

= α1(u − u) + α2(v − v) + meω(t−τ)

ι2 + s2

[
2
(
amax + ι|z|)− N

]− ωζι(t, z, s, τ )

= α1(u − u) + α2(v − v) − ω

2
ζι(t, z, s, τ )

+ meω(t−τ)

ι2 + s2

[
2
(
amax + ι|z|)− N − ω

2

(
z2 + ι2

)− ω

2
N(t − τ)

]
< −α1u

s − α2v
s −

(
ω

2
− α1 − α2

)
ζι(t, z, s, τ ),

where z = x − ct . Similarly

d2v
s
xx + c2v

s
x − vs

t < −β1u
s − β2v

s −
(
ω

2
− β1 − β2

)
ζι(t, z, s, τ ).

Define t∗ = sup{t ∈ (τ, τ + 1] | (us, vs) > (0,0) for all (η, x) ∈ (τ, t] × [−s + cη, z∗ + cη]}. Clearly, t∗ > τ .
If t∗ < τ + 1, then there exists x∗ ∈ ]−s + ct∗, z∗ + ct∗[ for which either us(t∗, x∗) = 0 or vs(t∗, x∗) = 0. Assume
without loss of generality that vs(t∗, x∗) = 0, that is,

v
(
t∗, x∗, vτ

)+ ζι
(
t∗, x∗ − ct∗, s, τ

)= v
(
t∗, x∗).

As v(t, x) � 1 and v(t, x, vτ ) � 0 by the assumption, we must have v(t∗, x∗) > 0 and v(t∗, s∗, vτ ) < 1. This together
with (H2) implies that β1 � 0 in a neighborhood [τ + ε, t∗] × [x∗ − ε, x∗ + ε] of (t∗, x∗), where ε > 0 is sufficiently
small. Consequently,

d2v
s
xx + c2v

s
x − vs

t < −β1u
s − β2v

s −
(
ω

2
− β1 − β2

)
ζι(t, x − ct, s, τ )

� −β2v
s in

(
τ + ε, t∗

]× ]
x∗ − ε, x∗ + ε

[
.

Since vs attains its local minimum at (t∗, x∗), we find that

0 �
(
d2v

s
xx + c2v

s
x − vs

t

)(
t∗, x∗)< −β2v

s
(
t∗, x∗)= 0,

which is impossible. Therefore, (us, vs) � (0,0) for all (t, x) ∈ [τ, τ + 1] × [−s + ct, z∗ + ct].
Since s > |z∗| is arbitrary, arguing in the manner similar to that shown in Theorem 2.4, we infer that
(u(t, x,uτ ), v(t, x, vτ )) � (u(t, x), v(t, x)) for all (t, x) ∈ [τ, τ + 1] × {x � z∗ + ct}. By using ζι(t, z, s, τ + n)

with n ∈ N+, we can inductively show that (u(t, x,uτ ), v(t, x, vτ )) � (u(t, x), v(t, x)) for all
(t, s) ∈ [τ + n, τ + n + 1] × {x � z∗ + ct}, n ∈ N+. Therefore, (u(t, x,uτ ), v(t, x, vτ )) � (u(t, x), v(t, x)) for all
(t, x) ∈ [τ,∞) × {x � z∗ + ct}. The proof is completed. �

In the sequel, we let χ(s) be a smooth function such that χ(s) = 0 for s � s, χ(s) = 1 for s � s, and 0 � χ ′ and
|χ ′| + |χ ′′| � 1, where s and s with s < s are fixed constants.

We set: {
ξc(t, s) = [

1 − χ(s)
]
e(λc+ε)sφ(t) + χ(s)ϕ1(t),

ςc(t, s) = [
1 − χ(s)

]
e(λc+ε)sφ1(t) + χ(s)ϕ2(t),

(4.4)
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where c < c∗ = −2
√
κ , φ1(t) is given by (3.29) with d = 1, ε ∈ ]0,√c2 − 4κ[ is a fixed constant such that

0 < β := −[(λc + ε)2 + c(λc + ε) + κ]
2

� |ν|
2

. (4.5)

We also set:

&+ := min

{
min

t∈[0,T ]
1

ϕ1(t)
, min
t∈[0,T ]

1

ϕ2(t)

}
. (4.6)

Proposition 4.2. Assume that (H1)–(H5) are satisfied. Let (U,W) and c solve (3.1) with c < c∗ = −2
√
κ . Then

lim sup
s→∞

sup
(t,z)∈R×R,&∈(0,&+]

U(t, z) − &ξc(t, z + s) − 1

&ϕ1(t)
� −1, (4.7)

lim sup
s→∞

sup
(t,z)∈R×R,&∈(0,&+]

W(t, z) − &ςc(t, z + s) − 1

&ϕ2(t)
� −1, (4.8)

where &+ is given by (4.6).

Proof. The proof is similar to that of Lemma 3.1 in [19]. Only the first inequality (4.7) will be proved since the
other can be shown similarly. Assume to the contrary that the claimed conclusion is not true. Then there exist three
sequences {(tn, zn)}, {&n}, and {sn} and a positive constant ε such that

sn → ∞ as n → ∞ and
U(tn, zn) − &nξc(tn, zn + sn) − 1

&nϕ1(tn)
� −1 + ε

for all n ∈ N+. Since U(·, z), ξc(·, z + s), and ϕ1(·) are periodic functions with the same period T , we may assume
that tn ∈ [0, T ] for all n ∈ N+. Hence there exist a subsequence of {tn}, still labeled by {tn}, and t∗ ∈ [0, T ] such
that tn → t∗. We also notice that &n ∈ (0, &+], which implies that there exists an &∗ ∈ [0, &+] such that &n → &∗.
Furthermore, as sn → ∞, two cases may occur, that is, either zn + sn → ∞ or zn + sn is bounded from above. If
zn + sn → ∞, then we find that

−1 = lim
n→∞

−&nξc(tn, zn + sn)

&nϕ1(tn)
� U(tn, zn) − &nξc(tn, zn + sn) − 1

&nϕ1(tn)
� −1 + ε.

This contradiction excludes the possibility that zn + sn → ∞ and leads us to the case that zn + sn is bounded from
above, which implies that zn → −∞. As limz→−∞ U(t, z) = 0 uniformly in t and ξc(tn, zn + sn) � 0 for all n ∈ N+,
it follows that

− 1

ϕ1(t∗)
= lim

n→∞
U(tn, zn) − 1

ϕ1(tn)
� lim

n→∞−(1 − ε)&n � −(1 − ε)&+,

which contradicts the definition of &+. Therefore, (4.7) holds for c < c∗. �
In what follows, we fix s0 ∈ R such that

sup
(t,s)∈R×R

U(t, s) − &ξc(t, s + s0) − 1

ϕ1(t)
� −&

2
for all & ∈ (0, &+] (4.9)

and

sup
(t,s)∈R×R

W(t, s) − &ςc(t, s + s0) − 1

ϕ2(t)
� −&

2
for all & ∈ (0, &+]. (4.10)

Lemma 4.3. Suppose that (H1)–(H5) are satisfied. Let (U,W) and c solve (3.1) with c < c∗. Let β and &+ be given by
(4.5) and (4.6), respectively. Then there exists δ∗ ∈ (0, &+] such that for each z0 ∈ R and each σ � max{1/β,1/|c|β},
(u±(t, x), v±(t, x)) are respectively the super- and sub-solutions of (4.1) in R+ × R whenever δ ∈ (0, δ∗]. Here

u±(t, x) = U
(
t, x − ct + z0 ± σ

(
1 − e−βt

))± δξc
(
t, x − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±(t, x) = W
(
t, x − ct + z0 ± σ

