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Abstract

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive
Lotka—Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed ¢* such that for
each wave speed ¢ < ¢*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding
kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving
frame coordinate. We also show that the traveling wave solutions with wave speed ¢ < c¢* are asymptotically stable in certain sense.
In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed ¢ > c*.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie I’existence, 1'unicité, et la stabilité asymptotique des ondes progressives périodiques pour un systeme compétitif de
Lotka—Volterra avec diffusion. Sous certaines conditions, on démontre qu’il existe une vitesse maximale c* telle que pour chaque
vitesse ¢ < ¢*, il existe une onde périodique progressive en temps connectant deux solutions semi-triviales correspondant a la
cinétique du systeme. On démontre que cette onde (modulo les translations) est unique et est monotone dans le repere 1ié a 1’onde.
On montre que les ondes avec une vitesse ¢ < ¢* sont asymptotiquement stables (en un certain sens). Enfin, on établit la non
existence des ondes périodiques progressives pour des vitesses ¢ > ¢*.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we are concerned with time periodic traveling wave solutions to the diffusive Lotka—Volterra compe-
tition system:
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{M, = iy + u(r1 (1) — a1 () — by (1)), (1.1)

v = dvyy + (r2(t) — ax(t)u — ba(1)v),
where u = u(t, x) and v = v(t, x) denote the densities of two competing species in location x € R and at time 7 € R™,
d >0, and r;, a;, b; (i =1,2) are T-periodic continuous functions of ¢, a;, b; are positive in [0, T], while r; may
change sign. Nonlinear periodic diffusion systems like (1.1) describe the evolution of two competing species u and v
naturally stemming from population dynamics, where the data depend periodically on time. Time periodic traveling
waves to system (1.1) are solutions of the form,

u(t,x) _ X(t,X—C[)
(v(t,X)>_(Y(t,x—cz))’ (1.2)

Xt+T,2)\_ (X2 X(t,£00)\ _ o (X2 _ u® (1)
Yt+T,z)) \Y(t2 )’ Y(t,200) )] s>t \Y(t,2) )]~ \vE@®) )

where c is an a priori unknown constant, referred to as the wave speed, z = x — ct is the co-moving frame coordinate,

satisfying

¢ 2
and (! +8) and (Z,g;) are periodic solutions of the corresponding kinetic system:

d
= =u(r® —aOu = b (0w).
by (1.3)
o= v(r2(t) — ax(t)u — bar(t)v).

There have been many interesting studies on traveling wave solutions to diffusive Lotka—Volterra competition
systems for which the corresponding kinetic systems are autonomous (see [7,9,11,15,16,24,25,27,28,38,39] and
references therein). Recently, an interest in periodic traveling waves of the form (1.2) has been developed, which
was stimulated by the observation of periodic traveling waves in a large number of mathematical models arising in
various disciplines. Alikakos, Bates and Chen [2] established the existence, uniqueness and stability of time peri-
odic traveling wave solutions for a single reaction diffusion equation with periodic bistable nonlinearities. The time
periodic traveling wave solutions were also employed to study the development of interfaces for related higher dimen-
sional equations in bounded domains. Nolen and Xin [35] proved the existence of periodic traveling waves in mean
zero space—time periodic shear flows for the KPP nonlinearities. They also utilized a variational principle to char-
acterize the minimal front speed. Liang and Zhao [30] extended the theory of spreading speeds and traveling waves
for monotone autonomous semiflows to periodic semiflows in the monostable case (see also [29]). These abstract
results were applied to certain periodic diffusive equations. Most recently, Hamel [18] and Hamel and Roques [19]
presented a systematic analysis on the qualitative behavior, uniqueness and stability of monostable pulsating fronts
for reaction—diffusion equations in periodic media with KPP nonlinearities. The established results provide a com-
plete classification of all KPP pulsating fronts (see [4—6,40] for other related results). Although the study of traveling
wave solutions, mostly for the autonomous case, has a longstanding history, there are still very few studies devoted to
time periodic traveling wave solutions for diffusive systems with time-periodic reaction terms. Unlike the autonomous
case, the presence of time dependent nonlinearities poses significant difficulties and requires new approaches.

In the present work, we consider (1.1) focusing on the case that

Ji i@ ar — ) 20 dr o 0<f0Tr2(t)dt (= J) i@ ar
T 0<i<T \ by T T So<i<T\ ay T ’

which implies that (1.3) has only three nonnegative T -periodic solutions (0, 0), (p(¢), 0), and (0, g(¢)), where p(z)
and ¢ (¢) are explicitly given by:

(1.4)

’

» poelori®)ds oJo s _
pt) = 5 s Po= 5 ;
1—|—p0f(;ef0 rl(f)dfal(s)ds fOTefg rl(f)dfal(s)ds (1 5)
qoefo[ ra(s)ds efOT ra(s)ds _ 1 )
q(1) =

X ’ qo = S .
1+qo fot elor2@dtp, () ds fOT eJo2@dep () ds
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Note that (p(¢), 0) is globally stable in the interior of the positive quadrant Ri = {(u,v) |u=>0,v >0} (see [10] or
[22]). Assume that the inequalities in (1.4) hold, we are primarily interested in periodic traveling waves of (1.1) with
W™ (@), v () =(p@),0)and (u= (1), v (t)) = (0,q(t)). Now let (U(t,z), W(t, z)) be defined as follows:

X(t,2) q(t) —Y(t,z2)
U(t,z) = , Wit,z)=——. 1.6
=70 =700 (10
Substituting (1.6) into (1.1) yields that
Uy =Ug+cU,+Ular(t) p(t)(1 — U) — by (t)g (1) (1 — W)],
Wy =dW, +cW, + (1 = W)[ax(t) p(1)U — ba(t)g ()W ]; (17

(Ut,2),W(t,2)=(Ut+T,2), Wt +T,2)),
lim (U.W)=(0,0),  lim (U, W)=(1.1).

The main focus of this paper is on the existence and uniqueness of solutions to (1.7) and their various qualitative
properties. The paper is organized as follows. In Section 2, under certain conditions, we establish the existence of
¢* < 0 such that there exists, for any ¢ < ¢*, a solution to (1.7) which is monotone in z. In Section 3, we study the
uniqueness of solutions of (1.7) for ¢ < ¢* that are constrained to [0, 1] x [0, 1]. To this end, we consider a generalized
reaction—diffusion system that retains the most essential features of (1.7). We adopt a dynamical approach to obtain
the exact exponential decay rate of a solution as it approaches its unstable limiting state. With this asymptotic property,
we employ the sliding method to establish the uniqueness of the aforementioned solution. In addition, we show that
the components of such a solution are monotone with respect to the variable z. We also show that the wave speed c¢*
obtained in Section 1 is the maximal speed such that (1.7) has no solutions with nonzero wave speed ¢ > ¢* that are
nondecreasing with respect to z. In Section 4, under the same conditions presented in Section 3, we utilize the methods
similar to those given in [19] to study the asymptotic stability of time periodic traveling wave solutions of

{ up = ttxx +ular () p)(1 —u) — by (t)g ) (1 —v)], (1.8)

v =dvee + (1 = v)[a2 () p(Du — ba(1)g (t)v].

We first consider the solutions of (1.8) with initial data decaying exponentially as x — —oo. We then establish the
convergence of such solutions to the periodic traveling waves of (1.8) with speed ¢ < ¢* at large time, which indicates
that these solutions propagate with constant speed at a long time.

For future reference, we denote a vector by printing a letter in boldface w = (uy, ..., u;, ..., u,), where u; stands
for the ith component of u. The following notation shall be adopted. Let I, I" € R be two (possibly unbounded)
intervals and M € R". Denote by C(I x I', M) the space of continuous functionsu: ! x I' - M, Cp,(I x I', M) is
the space of functions u € C(I x I', M) with |u|s < 00, CX{(I x I', M) is the space of functions u e C(I x I", M)
such that u(-, x) is k-time continuously differentiable and u(¢, -) is /-time continuously differentiable, C],j’l (IxI',M)
is the space of functions u € C*/(I x I", M) such that all partial derivatives of u are uniformly bounded. In particular,
given « € |0, 1[, we set:

[u] _ Sup |u(t7x) - u(Tv y)|
’ 0 =T[4 x =yl

,t,tel, x,yel, (t,x);é(r,y)}-

Denote by CZ/Z’O’(I x I', M) the space of functions u € C,(I x I", M) such that [u], < oo and C;Jr“/z’zﬂ(l x T, M)

the space of functions u € C;’Z(I x I", M) such that [u;], < 00, [uy]e < 00, and [u,, ] < 00. In case that M = R",

and no confusion occurs, we shall set C,(I x I') := Cp(I x I', R"), CZ‘/z’a(I x I'):= CZ/Z’a(I x I',R™), etc. We

also set [a, b]? := [a, b] x [a, b], where —0o < a < b < co. We use the notation,

1T

h=— | h(t)dt,
T/ (1)
0

for the average of a function 4 that is integrable in [0, T'].
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2. Existence of periodic traveling wave solutions

This section is devoted to the existence of time periodic traveling wave solutions to (1.1) connecting the semi-trivial
periodic solutions (0, ¢(¢)) and (p(#), 0) of (1.3). Here p(¢) and g (¢) are given by (1.5). Throughout this section, we
always assume that

(A1) ri,a;,bj € C°(R,R) forsome O with0 <0 < 1, r;(t +T) =ri(t),a;i(t+T)=a;(t), bt +T) =b;(t),i =1, 2.
(A2) r; >0,and q;(t) >0, b;(t) >0forallt,i =1, 2. Moreover, r| > max,(i—;)r_z and min,(Z—?)r_l >r;.

‘We thereafter consider

U =Uz+cU.+Ulai () p()(1 = U) — by (g (t)(1 — W)],

Wy = dWee + W + (1= W)[ax () p()U — ba()g () W;

(U(t,2), W(t,2)) = (Ut +T,2), W(t +T,2)), 2.1
im (U, W)=(0,0,  lim (U, W)=(1,1).

Definition 2.1. ([12]) If u € R" and v € R", the relation u < v (u < v respectively) is to be understood componentwise:

u; < v; (u; < v;)foreachi. The other relations, such as “max”, “min”, “sup”, and “inf”, are similarly to be understood
componentwise.

Definition 2.2. ([12]) A vector valued function w = (w1, ..., w,) € CY2(I x I', R") is called a regular super-solution
of
ou; .
§=di(z) +cl(z) +ﬁ(t Ui, ...,up), i=1,...,n, (2.2)
provided that
ow

d,-(z) +c,(z) +ﬁ(t wl,...,wn)—a—t"go for (t,z) eI x I.

It is called a regular sub-solution of (2.2) if the above inequalities are reversed. Here d;, ¢; € C G(F ,R), and f; €
C? (I x R",R) for some 6 with0 <6 < 1. In particular, there exists w > 0 such that d;(z) > w foralli and z € I

Definition 2.3. ([12]) A vector valued function v e C(I x I, R") is said to be an irregular super-solution of (2.2)
if there exist regular super-solutions wl, ..., wF of (2.2) such that v = min{w', ..., wk}. It is called an irregular

sub-solution of (2.2) if there exist regular sub-solutions vl, ..., vk of (2.2) such that v =max{v!, ..., vk}.

Lemma 2.4. Suppose that there exist u € CZ/Z’V([O, T+e)x (—00,7°) andu e CZ/Z’V([O, T 4+ €) x R) such that u
and U are the irregular super- and sub-solutions of

ou;

3_;:dl(Z) +Cz(Z) +.fl(t ul"'-a )7 i=1""’n’ (23)
respectively, and u < u forall (t,z) € [0, T +€) x (—00,z 0]. Here 0 < y<l,e>0, 2 eR;d;, ¢; and fi satisfy the
assumptions given in Definition 2.2 with | =Rand I' =R, u = min{v_vl, e, v_vk}, andu = max{v_vl, L v_vk}; w' and
w! are respectively the regular super- and sub-solutions of (2.3) (I =1, ..., k). Moreover, assume that f;(t,0) = 0,
fi¢t+T,w)= fi(-,u), and % >0in[['_[wi, @il i # j, forall t € R, where ; = infu;, ®; = supu;. In addition,
for each 1 € {1,....k}, {(1,2) | @ < W} <@} = {(t,2) | @; < W, <@} and {(1,2) | @ < wj < @i} = {(t,2) |

wj < wlj i}, i 75 j. Assume further that u > 0, u(0, z) > (T, z2), W(T,z) >u(,z), and u(t,z%) < 0 for all

t € [0, T + €). Then there exists a positive solution u* € Cb (R x R) to (2.3) such thatu*(-+T,z) =u*(-,z), u* <u
forall (t,z) € [0, T] xR, and u* > uforall (t,z) € [0, T] x (—o00, Z°1. In addition, if u is nondecreasing with respect
to z, and d; and c; are constants, then either (u;")Z > 0or (u;k) . =0.
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Proof. The proof is based on the monotone iterations for parabolic systems. Set i1 = u’. Inductively, we define u” by:

aum-i-l 82 m+1 8um+1
8t =dj(z2)——— +ci(2)

uTH(O,x) =u] (T,x).

m—+1 . m m.
_Kuj —|—f](t,u )+Kuj, (2.4)

Here K is a positive constant with K > max u)e[0,7]x | au L| for any j, ¥ := ]_[l 1lwi, ®;], and u" is understood
as a mild solution of (2.4) whose components are given by:

t
W02 = GO T+ [ Gyt =) [Kal! + 5 (r.u")]ds,
0
where G (¢) is the analytic semigroup generated by the linear differential operator A : D(A;) — C»(R) defined by

D(Aj) = {Cb(R) ﬂ Wlicp(R), Aju=dj(Duz; +cj(Qu; — Ku € Cb(]R)}.
1<p<oo

Thanks to Theorems 5.1.3 and 5.1. 4 of [32], u! € Ca/za([O T] x R) N CIJFO‘/2 2+O‘([s, T] x R) with some
o €]0, 1[ for every ¢ € 10, T'[, and u! satisfies the first equation of (2.4) in (0, T] x R, whence, for each m > 2,
u” e Y22 ([0, T] x R) satisfies (2.4) in [0, T] x R.

We now show that u! < u for all (t,z) €0, T] x R. Let

L
vV =u—u+

1||C([0,T]><]R,R”)’ w+r2(z2+w+Nt)e“’, r>0,

L=|u—u

where @ = (maxi<i<n lCiloo + D2, w>1, and N > 2maxigi<n |diloo are fixed constants such that
2(max | i <n |diloo +Max i< ICiloolz]) — w(z> +w@)— N <0 forall z € R. Clearly, v" (0, z) > 0 for all z satisfying
|z| < r. Furthermore, v" (¢, £r) > 0 for any ¢ € [0, T]. In fact, it holds that v" (¢, z) > 0 for all (¢, z) € [0, T] X [—r, r].
Assume to the contrary that this is not true, then there exists a point (¢*, z*) € (0, T'] x ]—r, r[ and at least a component
v/ such that

v (1*,2")=0 and V'(r,2) >0 forall (r,z) € [0,1*] x [—r,r].

4
Since u is an irregular super-solution of (2.3) and u = min{w!, ..., WK}, we may assume without loss of generality
that u; (t*, z*) = w} (t*, z¥). Now let:

w=w!—u'+

—— 2(22+w+Nt)e’”.

Obviously, w; (t*, z*) =0 and w > 0 for all (¢, z) € [0, t*] x [—r, r]. In addition, for any (¢, z) € (0, t*] x |—r, —r[, it
is straightforward to verify that

9% 0 Lo
d(Z) +CJ(Z) KwJ—W
32( L —ul.) d(wh —ub) d(wh —ub)
J J J J —1 1 J J
Sdj@ g+ 6@ — KW —uj) = —

L
3¢ 2 max |djloo +2 max lejloolzl = (K +w)(e + o + Ni) = N|
o +r? 1<j<

ISjsn Sis
1
<K(uj—w})+/aufj(z,sv—v1+(1—s)ﬁ)ds(ﬁ—v—v1), j=1....n
0

Since u; (t*,z*) = w} (t*,2%) and @; < u; (t*,z*) < w;, it follows from the assumption that @; < w} (t*,7") < o,
with j # i. This implies that sw' + (1 — )|+ 7+ € [To—y[@k, @] for any s € [0, 1]. Consequently,
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321, A . 0w,
di(2) —— +ci(x)— — Kw; — <0.
3Z 8Z 8[ (I*,Z*)
On the other hand, since w; attains its local minimum at (¢*, z*), we have:
2N ek % T S Aok %
072 0z ot

Hence it follows that 0 > d; (z)a w’ (t ) 9 (a[;’z*) < 0, which is a contradiction. This contradiction confirms
that v/ (¢, z) > 0 for all (¢, z) € [0, T] X [—r,r]. Since V' — 1 — u' uniformly in [0, T] x [—+/7, /7] as r — 00,
we infer that i — u! > 0. Meanwhile, it follows from the comparison principle that u' > 0, which along with the
assumption shows that ul(r,z% > u(r, 7% forall 7 € [0, T]. As u' (0, z) > u(0, z), repeating the same argument in
[—r, 7] with r > |z0| yields that u < u! for all (¢, x) € [0, T] x (—o0, z°]. In a similar fashion, it can be shown that
0 <u"t! <wu” <uforall (r,x) € [0, T] x R, and u < u™ for all (¢,x) € [0, T] x (—o0, z°] (m > 1). That is, the
sequence {u™} is uniformly bounded.
Consequently, for any m > 2, Theorems 5.1.2 and 5.13 together with Theorem 5.1.4 in [32] imply that

" fervaravaqormn SC(M+ | max [3ufw])
for certain positive constants C, M, and « € ]0, 1[ depending only upon d;, ¢;, and |[u|| -y /2y . Therefore, there exists
a subsequence of {u"}, still labeled by {u™}, such that it converges in Cl o ([0 T1x R, R™) to a function denoted by u*

Clearly u* satisfies (2.3) in [0, T] x R. Since w10, z) = w"(T, z), we find that u*(0, z) = w*(7, 2). Moreover,
observe that

! P 0™ ks ek
o7 [ i(2)——>— +¢j(2) — Ku'] + fi(t,u )+Kujj|
1=0 =0
zum aum m m—1 m—1
[d (D)= +cj(z) —Kuj + fi(ru" ) + K } .
E)uj
= (m>1).

I |zt

Therefore, by taking the limits in these equations, we obtain that u; (0, z) = u} (T, z). Namely, u* satisfies the periodic
boundary conditions. Thus, u* can be continued to a smooth T -periodic solution to (2.3).

Now it remains to prove the second part of this lemma. Since d; and ¢; are independent of z, we see that for any
s eR, u']’?“(z, 7+ s) satisfies (2.3) with u’;?“(o, 2+9) =u(T,z+5). Asu®(t,2+5) > u’(t, 7) forany s > 0. The
comparison principle yields that u"" 248 >um(1, 2) as long as s > 0. Invoking Helly’s theorem, upon taking
a subsequence of {u™}, still labeled by {u™}, we can actually show that

lim ||u =0

m u*”C([O,T]X]R,R")

(see Theorem 3.2 in [41]). Thus, u*(z, -) is nondecreasing. Since g—ﬁ(t, u*) > 0 with i #£ j, the conclusion follows
from the (strong) maximum principle immediately. O

Theorem 2.5. Suppose that (Al) and (A2) are satisfied. Assume that 0 < d < 1 and a1(t)p(t) — bi(t)q() >

ax(t)p(t) —ba(t)q(t) = 0 for any t € [0, T]. Then, for each c < —2,/ (a1 p — b1q), there exists (U, W€) € C;’Z(R X
R, R?) such that (U¢, W€) and ¢ solve (2.1). Moreover, (U, W9) > (0,0) forall (t,z) € R x R.

Proof. We utilize Lemma 2.4 to establish the existence of a periodic traveling wave solution of (2.1). In order to apply
Lemma 2.4, a pair of ordered (irregular) super- and sub-solutions is needed. Set:

t

T
1
K= /[al(t)P(t) — bi(t)q(1)]dt, (1) = exp(f[al(s)p(s) —bi(s)q(s)]ds — t/c()).

0 0
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It is clear that
kop(t) = [a1 () p(t) — bi()g (@) ]e(t) — ¢ ().

Let w(t, z) = me(t)e’? and (U, W) = min{(w, w), (1, 1)}, where A. = ) VZCZ_A'KO, ¢ < —2,/ko, and m > 0 is an
arbitrary constant. o
We first show that (U, W) is an irregular super-solution of

{ Uy =U. +cU. 4+ Ulai(t) p(t)(1 = U) — b1 (t)g (1) (1 — W)],
Wy =dW. 4+ cW. + (1 = W)[ax() p()U — ba(t)q (1) W].

Since (1, 1) is obviously a solution of (2.5), it suffices to show that (#, v) = (w, w) is a super-solution of (2.5). In fact,
a simple calculation yields that

(2.5)

wzz + cw; — w, +w(a p(l —w) —big(l — w)) < wz + cw; — wy +w(ap — biq)
= mgpe’* (kz + cAe + K()) =0,
dwy; +cw; —w; + (1 —w)(apw — baqw) < wy; + cw, —w; +w(azp — baq)
< mepe™? (Ag + cAe + K()) =0.

Moreover, we observe that {(7,2) |0<u <1} ={(t,2) |0<v < 1}
Next we construct a sub-solution. Let ;4 (¢) be the periodic solution of

d
a () p()e(t) — (b2()q (1) + Ko + (1 — d)a2)v — d—: —0, de(1].

Notice that ¥4 exists and is unique since b (t)q(t) + «xo + (1 — d)k% > 0. In particular, ¥, is strictly positive since

a py > 0 for all t € R. Next we fix € such that € € 0, min{A., Y 62_4'“’} and let 9 = —[(he + €)% 4 c(Ae + €) + k0].
Clearly v > 0. Fix n| and ny such that n; > 1 and no, = max{n, n| max; ‘1‘}. Set:

¥ min{n| min; ¢, np min; Y1}

(1+ny maXr{%}) max, (g2 + ¥ 2) max, (a1 p +arp + b1q)

U2 W) =55 (1 =) a1 - m 15 e )

Ay =

Va (l)
where § € (0, Ag]. Notice that (U, W) < (0,0) forall z >z = —1“%. Moreover, when (¢, z) € R x (—o0, z°], we
have:
Ulaip(1 =U) —big(1 = W)+ U . +cU. - U,
= Se’\vz{(alp — blq)go(l —net ) alpéek‘z[ (1 — nle”’)]2 — (p'(l — nleez)
+ (A2 4 che)p — n19e[(Ae + €)* + c(he +€)]} + b1g(UW)
> 8e*°‘z{(a1p —big)g —kop — ¢’ —n1e[(@1p —b19)¢ + (ke + €)% + c(he + ) — ¢']
hez €z €z 14 €z
— Spe (1 —nie ) alp(p(l —nie )—i—blqtﬂd l—nzﬁe
= (Se)‘fz{nlﬁ(pe€Z - Sgoe)‘"z(l - nle“) |:a1p(p(1 - nle“) +bigyra|l — nz%e€Z ]} >0,
d
and

(I =WilazpU — brygW]+dW . +cW. - W,

= §et<? {a2p<p(1 — nleez) — bzq(l//d — nzeezwl) — Say pel* |:(p(1 — nleez)wd (1 — n2$eéz)]
d
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+(d3 + che)Ya — nayne[d O + €7 + cOe + €] = (W) — nzvf{e“)} +bg(W)?

> 86'\"1{021%0 — (b2g + 10 + (1 = d)A2) Y — ¥}y — Saz pe*e* [fﬂ(l - nleez)lﬁd(l — nz%fZ)]}

—n28e* T ay pg — [bag — (he + € — che + O |1 — Y| +(d — D (e + €Y1 }
> §el* {nzﬁtﬁleez — Sap pee* |:(p(l — nle“)wd (1 — n2$eez>:| } >0.
d

Thus, (U, W) is a (regular) sub-solution of (2.5) in R x (—o0, 1.

Note that both (U, W) and (U, W) are periodic in ¢, and (U, W)is nondecreasing with respect to z. Moreover, as m
is arbitrary, we have that (U, W) > (U, W) for all (,z) € R x R as long as m is sufficiently large. Therefore,
Lemma 2.4 implies that for each ¢ < —2,/ko, there exists (U, W) € C;’Z(R x R, R2) such that (U¢, W€) and ¢ solve
(2.5)and (U(-+T,2), W(- + T,2)) = (U(-, 2), W°C(-, 2)). In addition, (U{, WY) > (0,0) for all (z,z) € R x R. It
remains to show that

lim (Ut 2), WE(t. 2)) = (0,0), (Ut 2, Wet, 2) = (1, D).

lim
7—> 00
Notice that for each ¢ € R, lim;—, 150 (U (2, 2), WC(¢, 2)) exist since (U{, WY) > (0, 0). Let

(UC(t, £00), WE(t, £00)) = lim (U“(t,2), W(r,2)),
z—*o0
respectively. It is easy to see that
(UC( + T’ OO), WC( + Tv OO)) = (Uc(" OO), WC('a OO))

Thanks to the regularity of (U€, W¢) with respect to ¢ and the compactness of [0, T'], we find that (U°(z, z),
We(t, z)) = (U(t, £oo), WE(t, £00)) uniformly in r € R as z — £o00. Since

lim (U, W)= lim (U, W)= (0,0),
7—>—0 7—>—00

it follows that (US(r, —o00), We(r, —00)) = (0,0). On the other hand, since there exists z, < z° such that

0,0) < (U, W) < (U, W) < (U, W) for all z € (—00, z4], and (0,0) < (U, W) < (1,1) for all (t,z) e R x R,

we have (0,0) < (U(t,00), We(t,00)) < (1,1) for all + € R. Moreover, Barbilat’s lemma shows that

lim, oo (UL, W) =lim, o (U, WE) = (0, 0). Thus, (U(t, 00), W(t, 00)) is a positive periodic solution of

val

du
i ulai ) p@)(1 —u) —bi(Hg)(1 —v)],

dv

i (1 —v)[ax(t) p(t)u — by (1)g (H)v].
Due to (Al) and (A2), (1.3) has three and only three nonnegative periodic solutions (p(¢), 0), (g(¢),0), and (0, 0),
where p(t) and ¢ (¢) are given by (1.5). Under the transformations in (1.6), these periodic states are converted to
(1, 1), (0,0) and (0, 1), respectively. They constitute all the periodic solutions of (2.6) confined within [0, 1] x [0, 1].
Consequently, (U€(t, 00), W€(¢t, 00)) = (1, 1). The proof is completed. O

(2.6)

Theorem 2.6. Suppose that all the assumptions in Theorem 2.5 are satisfied. Assume that c = c* = =2,/ (a1 p — b19).

Then there exists (US,W<)e C;’Z(R xR, R?) such that (U, W) and c* solve (2.1). Moreover,
(UE, WE) > (0,0) forall (t,7) e R x R.

Proof. Let (U¢, W€) be the time periodic wave solution of (2.1) with ¢ < ¢*. Since |U¢| and |W¢| are uniformly
bounded, it follows from parabolic estimates that

||UCHC1+%’2+°‘(RXR,R) +[we ”CH—%’Z_HX(RXR,]R) <oo. uniformly forc & [c* —1,¢%),
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for some « € 10, 1[. Let {c,} be any sequence with ¢, € [¢* — 1, ¢*) such that ¢, — ¢* as n — oco. By taking a
subsequence of {(U, W)} if necessary (which will be denoted by {(U¢", W)} for convenience), we infer that
{(U, W)} converges in Cllo’c2 (R2,R) x CIIO’CZ(RQ, R) to a function denoted by (U c* WC*). By taking the limits in
(2.5), we see that (U c* WC*) satisfies (2.5). In addition, by Helly’s theorem, we can conclude that

lim [|U* — U -we =0. 2.7)

11— 00 , ]XR,R)]

This further implies that lim,_, oo [|| U — U< ||C(R><R,R) + |Wen — we' lcrxr,R)] = 0 since (U, W) is periodic
in t. Clearly, (U (t +T,), W' (t + T,)) = (U (t,-), W< (t,-)) and (US", WE) = (0, 0). Since (U (t,z + 5),
we' (¢, z*—l— s))* is a solution as *well, *where s > 0 is arbitrary, the (strong) maximum principle implies that ei-
ther (U7 ,WS) > (0,0) or (US , W, ) =(0,0). In light of (2.7) and the fact that lim,, (U, W) = (0, 0)
and lim,_, oo (U, W) = (1, 1) for each n, there exists M > 0 such that (US", W) < (4, 1) for all (t,2) €
R x (—00, —M] while (U, W) > (3, ) for all (r,z) € R x [M, 00). Hence we must have (U, W) > (0, 0).
Moreover, it is easy to see that

lim (U, W)=(0.0,  lim (U, W) =1

—>—00

The proof is completed. O

Corollary 2.7. Suppose that (Al) is satisfied. Assume that r1 and ry are strictly positive in [0, T] such that
a1 (¢) min; 2—' > by (1) max; 2—2 for all t € [0,T). Moreover, assume that 0 < d < 1, % >1 > % and
[ba(t) — b](t)]mln, > [ax(t) — ag(t)] max, a‘ for all t € [0, T). Then, for each ¢ < = —2/(a1p — b19),
there exists (U°€, WC) € C; Z(R x R) such that (U¢, W) and c¢ solve (2.1). In addition, (U;, W) > (0,0) for all
(t,z) e R x R.

Proof. Let p(r) and ¢ (¢) be given by (1.5). Since p(¢) and ¢(¢) are periodic functions that satisfy:
p'®) = p®)(r1(t) —ai(t) p(1)), q' (1) = q()(r2(t) — ba(t)q (1)),

respectively, the comparison principle implies that

t t t
min 1() (< m ri(t) min ra(t) <q(t) < max rz()‘
0<r<T al(t) O<t<T al(t) 0<t<T by(t) 0<t<T by(1t)

(2.8)

This together with the assumption implies that

ri(n) ra(7)
a ()p(t) = al(t)oglgT a1 > bz(t)0<[<T D) > Z ba(1)q ().

As ] = ay p and 77 = byq, by the assumption that azgz; 1> 20 forall t € R, we readily verify that (A2) holds. It

I2Y0)
follows from the assumption and (2.8) that

ri(t)
> [aao) — )] max, 20

[b2(t) = b1(1)]q (1) = [b2(1) — b1(t)]0< . (t) > a2 (1) —a1()] p(0).