(
1 − e−βt

))± δςc

(
t, x − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt .
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Proof. We only show that (u+, v+) is a super-solution of (4.1) since the other case can be proved similarly. Let
z = x − ct + z0 + σ(1 − e−βt ) and z′ = x − ct + z0 + σ(1 − e−βt ) + s0. A direct calculation yields that

g
(
t, u+, v+)+ u+

xx − u+
t

= g
(
t,U(t, z) + e−βt δξc

(
t, z′),W(t, z) + e−βt δςc

(
t, z′))− g

(
t,U(t, z),W(t, z)

)+ δe−βtβξc

+ δe−βt

{
−σβ

δ
Uz + (1 − χ)e(λc+ε)z′[(

(λc + ε)2 + c(λc + ε)
)
φ − φ′]− χϕ′

1 + !1
(
t, z′)}

= δe−βt
[(
g1(t, z)ξc

(
t, z′)+ g2(t, z)ςc

(
t, z′))+ βξc

]
+ δe−βt

{
−σβ

δ
Uz − (1 − χ)e(λc+ε)z′[

gu(t,0,0)φ + gv(t,0,0)φ1 + 2βφ
]− χϕ′

1 + !1
(
t, z′)}

= δe−βt

{
−σβ

δ
Uz + e(λc+ε)z′

(1 − χ)
[(
g1 − gu(t,0,0)

)
φ + (

g2 − gv(t,0,0)
)
φ1 − βφ

]}
+ δe−βt!1

(
t, z′)+ δe−βtχ

[(
g1 − gu(t,1,1)

)
ϕ1 + (

g2 − gv(t,1,1)
)
ϕ2 + νϕ1 + βϕ1

]
,

where

!1
(
t, z′)= e(λc+ε)z′[−χ ′′φ − 2(λc + ε)χ ′φ + χ ′′ϕ1 − (1 − χ)σβe−βt (λc + ε)φ

]
− (

σβe−βt − c
)
χ ′(ϕ1 − e(λc+ε)z′

φ
)
,

g1(t, z) =
1∫

0

[
gu

(
t, τ (U + δξc) + (1 − τ)U, τ(W + δςc) + (1 − τ)W

)]
dτ,

g2(t, z) =
1∫

0

[
gv

(
t, τ (U + δξc) + (1 − τ)U, τ(W + δςc) + (1 − τ)W

)]
dτ.

Similarly,

h
(
t, u+, v+)+ dv+

xx − v+
t

= δe−βt
[
h1(t, z)ξc

(
t, z′)+ h2(t, z)ςc

(
t, z′)+ βς

]+ (d − 1)(λc + ε)2(1 − χ)e(λc+ε)z′

+ δe−βt

{
−σβ

δ
Wz − (1 − χ)e(λc+ε)z′[

hu(t,0,0)φ + hv(t,0,0)φ1 + 2βφ1
]− χϕ′

2 + !2
(
t, z′)}

� δe−βt

{
−σβ

δ
Wz + e(λc+ε)z′

(1 − χ)
[(
h1 − hu(t,0,0)

)
φ + (

h2 − hv(t,0,0)
)
φ1 − βφ1

]}
+ δe−βt!2

(
t, z′)+ δe−βtχ

[(
h1 − hu(t,1,1)

)
ϕ1 + (

h2 − hv(t,1,1)
)
ϕ2 + νϕ2 + βϕ2

]
,

where

!2(t, z) = e(λc+ε)z′[−dχ ′′ φ1 − 2d(λc + ε)χ ′φ1 + dχ ′′ ϕ2 − (1 − χ)σβe−βt (λc + ε)φ1
]

− (
σβe−βt − c

)
χ ′(ϕ2 − e(λc+ε)z′

φ1
)
,

h1(t, z) =
1∫

0

[
gu

(
t, τ (U + δξc) + (1 − τ)U, τ(W + δςc) + (1 − τ)W

)]
dτ,

h2(t, z) =
1∫

0

[
gv

(
t, τ (U + δξc) + (1 − τ)U, τ(W + δςc) + (1 − τ)W

)]
dτ.
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Write

Γ0(t, z) = ∣∣g1 − gu(t,0,0)
∣∣+ ∣∣g2 − gv(t,0,0)

∣∣+ ∣∣h1 − hu(t,0,0)
∣∣+ ∣∣h2 − gv(t,0,0)

∣∣,
Γ1(t, z) = ∣∣g1 − gu(t,1,1)

∣∣+ ∣∣g2 − gv(t,1,1)
∣∣+ ∣∣h1 − hu(t,1,1)

∣∣+ ∣∣h2 − gv(t,1,1)
∣∣.

As limz→−∞{supt∈R Γ0(t, z)} = 0 and limz→∞{supt∈R Γ1(t, z)} = 0, we can choose M > 0 such that χ(−M) = 0,
χ(M) = 1,

sup
(t,z)∈R×(−∞,M]

|Γ0| � β min{mint φ,mint φ1}
maxt (φ + φ1)

, sup
(t,z)∈R×[M,−∞)

|Γ1| � ν min{mint ϕ1,mint ϕ2}
2 maxt (ϕ1 + ϕ2)

,

and sup(t,z)∈R×(−M,M] |Γ0| + |Γ1| � K , where K > 0 depends only on ‖φ‖, ‖φ1‖, ‖ϕ1‖, ‖ϕ2‖, λc, ε, ν, and
max(t,u,v)∈R×[−2,2]2{|gu|, |gv|, |hu|, |hv|}. Therefore, when z � −M , it follows that

g
(
t, u+, v+)+ u+

xx − u+
t � δe−βt

[
−σβ

δ
Uz − e(λc+ε)z′

(1 − χ)σβe−βt (λc + ε)φ

]
< 0,

h
(
t, u+, v+)+ dv+

xx − v+
t � δe−βt

[
−σβ

δ
Wz − e(λc+ε)z′

(1 − χ)σβe−βt (λc + ε)φ1

]
< 0.

Whence, when z � M , we have that

g
(
t, u+, v+)+ u+

xx − u+
t � −δe−βt σβ

δ
Uz < 0,

h
(
t, u+, v+)+ dv+

xx − v+
t � −δe−βt σβ

δ
Wz < 0.

Now let

!(t, z) = ∣∣e(λc+ε)z′[−χ ′′φ − 2(λc + ε)χ ′φ + χ ′′ϕ1 − (1 − χ)σβe−βt (λc + ε)φ
]∣∣

+ ∣∣e(λc+ε)z′[−dχ ′′ φ1 − 2d(λc + ε)χ ′ φ1 + dχ ′′ ϕ2 − (1 − χ)σβe−βt (λc + ε)φ1
]∣∣

+ ∣∣−cχ ′(ϕ1 − e(λc+ε)z′
φ
)− cχ ′(ϕ2 − e(λc+ε)z′

φ1
)∣∣+ e(λc+ε)z′ |Γ0| + |Γ1|.

Then, for z ∈ [−M,M], it follows that

g
(
t, u+, v+)+ u+

xx − u+
t � δe−βt

[
−σβ

δ
Uz + σβe−βtχ ′(ϕ1 − e(λc+ε)z′

φ
)+ !(t, z)

]
� δσβe−βt

[
−Uz

δ
+ e−βtχ ′(ϕ1 − e(λc+ε)z′

φ
)+ !(t, z)

σβ

]
,

h
(
t, u+, v+)+ dv+

xx − v+
t � δe−βt

[
−σβ

δ
Wz + σβe−βtχ ′(ϕ2 − e(λc+ε)z′

φ1
)+ !(t, z)

]
� δσβe−βt

[
−Wz

δ
+ e−βtχ ′(ϕ2 − e(λc+ε)z′

φ1
)+ !(t, z)

σβ

]
.