Namely, ai(t)p(t) — bi(t)qt) = ax(t)p(t) — ba(t)q(t) for all t € [0,T]. In addition, we have
ax()p@) Za (@) p(t) = ba(t)q(t). Therefore the conclusion follows from Theorems 2.5 and 2.6. O

3. Uniqueness and monotonicity of periodic traveling wave solutions

In this section we study the uniqueness and monotonicity of periodic traveling waves of (2.1). We consider the
following general system:
Ur = Uz +cuz +g(t, u,v),
vy =dv,; +cv; + h(t, u,v),
0,0) < (u,v) <1, 1); 3.1
(u(t,2),v(t,2) =@ +T,2), v +T,2),
lim (u,v) =(0,0), lim (u,v) =(1, 1),
—>—00 Z—>00
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where 0 <d < 1, g € C?2(R x R%,R), h € C?*(R x R% R) for some 6 € 10, 1[, and g(t + T, u, v) = g(t, u, v),
h(t +T,u,v) =h(t,u,v) forany (r,u,v) € R x R%.
Throughout this section, we assume that

(H1) g(t,1,1) = h(¢,0,0) = h(t,1,1) = 0 for any ¢ € R. Moreover, g(¢,0,v) =0 for all (t,v) € R x R, and
gu(taoao) >0
(H2) gy(t,u,v) >0forall (f,u,v) e R x RT x R, and hy, (¢, u,v) >0 forall (£,u,v) e R x R x [0, 1].

In what follows, we set:

. —C — 2_4
K=ga,0,0), () =ehoaue00ds—t x5 po 5 JTCTNT T e (32)

(H3) hy(t,0,0) <0 and h,(,0,0) = 0.
(H4) Let:

(me*2p (1), me* (1)), (t,2) eRxR, ifc<c*,

| (m = n2)e*2¢p 1), (m — nz)e*p (1)), (1,2) € R x (—o0, - %], if ¢ = ¢*,

where m and n are arbitrary positive constants. Assume that w is a (regular) super-solution of

w

{u,:uzz+cuz+g(t,u,v), (3.3)

vy =dvg; +cv, +h(t,u,v).
(H5) Let v be a characteristic exponent of

W A w=0
dt o

where A(t) = (iz 213 ﬁzgii;) Let (i;g;) be the eigensolution associated with v. Assume that v < 0, and

both ¢; and ¢, are strictly positive in [0, T'].

Lemma 3.1. Suppose that (u,v) € C"*(R x R, [0, 1)?) is a regular sub-solution of (3.3) and is T-periodic in t.
Assume that (u, v) € CZ/Z’Q(]R x R) is T -periodic in t, and (u(t,-), v(t, -)) is nondecreasing, where 0 < 6 < 1. In ad-
dition, there exists @ € R such that (u(t, z),v(t,z)) = (1, 1) forany (¢, z) € R x [0, +00). Moreover, (u(t, z), v(t, z))
satisfies:

I/_tl‘ 2 ’/_[zz +Cl/_lz +g(l, ’/_tv 5)’

vy 2dv,; +cvy + h(t,u,v),
whenever (i1,7) < (1, 1), and {(t,2) € R? | u(t,z) < 1} ={(t,2) € R? | v(z, z) < 1}. If there exists o < o such that
u(t,o),v(t,0)) < (t,o),v(t, o)) forallt € R. Then (u,v) < (u, v) for any (t,z) € R x [0, +00).

Proof. The proof is similar to that of Lemma 3.1(1) of [18]. Define:

0* =inf{0 € [0, 00) | u(t,z —0) <u(t,z) forall (t,2) € R x [0 + 6, +00)},
05 =inf{6 € [0, 00) | v(t,z —0) <V(r,z) forall (r,z) €R x [0 + 6, +00)}.
From the assumptions it follows that (u(z,z —0), v(t,z —0)) < (u(t, z), v(¢, z)) forall (¢,z,0) e R x [0 4+ 6, +00) X
[6 — 0, +00). Thus, 6,6, € [0, — o). Assume without loss of generality that 6* = max{6*, 0,}. We claim that
6* =0.
Assume to the contrary that 6* # 0. Then there exist two sequences {0, },en and {(¢,, Zn)}nen such that 6, — 6*
asn— 00,0<6, <60* z,>0+6,,and

u(ty, zn — 0p) > u(ty, 2n), nli)nc}o[ﬂ(tna Zn — 0p) — u(ty, Zn)] =0.
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Notice that {z,} is bounded and hence there exists a subsequence of {z,}, still labeled by {z,}, such that z,, — z* €
[0 + 6%, +00) as n — oo. Since (4, v) and (u, v) are T-periodic in ¢, we may assume without loss of generality that
t, € [0, T] for each n, and that t,, — t* as n — oo. Thus, u(t*, z* — 6*) = u(t*, z*) and v(r*, z* — 0*) < v(r*, z*). In
view of the assumptions, we have:

(g(t*, 0), y(t*, 0)) < (ﬁ(t*, o), ﬁ(t*, a)) < (ﬁ(t*, o —I—@*), E(I*, o +<9*)). (3.4)
Therefore, z* > o + 6*. In particular, since u(¢t*, z* — 6*) = u(¢*, z*) < 1 and (u(t, -), v(¢, -)) is monotone and (i, v)
is Holder continuous, [t* — &,t* + ¢] x [0 + 0%,z + ] C {(¢,2) | u < 1} for some & > 0 which is sufficiently small.
Write,
(4_9* t, 2, v, z)) = (g(t, 7— 9*), y(l, z— 0*)), @, v) = (11_9* —a, v — 5).
Note that (ii(z, z), v(¢, z)) < (0, 0) for any (¢,z) € R x [0 + 0%, +00) and i (t*, z*) = 0. Since g, > 0, we have:
1
|:/gu(t, w -, +1- r)v)dr}z + iz 4 cii, —ii; >0 in{i < 1}NR x [0 + 6%, +00),
0

it then follows from the (strong) maximum principle that u(¢,z — 6%) = u(z, z) for all (¢,7) € (—o0,t*] X [0 +
0*, z*1N{(t, z) | u < 1}. Therefore, we have u(t*, o) = u(t*, o +6*), which however contradicts (3.4). Hence 6* = 0.
Moreover, thanks to the maximum principle, it is easy to see that (u, v) < (u, v) for all (¢,z) € R x [0, +00). The
proof is completed. O

Lemma 3.2. ([13]) Let the differential operators Ly := Z?,j:l affj(t, X)%;xj + Z?:l pr L — % k=1,2,...,D

i ox;
be uniformly parabolic in an open domain lt, M| x £ of (t,X) € R x R", that is, there is ag > 0 such that
al{‘j(t,x)élfj > o0 Sl.z for any n-tuples of real numbers (§1,62,...,&,), where —0co <t <M < 00 and 2 is

open and bounded. Suppose that ak. bk eCcqr,M[ x 2,R) and max( x)elr, M[x 2 |bf.‘(t, x)| + |affj(t, x)| < Bo for

i,j> v

some Bo > 0. Assume that w = (wy, wa, ..., w;) € C([t, M) x 2, Rl) N Cl’z(]r, M[ x $2, Rl) satisfies:

l
ch’s(t,x)ws + Liwr <0, (t,x)elt,M[x 2, k=1,2,...,1, 3.5)

s=1

where c&5 € C(Jt, M[ x £2,R) and c** > 0 if k # 5, and max( xejr.mixg |, %) < yo (k,s =1,2,...,1) for
some yy > 0. Let D and U be domains in 2 such that D CC U, dist(D,dU) > o, and |D| > ¢ for certain positive
constants ¢ and €. Let 0 be a positive constant with T + 460 < M. Then there exist positive constants p, w| and w3,
determined only by o, Bo, Y0, 0, €, n, diam§2 and 0, such that

inf wi = o | (w)™ — )y max sup (wi)~.
10+30.7+40[x D | lraeso.v200x) J=Lek b (e T+ 400xU)

Here (wy)* = max{wg, 0}, (wx)™ = max{—wy, 0}, and 0p(It, T +40[ x U) ={t} x U U[1, T +40] x dU. More-
over, if all inequalities in (3.5) are replaced by equalities, then the conclusion holds with p = oo, and with w1, wy
independent of e.

Proof. See Lemma 3.6 of [13] for a proof. O

Lemma 3.3. Suppose that (H1)-(H4) are satisfied. Assume that (u,v) € C ;’2(R x R) and c¢ solve (3.1). Then there
exist positive constants K; (i =1, 2,3) and M > 0 such that for all (t,z) € R x (—o0, —M],

Kie** <u(t, z) < Kae™?, 0 <v(t,2) < Kze™?, ifc<c¥, (3.6)
and

Kilzle* <ult,z) < Kalzle*®,  0<w(t,2) < Kalzle™?, ifc=c* (3.7
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Proof. Thanks to (H1), (3.1) can be written as

Uy =y, +cu, +/ gu(t, Tu, Tv)dt)u+ | (gu(t, Tu, TV) dT)V,
0

0 (3.8)

1 1
( (
1 1
vy =dv,; + cv; +f(hu(t, Tu, tv)dt)u +f(hv(t, Tu, rv)dr)v.
0 0

Let D=]z— %,z—i—}ﬂ, U=]z— %,z%—%[,[):]z— l,z+1[withzeR,t=0,and 8 = T. Since u(-, z) and v(-, 2)
are periodic and u# and v are both positive and bounded by 1, applying Lemma 3.2 to (3.8) yields,

(u(t,2),v(t,2)) < Ni(u(r',2),v(r',2)) forallzeRandallz, i’ €R, (3.9)

where N is a positive constant independent of # and v. Now let

t T T
a=hy(t0,0), é(r):exp(/hv(s,0,0)ds—ta), ﬁ:/%dr, ﬁ=/2dt. (3.10)
0 0 0 ¢
Then a straightforward calculation yields,
; 0,0
ta ) - ta ’
ﬁzz+c12z+/cﬁ+/g( “.v) ¢g“( u dt =0,
° . 3.11)
hy(2,0,0 h(t,u,v) —hy(t,0,0)u —hy(¢,0,0
dﬁzz+cﬁz+aﬁ+/Mdt+/ (¢, 1, ) = hu 2 Ju = )vdt=0.
0 ¢ 0 ¢

Note that o < 0 because of (H3). Moreover, thanks to (H1), it is not difficult to see that

(g, u,v) — gu(2,0,00u]p ™" | < C(jul* + [ullv]),
[A(t, u, v) — By (2, 0,0)u — iy (£,0,0)0]¢ ™" | < C(Jul* + luv]| + v]?)

for some constant C > 0, which is independent of u, v, ¢ and z. In view of (3.9) and the positivity of u and v, it follows
that

T
f [g(t, u,v) — gu(2,0,00u]p™"|dr < C(1a* + 1al|D]),
0

T
/ |[A(t, u, v) — hu (2, 0,0)u — hy(2,0,0)0]¢ " | dr < C(1a* + 1allo] + 151%),
0

for some positive constant C independent of ¢ and z. Hence, we have:

T
/|[g(z,u,u)—gu(z,o,O)u]¢—1|dz:o(|ﬁ|) as 7 — —00. (3.12)
0

Furthermore, choose € > 0 such that & < —%. Then there exists M, > 0 such that

T T
/ |hu(2,0,00ugp™" | dt +/ |[A(t, u,v) — hy(2,0,00u — hy(t,0,0)0]¢ ™" |dt < Celi + 60, z< —M,,
0 0
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where C; = maxog,<r[h.(,0,0) + 8]¢~)_1. Consequently,
dﬁzz+cﬁz+%ﬁ+cgﬁ>0, < —M,. (3.13)

In order to prove (3.6) and (3.7), we need to distinguish between two cases.
Case L. ¢ < ¢* = —2,/k. We begin by showing that

() =mie* + O(e(k‘*e)z) as 7 — —o0 (3.14)

for certain positive constants m| and €. In view of (3.12), from the standard differential equation theory (see Theo-
rem 2.4 of [17]), it follows that 1 = O (e*<~97%) as 7 — —o0, where § > 0 is sufficiently small such that § < %‘ Since
0= 0(e* %) as 7 > —o0, there exist positive constants Cs and My such that & < Cse* =92 whenever 7 < — M.
Assume without loss of generality that M, > M, then it is easy to verify that for any m > ZC(;—*CS, w = meed2
satisfies:

dwzz+cwz+%w+cgﬁ<0, 1< —M,. (3.15)

Since ? is bounded, we can select an mg > 0 such that mge~*<=9OMe > 5(—M,).

We next show that ws = mge?<=9% > {(z) for all z < —M,, namely, inf, <y, {ws — 0} > 0. Suppose that this
is not true, then, since ws — v — 0 as z — —o0, there exists a finite point z* < —M, such that ws(z*) — 0(z*) =
inf,<_ 7, {ws — 0} < 0. Notice that

N A o A
d(Ww = V)zz +c(ws —0): + S (ws =) <O, 2 < —Me.

As ws — 0 attains its global minimum in (—oo, —M,] at z = z*, we have that (w — 0),,(z*) > 0 and (w — 0),(z*) =0,
which forces that 5 (ws — 0)(z*) < 0. This is clearly impossible since 5 < 0. Therefore, ¥(z) < mse?e=92 when

z < —M,. In other words, 0 = O (e*<~9%) as z — —o0. This implies that

T
/ [g(t, u,v) — gu(2,0,0)u]p™"|dt = O(e**79%)  as z — —o0.
0

Hence, (3.14) follows from Proposition 6.1 of [33] (see also [34]). Clearly, m; > 0 since & > 0. If m; > 0, then for
sufficient large m, it is easy to see me*<? satisfies (3.15) for z < 0 with |z| sufficiently large, and by arguing in the same
way, we can infer that 0(z) = O (e*<?) as z — —oo. Furthermore, (3.14) implies that there exist positive constants C
and K such that

inf u(r,z) < ¢ sup ¢ (1)e’* sup u(t,z) > C ot & (1)e*?
t€l0,T] ’ = +€[0,T] ’ t€[0,T] ’ - 2T tel0,T]

whenever z < — K. Thus the first compound inequality of (3.6) follows from (3.9) immediately provided that m; # 0.
Likewise, we can show that 0 < v(z, z) < K3e’<? for some constant K3 > 0 for z < 0 with |z] sufficiently large.

Therefore, to obtain (3.6), it suffices to show that m % 0. To this end, we adopt a technique developed in [18]
to reach a contradiction by assuming m| = 0 (see Propositions 3.2 and 3.3 of [18]). Assume by contradiction that
m1 = 0. Then, (3.14) together with (3.9) yields that there exist positive constants C and K such that sup, g u(, z) <
Ce*et97 whenever 7 < —K, where € > 0 is sufficiently small. Moreover, with the same reasoning, we can show
that © = O(e*<+9?) as 7 — —o0, which along with (3.9) implies that sup,.g v(t, z) = O (e*<+9?) as 7 — —oc0.
Therefore, there exists a sequence {(t,;, 2n)}neN € R X R™ such that

In — —00, en = u(ln, zn)e " — 0, en =0y, z0)e " >0 asn— oo.

Since both ¢, and ¢,, are positive, it follows from (3.9) that

- 2Ni(en +€2)(2) (e}“'z”

u(t, zn), v(t, zn)) < Ni(ene™c?n, epetcin .
(u(t, zn n) < Ni(en i) < St

e}”"z”)

’
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for all n € N and all r € R. Next we let:

2N (en + ) () ("%, &), (1 1)}
infyeo0, 774 (1) , )

Clearly, (u(t,zn),v(t,zn)) < (Uny(t,z,),Vs(t,z,)) for all t € R, (u,,v,) € CR x R) is T-periodic in ¢, and
(un(t,-), v,(t,-)) is nondecreasing. In addition, there exists &, for which (u,(z,z),v,(t,z)) = (1,1) for all
(t,z) e R x [0, +00). Notice that {(¢,z) | u, < 1} ={(z,z) | v, < 1} since u,, = v, for all (¢, z) € R x R. Moreover,
due to (H4), (u,,v,) is a regular super-solution of (3.3) whenever (u,, v,) < (1, 1). Thus, (u,(, -), v,(t, -)) has all
the properties specified by Lemma 3.1. Hence Lemma 3.1 implies that

2N (en +€)p (1) (e*%, &*7), (1 1)}
infie0, 719 (1) ’ B

for all (t,z) € R x [z,,, +00). Since z,, — —o0 and ¢, + €, — 0 as n — o0, it follows that (u(z, z), v(¢, z)) = (0, 0)
for any (¢, z) € R x R™, which is impossible. Thus, m # 0.

Case II. ¢ = ¢* = —2,/k. The proof is similar to case I. Since ¢ = —2./k, A> + cA + « = 0 has a repeated root
Ac = /K. Similar as deriving (3.14), we have:

(@ (t,2), 0 (t,2)) = min{

0 < (u(t,2),v(t,2)) < (#n(t,2), (1, 2)) =min{

i(z) =mi|zle** + O(e*?) asz— —oo

for some positive constant 1. Notice that m|z|e*<? satisfies (3.15) provided that m is sufficiently large and z is
negative. Thus, it follows from the same reasoning that v = O (|z|e)‘fz) as z - —oo if m| # 0. Furthermore, thanks to
(3.9), (3.7) follows provided that m # 0. Thus, to show (3.7), we need to prove that m # 0.

Assume by contradiction again that m; = 0. Then, we have that & = O(e*?), b = O(e*?) as z — —oo, which
with (3.9) implies that sup, g u(#,z) = O (e*<?), sup;cr V(#, 2) = O (e’%) as 7 — —o0. Hence, there exists a sequence
(th, Zn)nen € R x R™ such that

In —> —0O0, 8n=u(tnazn)|zn|_le_kczn — 0, €n=v(tnazn)|zn|_le_kczn —0 asn— oo.
Using (3.9) again, we find that
2N1(en + €n)lznlep (1)

t, , t, < N )‘-czn’ AeZn )‘czn, AeZn 3 16
(”( Zn), V( Zn)) 1(8n|Zn|e €nlznle ) < infrep0.716 (1) (e e ) ( )
forall n e N and all r € R.
Now let 6, be the least positive number such that
Ni(en + €n)lzale* ¥ 6
ALERLCA e (3.17)
On — zn)
It is easy to see that the sequence {6, },cN converges to 400 as n — 400. Next we set:
2N1(&n + €n)lznl A
Uy (t,z) =v,(t,z) = - (O — e ().
" 8 infre[0,71 () (6n — 20)
Notice that
2N 6 2¢ (¢ h
uZ(t,O):v,f(t,O):_ 1(en + €1)12116n b(t) = - @(1) e_xc%
inftep0, 719 (1) (On — zn) inf;ep0,71¢ (1)
and

2 inf;e(0,71 0 () (0 — z0) inf;ef0,71 ¢ (¢)

In addition,

2N1(en + €n)|znl
infye(0,719 () (0 — z2u)

[}\c(en —-2)— 1] =0,
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for all (f,z) € R x (—o0, 92"] provided that n is sufficiently large. Apparently, (u*

(t,z) e R x (—o0, —”]. Now we let:

> (0,0) for all

n’n

0 6
(ﬁn’ﬁn)=m1n{(u:(t9z)av;:(tvz))7(171)} 1fZ<?n and (ﬁl’lvl_)n)z(lal) le n

It is clear that (u#,,v,) € C(R x R, [0, 112 ) is T-periodic in ¢ and is nondecreasing in z for n sufficiently large, and
(thn, Vn) = (uy, n) as long as (u,, v,) < (1, 1). Furthermore, {(¢,2) |u, <1} ={(t,2) | v, < 1} € R x (—o00, 9”]
and by virtue of (H4), (u; (¢, z), v;i (¢, z)) is a super-solution of (3.3) whenever (¢, z) € R x (—o0, —”]. Thus, (u,, v,)
enjoys all the properties required by Lemma 3.1 when n is sufficiently large. In particular, (3.16) shows that
(u(t, zn), v(t, zn)) < (Uy(t, zn), vn(t, zo)). Therefore, if n is sufficiently large, applying Lemma 3.1 with o = z,, yields
that (u(t, z), v(t,2)) < (u,(t,2), V,(¢, 2)) for any (¢, z) € R x [z,, +00). Since (u) (¢, 0), v;i(z,0)) < (1, 1), we have
(thn(1,0),0,(t,0)) = (u;(t,0), v;(t,0)). Hence

49(1)

A TR
infiej0,71 9 (¢)

(u(2,0), v(t,0)) < (ui(r,0),v;(t,0)) =

As lim;, efkc%n = 0, it follows that (u(¢, 0), v(¢, 0)) = (0, 0), so we reached a contradiction, which implies that

m1 # 0. Therefore, (3.7) follows. This completes the proof. O

Proposition 3.4. Suppose that all assumptions of Lemma 3.3 are satisfied. Let (u, v) € C ;’2(]1% x R) and c solve (3.1).
Then there exist positive constants M| and M such that for all (t,z) € R x (—o0, —M],
lu(t, )| < Mie*?,  |u(t,2)| < Mie™?,  ife<c*, (3.18)

and

luz(t,2)| < Mylzle™®,  |v.(t,2)| < Mifzle™?,  ife=c". (3.19)

Proof. Thanks to (3.8) and the interior parabolic L”-estimates (see Theorem 7.22 of [31]), for any z € R and any
p € 13, oo[, we have:

2T T+ 2T z-+1
Uf (liss (0. )[7 + |y (0.)]” + e 2, )] )dsdr] < U/ (ll? + 01?) dsdr} ,

1
2

2TZ+§ 2T z+1
|:/ (|vss(f S)| +|vs(7—' S)|p+|vr(7—' S)| )deTi| < |:// |u|p+|v|p dsd‘[i|

T

(Sl

7—

for some positive constant C independent of u, v, t and z. In view of (3.6) and (3.7), there exists M > 0 such that

2T z+1

/f (Jul” + [v|?)dsdt gc’ sup (lul + v]) < M'|z|'e**, z<-M
0 o1 (t,2)€[0,2T Ix[z—1,z+1]

=

for certain positive constants C” and M’, which are independent of z, where t =0 ifc <c*andt=1if c=c*. Asa
result, we have:

2T > -
[// gy (@1 +2|" + ug(@.n+|" +uc(t,n+2)|")dndr | <Mlzl'e**, z<—M,

==

I\)\

' 1
P

|:// lom (T n+2|" + vy n+2)|" + vt n+2)|")dndr | < M'lz'e**, z<—M.

I\)\
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Consequently, the Sobolev embedding theorem implies that

L AeZ _
{us @ 9 cqrorige—t oty + @D eqrorng—t caip b S Mill'e™s 2 <=M,

for some positive constants M (see [1] or [21]). Since both u# and v are T -periodic in ¢, (3.18) and (3.19) follow. The
proof is complete. O

Next we proceed to establish the exact exponential decay rate for a solution of (3.1) as z — —o0. To achieve this
goal, we employ a dynamical system approach by using the variable z as an evolution variable (see [36,37,41]). Let
A:D(A) CY — Y be the linear operator defined by:

0 1
a (at ~ 8u(1,0,0) —c) | 20

Here Y = L% X LZT, L2T ={jt+T)= j(t),foTIj(t + 5)|?ds < oo} equipped with the norm ||j||LzT =

( fOT | j(s)|2ds)%. It is easy to see that A is closed and densely defined with the domain D(A) = H} X LZT,

H} ={jeL?, sup, fOT |j'(t + 5)|>ds < oo}, where ’ stands for the weak derivative of j. Now let w = u, then
the first equation of (3.1) can be cast as a first order system:

dz (w> :A(w> + (gu(t,o,())u—g(t,u,v)>‘

We will take the Laplace transform of this system to obtain the asymptotic expansion of u. To this end, we first
examine the spectrum of A.

Lemma 3.5. Let A be defined by (3.20). Then o(A) = 0,(A) ={r e C| M +eh=—k + QJTT”i, n € N}, where
i = v/—1. Moreover, . € op(A) and ker(Acl — A) = span{(x‘fqb)}. In particular, ker(A.I — A)" = ker(A.I — A)
forn=2,..., provided c < c*. If ¢ = c*, then ker(A.I — A) C ker(AoI — A)?, ker(AcI — A)* \ ker(A.] — A) =
span{((kcfl)q&)}, and ker(AcI — A" =ker(AI — A)? forn=3,....

Proof. Let L: H% — LZT be defined by:

L:=09; —gu(t,0,0).

Notice that A € p(A) if and only if A> + cA € p(L). Indeed, if A € p(A), then for any (
satisfying,

i;) € Y, there exists (,’Z‘;)

Au—w = pi, )
gu(f,O,O)M—3;u+cw+kw=p2, .

P

pz) is arbitrary, M 4cre p(L).

which implies that g, (¢, 0, 0)u,, — d;up + (cA + A*up = (A + ¢) p1 + pa. Since (
On the other hand, if A2 4+ cA € p(L), then it is clear that

(u)_( [(A2+cM)I = LI [(A + ) p1 + pa] )
w ) \AMA2+ e — LI+ p1 + p2l — p1

solves (3.21). Thus, A € p(A). This also implies that A € o(A) if and only if A2 4+ ¢ € o(L). Since L has

compact resolvent, for any w € C, wl — L is Fredholm of index zero. Thus we have o(L) = o,(L) and
op(L) = {—« + %, n € N}. In addition, if 2 t+cere op(L), that is, M4 er=—k+ 2”—T7” for some n, then
¢(t)ezmTT”
2nmit
Ap()e T
to the eigenvalue A of A. Hence the first part this lemma follows. Apparently, A, € o (A) since k% +che +x=0.
If (“1) € ker(AcI — A). Then we must have that A.u; = w; and g,(#,0,0)u; — d;u; — xu; = 0. Since

wi

ker(—«k1 — L) = span{g}, it follows that ker(A./ — A) = span{ (A(frb )}

qb(t)eL%m is the eigenfunction associated with A% + cA. Namely, ( ) is the eigenfunction corresponding
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Now assume that ¢ < ¢*, we claim that ker(A.] — A)" = ker(A.I — A), n =2,.... To this end, it suffices
to show that ker(A./ — A)? = ker(A.I — A). Assume to the contrary that this is not true, then there exists
(3)22) € ker(AcI — A)? \ ker(A.] — A). Since (AoI — A)(Zé) € ker(A.I — A) and ker(A. I — A) = span{(k‘f(ﬁ)},
it follows that A.uy — wy = k¢ and g, (¢, 0, 0)ur — 0;ur + cwy + A wy = kAo for some nonzero constant k. Without
loss of the generality, we assume that k = 1. A direct calculation shows that —xus + g, (¢, 0, 0)us — 0,2 = 2Ac+¢)P,
that is, (—«xI — L)up = A + ¢)¢. Let L* := —3; — g,(¢,0,0) be the formal adjoint operator of L. Note that
—k is also an eigenvalue of L* and ¢! is the corresponding eigenfunction. Therefore, the Fredholm alternative
implies that fOT Qhe + O)pp~ldt = 2re + ¢)T = 0, this is impossible since 2A. + ¢ = —v/c2 — 4k < 0. Thus,
ker(A.l — A)? =ker(r.I — A). By induction, we can show that ker(A./ — A)" =ker(A.I — A) forall n € N*.

It remains to prove the assertion for the case of ¢ = ¢*. We first show that ker(A.J — A) C ker(Al — A)%.
Again assume that (5)22) € ker(A.I — A)%. Then the same arguments as the above yield that A.up — wy = k¢
and —kuy + 2,(¢,0,0)ur — ouy = 2A, + c)k¢ for some nonzero constant k. Since 21, + ¢ = 0, we have
—Kkuy + g,(,0,0)ur — d;up = 0, this implies that u» = m¢ for some constant m and hence wr, = (mi. — k)¢.
Therefore, every element belonging to ker(i./ — .A)%> must be in the form ( (m )Tf ") ) Note that

mé ¢ p
((mxc—kms) "‘((xc— 1>¢> “m_k)(w)'

2 _ ¢ ¢
ker(A.1 — A) _span{<(kc_1)¢),(kc¢)}.

Next, we prove that ker(A.1 — A)" = ker(A 1 — A)? for all n € NT with n > 2. With the same reasoning, it is
sufficient to show that ker(A./ — .A)3 =ker(A 1 — A)2. Again assume by contradiction that this is not true, then there
exists (Zg) e ker(A. — A)3 \ ker(A.I — A)%. Thus,

It then follows that

Aeuz — w3 =me, 8u(1,0,0)uz — du3 + cws + Acwz = (mre — k)¢,
for some constants m and k. Note that k £ 0, otherwise, it follows from the above arguments that (Z;i) is a linear

combination of ((kcfl) ¢) and ( kf’ ¢). A straightforward computation shows that —xu3 — d;u3 + g, (¢, 0, 0)uz = —k¢.
Here we used the fact that 2A. 4+ ¢ = 0. Thus applying the Fredholm alternative again yields that —k = 0, which is a
contradiction. This contradiction confirms that ker(A.I — A)> =ker(A.I — .A)%. The proof is completed. O

Proposition 3.6. Let ©. = {, € C| A, — 2¢ <ReA < A, + 2¢, € € RT} be the vertical strip containing the vertical
line Re A = A.. Then there exists € € ]0, %[ sufficiently small such that ©¢ N o (A) = {Ac}. Furthermore, if ¢ < c¥,
then the Laurent series for (A — A)~! at » = A is given by:

M =A== 21)"S" T — (A =27 P. (3.22)
n=0

In case that ¢ = c*, the Laurent series for (\ — A)~! at A = M. is given by:

o0

(=A== 2)"S"™ = (A= 2) TP~ (=) ?D. (3.23)
n=0
Here
_ L fer=-A 1 » ~
=i o P FF 2m‘/(“ A7dr, D=(A=2)P,
r r

and I': |A— Al =y < 2¢€.