Since (Uz,Wz) > (0,0), there exists γ > 0 such that γ � min{inf(t,z)∈Ξ Uz, inf(t,z)∈Ξ Wz}, where Ξ = R×[−M,M].
Let

!as(t, z) = e(λc+ε)z′[∣∣χ ′′φ
∣∣+ ∣∣2(λc + ε)χ ′φ

∣∣+ ∣∣χ ′′ϕ1
∣∣+ ∣∣(1 − χ)e−βt (λc + ε)φ

∣∣]
+ e(λc+ε)z′[∣∣dχ ′′ φ1

∣∣+ ∣∣2d(λc + ε)χ ′ φ1
∣∣+ ∣∣dχ ′′ ϕ2

∣∣+ ∣∣(1 − χ)e−βt (λc + ε)φ1
∣∣]

+ ∣∣χ ′(ϕ1 − e(λc+ε)z′
φ
)∣∣+ ∣∣χ ′(ϕ2 − e(λc+ε)z′

φ1
)∣∣+ e(λc+ε)z′ |Γ0| + |Γ1|,

δ∗ = min

{
&+,

γ

2 max(t,z)∈R×[−M,M]{ϕ1 + ϕ2 + e(λc+ε)(z+s0)(φ + φ1) + !as(t, z)}
}
. (4.11)

Note that z′ = z+ s0 and | !
σβ

| � !as since σβ � max{1, |c|}. Then we readily see that (u+, v+) is a super-solution of
(4.1) for any δ ∈ (0, δ∗]. The proof is completed. �
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In what follows, we set:

u±
σ (t, x, z0) = U

(
t, x − ct + z0 ± σ

(
1 − e−βt

))± δ∗ξc
(
t, x − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±
σ (t, x, z0) = W

(
t, x − ct + z0 ± σ

(
1 − e−βt

))± δ∗ςc

(
t, x − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

where β and δ∗ are given by (4.5) and (4.11), respectively.

Lemma 4.4. Suppose that (H1)–(H5) are satisfied. Assume that

lim
x→−∞

u0(x)

kφ(0)eλcx
= 1, lim

x→−∞
v0(x)

kφd(0)eλcx
= 1 (4.12)

for some positive constant k. Furthermore, assume that

lim inf
x→∞

(
u0(x) − 1

)
� −ε0, lim inf

x→∞
(
v0(x) − 1

)
� −ε0 (4.13)

for some ε0 ∈ [0, δ∗
2&+ ). Then there exist z0 ∈ R, σ ∗ � 1, and t∗ > 0 such that(
u−
σ (t, x, z0), v

−
σ (t, x, z0)

)
�
(
u(t, x,u0), v(t, x, v0)

)
�
(
u+
σ (t, x, z0), v

+
σ (t, x, z0)

)
(4.14)

for all (t, x) ∈ [t∗,∞) × R and σ � σ ∗.

Proof. We first show that there exists t∗ > 0 such that

sup
(t,s)∈R×R

U(t, s) − δ∗ξc(t, s + s0)e
−βt∗ − 1

ϕ1(t)
< lim inf

x→∞

{
inf
t∈R

u(t∗, x,u0) − 1

ϕ1(t)

}
. (4.15)

By virtue of the assumptions, there exists γ > 1 for which γ ε0 � δ∗
2&+ . Moreover, thanks to (4.13), the fact that

|u(t, x,u0)| + |v(t, x, v0)| is bounded for all (t, x) ∈ R+ × R and (u0, v0) ∈ Cα(R,R2), and the basic properties for
the heat potentials, there exists t∗ > 0 such that

lim inf
x→∞

{
inf
t∈R

u(t∗, x) − 1

ϕ1(t)

}
> −&+γ ε0e

−βt∗ , lim inf
x→∞

{
inf
t∈R

v(t∗, x) − 1

ϕ2(t)

}
> −&+γ ε0e

−βt∗ .

This together with (4.9) and (4.10) yields (4.15).
We next show that there exist z0 ∈ R and σ ∗ � 1 such that

u−
σ

(
t∗, x, z0

)
� u

(
t∗, x,u0

)
(4.16)

whenever σ � σ ∗. In view of (3.25), we can fix z0 ∈ R such that

lim
x→−∞

U(0, x + z0)

kφ(0)eλcx
= 1, lim

x→−∞
W(0, x + z0)

kφd(0)eλcx
= 1.

Note that such a z0 is unique. In addition, since (u(0, x,u0), v(0, x, v0)) = (u0, v0), for any compact subset
I ⊂ [0,∞), it follows from Proposition A.1 in Appendix A that

lim
x→−∞

u(t, x,u0)

U(t, x − ct + z0)
= 1, lim

x→−∞
v(t, x,u0)

W(t, x − ct + z0)
= 1 uniformly in t ∈ I. (4.17)

Now assume to the contrary that (4.16) is not true. Then there exist two sequences {xn} and {σn} such that

σn → ∞ as n → ∞ and u−
σn

(
t∗, xn, z0

)
> u

(
t∗, xn,u0

)
. (4.18)

Notice that u−
σn
(t∗, xn, z0) = U(t∗, zn) − δ∗ξc(t∗, zn + s0)e

−βt∗ , where zn = xn − ct∗ + z0 − σn(1 − e−βt∗).
Up to extraction of a subsequence, two cases may occur: either the sequence {zn} is bounded from below or
limn→∞ zn = −∞. If {zn} is bounded from below, then xn → ∞ as n → ∞. Hence, it follows from (4.18) that

sup
(t,s)∈R×R

U(t, s) − δ∗ξc(t, s + s0)e
−βt − 1

ϕ1(t)
� sup

n

U(t∗, zn) − δ∗ξc(t∗, zn + s0)e
−βt∗ − 1

ϕ1(t∗)

� lim inf
n→∞

{
u(t∗, xn,u0) − 1

ϕ1(t∗)

}
� lim inf

x→∞

{
inf
t∈R

u(t∗, x,u0) − 1

ϕ1(t)

}
,

which contradicts (4.15).
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Therefore, we have the case that limn→∞ zn = −∞. If this occurs, we only need to consider two possibilities:
either {xn} is bounded or xn → −∞. If {xn} is bounded, without loss of generality, we may assume that xn → x∞ for
some x∞ ∈ R. Meanwhile, note that limn→∞ u−

σ (t∗, xn, z0) = 0. Moreover, since (u0, v0) � (0,0), the comparison
principle implies (u(t∗, x,u0), v(t

∗, x, v0)) > (0,0) for all x ∈ R. It follows from the continuity of u(t, x,u0) with
respect to x that

0 = lim
n→∞u−

σn

(
t∗, xn, z0

)
� lim

n→∞u
(
t∗, xn,u0

)= u
(
t∗, x∞, u0

)
� 0.

This shows that u(t∗, x∞, u0) = 0, which is a contradiction. This contradiction rules out the possibility that {xn} is
bounded. In case that xn → −∞ as n → ∞, in view of (4.17) and (4.18), we find that

0 = lim
n→∞

u−
σn
(t∗, xn, z0)

U(t∗, xn − ct∗ + z0)
� lim

n→∞
u(t∗, xn,u0)

U(t∗, xn − ct∗ + z0)
= 1.

The contradiction yields that there exists a σ1 � 1 for which u−
σ (t∗, x, z0) � u(t∗, x,u0) for all σ � σ1. With the same

reasoning, we can show that there exists a σ2 � 1 such that v−
σ (t∗, x, z0) � v(t∗, x, v0) for all σ � σ2.