Proof. In terms of Lemma 3.5, A € o (A) if and only if M4er=—k+ % Let A = A, +iA,,, where A, A, € R.
Thus, if A € o (A), then A, and A, have to satisfy:
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2nmw

A2 =22 4 er +Kk =0, Ay + )y = - (3.24)
Let A, = A.+¢& with ¢ > 0. Then [A2 4 cA, +«| = |e — /2 — dic||e| and | T(zzfﬁcﬂ = |T(2 272 - )|. Hence, (3.24)
r e—A/ cc—4k

has no solution as long as ¢ is sufficiently small. This shows that there exists €’ > 0 such that ® N o (A) = {A.}.
Thus, A = A, is the only singular point of A — A in ®.. By [26], the Laurent series for (A — A~ Vata=a.is
given by:

o0

_ -1 _ — _ ngon+l _ L _ b
A=A = Z()» A S O — Ao) 2} (n — Ac)(n+1)'

n=0 n=

Here P is the spectral projection. Denote the range of P by R(P). As A, is an isolated eigenvalue of A of finite
algebraic multiplicity, A, is a pole of (A — .A)~! (see Proposition 1.8 of [23]). In particular, by Lemma 3.5, A is a
simple pole of (A —.A)~! and R(P) = ker(A.I — A) provided ¢ < c*. Thus, if ¢ < c*, then D" =0 for all n € N7,
and (3.22) follows. In case that ¢ = ¢*, A, is a pole of (A — .A)~! of order 2 and R(P) = ker(rA.I —.A)%>. Then D" =0
for all n > 2, which yields (3.23). The proof is completed. O

Remark 3.7. Let A € p(A) and A = u + in with u, n € R. Denote by S the subspace of elements in Y of the form

((])) and let (A1 — .A)g1 be the restriction of (A — .A)~! to S. Then we notice that for certain positive constants C
and X,

C
|1 — A5 < oy il > 2,

provided that u € [A. — 2€¢’, . + 2¢']. Indeed, if () = (A1 — A)gl(?), then w=Ju and u = A* +cx — L)~}
Define:

T

1000 c
<l’]>::!Wdt’ l,]GLZ s

where LQT(C is the complexification of L2T and 7 stands for the complex conjugate of ;. Then

() 8u(t,0,0); _'”]idt
L ¢ ¢ ¢

(1) _](l> _gu(t,O,O)J—KJ]ldt
[\ ¢ ¢ (] ¢

T

Re((L+«1)j, j)= Re/
0

T

Similarly, we can show that Re(—(L 4+ «1)j, ) = 0. In view of Proposition C.7.2 of [20], both —(L + «1) and

L + « 1 are m-accretive and {ReX # 0} C p(L + «I). Hence we have that A2 +cx—L)7 Y < m for

some constant M > 0 as long as Re(A% + cA + k) # 0. Using the fact that )»% + ¢k = —k, we find that

M(lp+in|+1)
p2 =A% —c(he — p) — 1|
Let A(p) = pu? — k% — ¢(Ae — ). Then A is bounded for u € [A, — 2¢,1. + 2¢’]. Consequently,
2
limyy| - 00 % = 1 uniformly for u € [A. — 2¢’, . + 2€’]. Therefore, there exist positive constants X and
C such that

|1 - A5 < |
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C
1 = A5 < FERLES

whenever u € [Ae — 2€’, Ac + 2€'].

Theorem 3.8. Suppose that (H1)—(H4) are satisfied. Let ¢ < ¢* = —2./k. Assume that (u,v) € C ;’Z(R x R) and ¢
solve (3.1). Then

u(t,z) | . v(t, 2)

-, — =1, j lyinteR, i *, 3.25
Z_)lr_noO et () Z_)lr_noo Ky eri gy (1) uniformly in ifc<c ( )
uZ(t7 Z) _ . UZ(t’ Z) _ . . . *
z—)lr—noo W = Ac, z—)lr—noo W = )\.C, umformly int e R, lfC <cC, (326)
and
t, . f, . . .
m % =1, lim % =1, uniformlyint €R, ifc=c", (3.27)
2= =00 ky|zlet<tg (1) 2= =00 ki|z|et<igq(r)
t, . z, .
4alt, 2) cs v:(t. 2) Ae, uniformlyint € R, if c = c¥, (3.28)

im —————— = im —————— =
z—>—00 ki z|ere?¢ (1) e>—00 ki|z|ergy (1)
for some positive constant k|. Here

1

b4 () = ¢4 (0)elo (r:0.0—0)ds / el (e @000=) Ty (¢ 0 0)g(s) dls,
0

T (3.29)
T _ —1 T _
$a(0) = (1 — elo (nt:0.0-0)dr) / els @000ty (5.0,0)(s) ds.
0
ando =« + (1 — d)k%.
Proof. The proof will be divided into two steps.
Step 1. We first show that there exists a constant k; > 0 such that
t, . f, . . .
im _u.2) =1 ifc<c* and im _uhg) =1 ifc=c", uniformly in ¢.
i~ —00 kjeteig (1) e—>—00 ky|z|ete?¢ (1)
Due to (H1), we see that
1
|:/gu(t, Tu, v)dri|u +u; +cu, —u; =0.
0
By virtue of the (interior) parabolic L” estimates and (3.9), it is easy to see that
el | el o, (3.30)
(r,7)eRxR |U] |ul

for some constant Cr. Let x (z) € C3(R,R) such that x = 1 if z<0and x =0if z> 1, and |x/| + "] + |x"'| < 00
for all z. Now set:

W=, u® = xu, w® = (xu);.

A direct computation shows that

w? +cw® —uf =—gu(1,0,00u® + x[gu(t,0,0u — g(t,u, v)| + x"u+2x"uz + cx'u. (3.31)
Let

g(t,2) = x[8u(,0,00u — g(t,u, )] + x"u +2x"u; + cx'u. (3.32)



646 G. Zhao, S. Ruan / J. Math. Pures Appl. 95 (2011) 627-671

Then, as shown before, by using z as an evolution variable, we can rewrite (3.31) as a first order system,

d (u® . u® 0
i (w) ‘A<w°> * (é(nz))’

where (u®, w®) :z — W°(-, z), w°(-, z)) € Y. Once again, we distinguish between two cases.

Case 1. ¢ < ¢* = —2,/k. Thanks to (3.6) and (3.30), there exist positive constants C and M such that
sup,cr (Ju8] + [w?]) < Ce*<* as long as z < —M, which implies that (e 7*u®, e **w®) € WHI(R, Y) N W (R, Y)
provided A € [A. — 2€’, A), where €’ is given in Proposition 3.6. In addition, Proposition 3.6 shows that A € p(A) if
Ac — 26/ <ReA < A.. Hence we can take the two-sided Laplace transform of («°®, w®) with respect to z and obtain

that
fRe_}‘sLtQ(-, s)ds _ o 1 0
(fRe_“wQ(-, s) ds) =S =01 -4 (f]R e Mg(,s) ds) ’

where A, — 2¢/’ < Rei < A.. It follows from (3.6), (3.18), and (3.32) that sup(tvz)eRz(lgl + 1g;]) < oo and
sup,cg 18] + 18:] = O(e?*<%) as z — —oo. This implies that both [p e *gds and [, e g, ds are analytic for A
with Re €10, Ac + 2€/[. Let A = w + in with i, n € R. Note that [p e *gds = [pe " e~ gds is identical with
the Fourier transform of e =5 g if 1 is regarded as fixed. It is clear that e *g € W11 (R, LZT) NWHoR, LZT) for any
wele, he+ 376/], in particular, e " g|| WLI(R,L3) 3Te uniformly bounded for all u € [€/, A + 376,], we then have that

H/ e*“g ds
R

for some positive constant C, where u € [€/, L. + %]. It then follows from Remark 3.7 that
G

0
M—A—1< - ) < —,
‘% ) Jre™gds )|y " Inf?

for some constants C and A with ;t € [A — €', A + 376/] \ {A¢}. This implies that F(u +in) € L'(R, Y) N L®(R, Y)

for fixed 11 € [he — €', A + 3T\ {Ac).
Now select u such that i € [A. — €, A.). By taking the inverse Laplace transform of §, we obtain that

C .
<_7 )\':M-"_lna
2 Il

A=p+in, nf= 2, (3.33)

°(.2) e

w2\ _ 1 v

(wo(-,z))_%n' / A=A G dA,
H—ioo

where G(A) = (f]R e*%gds ). Since (u, w) = (u®, w®) for all z < 0, we have:

1 n+ioo
uC2)y _ — / I —AD'Gdr, z<0. (3.34)
w(-, 2) 2mi
H—ioo
By virtue of (3.33), we find that
Aete’
lim / |2 ((x +imT — A) ' Gz +in),dr =0, z<0. (3.35)
n— o0
"

Furthermore, it follows from (3.22) that

PG(re) | PIG(Ae) — G(V)]

. A=A <y <26
(h — Ae) (A —Ae) ¢

W =AT'GO) =) (A —21)"S"TG() —
n=0

As shown above, G (1) is analytic for A with Re 1 € 10, A, + 2¢'[ and PG € ker(A.I — A) = span{( A"? P ) } Thanks to

(3.35), by shifting the path of integral in (3.34) to Re A = A. + €’ and using the residue theorem, we obtain that
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+00

()‘c‘f‘f/)z .
(u(t’z)):lqe“z< ) >+e [ € (G +in)1 = A G+ in)an,

w(t, z) A (1) 27

for z < 0, where k| € R is a constant. Let c(r,z) = u(t, z) — kie*¢(¢) for all (r,z) € R x R™. Since ¢(¢, z) is
T -periodic in ¢, (3.33) implies that

z+12T 1

2
(//|§(T,S)‘2d‘tds> < Ceetelz

z—1 0

for some positive constant C, which is independent of z.
In addition, notice that ¢ (¢, z) is a bounded periodic solution of

[g(t,l/i, U) _gu(t9090)u] +gu(tv070)§+§22 +C§Z — Gt :Ov (I,Z) eRxR™.

In light of (3.6), we see that [g(¢, u,v) — g,(¢,0,0)u] = 0 (e**<?) as 7 — —oo. It then follows from the interior
parabolic estimates that

+3 2T 1
(/f\;ss(r,snzdrdw|gs(r,s)|2drds+|g,(r,s)|2drds> < CePt)7 2 <0,
T

7—

D=

Here C is a positive constant independent of z. Thus, the Sobolev embedding theorem implies that there exists some
positive constant C such that sup, ;g 7115, 2)| < C e*<€)2 for all z € R™. This implies that k; > 0 since u > 0.
By (3.6) and the fact that ¢ is also T -periodic in ¢, we infer that k; > 0, and

) u(t,z)
lim

im qu%(t) =1 uniformlyint € R.

Now let &(t,z) = u.(t,z) — kiree*?p () for all (r,z) e R x R™. As w(t,z) = u(t,z) for all (t,z) e R x R, it
follows from (3.33) that

z+12T !
(f/|§<t,z>|2dtdz> < Cet) 2 <,

z—1 0
for some positive constant C. Moreover, ¢ (¢, z) satisfies that
[gu(t, w,V)u;, — g, ,0,0u; + g,(, u, U)UZ] 4+ 24(,0,00¢+c¢, — & =0.
Due to (3.6) and (3.18), [g,(t, u, v)u; — g,(t,0,0)u; + g,(t,u,v)v;] = O (e**<?) as 7 — —oo. With the same

reasoning, we can infer that sup, o 7 | S, <’ e+ )2 for some positive constant C" and z < 0. Therefore,

7 . .
im _#a(t:2) =X uniformlyint € R.
i>—00 k1 (t)ehe

Case II. ¢ = ¢* = —2,/k. The proof for this case is almost same as in Case I. Notice that

PG(A) | PIG(A) —G(M)]

W —A"'Go) = Z(x — )" S" TG () —

=0 ) (= he)
B DG(\.) D[G (A¢) _G()‘)]’ A — Al <y <2€.
(h— Ae)? (= 2e)?

Since PG € ker(A.I — A)? = span{(k(f(p), ((kfl)qﬁ)} and DG = (A — A D)PG eker(A — A) = span{(k¢¢)}, we
find that | ‘ ‘



648 G. Zhao, S. Ruan / J. Math. Pures Appl. 95 (2011) 627-671

u(t, z) _ )»cz( @) > Acz( @) ) )»cz( @) )
(w(t,z))_ F2 o ) TR L= 0o ) TR Lo

erete)z e ‘ -1
27 /elnz((kc+e/+in)1—fl) Gt +€ +in)dn,  z<0,

—0

+

for certain constants ki, k» and k3. In view of (3.7) and (3.19), by the same reasoning, we readily conclude that k; > 0,
and

Z . t, ) _
m % =1, m % =Ac uniformly inz € R.
z—>—00 k1|z|e*<?¢ (1) z—>—00 ki|z|e*Zp (1)

Step 2. It remains to prove the claimed asymptotic behaviors for v. We start with the case that ¢ < ¢*. Again let
o = hy(t,0,0). By (H3), we have o = (d — 1))% — k 4+ o < 0. Therefore, the following equation,

[0(£.0.0) = & + (d — DA]w + /1y (1.0, 0)p — w, =0
has a unique periodic solution ¢4(¢) given by (3.29). Then kje*<*¢4(¢) satisfies:
hy(t,0,0)w + hy, (1,0, 0)k "¢ + dw,. + cw, — w, =0. (3.36)

Now let £(1,2) = [v(t,2) — kie**¢g()1p(1) ™" and £ (¢, 2) = [u(t, 2) — kie*p()1p(1)~" for all (1,z) e R x R™,
where ¢(1) = exp(f(; hy(1,0,0)dt — at). Then we find that

R(t,2) + a§ +dé; + 6, — & =0, z<0, (3.37)
where R(t,z) = [h(t,u,v) — h,(t0,0u — hy(t,0, O)U]QE*1 + h,(,0,0)¢. Due to Lemma 3.3,
it is clear that sup,.glé(t,2)| = O(e*?) and Supser 1€ (2, 2)| = O(ePt€)?) as 7 — —oo0. Moreover,

sup;crlh(t,u, v) — hy,(t,0,0)u — hy(t,0,0)v] = O (e**<?) as 7 — —oo. Therefore, there exist two positive constants
M and Cj; such that |R(¢, 7)| < CMe(}“*JFG/)Z for all # € R whenever z < —M.

We next show that sup, g |£(f, 2)| = o(e*?) as 7 — —oo. To this end, we use the arguments similar to those
given in the proof of Lemma 3.3. Fix § with 0 < § < ¢’ such that d(A. + 8)2 4+ c(he +8) + a <0 and write
As =d(he +8)* + c(Ae + 8) + a. Then it is easy to see that +Ce*T9? respectively satisfy that

R(t,2)+oaw+dw,;; +cw, —w; <0(=0), z<-M, (3.38)

where C > % As |&(t,z)| is bounded for all (t,z) € R x R™, there exists Cs > ‘C—";l such that

Cse~*etOM > |£(; —M)| for all + € R. We now claim that

—CseP DT g1, 2) < Cse™ DT forall (¢,z) € R x (—o0, M]. (3.39)
Indeed, let w* (7, z) = £CsePt9? — £(¢, 7). Then we obviously have:

aw” +dw, +cw, —w, >0, awt —|—de —{—cng — w,+ <0 forall (r,z) e R x (—o0, M].