Next we prove that

u
(
t∗, x,u0

)
� u+

σ

(
t∗, x, z0

)
, σ � σ3 (4.19)

for some σ3 � 1. Again, we shall argue by contradiction. Assume that this not true, then there exist two sequences
{xn} and {σn} such that limn→∞ σn = ∞ and

u+
σn

(
t∗, xn, z0

)
< u

(
t∗, xn,u0

)
. (4.20)

Thus, up to extraction of a subsequence, two cases may occur: either limn→∞ zn = ∞ or {zn} is bounded from above,
where zn = xn − ct∗ + z0 + σn(1 − e−βt∗). If limn→∞ zn = ∞, then we find:

1 + δ∗e−βt∗ϕ1(t) = lim
n→∞u+

σn

(
t∗, xn, z0

)
� sup

n
u
(
t∗, xn,u0

)
.

This is a contradiction since the comparison principle implies that (u(t, x,u0), v(t, x, v0)) � (1,1) for any t > 0. Thus
it is impossible that limn→∞ zn = ∞.

In case that {zn} is bounded from above. Then xn → −∞, and it follows from (4.17) and (4.20) that

∞ = lim
n→∞

u+
σn
(t∗, xn, z0)

U(t∗, xn − ct∗ + z0)
� lim

n→∞
u(t∗, xn,u0)

U(t∗, xn − ct∗ + z0)
= 1.

This contradiction confirms (4.19). Similarly we can show that there exists a σ4 � 1 such that v(t∗, x, v0) � v+
σ (t∗, x)

once σ � σ4. Therefore, let σ ∗ = maxi=1,2,3,4{σi}, we have:(
u−
σ

(
t∗, x, z0

)
, v−

σ

(
t∗, x, z0

))
�
(
u
(
t∗, x,u0

)
, v
(
t∗, x, v0

))
�
(
u+
σ

(
t∗, x, z0

)
, v+

σ

(
t∗, x, z0

))
,

provided that σ � σ ∗. To prove (4.14), we observe that (u−
σ (t, x, z0), v

−
σ (t, x, z0)) � (1,1) and (u+

σ (t, x, z0),

v+
σ (t, x, z0)) > (0,0). Furthermore, the comparison principle implies that

(0,0) <
(
u(t, x,u0), v(t, x, v0)

)
< (1,1) for any t � t∗.

Thus, (4.14) follows from Proposition 4.1. The proof is completed. �
Proposition 4.5. Suppose that all assumptions of Lemma 4.4 are satisfied. Let (U,W) ∈ C

1,2
b (R × R) and c solve

(3.1) with c < c∗. Let ε be specified by (4.5). Let z0 be the number such that

lim
x→−∞

U(0, x + z0)

kφ(0)eλcx
= 1, lim

x→−∞
W(0, x + z0)

kφd(0)eλcx
= 1.

Then for each η > 0, there exist ση ∈ R and Dη > 0 such that

U(t, x − ct + z0 − η) − Dηφ(t)e(λc+ε)(x−ct) � u(t, x,u0),

W(t, x − ct + z0 − η) − Dηφ1(t)e
(λc+ε)(x−ct) � v(t, x, v0) (4.21)
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for all (t, x) ∈ R+ × R, and

u(t, x,u0) � U(t, x − ct + z0 + η) + Dηφ(t)e(λc+ε)(x−ct),

v(t, x, v0) � W(t, x − ct + z0 + η) + Dηφ1(t)e
(λc+ε)(x−ct) (4.22)

whenever x − ct � ση.

Proof. We shall start with (4.21). Assume without loss of generality that z0 = 0. We first show that there exists D0
η > 0

such that (
U(0, x − η) − Dφ(0)e(λc+ε)x,W(0, x − η) − Dφ1(0)e

(λc+ε)x
)
�
(
u0(x), v0(x)

)
(4.23)

for all x ∈ R when D � D0
η . Indeed, there exists Mη > 0 such that

U(0, x − η) − φ(0)e(λc+ε)x � u0(x), W(0, x − η) − φ1(0)e
(λc+ε)x � v0(x) for all |x| � Mη.

Since (u0, v0) � (0,0) for all |x| � Mη, there exists D0
η � 1 for which

U(0, x − η) − Dφ(0)e(λc+ε)x � u0(x), W(0, x − η) − Dφ1(0)e
(λc+ε)x � v0(x) for all |x| � Mη

when D � D0
η . Hence (4.23) follows. Let m∗ := min{mint φ,mint φ1}

maxt {φ+φ1} for the duration of the proof. Since g,h ∈ C0,1,
there exists ε > 0 such that∣∣hu(t, u, v) − hu(t,0,0)

∣∣+ ∣∣hv(t, u, v) − hv(t,0,0)
∣∣� βm∗∣∣gu(t, u, v) − gu(t,0,0)

∣∣+ ∣∣gv(t, u, v) − gv(t,0,0)
∣∣� βm∗ when |u| + |v| � ε,

where β is given by (4.5). In view of Theorem 3.8, for any ε ∈ ]0,1[, there exists z
η
ε � 0 such that

(1 − ε)keλczφ(t) � U(t, z − η) � (1 + ε)keλczφ(t)

(1 − ε)keλczφd(t) � W(t, z − η) � (1 + ε)keλczφd(t)
for all z � zηε . (4.24)

Now set m+ = maxt {1, φ1
φd

} and m− = mint {1, φ1
φd

} and fix ε such that ε is sufficiently small, and(
1 + m+

m−

)
(1 + ε)k1e

λcz max
t∈R

{φ + φd} � ε

2
for all z � zηε .

Let D−
η = 1

m− (1+k)(D0
η + e−(λc+ε)z

η
ε

mint {1,φ,φ1} ). Since (u(t, x,u0), v(t, x, v0)) � (0,0) and (U,W) < (1,1), it is readily seen
that

uη(t, x) := U(t, x − ct − η) − D−
η φ(t)e(λc+ε)(x−ct) � 0 � u(t, x,u0),

vη(t, x) := W(t, x − ct − η) − D−
η φ1(t)e

(λc+ε)(x−ct) � 0 � v(t, x, v0)

for all (t, x) ∈ {(t, x) ∈ R+ × R | x − ct � z
η
ε }.

Define z∗ := 1
ε

ln k(1+ε)

D−
η m−

. Clearly, z∗ � z
η
ε as long as ε is sufficiently small. It then follows from (4.24) that

−(1 + ε)

(
1 + m+

m−

)
kφeλcz � eλczφ

[
k(1 − ε) − D−

η eεz
]
� uη(t, x) � (1 + ε)kφeλcz,

−(1 + ε)

(
1 + m+

m−

)
kφde

λcz � eλczφd

[
k(1 − ε) − D−

η

φ1

φd

eεz
]

� vη(t, x) � (1 + ε)kφde
λcz (4.25)

for all z = x − ct � z∗. In addition, (uη(t, x), vη(t, x)) � (0,0) for all (t, x) ∈ {(t, x) | z∗ � x − ct � z
η
ε }.

To summarize, we have that(
uη(t, x), vη(t, x)

)
�
(
u(t, x,u0), v(t, x, v0)

)
for all (t, x) ∈ R+ × {x � z∗ + ct},{

(t, x)
∣∣ uη(t, x) � 0

}∪ {
(t, x)

∣∣ vη(t, x) � 0
}⊆ R × {x � z∗ + ct},(

uη(0, x), vη(0, x)
)
�
(
u0(x), v0(x)

)
for all x ∈ R.
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In order to prove that (uη(t, x), vη(t, x)) � (u(t, x,u0), v(t, x, v0)) for all (t, x) ∈ R+ × R, we show that (uη, vη)

is a sub-solution of (4.1) in R+ × {x � z∗ + ct}. In fact, due to (4.24) and (4.25), we have that |U | + |W | � ε and
|uη| + |vη| � ε whenever x − ct � z∗. In light of the calculation made in the proof of Lemma 4.3, we readily see that

g(t, uη, vη) + (uη)xx − (uη)t

= D−
η e(λc+ε)(x−ct)

{ 1∫
0

φ(t)
[
gu(t,0,0) − gu

(
t, τuη + (1 − τ)U, τvη + (1 − τ)W

)]
dτ

−
1∫

0

φ1(t)gv

(
t, τuη + (1 − τ)U, τvη + (1 − τ)W

)
dτ + 2βφ(t)

}
� 0

and

h(t, uη, vη) + d(vη)xx − (vη)t

� D−
η e(λc+ε)(x−ct)

{ 1∫
0

φ(t)
[
hu(t,0,0) − hu

(
t, τuη + (1 − τ)U, τvη + (1 − τ)W

)]
dτ

+
1∫

0

φ1(t)
[
hv(t,0,0) − hv

(
t, τuη + (1 − τ)U, τvη + (1 − τ)W

)]
dτ + 2βφ1(t)

}
� 0

for all (t, z) ∈ {x − ct � z∗}. Therefore, it follows from Proposition 4.1 that(
uη(t, x), vη(t, x)

)
�
(
u(t, x,u0), v(t, x, v0)

)
for all (t, x) ∈ R+ × R.

We now proceed to prove (4.22). Since (U(t, ·),W(t, ·)) is nondecreasing, by virtue of Lemma 4.4, it suffices to
show that (4.22) holds for each η � σ ∗, where σ ∗ is specified by Lemma 4.4. By means of the same arguments used
at the beginning, we can show that for each η > 0, there exists D1

η > 0 such that(
u(0, x,u0), v(0, x, v0)

)
�
(
U(0, x + η) + Dφ(0)e(λc+ε)x,W(0, x + η) + Dφd(0)e

(λc+ε)x
)

for all x ∈ R whenever D � D1
η . In terms of Lemma 4.4, we have:

u(t, x,u0) � U
(
t, x − ct + σ ∗(1 − e−βt

))+ δ∗φe(λc+ε)(x−ct+s0+σ ∗(1−e−βt ))e−βt ,

v(t, x, v0) � W
(
t, x − ct + σ ∗(1 − e−βt

))+ δ∗φ1e
(λc+ε)(x−ct+s0+σ ∗(1−e−βt ))e−βt ,

when (t, x) ∈ [t∗,∞) × {x � s − s0 − σ ∗ + ct}. Moreover, it follows from (4.17) that

lim
x→−∞

(
u(t, x,u0), v(t, x, v0)

)= (0,0) uniformly in
[
0, t∗

]
.

Therefore, there exists σ0 ∈ R such that(
u(t, x,u0), v(t, x, v0)

)
� m∗ε

4
(1,1) and

(
U(t, x − ct + η),W(t, x − ct + η)

)
� m∗ε

4
(1,1)

as long as (t, x) ∈ R+ × {x � σ0 + ct}, where η � σ ∗. Let ση = σ0 +
ln ε

4D1
η maxt∈[0,T ](φ+φ1)

λc+ε
and D+

η = εe−(λc+ε)ση

4 maxt∈[0,T ](φ+φ1)
.

Here ε is the same as above and D1
η has been selected sufficiently large such that 2D1

η � ε. Thus, we have D+
η � D1

η .
In addition, for each η ∈ (0, σ ∗], it is easy to see that(

uη(t, x), vη(t, x)
) := (

U(t, z + η) + D+
η φe(λc+ε)z,W(t, z + η) + D+

η φ1e
(λc+ε)z

)
� ε

2
(1,1)

for all z = x − ct � ση. In particular, we have:
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(
u(t, x,u0), v(t, x, v0)

)
� m∗ε

4
(1,1) �

(
uη(t, x), vη(t, x)

)
for all (t, x) ∈ R+ × {x = ση + ct}. Moreover, using the arguments similar to those presented in the proof of
Lemma 4.3, we can show that (uη, vη) is a super-solution of (4.1) in {x − ct � ση}. Then, by using Proposition 4.1
again, we obtain that(

uη(t, x), vη(t, x)
)
�
(
u(t, x,u0), v(t, x, v0)

)
for all (t, x) ∈ R+ × {x � ση + ct}. (4.26)

For each η > σ ∗, choose ση = σσ ∗ and D+
η = D+

σ ∗ , then we see that (4.26) is still true. Now set Dη = max{D−
η ,D+

η }.
Then (4.21) and (4.22) follow. The proof is completed. �
Lemma 4.6. Suppose that (H1)–(H5) are satisfied. Assume that (U,W) ∈ C

1,2
b (R × R) and c solve (3.1) with c < c∗.

Assume that (u(t, x), v(t, x)) ∈ C
1,2
b (R × R) is a solution of (4.1) for all (t, x) ∈ R × R such that(

U(t, z + z0 + α),W(t, z + z0 + α)
)
�
(
u(t, x), v(t, x)

)
�
(
U(t, z + z0 + β),W(t, z + z0 + β)

)
for certain constants α,β and z0 with α � 0 � β and z0 ∈ R, where z = x − ct . Assume that for each η > 0, there
exist ση ∈ R and Dη ∈ R+ such that

U(t, x − ct + z0 − η) − Dηφe
(λc+ε)(x−ct) � u(t, x) � U(t, x − ct + z0 + η) + Dηφe

(λc+ε)(x−ct),

W(t, x − ct + z0 − η) − Dηφ1e
(λc+ε)(x−ct) � v(t, x) � W(t, x − ct + z0 + η) + Dηφ1e

(λc+ε)(x−ct)

for all (t, x) ∈ {(t, x) | x − ct � ση}, where ε is specified by (4.5). Then(
u(t, x), v(t, x)

)= (
U(t, x − ct + z0),W(t, x − ct + z0)

)
for all (t, x) ∈ R × R.

Proof. The proof shall be divided into four steps for the sake of clarity. Assume again that z0 = 0.
Step 1. Define:

η∗ = inf

{
η ∈ [0,+∞)

∣∣∣ (u(t, x)

v(t, x)

)
�
(

U(t, x − ct + η)

W(t, x − ct + η)

)
, ∀(t, x) ∈ R × R

}
.

Notice that η∗ is bounded and satisfies 0 � η∗ � β since (U(t, ·),W(t, ·)) is monotonically increasing. Our goal is
to prove that (u(t, x), v(t, x)) � (U(t, x − ct),W(t, x − ct)) for all (t, x) ∈ R × R. Namely, η∗ = 0. Assume to the
contrary that η∗ > 0. Then we claim that there exists σ ∈ (−∞, σ η∗

2
] such that

(
u(t, x), v(t, x)

)
�
(
U

(
t, x − ct + η∗

2

)
,W

(
t, x − ct + η∗

2

))
(4.27)

for all (t, x) ∈ {x − ct � σ }. If this is not true, then there exist two sequences {tn} and {xn} such that

lim
n→∞(xn − ctn) = −∞ and

(
u(tn, xn), v(tn, xn)

)
>

(
U

(
tn, xn − ctn + η∗

2

)
,W

(
tn, xn − ctn + η∗

2

))
.

On the other hand, we have:

lim
n→∞

U(tn, zn + η∗
4 ) + Dη∗

4
φ(tn)e

(λc+ε)zn

U(tn, zn + η∗
2 )

= 0, lim
n→∞

W(tn, zn + η∗
4 ) + Dη∗

4
φ1(tn)e

(λc+ε)zn

W(tn, zn + η∗
2 )

= 0,

where zn = xn − ctn. Therefore, it follows from the assumption that(
u(tn, xn), v(tn, xn)

)
�
(
U

(
tn, xn − ctn + η∗

2

)
,W

(
tn, xn − ctn + η∗

2

))
when xn − ctn � σ ∗ for some σ ∗ ∈ (−∞, σ η∗

4
]. This is a contradiction, hence (4.27) follows.