Since w* are both T-periodic in ¢, it is sufficient to show that wt(z,z) > O(w™(¢t,z) < 0) for all
(t,z) € [0,2T] x (=00, —M]. We shall only provide a proof for w*(¢,z) > 0. Assume to the contrary that
inf(t’z)e[o,zr]x(_oo’_M]w+(t,z) < 0. Then by virtue of the fact that lim,_, sup,e[o’zﬂuﬁ(t,z) = 0, there
exists a point (¢,z) with 0 <t < 2T and z < —M such that w*(z,z) = inf(; z)€[0.27)x (—c0.—m] W (£, 2). This
gives rise to that [aw™ + dw;rz + cw;'L — w,+]|(l,é) > 0, which is a contradiction. Hence, w*(¢,z) > 0 for all

(t,z) €10,2T] x (—o0, —M]. Similarly, we~have w~(t,z) <0 for all (z,z) € [0,2T] x (—oo, —M]. Thus, (3.39)
holds. Since &(z, z) = [v(t, 2) — k1e**pa(t)]p(t) ™!, it follows that

t, . . .
im _vinz) =1, uniformlyins € R, ifc <c™.
i—>—00 kieteigy (1)
The  proof  for v, is similar. Let é(t, 7)) = [v(t,2) — kiga (t))»cek"z]qg(t)_l and

£(t,2) = [uy(t, 2) — ki (1)Ace*?)p(t)~ L. Then £ satisfies:
R(I,Z)—I-Oté—l-dgzz"i‘céz_ét:(), Zgo,
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where R(t, ) = {[hy(t,u,v) — hy(1,0,0)]uz + [hy(t, u, v) — hy(2,0,0)Jv:}¢~" + (2,0, 0)¢. Following the same
lines as the above, we can deduce that sup, g £ (¢, 2)| = 0 (e*<t92) a5 7 — —o0. Therefore, we have:

v (2, 2)

im ————— =23, uniformlyinz€R, ifc < c*.
z—>—00 kje*eiey(t)

We now consider the case that ¢ = ¢*. Let &d (t) be the periodic solution of
dw
hy(¢,0,00¢ +2(1 —d)pg + [hv(t, 0,0) —x+(d— l)kg]w ST 0.
Note that iﬁd(t) exists and is unique since h,(¢,0,0) — x + (d — 1))»% < 0. It is straightforward to check that
kie*<*(|z]ga(t) + Aea (1)) solves:
hy(t,0,00w + hy(t, 0,0k " (2] + Ac) ¢ + dw; + cw, —w; =0, (f,z2) eRxR™.

Accordingly, we set:

v — ki’ (|zl¢a + e (@)
¢

Then we obtain (3.37) again. Notice that sup,.r|&(t,2)| = O(|z]e*<?), and sup,eg 1€(t, 2)| = O0(e*?) as

z — —oo. Therefore, sup,.p |R(t,2)| = O0(e*?) as z —> —o0. Consequently, £C et satisfy (3.38) respectively

provided that C is sufficiently large. With the same reasoning, we can deduce that sup, g |£(f, 2)| = O (e*<%) and

sup, g |€:(t, 2)| = O (e*%) as z — —oo. Hence, we have:

— AcZ
£(t,2) = _ u— ket (lz[ + Ao

¢(t, z) , (t,2)eRxR™.

im 'U(t, Z) _ lm vZ(t’ Z) _
z—>—o0 ky|z|eriga(t) z——00 ki|z|er<Z ¢4 (1)

The proof is completed. O

Ac, uniformly inf € R, if ¢ =c*.

Proposition 3.9. Suppose that (H1), (H2) and (HS) are satisfied. Let (i, v) and (u,v) € C ;’Z(R x R) be respectively
the regular super-solution and sub-solution of (3.1). In particular, both (u,v) and (u,v) are T-periodic in t, and
liminf,_, so{inf;co,71(# — u)} > 0, liminf,_, oo {inf;c[0,77(V — v)} > 0. Let,

n

*
V] 2
) »V(t,»)eRx[l_P71+p] )

n*|vl

/0* = Sup{ﬂ|gu(t7 Yy ) _gu(t’ l’ 1)\ + |gv(t’ y ) _gv(ts la 1)| <

Px 1= Sup{p|hu(t’ y ) _hu(t, 1, 1)‘ + ‘hv(ts i) ) _hv(ta 1? 1)’ < ’ V(t7 Ty ) ER X [1 — P, 1 +P]2}s

+ * _ min{min;cg @1, min,cr 2} ; /
where p € RT and n* = X, p (0 g . If there exists 7' € R such that

(i, 2,5, 2) € [1=p% 1] and (u(t,2), v, 2)) € [1 = p°, 1],
forall (t,z) € R x [7/,00), and (u(t,7'),v(t,2))) = u(t, 7)), v(t, 7)) for all t € R, where p° = min{p*, ps}. Then
(u(t,z),v(t,2)) = (u(t,2), v(t,2)) forall (t,z) € R x [7/, +00).

Proof. As both (u, v) and (u, v) are T-periodic in ¢, it suffices to prove that

inf {t —u}>0 and inf {v—v}>0. (3.40)
(t,2)€[0,2T 1 x[7/,+00) (t,2)€[0,2T 1 x[7/,+00)

Let
ut(t,z) =u(t,z) —u(t,z) + te(t), vi(t,2) =0(t,2) —v(t,2) + T2 (2).

Since both u — u and v — v are bounded, there exists M > 0 such that (u* (¢, z), v* (¢, z)) = (0,0) for all (¢,z) €
[0,2T] x [Z/, +00) as long as T > M. Now define:

t* =inf{r €[0,00) | (u”(t,2), v (t,2)) = (0,0) forall (z,2) € [0,2T] x [z, +o0)}.
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Notice that t* is bounded. To complete the proof, it suffices to show that 7* = 0.
Assume to the contrary that this is not true. Then it is easy to see that

either inf u"(t,z)=0 or inf vT(t,2) =0.
(t,2)€[0,2T %[z’ ,+00) (t,2)€[0,2T %[/, +00)
Assume without loss of generality that inf ;)c(0,27]x[z,+00) v’ = 0. Due to the fact that

liminf,_, o {inf,c[0,277 v™'} > t*min, ¢ > 0, there exists (*, z*) € (0, 2T) x (z/, 00) such that v (t*, z*) = 0. On
the other hand, since
1

t*[c(goz)z +d(92)zz — (92)r + |:/hu (t,s0 4 (1 —s)u,sv+ (1 —s)v) ds:|g01

0
- 1

+ /hv(t,sﬁ—i—(l —S)u,sv+ (1 —s)z_))ds:|(p2}
-0

1

=1"{ve) + |:/hu(t,sﬁ+(1—s)g,sﬁ—l—(l—s)y)—hu(t,l,l)ds:|g01

0
- 1

- /hv(t,sﬁ+(1 — ), ST+ (1 —5)v) — hy(2, 1, l)ds:|(p2] <0
-0

forall (t,z) € R x [Z/, 00), we have,

1
|:/hv(t,sﬁ + (1 —=su,sv+ (1 —s)y) dsi|vr* —i—cvzf* —I—dvzrz* — vf*
0

1
<—|:/hu(t,sﬁ+(1 —s)u, sv+ (1 —s)y)ds]ut* <0
0

for all (r,z) € R x [Z/,00). Therefore, the strong maximum principle implies that na (t,z) = 0 for all
(t,z) € [0,1*] x [Z/, 00). This is impossible since v7 (t,7) > 0. Hence we must have 7* = 0. The proof is com-
pleted. O

Theorem 3.10. Assume that (H1)—(H5) are satisfied. Let ¢ < ¢* = —2./k. Suppose that (u,v) € C;’Z(R x R) and c
solve (3.1). Then (uz,v;) > (0,0) forall (t,z) e R x R.

Proof. In terms of (3.26) and (3.28), there exists z € R such that (u_, v;) > (0,0) for all (¢, z) € R x (—o0, z]. On the
other hand, since lim,_, 5, (#, v) = (1, 1), the continuity and the positivity of (u, v) imply that

min{ inf  u(t,z), inf v(t,z)}>0.
teR,z2>z teR,z2>z

Thus, there exists z, < z such that
max{ sup u(t,z), sup v(t, z)} < min{ inf  wu(t,z), inf w(z, z)}.
teR, z<zs teR, z<24 1eR, 222 1€R, 222
Consequently,
(u(t,2),v(t,2)) < (u(t,z+5),v(t,z+s)) forall (¢,2,5) € R x (—00,z,] x RT.

We next show that there exists s > 0 for which (u(z, z), v(¢,z)) < (u(t,z 4+ s),v(t,z + s)) for all (¢,z) e R x R.
Indeed, let z* > 0 be sufficiently large such that

lu(t,2) — 1|+ |v(t,2) — 1] < p° forall (1,2) € R x [*, 00).
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Here po is specified in Proposition 3.9. Since (u(t,z),v(¢,z)) is bounded in R X [z4,z*] (its components
are bounded in R X [z4,z*]), and lim,_ o (u(t,z),v(t,z)) = (1,1) uniformly in ¢ € R, there exists § > 0
such that (u(z,z),v(t,2)) < (u(t,z + s),v(t,z + 5)) for all (¢,z,5) € R x [z4,2*] x [s,00). Then, Proposi-
tion 3.9 implies that (u(z,z), v(t,z)) < (u(t,z + s),v(t,z + 5)) for all (¢,z,5) € R x [z%, 00) X [5,00). Hence,
(u(t,z2),v,2) <(t,z+s),v(t,z+s)) forall (¢,z,5) e R x R x [5, 00).

Now we define

s*=inf{s e RY, (u(r,2), v(t,2)) < (u(t,z+n),v(t,z+n)) forall (,z,n) € R x R x [5, +00)}.

We claim that s* = 0. Assume to the contrary that s* > 0. We next show that there exists a finite point (¢’,z’) such
that either u(t’, 7' + s*) = u(t’, 7') or v(t', 7 + s*) = v(¢’, Z’) provided that s* > 0. Indeed, if s* > 0, let y € 10, s*[
be fixed, as shown before, (1., v;) > (0,0) when (¢,z) € R x (—o0, z] for some z € R. Hence, there exists M > 0
sufficiently large such that (u(¢,z +s* — y), v(t,z+s* — y)) > (u(t, 2), v(¢, 2)) for all (¢,z) € R x (—oo, —M] and
(u(t, -+ s%),v(t, - + 5%)) is monotone in (—oo, —M]. Now if (u(t,z + s*), v(t,z + s*)) > (u(z, ), v(¢, 7)) for all
(t,z) € R x R, then there exists § € 0, s*[, which is sufficiently small, such that

(u(t,z + 5% — n), v(t,z + 5% — 17)) > (u(t,z), v(t,z)) forall (t,z,n) € R x [-2M,2M] x [0, 8].

Without loss of generality, assume that § < y. As (u(t, - + s*), v(z, - + s*)) is monotone in (—oo, —M], we have:

(u(t,z+s*—=n)v(t.z+5*—n)) > (u(t.z+5s*—y),v(t.z4+5" —y)) > (u, 2),v(, 2))
for all (¢,z,n) € R x (—00, —M] x [0, 8], and hence (u(t,z + s* — n),v(t,z + s* — n)) = (u(t, z), v(t, z)) for all
(t,z,n) € R x (—o00,2M] x [0, &]. Since 2M is sufficiently large, applying Proposition 3.9 again yields that
(u(t,z+s*—n),v(t.z2+5"—n)) > (u@,2),v(t,2)) forall (£,z,n) € R xR x [0, 5].

In particular, in view of the definition of s*, we see that

(u(t,z4+s5*=8+n),v(t.z+s"=8+n)) = (u@,2),v(t,2) forall (r,z,n) eRx R x R,
which is impossible since it contradicts the definition of s*.

Therefore, there exists (¢, z") such that either u(¢’,z' + s*) = u(t’,7') or v(t', 7 + s*) = v(¢',Z/) if s* # 0.
Now write:

(.90 (. 9) = (s 45 ooz 57) (@°00%) = (@ o o),
Clearly, if s* # 0, then either u°(¢’,z') = 0 or v°(¢’, /) = 0. Assume without loss of generality that u°(¢’,z') = 0.
Notice that
1
|:/gu (t, wt + (1 —1u, v’ +(1— t)v) dri|u° +ul, +cul —u; <O0.
0
Here we have used (H2) that g, > 0 in R x RT x RT. It then follows from the maximum principle
that u°(¢,z) = 0, which is impossible since u° > 0 for all z < —M. Therefore, we must have s* = 0,

and consequently, (u(t,z),v(t,z)) < (u(t,z + s),v(t,z + s)) for any s > 0. In particular, it is clear that
(u(t,2),v(t,2)) < u(t,z+s),v(,z+s)) as long as s > 0. This completes the proof. O

Theorem 3.11. Assume that (H1)—(H5) are satisfied. Let ¢ < ¢* = —2./k. Suppose that (u, v) € Cg’Z(R x R) and c
solve (3.1). Then (u, v) is unique up to the translation with respect to z.

Proof. Let (11, v1) and (u2, v2) be two solutions of (3.1) for some ¢ < ¢*. Then, in terms of Theorem 3.8, there exist
positive constants k; and k, such that

ui(t,z) . v1(f,2) ) )
Iim — =1, m ————— =1, uniformlyin¢,
z——00 ki|z|'e*ep (1) z——00 ki|z|' ety (1)
us(t,z) . v2(t,2)

’

1, uniformly in 7. 3.41)

m ——— = m N
z—>—00 ko|z|'e*Z (1) =>—00 kp|z|'e* iy (1)



652 G. Zhao, S. Ruan / J. Math. Pures Appl. 95 (2011) 627-671

Here t =1 if ¢ =¢*, and t =0 if ¢ < ¢*. We now proceed to establish the desired conclusion by means of the sliding
method developed in [3]. The proof will be broken up into three steps.
Step 1. We show that there exists s € R such that

(w1t z45),v1(t,2+9) = (u2(t, 2), v2(2, 2))
for all (¢, z) € R x R. Choose s € R such that kie*eS > ky. Thanks to (3.41), we have:

ui(t,z+s) vi(t,z+s)

lim =1, lim
e 00 kiehes|z + s[ierei (1) e—00 kiehes|z + s[iere (1)

Clearly, there exists M > O sufficiently large such that

(ul(t, z4+s),v1(t, 2 +§)) > (uz(t, 7), va(t, z)) for all (¢,z) € R x (—o00, —M]

and
lurt,z+8) =1+ [vit,z+5) — 1|+ |ua(t,2) — 1| + |va(t,2) — 1| < p°,  V(t,2) €R x [M, 00),

where p? is specified in Proposition 3.9. Since both u» and v, are bounded in R x [—2M,2M] and
lim, oo (u1 (2, 2), v1(2,2)) = (1, 1), there is 5§ € R such that (u1(t,z + 5), v1(t,z + 5)) = (uz(¢, z), v2(¢, z)) for all
(t,z) e R x [-2M,2M]. Without loss of generality, we may assume that s <s. As (u(z, -), v(¢, -)) is monotone, we
have:

(i1t z2+5), 011, 2+5) = (w1t 2+ 5), v, 2+ 5)) > (ua(t, 2), 122, 2)),

forall (z,z) € R x (—oo, —M]. Hence, (u1(t,z+5),v1(t,z+5)) = (uz(t,2), v2(¢t,2)) forall (¢,z) € R x (—00,2M].
In view of the selection of M, it follows from Proposition 3.9 that

(ur(t,z4+5),v1(t,2+75)) = (u2(t,2), v2(t,2)) forall (r,2) eR x R.