Step 2. We now show that

inf
σ�x−ct�σ

U
(
t, x − ct + η∗)− u(t, x) > 0, inf

σ�x−ct�σ
W
(
t, x − ct + η∗)− v(t, x) > 0, (4.28)
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for any σ � σ . We only prove the first inequality as the other can be proved in the exactly same way. Assume to
the contrary that infσ�x−ct�σ U(t, x − ct + η∗) − u(t, x) = 0. Then there exist two sequences {tn} and {xn} such
that

σ � xn − ctn � σ and lim
n→∞

[
U
(
tn, xn − ctn + η∗)− u(tn, xn)

]= 0. (4.29)

We need to take two cases into consideration, i.e., either {tn} is bounded or {tn} is unbounded. If {tn} is un-
bounded, up to extraction of a subsequence, we may assume without loss of generality that limn→∞ tn = ∞.
Thus, there exists a sequence {jn} with jn ∈ N+ such that limn→∞ jn = ∞ and tn ∈ [jnT , (jn + 1)T ].
Let t ′n = tn − jnT . Clearly, t ′n ∈ [0, T ]. Write zn = xn − ctn. Notice that {zn} is bounded and cjnT = xn − ct ′n − zn.
Now set: (

un(t, x), vn(t, x)
)= (

u(t + jnT , x + cjnT ), v(t + jnT , x + cjnT )
)
.

As both g and h are periodic in t , (un(t, x), vn(t, x)) are the solutions of (4.1) as well. Due to the regularities of {un}
and {vn} with respect to t and x, up to extraction of a subsequence, {(un, vn)} converges uniformly in any compact
set of R × R to a solution of (4.1) in R × R, denoted by (u∞(t, x), v∞(t, x)). Note that(

un(t, x), vn(t, x)
)= (

u(t + jnT , x + cjnT ), v(t + jnT , x + cjnT )
)
�
(
U
(
x − ct + η∗),W (

x − ct + η∗)).
Consequently, we see that (u∞(t, x), v∞(t, x)) � (U(x − ct + η∗),W(x − ct + η∗)) for all (t, x) ∈ R × R. Moreover,
since both {t ′n} and {zn} are bounded, there exist t∞ and z∞, and a subsequence of {(t ′n, zn)} (still denoted by {(t ′n, zn)}
for convenience) such that limn→∞(t ′n, zn) = (t∞, z∞). Thus, it follows from (4.29) that

U
(
t∞, z∞ + η∗)− u∞(t∞, ct∞ + z∞)

= lim
n→∞

[
U
(
t ′n, zn + η∗)− un

(
t ′n, ct ′n + zn

)]
= lim

n→∞
[
U
(
t ′n + jnT , xn − ctn + η∗)− u

(
t ′n + jnT , ct ′n + zn + cjnT

)]
= lim

n→∞
[
U
(
tn, xn − ctn + η∗)− u(tn, xn)

]= 0.

In other words, u∞(t∞, x∞) = U(t∞, x∞ − ct∞ + η∗), where x∞ = z∞ + ct∞. Since[ 1∫
0

gu

(
t, sUη∗ + (1 − s)u∞, sWη∗ + (1 − s)v∞

)
ds

](
Uη∗ − u∞

)+ (
Uη∗ − u∞

)
xx

− (
Uη∗ − u∞

)
t
� 0,

it follows from the strong maximum principle that u∞(t, x) = U(t, x − ct + η∗) for all (t, x) ∈ (−∞, t∞]× R, where
(Uη∗

(t, s),Wη∗
(t, s)) = (U(t, s + η∗),W(t, s + η∗)). On the other hand, thanks to (4.27), we have:(

un(t, x), vn(t, x)
)= (

u(t + jnT , x + cjnT ), v(t + jnT , x + cjnT )
)

�
(
U

(
t, x − ct + η∗

2

)
,W

(
t, x − ct + η∗

2

))
as long as x−ct � σ . Then, by taking the limit, we find that u∞(t, x) � U(t, x−ct + η∗

2 ) for all (t, x) ∈ {x−ct � σ }.
This is a contradiction because U(t, · + η∗

2 ) < U(t, · + η∗). This contradiction rules out the possibility that {tn} is un-
bounded, and we are led to the case that {tn} is bounded. However, if {tn} is bounded, then there exists (t∗, x∗) such
that u(t∗, x∗) = U(t∗, x∗ − ct∗ +η∗), hence we can again deduce a contradiction with the same reasoning. Therefore,
(4.28) holds.

Step 3. In view of the assumption, we find that

lim
z→∞ sup

x−ct�z

∣∣u(t, x) − 1
∣∣= 0, lim

z→∞ sup
x−ct�z

∣∣v(t, x) − 1
∣∣= 0.

Hence, there exists σ � σ such that(
u(t, x), v(t, x)

) ∈ [1 − ρ0,1
]2
,

(
U
(
t, x − ct + η∗),W (

t, x − ct + η∗)) ∈ [1 − ρ0,1
]2 when x − ct � σ ,
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where ρ0 is given in Proposition 3.9. As (U,W) is uniformly continuous in [0, T ] × [σ ,σ + η∗], by virtue of (4.28)
and the time periodicity of (U,W), there exists η ∈ [η∗

2 , η∗) for which

inf
σ�x−ct�σ

U(t, x − ct + η) − u(t, x) � 0, inf
σ�x−ct�σ

W(t, x − ct + η) − v(t, x) � 0. (4.30)

We next show that

inf
x−ct�σ

U(t, x − ct + η) − u(t, x) � 0, inf
x−ct�σ

W(t, x − ct + η) − v(t, x) � 0. (4.31)

To this end, let

uδ(t, x) = U(t, x − ct + η) − u(t, x) + δϕ1(t) and vδ(t, x) = U(t, x − ct + η) − u(t, x) + δϕ2(t).

Define

δ = inf
{
δ ∈ [0,∞)

∣∣ (uδ(t, x), vδ(t, x)
)
� (0,0) for all (t, x) ∈ {x − ct � σ }}.

We need to show that δ = 0. If this is not true, then with the same reasoning as that in Proposition 3.9, we infer that
either infx−ct�σ uδ = 0 or infx−ct�σ vδ = 0. Assume again that infx−ct�σ vδ = 0. Then there exist two sequences {tn}
and {xn} such that {xn − ctn} is bounded, xn − ctn � σ , and limn→∞ vδ(tn, xn) = 0. Moreover, we have:[ 1∫

0

hv

(
t, sUη + (1 − s)u, sWη + (1 − s)v

)
ds

]
vδ + vδ

xx − vδ
t � 0 for all (t, x) ∈ {x − ct > σ },

where Uη(t, ·) = U(t, · + η) and Wη(t, ·) = W(t, · + η). If {tn} is bounded, then there exists (t%, x%) such that
x% − ct% > σ and vδ(t%, x%) = 0. Hence we can readily reach a contradiction by applying the (strong) maximum
principle.

In case that {tn} is unbounded. With a slight abuse of notation, we still write that tn = jnT + t ′n with an unbounded
integer sequence {jn} and bounded sequence {t ′n}. Set again:

uδ
n(t, x) = uδ(t + jnT , x + cjnT ) = U(t, x − ct + η) − u(t + jnT , x + cjnT ) + δϕ1(t),

vδ
n(t, x) = vδ(t + jnT , x + cjnT ) = W(t, x − ct + η) − v(t + jnT , x + cjnT ) + δϕ2(t).

Notice that[ 1∫
0

hv

(
t, sUη + (1 − s)un, sW

η + (1 − s)vn
)
ds

]
vδ
n + (

vδ
n

)
xx

− (
vδ
n

)
t
� 0, ∀(t, x) ∈ {x − ct > σ },

where un(t, x) = u(t + jnT , x + cjnT ) and vn(t, x) = v(t + jnT , x + cjnT ). By taking the limit, we can again de-
rive a contradiction in the exactly same way as above and infer that (4.31) holds. As (U(t, · + η∗

2 ),W(t, · + η∗
2 )) �

(U(t, ·+η),W(t, ·+η)), from (4.27), (4.30), and (4.31), it follows that (u(t, x), v(t, x)) � (U(t, x−ct +η),W(t, x−
ct + η)) for all (t, x) ∈ R × R. It apparently contradicts the definition of η∗. Thus, we must have η∗ = 0. In other
words, (

u(t, x), v(t, x)
)
�
(
U(t, x − ct),W(t, x − ct)

)
for all (t, x) ∈ R × R.

Step 4. Define:

η∗ = inf

{
η ∈ [0,+∞)

∣∣∣ (u(t, x)

v(t, x)

)
�
(

U(t, x − ct − η)

W(t, x − ct − η)

)
, ∀(t, x) ∈ R × R

}
.

Notice that η∗ is bounded and satisfies 0 � η∗ � −α. Arguing in a similar manner, we can show that η∗ = 0, that is,(
U(t, x − ct),W(t, x − ct)

)
�
(
u(t, x), v(t, x)

)
for all (t, x) ∈ R × R.

Therefore, it follows that (u(t, x), v(t, x)) ≡ (U(t, x − ct),W(t, x − ct)). �
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Theorem 4.7. Suppose that all the assumptions of Lemma 4.4 are satisfied. Let (U,W) ∈ C
1,2
b (R × R) and c solve

(3.1) with c < c∗. Then

lim
t→∞

∣∣u(t, x,u0) − U(t, x − ct + z0)
∣∣+ ∣∣v(t, x, v0) − W(t, x − ct + z0)

∣∣= 0 (4.32)

for some z0 ∈ R. In particular, z0 is the unique number such that

lim
x→−∞

U(0, x + z0)

kφ(0)eλcx
= 1 and lim

x→−∞
W(0, x + z0)

kφd(0)eλcx
= 1.

Proof. We assume again that z0 = 0. Assume to the contrary that (4.32) is not true. Then there exist ε > 0 and a
sequence {(tn, xn)} ∈ R+ × R such that limn→∞ tn = ∞, and∣∣u(tn, xn,u0) − U(tn, xn − ctn)

∣∣+ ∣∣v(tn, xn,u0) − W(tn, xn − ctn)
∣∣� ε. (4.33)

Since tn → ∞ as n → ∞, there exists a sequence {jn} with jn ∈ N+ such that limn→∞ jn = ∞ and
tn ∈ [jnT , (jn + 1)T ]. As before, we let t ′n = tn − jnT and write zn = xn − ctn. If {zn} is bounded, then set(

un(t, x), vn(t, x)
)= (

u(t + jnT , x + cjnT ,u0), v(t + jnT , x + cjnT , v0)
)
.

Clearly, for each n, (un(t, x), vn(t, x)) is a solution of (4.1) in (−jnT ,∞) × R satisfying (un(−jnT , x),

vn(−jnT , x)) = (u0(x + cjnT ), v0(x + cjnT )). Denote again by (u∞(t, x), v∞(t, x)) the solution of (4.1) in R × R
to which {(un, vn)} converges uniformly in any compact set. Due to Lemma 4.4, we see that

U
(
t, x − ct − σ ∗)− δ∗Λe−β(t+jnT ) � un(t, x) � U

(
t, x − ct + σ ∗)+ δ∗Λe−β(t+jnT ),

W
(
t, x − ct − σ ∗)− δ∗Λe−β(t+jnT ) � vn(t, x) � W

(
t, x − ct + σ ∗)+ δ∗Λe−β(t+jnT ),

for all (t, x) ∈ [t∗ − jnT ,∞) × R, where Λ = max{sup(t,s)∈R×R ξc(t, s), sup(t,s)∈R×R ςc(t, s)}. It then follows that

U
(
t, x − ct − σ ∗)� u∞(t, x) � U

(
t, x − ct + σ ∗),

W
(
t, x − ct − σ ∗)� v∞(t, x) � W

(
t, x − ct + σ ∗) for all (t, x) ∈ R × R.

Furthermore, Proposition 4.5 implies that for each η > 0, there exists Dη such that(
U(t, x − ct − η) − Dηφe

(λc+ε)(x−ct),W(t, x − ct − η) − Dηφ1e
(λc+ε)(x−ct)

)
�
(
un(t, x), vn(t, x)

)
for all (t, x) ∈ [−jnT ,∞) × R, and(

un(t, x), vn(t, x)
)
�
(
U(t, x − ct + η) + Dηφe

(λc+ε)(x−ct),W(t, x − ct + η) + Dηφ1e
(λc+ε)(x−ct)

)
whenever (t, x) ∈ [−jnT ,∞) × (−∞, ση + ct]. By taking the limits in above inequalities, we obtain that(

U(t, x − ct − η) − Dηφe
(λc+ε)(x−ct),W(t, x − ct − η) − Dηφ1e

(λc+ε)(x−ct)
)
�
(
u∞(t, x), v∞(t, x)

)
for all (t, x) ∈ R × R, and(

u∞(t, x), v∞(t, x)
)
�
(
U(t, x − ct + η) + Dηφe

(λc+ε)(x−ct),W(t, x − ct + η) + Dηφ1e
(λc+ε)(x−ct)

)
for (t, x) ∈ R × (−∞, ση + ct]. Consequently, it follows from Lemma 4.6 that(

u∞(t, x), v∞(t, x)
)≡ (

U(t, x − ct),W(t, x − ct)
)
. (4.34)

On the other hand, since {t ′n} and {zn} are both bounded, by taking subsequences if necessary, we find that
limn→∞(t ′n, zn) = (t∞, z∞) for some (t∞, z∞) ∈ [0, T ] × R. Since {(un, vn)} converges uniformly to (u∞, v∞) in
compact subsets of R × R, we have:(

u∞(t∞, ct∞ + z∞), v∞(t∞, ct∞ + z∞)
)

= lim
n→∞

(
un

(
t ′n, ct ′n + zn

)
, vn

(
t ′n, ct ′n + zn

))
= lim

n→∞
(
u
(
t ′n + jnT , ct ′n + zn + cjnT ,u0

)
, v
(
t ′n + jnT , ct ′n + zn + cjnT , v0

))
= lim

n→∞
(
u(tn, xn,u0), v(tn, xn, v0)

)
.
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Moreover, we observe that(
U(t∞, z∞),W(t∞, z∞)

)= lim
n→∞

(
U
(
t ′n, zn

)
,W

(
t ′n, zn

))= lim
n→∞

(
U
(
t ′n + jnT , zn

)
,W

(
t ′n + jnT , zn

))
= lim

n→∞
(
U(tn, xn − ctn),W(tn, xn − ctn)

)
.

Hence, it follows from (4.33) that∣∣u∞(t∞, ct∞ + z∞) − U(t∞, z∞)
∣∣+ ∣∣v∞(t∞, ct∞ + z∞) − W(t∞, z∞)

∣∣� ε.

However, this contradicts (4.34). Thus {zn} has to be unbounded in terms of (4.33). Assume that limn→∞ zn = −∞.
Then it follows from Lemma 4.4 that

lim
n→∞

(
u(tn, xn,u0), v(tn, xn, v0)

)= lim
n→∞

(
U(tn, zn),W(tn, zn)

)= (0,0).