Step 2. Define s* = inf{s € R | (uj(t,2),v{(t,2)) = (u2(t,2),v2(t,2)), V(,z) € R x R}. Here
(ui(t,z),vi(t,2)) = (u1(t,z + s),vi(t,z + 5)), s € R. Clearly, s* is bounded. In addition, (3.41) shows that
klelcs* > ky, otherwise, there is (¢, z) such that u‘i* (t,z) <ua(t, z). We next show that klem‘* = ky. Suppose that this
is not true, that is, klexfs* > kp. Then (u‘i*, vf*) > (up, v) for all (¢,z) € R x R. If not, there exists (7,7) e R x R
such that either u'i* (t,2) =uy(t,7) or v'f* (t,2) =vy(f, 7). Since

*

1
/gu (t, ru‘i* + A —=71)uy, v‘f* + - r)vz) dt [ui* — uz] + (ui — uz)zz + c(u‘fk — uz)Z — (ui* — uz)t <0,
0

and
1

/hv(t, tui* + = 7)uy, tv{* + - r)vz) dt [vf* - vz] +d(vf* — 1)2)Zz + c(vf* — vz)z — (vf
0

*

— 1), <0,

it follows from the maximum principle that either ui* = up or vf* = vy, which together with (H2) implies

(u‘i*, v‘f*) = (u3, v2). This is impossible since it contradicts the assumption that klekcs* > ky. Thus, klem‘* > ko

Aes™ Ae(s™

implies that (u‘i*, v‘]‘*) > (up, v2) for any (¢,z) € R x R. Now if kje > ko, then kje D > ky as long as

1 €10, Aes* —In ’,j—z[
Let § €10, Acs™ — In kz[ be fixed. Select & such that 6 € ] lets™ 4]

B = 1, there exists

7]( ey Ll As limg, oo

1 Okyete™ =) g,

Ky > 0 for which |Z+‘ >0 when z < —Kg. Choose & > 0 such that e < 5 34555~

there exists K, > 0 such that

ul 7, 2) X
|z + 5% — 8|k et " =D erezgp (1)

. By virtue of Theorem 3.8,

N v’ 2) ~
|24 5% = 8|tkiehe "D ety (1)
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and

ur(t,z2) w2
|z|kaeP<2 g (1) |z|kae*eZgpy (1)
whenever z < —K,. Then it is easy to see that (usl*_l, vi*_l) > (up, vp) for each [ € (0, 8] provided z < — K, — Kp.
On the other hand, for each M > 0 with M > K, + Kpy, there is [j; > 0 such that (ui*_l, vi*_l) > (up, vp) for all

(t,z,1) e R x [-M, M] x (0,1)] since (ui*, vi'*) > (un,vp) for any (¢,7) € R x R. Let M be sufficiently large
such that

s*—§

|”i*_5(f»1) — 14 o] @) = 1|+ |uat, 2) — 1] + |va(t,2) — 1| < 0%, V(t,z) €eR x [M, 00),
where ,00 is given in Proposition 3.9. Without loss of generality, assume that /s < 8. Then we have (ui*_l’” , vi*_l’” ) >
(uz, vp) for all (¢, z) € R x (—o0, M]. Moreover, by Proposition 3.9, we infer that (ui _IM, vf _IM) > (up, vp) for all
(t,z) € R x [M, 00). Thus, there exists at least a positive number, denoted by /*, such that (u‘i*_l*, v‘f*_l*) > (u2, 1)

for all (¢, z) € R x R. This however contradicts the definition of s*. Therefore, ke’ f = k.
Step 3. Define s, = sup{s € R | (u}(t,2), v{(t,2)) < (u2(t,2),v2(t,2)), V(t,z) € R x R}. Clearly, s, is bounded
and kje*e* < ky. To complete the proof, it is sufficient to show that s* = s,. Indeed, note that

—sy=inf{—s e R | (u3°(t,2),v5°(t,2)) = (u1(t,2), v1(t,2)) V(t,2) e R x R}.

By interchanging the roles of (u1,v1) and (u2, v2) and following the same lines in Step 2, we can conclude that
kpe *eS =k, namely, kietes* = ky. It immediately follows that s* = s,. Therefore, by the definitions of s* and s,
we have (ui*(t, 2), v{* (t,2)) = (u2(t, 2), va(t, z)) for all (¢, z) € R x R. This completes the proof. O

Theorem 3.12. Suppose that (H1)—(H3) are satisfied and d > 0. Then for any c € 1c*, 0[, (3.1) has no solutions that
are nondecreasing with respect to z.

Proof. We argue by contradiction. Assume to the contrary that there exist (1, v) € C;’z(Rz) and some ¢ € |c*, 0]
solve (3.1). Let 2 and v be defined by (3.10). Then

T
ta ) - utsovo
ﬁzz+cﬁz+xﬁ+/g( u,v) ¢g( )udt=0,
0
Th 0,0 Th h,(t,0,0 hy(2,0,0
Mtv ) t! ) - Lttv ’ - vt’ 5
dﬁzz+cﬁz+aﬁ+/%dt+/ (¢, 1. v) = hu ; Ju=h(.0.0v .
0 0

where « is given by (3.10). Write

o 18, u,v) — gu (2,0, 0ulp~" dr
- .

§(x)=
That is,
Uy, +ci; +xi+ g(z)u=0.

. - 2 00 _
Write ¢ = mm{%, >

that i = O (e=¢9%) as z — —o0. Since me?? satisfies (3.15) provided that m is sufficiently large and z is negative.
Using (3.13) again, we can conclude that o = O(e??) as z — —oo. Thus, §(2)ii(z) = O(e ™) as 7 > —o0.
Moreover, it follows from Proposition 6.1 of [33] that

i(z) = e “[ny cos(zv/4k — ¢ +1) + nysin(z/dk —c + D] + O (e 7 5 o0,

for every € > 0, where n1, ny, and / are certain constants. According to Theorem 4.3 of [8], there holds that either
niny # 0 or it = 0. Notice that & > 0. However, if nn, # 0, then we reach a contradiction since # is not monotone.
Therefore, (3.1) has no solutions that are nondecreasing in z for ¢ € ]¢*,0[. O

}. Let 8 € ]0, ¢ be a sufficiently small real number. Since lim,_, _~, g(z) = 0, we find
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Corollary 3.13. Suppose that all the assumptions of Theorem 2.5 are fulfilled. Then for each c € R with |c| >
2 /a1 p — bigq, (1.8) admits a time periodic traveling wave solution (U(t,z), W(t,z)) with z = x + |c|t connect-
ing the equilibria (0,0) and (1, 1) such that it is unique modulo translation and is monotone with respect to z. In

addition, for each c with 0 < |c| < 24/a1p — b1q, (1.8) has no time periodic traveling wave solutions connecting
(0,0) and (1, 1) that are monotone in z.

Proof. Invoking Theorems 2.5, 3.11, and 3.12, it suffices to verify that (H4) and (H5) are valid for (1.8) under the
assumptions given in Theorem 2.5. It is shown in the proof of Theorem 2.5 that W = (me*<?¢(t), me**p(t)) is

_ ‘_ﬁ S — . .
a super-solution of (1.8), where A, = —<—¥< 24“”7 D14 for ¢ < —2+/a1p — b1g, m > 0 is an arbitrary constant, and

(1) = elol@p=big)—arp=biqlds 1f . — —2\/aip —biq,setho = 5. Letw(t,z) = (m —nz)e**p(t) and W = (w, w),
where m > 0 and n > 0 are arbitrary constants. Then it is easy to see that W is a (regular) super-solution of (1.8) in

_ m_ 2 ; _ m_ 2
R x (—o0, m m]. In fact, note that w > 0, w, > 0, and w,; > 0in R x (—o0, o m]. Moreover, we

have that

Wzz +cwz + w[alp(l —w)—Dbig(1 - w)] — Wy S Wz + cw; +wlar1p —big) —wy <0,
dw;; +cw; + (1 —w)(apw — brygw) — w; < wy; +cw, +w(azp — brg) — wy < 0.
Concerning (H5), let g (¢, u, v) = u(ay p(1 —u) —b1g(1 —v)), h(t,u,v) = (1 —v)(aza pu — brqv). Then, g, (t,1,1) =
—aip, g, 1,1) =b1q, h,(t,1,1) =0, and hy(t,1,1) = brg — azp. Set v =byg — a> p. Due to the assumption,

we have v < 0. Moreover, since a;p — b1q > axp — baq, it follows that —b1g > —a1p — (bag — a2 p), and hence
—ayp — v < 0. In other words,

T
/(—al(t)p(t) — v) dt < 0.
0

Now let g3 (1) = e/ol02a=02P) =I5 and ) (1) = @y (0)elo —a1P=VdT L [T oJiCa1p=)dT ]y g, 4 where g (0) = (1 —

T T
elo (marp—v)dry—1 fOT els (—a1p=v)dtp 60y ds. Clearly, both ¢ and ¢, are strictly positive periodic functions of .
Furthermore, it is easy to see that

) (m(ﬂ) _ (—al(t)p(t) bi(1gq (1) ) (wl(t)) _ (w{ (t))
1) 0 by(1)q(t) —ax(t)p(t) ) \ ¢2(1) o5 )
This completes the proof. O

4. Stability of periodic traveling wave solutions

In this section, we study the asymptotic stability of a periodic traveling wave solution of

{M[ = Uxx +g(tsu7 U),

“4.1)
Uy = dvxx + h(ta u, U),

where 0 <d < 1,8, h e CO2(RxR%,R), g(t + T, u,v) =g(t,u,v),and h(t + T, u, v) = h(t, u, v) for any (¢, u, v) €
R x R2, g(,0,00=g(,1,1)=h(t,0,0) =h(t,1,1)=0forall r € R. Let (u*(z, x), v*(¢, x)) be a periodic traveling
wave solution of (4.1) that connects (#, v) = (0, 0) and (u, v) = (1, 1) and is monotonically increasing along the mov-
ing coordinate frame, i.e., (u*(t, x), v*(t, x)) = (U(t,x —ct), W(t,x —ct)) = (U(¢, 2), W(¢, z)) with z = x —ct. Here
(U(t,z), W(t,2)) € CL2(R x R, R?), (U, W) and ¢ solve (3.1), and (U,, W,) > (0, 0). To establish the asymptotic
stability of (U, W), we use the same type of methods employed in [19]. We first consider the initial value problem:

ur=uyy + gt u,v),

vy =dvyyx + h(t,u,v);
(1(0,x),v(0,x)) = (uo(x), vo(x)),
(0,0) S (uo(x), vo(x)) S (1, 1),

4.2)
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where (¢, x) € RT x R. Throughout this section, (H1)—(H5) given in the last section will remain valid. In addition,
we always assume that (1o (x), vo(x)) € C¥ (R, [0, 1] x [0, 1]) with (0,0) < (uo(x), vo(x)) < (1, 1), where y € 10, 1[.
We often denote by (u(¢, x, ug), v(¢, x, vg)) the solution of (4.2) with the initial value (ug(x), vo(x)). It is a standard
practice to show the global existence of (u(t, x, ug), v(t, x, vg)).

Proposition 4.1. Assume that (H1) and (H2) are satisfied. Let (u(t,x,u,),v(t, x,v;)) € C([r,00) x R, [0, 11 N

C;+V/2a2+7 ((r, 00) x R) be a solution of

{ut:dlu”—{—clux—f—g(l,u,v)a 4.3)

Vr = dautyy + Coux + h(t,u,v),

with (u(t, x,u), v(T,x,v7)) = (U (x),v:(x)). Here 1 € R, y € (0, 1), d;, ¢; (i =1,2) are constants; and d; > k for
some positive constant k.

(i) Let (u,v), (u,v) € C,i+y/2’2+y([t, o0) X R) be respectively the regular super- and sub-solutions of (4.3).
If (u(z,x),v(zr,x)) < (U (x),v(x)) < (u(r,x),v(r,x)) for all x € R, and (1,1) = (u(t, x), v(t, x)) for all
(t,x) €[r,00) X R, then

(u(t, x), v(t, x)) < (ut, x, ur), v(t, x,vr)) < ((, x), 0(7, x))
forall (t,x) € [t,00) x R.

(i) Let (it,v) and (u,v) € Cy7">*7 ((r,00) x {x < 2* + ct}) N Cp([7,00) x {x < 2* + ct}) be respectively the
regular super- and sub-solutions of (4.3) in (t, 00) X {x < z*+ct}, where 7* € R and ¢ € R are certain constants.
Assume that

(u(t, %), v(t, x)) < (ut, x, ur), v(t, x,v;)) < (U(t, x), (7, x))
forall (¢, x) € [t,00) x {x =z*+ct}, (u(r, x), v(7, X)) < (U7 (x), v (x)) < (U(z, x), v(z,x)) forall x < z* +ct,
and (u(t,x),v(t,x)) < (1, 1) forall (t,x) € [t,00) X {x < z* 4+ ct}. Then
(u(t,x), v(t, %)) < (ut, x,ur), v(t, x, v)) < (#(t, x), V(t, x))
for all (t,x) € [t,00) x {x <z*+ct}.
Proof. We present a proof for the sake of clarity and completeness although it is similar to that of Lemma 2.4. We

will need this proposition in several places. Only the first inequality of (ii) will be proved since others can be shown
in a similar fashion. Set

M = sup (1] + 9] + u| + lv).

(t,x)€[r,00) x {x Lz*+ct}
Due to the assumption, 0 < M < oo. Let
me®@t—=m

24 2
“+s
where N > 2apmax (here amax := max;=12{|d;|}) and w > O are fixed constants such that

t:=,m?>;{|c,-|+|c|}, mi=u—iloo+ 0 —0loo, &t 27,8,1) = (Z2+2+N@E—1n),
=1,

0>2(1+ sup {1ul + 1ol + Vil + 11 })-
(t,u,v)eRx[0,M]x[0,M]

Note that 2amax + 2t|z| — N — %(12 +3) <0forall z€R. Set

wW=u—u+¢@,x—ct,s, 1), V=v—v+et,x—ct,s, ), s>|7F.

Observe that (u®(z, x), v¥(t, x)) > (0,0) forall x € [—s +cT,z* + c1], and (u* (¢, x), v*(z, s)) > (0, 0) forall (¢, x) €
{[tT,t+ 1l x{x=z"+ct}} U{[r,T + 1] x {x = —s + ct}}. Now we show that (u*, v¥) > (0,0) for all (¢,s) €
[T, + 1] x[—s+ct <x<z7"+ct] Let
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1 1
o] =/gu(t, tu+ (1 —1du,tv+ (1 — t)v) dr, o =/gv(t, tu+ (1 —1tu,tv+ (1 — t)v) dr,
0 0
1 1
B = /hu(t, tu+ (1 —Du, v+ (1 — )v)dr, B> =fhv(t, tu+ (1 —tu, tv+ (1 — 1)v)dr.
0 0

A straightforward computation shows that

m w(t—T)
dl“ix +Clui —u; < g(t,u,v) —g(t,u,v) + L2—|-—52[2(amax +l|Z|) _N] —w§(t,2,5,7)

mew(tfr)

=0(1(Z—u)+052(y—v)+tz+7sz

[Z(Clmax + £|Z|) - N] - w{l(t’ Z,8, t)

= o1 (u — u) +or (v — v) — %z;t(r,z,s, )

mew(l—r)

N )
(2 452

[2(amax+L|Z|) - N )

w
(2 +2) - EN(t—r)]
< —alus —052Us - (% — ] _a2>€t(ta 2,8, T)a

where z = x — ct. Similarly

N s 8 _ s _ s _ 9_ _
dzvxx+czvx vt < IBIM ﬁzv 2 ﬁ] ﬂz gl(tazasat)-

Define t* = sup{r € (v, + 1] | @*,v*) > (0,0) forall (n,x) € (7,¢] x [—s + ¢n, z* + cnl}. Clearly, t* > t.
If t* <t + 1, then there exists x* € |—s + ct™*, z* + ct*[ for which either u*(#*, x*) = 0 or v*(¢*, x*) = 0. Assume
without loss of generality that v¥(¢*, x*) = 0, that is,

v(t*,x*, v,) + g(t*,x* —ct*, s, r) = y(t*, x*).