Likewise, if limn→∞ zn = ∞, then we have:

lim
n→∞

(
u(tn, xn,u0), v(tn, xn, v0)

)= lim
n→∞

(
U(tn, zn),W(tn, zn)

)= (1,1).

They both contradict (4.33). Therefore, (4.32) follows. The proof is completed. �
Remark 4.8. With additional assumptions on g and h, the same type of methods utilized in this section can be adopted
to prove the asymptotic stability of time periodic traveling waves with the wave speed c∗. This issue will be addressed
in our forthcoming paper.
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Appendix A

In this Appendix, we prove a result on the limiting behavior of solutions of (4.1) with prescribed initial data which
was used in the proof of Lemma 4.4.

Proposition A.1. Suppose that (H1)–(H5) are satisfied. Assume that (u(t, x,u0), v(t, x, v0)) solves (4.1) with
(u(0, x,u0), v(0, x, v0)) = (u0(x), v0(x)) and that

lim
x→−∞

u0(x)

kφ(0)eλcx
= 1, lim

x→−∞
v0(x)

kφd(0)eλcx
= 1

for some positive constant k, where c < c∗. Let I ⊂ [0,+∞) be any compact subinterval. Then there exists z0 ∈ R
such that

lim
x→−∞

|u(t, x,u0) − U(t, x − ct + z0)|
U(t, x − ct + z0)

= 0, lim
x→−∞

|v(t, x,u0) − W(t, x − ct + z0)|
W(t, x − ct + z0)

= 0

uniformly in t ∈ I , where c < c∗ and z0 ∈ R is the unique number such that

lim
x→−∞

U(0, x + z0)

kφ(0)eλcx
= 1, lim

x→−∞
W(0, x + z0)

kφd(0)eλcx
= 1.

Proof. Once again, we shall assume without loss of generality that z0 = 0 through the proof. Let ρ(r) ∈ C3(R) be
a real positive function with the following properties: (i) (|ρ(r)| + |ρ′(r)|) � C1e

−δ|r| for certain positive constants
C1 and δ; (ii) |ρ′′′(r)

ρ(r)
| + |ρ′′(r)

ρ(r)
| + |ρ′(r)

ρ(r)
| � C2 for some positive constant C2. By rescaling, we may assume that

ρ(0) = 1 and δ > 2
√
κ , in other words, δ > 2λc for any c < c∗. Such a function can be easily constructed, for

instance, ρ(r) = 1
cosh(δr) has the desired properties.
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Now we write ρx(y) = ρ(y − x) and set:

û(t, y) = ρx(y)
[
u(t, y,u0) − U(t, y − ct)

]
, v̂(t, y) = ρx(y)

[
v(t, y,u0) − W(t, y − ct)

]
.

Then

∂t û − ûyy = ρx(y)
{[u − U ]t − [u − U ]yy

}− ρx
yy(y)[u − U ] − 2ρx

y (y)[u − U ]y

= ρx(y)
[
g(t, u, v) − g(t,U,W)

]− ρx
yy(y)

ρx(y)
û − 2ρx

y (y)

ρx(y)

[
ρx(y)(u − U)

]
y

+ 2(ρx
y (y))

2

ρx(y)

[
ρx(y)(u − U)

]
.

Define

(L1w)(t, y) := wt − wyy + 2ρx
y (y)

ρx(y)
wy −

[
2(ρx

y (y))
2 − ρx

yy(y)

ρx(y)

]
w.

Then, we find that

L1û =
{ 1∫

0

gu

(
t, su + (1 − s)U, sv + (1 − s)W

)
ds

}
û +

{ 1∫
0

gv

(
t, su + (1 − s)U, sv + (1 − s)W

)
ds

}
v̂.

Likewise, we have:

L2v̂ =
{ 1∫

0

hu

(
t, su + (1 − s)U, sv + (1 − s)W

)
ds

}
û +

{ 1∫
0

hv

(
t, su + (1 − s)U, sv + (1 − s)W

)
ds

}
v̂,

where

(L2w)(t, y) := wt − dwyy + 2dρx
y (y)

ρx(y)
wy − d

[
2(ρx

y (y))
2 − ρx

yy(y)

ρx(y)

]
w.

By the variation of constants formula and Gronwall’s inequality, we obtain that∣∣û(t, y)∣∣
L∞(R)

� CeKt
[∣∣û(0, y)∣∣

L∞(R)
+ ∣∣v̂(0, y)∣∣

L∞(R)

]
, t ∈ I

for certain positive constants C and K , which depend only upon d , C1, C2, and M̃ , where M̃ =
2 sup(t,s,s′)∈R×[−2,2]×[−2,2]{|gu(t, s, s

′)|+ |gv(t, s, s
′)|+ |hu(t, s, s

′)|+ |hv(t, s, s
′)|} (see Theorem 2.10 in Chapter III

of [14] or Theorem 3.1.3 of [32]).
Without loss of generality, we may assume that I ⊆ [0, T ]. Thus,∣∣u(t, x,u0) − U(t, x − ct)

∣∣� CeKT sup
|y−x|� |x|

2

{∣∣ρx(y)
[
u0(y) − U(0, y)

]∣∣+ ∣∣ρx(y)
[
v0(y) − W(0, y)

]∣∣}
+ CeKT sup

|y−x|� |x|
2

{∣∣ρx(y)
[
u0(y) − U(0, y)

]∣∣+ ∣∣ρx(y)
[
v0(y) − W(0, y)

]∣∣}.
Since ∣∣ρx(y)

[
u0(y) − U(0, y)

]∣∣+ ∣∣ρx(y)
[
v0(y) − W(0, y)

]∣∣� 4C1e
− δ|x|

2 whenever |y − x| � |x|
2

.

Furthermore, if y ∈ {s ∈ R: |s − x| � |x|
2 }, then∣∣ρx(y)

[
u0(y) − U(0, y)

]∣∣� C1e
−δ|y−x|

∣∣∣∣U(0, y)

(
1 − u0(y)

U(0, y)

)∣∣∣∣
� C1C

′e−δ|y−x|eλcy

∣∣∣∣1 − u0(y)

U(0, y)

∣∣∣∣
� C1C

′e−δ|y−x|eλc|y−x|eλcx

∣∣∣∣1 − u0(y)

U(0, y)

∣∣∣∣
� C1C

′eλcx

∣∣∣∣1 − u0(y)

U(0, y)

∣∣∣∣.
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Here we used the fact that 0 <U(0, x) � C′eλcx for some positive constant C′ (see Theorem 3.8).
Similarly, we have∣∣ρx(y)

[
v0(y) − W(0, y)

]∣∣� C1C
′eλcx

∣∣∣∣1 − v0(y)

W(0, y)

∣∣∣∣ whenever |y − x| � |x|
2

.

Consequently, for each t ∈ I , it follows that∣∣u(t, x,u0) − U(t, x − ct)
∣∣� Ĉeλcx sup

|y−x|� |x|
2

{∣∣∣∣1 − u0(y)

U(0, y)

∣∣∣∣+ ∣∣∣∣1 − v0(y)

W(0, y)

∣∣∣∣}+ Ĉe− δ|x|
2 ,

where Ĉ is a positive constant that depends on C, C1, K , and T .
As

lim
y→−∞

{∣∣∣∣1 − u0(y)

U(0, y)

∣∣∣∣+ ∣∣∣∣1 − v0(y)

W(0, y)

∣∣∣∣}= 0,

by Theorem 3.8, we readily infer that

lim
x→−∞

|u(t, x,u0) − U(t, x − ct)|
U(t, x − ct)

= 0 uniformly in t ∈ I.

Likewise, we have:

lim
x→−∞

|v(t, x, v0) − W(t, x − ct)|
W(t, x − ct)

= 0 uniformly in t ∈ I.

The proof is completed. �
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