As v(t,x) <1 and v(z, x, v;) > 0 by the assumption, we must have v(t*, x*) > 0 and v(¢t*, s*, v;) < 1. This together
with (H2) implies that 8; > 0 in a neighborhood [t + ¢, t*] x [x* — &, x* + €] of (+*, x*), where ¢ > 0 is sufficiently
small. Consequently,

dyvy, +cavy — v < —fru’ — o’ — (% — B — ﬂz)it(t,x —ct,5,7)
< —pBv’ in (r + e, t*] X ]x* —e,x*+ 8[.
Since v* attains its local minimum at (+*, x*), we find that
0 < (davy, + c2vf — 7)) (1%, x¥) < =B’ (1*, x*) =0,

which is impossible. Therefore, (u*,v%) > (0,0) for all (t,x) € [r,T + 1] x [—s + ct,z2* + ct].
Since s > |z*| is arbitrary, arguing in the manner similar to that shown in Theorem 2.4, we infer that
(u(t, x,u),v(t,x,vy)) = (u(t,x),v(, x)) for all (¢,x) € [t,7 4+ 1] x {x < z* + ct}. By using ¢,(¢,2,5,T + n)
with n € NT, we can inductively show that (u(t,x,u;),v(t, x,v;)) = (u(t,x),v(t,x)) for all
t,s)elt+n,t+n+1] x {x <z*+ct}, n € NT. Therefore, (u(t,x,u:), v(t, x,v:)) = (u(t,x), v, x)) for all
(t,x) € [t,00) x {x < z* + ct}. The proof is completed. O

In the sequel, we let x (s) be a smooth function such that x(s) =0 for s <s, x(s) =1 fors > 5, and 0 < x’ and
Ix’| +1x”| <1, where s and 5 with s < 5 are fixed constants.
We set:

Ec(t,5)=[1— x(s)]e®FHp (1) + x (s)p1 (1),

(4.4)
Set,8) =[1 = x()]e® T (1) + x ()2 (1),



G. Zhao, S. Ruan / J. Math. Pures Appl. 95 (2011) 627-671 657

where ¢ < ¢* = —2./k, ¢1(¢) is given by (3.29) with d = 1, € € 10, v/c% — 4« is a fixed constant such that

2
0<ﬂ::_[(kc+e) +Z()»c—|—e)+/c] <|;_|. @.5)

We also set:

1 1
¢% :=min{ min , min —— ¢. (4.6)
tel0,T] @1(t) tel0,T]1 @2(1)

Proposition 4.2. Assume that (H1)—(H5) are satisfied. Let (U, W) and c solve (3.1) with ¢ < ¢* = —2./k. Then
U(t,z) —L&(t,z+s5)—1

limsup sup < -1, 4.7
§—00 (1,7)eRxR,Le(0,01] Loy (1)
. W(t,z) —Llc.(t,z+s)—1
lim sup sup ¢.2) = beclt 24 5) <-1, (4.8)
500 (1,7)eRxR,Le(0,0+] Lo (t)

where £ is given by (4.6).

Proof. The proof is similar to that of Lemma 3.1 in [19]. Only the first inequality (4.7) will be proved since the
other can be shown similarly. Assume to the contrary that the claimed conclusion is not true. Then there exist three
sequences {(t,, )}, {€xn}, and {s,} and a positive constant & such that

U(,, 4 t, —1
Sp —~> 00 asn— oo and (tn: Zn) nelln Zn + $n) >—1+¢

L1 (ty)
for all n € N*. Since U(-, z), &(-,z + 5), and ¢; (-) are periodic functions with the same period T, we may assume
that t, € [0, T] for all n € NT. Hence there exist a subsequence of {t,}, still labeled by {t,}, and ¢t* € [0, T] such
that #, — t*. We also notice that £, € (0, £T], which implies that there exists an £* € [0, £ ] such that £, — £*.
Furthermore, as s, — o0, two cases may occur, that is, either z,, + s, — 00 or z, + s, is bounded from above. If
Zn + sp — 00, then we find that

. —néc(tn, 20 + Sn) U(tn, z2n) — néc(tn, 2n +50) — 1
—1= lim >
n—00 L1 (ty) Lnp1(tn)
This contradiction excludes the possibility that z, + s, — oo and leads us to the case that z, + s, is bounded from

above, which implies that 7, — —00. As lim,_, _ U (¢, z) = 0 uniformly in ¢ and &.(t,,, z, + s,) > 0 for all n € N,
it follows that

>—1+4+es.

1 U,, —1 .
_ —gim O T e, > (1 — )t
p1(t*) n—oo @i(ty) n—00

which contradicts the definition of £1. Therefore, (4.7) holds for ¢ < ¢*. O

In what follows, we fix s¢ € R such that

U(t,s) —L&.(t, —1 L
sup t.5) = 5t s + s0) <—- foralle (0,¢%] (4.9)
(1,5)€RxR @1(t) 2
and
Wi(t,s)—Ls.(t, -1 14
sup (¢,5) = Lce(t, 5 + 50) <—= forall¢e(0,€%]. (4.10)
(t,5)eRxR @2(1) 2

Lemma 4.3. Suppose that (H1)—(HS5) are satisfied. Let (U, W) and ¢ solve (3.1) with ¢ < c*. Let B and £ be given by
(4.5) and (4.6), respectively. Then there exists 8* € (0, £1] such that for each zo € R and each o > max{1/8, 1/|c|B},
(u*(t, x), vE(, x)) are respectively the super- and sub-solutions of (4.1) in RT x R whenever § € (0, §*). Here

ui(t,x) = U(t,x —ct+ 20 :I:o(l —e_ﬁt)) :I:SSc(t,x —ct+ 20 +s0:|:or(l —e_ﬂt))e_ﬂt,
vE(t, x) = W(t,x —ct+zo+o(l —e_ﬁ’)) +8ge(tr,x —ct+zo+so+o(l —e_ﬁt))e_ﬁ’.
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Proof. We only show that (u™, v™) is a super-solution of (4.1) since the other case can be proved similarly. Let
z=x—ct4+z0+o0(l—ePyandz =x —ct +z0 + 0 (1 — e P) + 50. A direct calculation yields that

gltou™ v") g, —uf

=g(t. UMt )+ e Pog.(t,2), Wt,2) + e P8c.(t,2))) — g(t, U(t,2), W(t, 2)) + 8¢ P! BE,

+ e P —?UZ + (1= 0)e* 7 (e + % + cOe + ) — ¢'] — x| + A1t Z/)}
=8¢ P'[(g1(t, 2)&:(t,2) + g2(t, D)5 (t. 2)) + BE]
+8e P —?UZ — (1= )97 g,(,0,0)¢ + gu (7,0, 00¢1 +2B¢] — x¢; + A1z, Z/)}

= ae‘ﬂ’{—ﬁm + %O A —)[(g1 — £u(2,0,0))¢ + (g2 — g0(2,0,0))p1 — ﬁ¢]}

+8e PN (. 2) + 8¢ P x [ (g1 — gult. 1. D)1 + (82 — gu(t. 1. 1))@z + ver + Boi .

where

A(1,7) = e®H [y ¢ =20k + XD+ 191 — (1 = x)oBe P (he + €)0]

—(oBe™P =) (91 — P g),
1

g1(7,2) =/[gu(t,T(U+5§c) + (1 =0)U, (W +38g.) + (1 = 1)W)] dx,
0
1

2 (t,7) = /[gv(t, (U +88)+ (1 —)U, t(W+8g) + (1 — )W) ]dr.
0

Similarly,
h(t,u™ %) +dvof, — v
=8¢ P1[h1(t, &1, 7)) + ha(t, 2)6e (1, 2) + B ]+ (d — D (e + €2 (1 — y)eeto?

+ 5e—ﬁ’{—¥wz — (1= 0)e®F [y (1,0,0)p + hy (1,0, 0)p1 +2B¢1] — x b + At z/)}

< ae—ﬂ’{—?wz + Pt (1 — ) [(h1 = hu(2,0,0))¢ + (2 — hy(t,0,0))¢1 — ﬁqbl]}

+ 8P Ao (t,2) +8e P x[(h1 — hu(t, 1, 1)1 + (h2 — hy(2,1,1)) 92 + v + Bea],

where

Aa(t,2) = ePH[—dy" ¢y = 2d (e + €) x't1 +d X" 92 — (1 — x)oBe P (e + €)1 ]

— (0B —c)x (g2 — e gy),
1
hi(t,z) = /[gu(t, T(U +8&) + (1 —)U, t(W +86c) + (1 — )W) ] dr,
0
1

ha(t,2) = /[gv(t, T(U +8E) + (1 — 1)U, t(W +8¢) + (1 — )W) ] dr.
0
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Write

FO(I’Z) = |g1 _gu(t7090)| + |82 _gv(t9070)| + |h1 _hu(tvo’o)l + |h2 _gv(tvo’o)i’
Nt z) =|g1 —gu(t, L, D| +|g2 — gu(t. 1, )| + [k — by (2, 1, D] 4 |h2 — gu(t, 1, D).

As lim;, _so{sup,cg T0(t, 2)} = 0 and lim;_, oo {sup,cr I'1 (¢, z)} = 0, we can choose M > 0 such that x (—M) =0,
xM) =1,
B min{min; ¢, min; ¢} v min{min; @1, min; @3}

sup 1To] < , sup || <
(t,2)€ER X (—00, M] D max; (¢ + ¢1) (t,2)ERX[M, —00) T 2max (g1 +¢2)

and supy yeryx(—m,pq 10l + [11] < K, where K > 0 depends only on ||l l¢1ll, lleill, lle2ll, Ac, €, v, and
max , yyerx—2.2218ul, [8vls [hul, |hy|}. Therefore, when z < —M, it follows that

XX

g(t, ut, v+) +ul — ul+ < se P! [—?UZ — e()‘”‘e)z/(l — X)U,Be_ﬂt()»c + €)¢:| <0,

h(t,ut, vt) +dof, — v <se™ P [—?WZ — et (1 — y)gBe P (h, + 6)¢1] <0.

Whence, when z > M, we have that

g(t, ut, v+) +ul — u;r < —Sefﬂthz <0,

h(t, ut, v+) —|—de — v;r < —(Se_ﬁt?WZ < 0.

Now let
Aty 2) = [T [—x"¢ =20 + ) x'¢ + x" 91 — (1 — ) Be P (e + €8]
+ et [—dy" 1 —2d(he + X' P1 +dx" 92 — (1 — x)oBe P (he + 1]
+|=ex' (1 — e*H97 ) —ex/ (92 — ePFO7 )| + X | Iy 4 1 1)
Then, for z € [—M, M], it follows that

g(t, ut, v+) +uf, —uf < se P [—?UZ + a,Be_ﬁtX/(w — e(k‘*é)z/(p) + A(t, z)i|
< SoBe P! [—% + e_ﬂtx/(gol — e(kﬁe)z/(ﬁ) + %,,BZ)]’
h(t,u™,vb) +dvf, — v <8P [—?WZ +oBe Py (g2 — e(kc+€)z/¢1) + A(t, z):|
< SoBe P! [—% +e Py (gr — eaﬁe)z,(bl) + A:};Z)].

Since (U, W;) > (0, 0), there exists y > 0 such that y < min{inf(; ;)eg U, inf; ;yez W}, where & =R x [-M, M].
Let

A (1,7) = e T | p| + [20hc + O x'D| + | X 01| + |(1 = x)e P (he + ©)9]]
+e* et dy" i |+ [2d G + %" P1| + [dx” @2| + |1 = x)e P (he + €)1]]
+1x (01 — e*FOTB)| + |5 (g2 — €PN p)) | + HFOT Iy + 1,

. 14
§* =min{£", } 4.11)
{ 2max, eRx[—m,M1{@1 + @2 + ePeTOCH0) (¢ + ¢1) + A9 (t, 2)}

Note that 7’ = z + s¢ and |$| < A% since o8 > max{l, |c|}. Then we readily see that (u™, v™") is a super-solution of
(4.1) for any 6 € (0, §*]. The proof is completed. O
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In what follows, we set:
u(t,x,20)=U(t,x —ct+z0£ 0 (1 —eP")) £8%.(t,x —ct +z0+s0 L0 (1 — e F))e P!,
vf(t,x, 20) = W(t,x —ct+20 :i:a(l — eiﬁt)) + S*gc(t,x —ct+z0+ s+ o(l — e*ﬂt))e*ﬂt,
where 8 and §* are given by (4.5) and (4.11), respectively.

Lemma 4.4. Suppose that (H1)—(H5) are satisfied. Assume that

lim & fim % (4.12)
x——00 k¢ (O)e)»cx

v 00 kepa (0)F<
for some positive constant k. Furthermore, assume that
liminf(uo(x) — 1) > —eo, liminf(vo(x) — l) = —¢& (4.13)
X—00 X—>00
for some &g € [0, 2%). Then there exist zo € R, o* > 1, and t* > 0 such that
(uy (1, x,20), vy (2, x,20)) < (u(t, x, u0), v(t, x,v0)) < (uf (. x,20), v} (1, x,20)) (4.14)

for all (t,x) € [t*,00) x Rand o > o*.

Proof. We first show that there exists t* > 0 such that
U(t,s) — 8 6(t,s +so)e P =1
sup < liminf
(t,s)eRxR 1(1) X—00

inf

4.15
teR (pl(l‘) ( )

{ u(t*,x,uo)—l}
By virtue of the assumptions, there exists y > 1 for which yg&p < 2‘%. Moreover, thanks to (4.13), the fact that
lu(t, x, ugp)| + |v(t, x, vo)| is bounded for all (¢, x) € Rt x R and (ug, vo) € C%(R, R?), and the basic properties for
the heat potentials, there exists t* > 0 such that

*,x)—1 X t*,x)—1 *
fiminfl inf “CoD = et timint) g YD T e B

x—>o00 |teR  ¢1(t) =00 [teR  @a(1)
This together with (4.9) and (4.10) yields (4.15).

We next show that there exist zg € R and o* > 1 such that
u;(t*,x,z())gu(t*,x,uo) (4.16)
whenever o > o*. In view of (3.25), we can fix zg € R such that
U0, x + zo) ) W0, x + zp)
lim — =1, lim —— "~ —
=00 kg (0)err =00 kg (0)eret

Note that such a zp is unique. In addition, since (u(0, x, ugp), v(0, x, vo)) = (ug, vo), for any compact subset
I C [0, 00), it follows from Proposition A.1 in Appendix A that

u(t,x, uo) . (7, x, up)
lim =1, im

x—>—oco U(t,x —ct + z¢) x—>—o0 W(t,x —ct + z0)

Now assume to the contrary that (4.16) is not true. Then there exist two sequences {x,} and {0, } such that

=1 uniformlyintel. “4.17)

on—o00 asn—oo and uy (t*, x,,20) > u(r*, xn, uo). (4.18)

Notice that u (t*,Xn.20) = U(t*, 20) — §*Ec(t*, za + s0)e P, where z, = x, — ct* + 29 — ou(1 — e7#""),
Up to extraction of a subsequence, two cases may occur: either the sequence {z,} is bounded from below or

lim,, _, o 2y = —00. If {z,,} is bounded from below, then x, — 0o as n — oo. Hence, it follows from (4.18) that
Ult,s) — 8*E:(t,s +s0)e P — 1 U(t*, zy) — 8*c(t*, 2y + so)e P — 1
sup = sup
(t,5)eRxR @1(1) n @1(t*)
t*v ) - 1 . . . t*9 ) - 1
> liminf u(t, xn, o) > liminfq inf w ,
n— 00 ©1(t*) X—>00 |reR @1(1)

which contradicts (4.15).
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Therefore, we have the case that lim,_, » z, = —00. If this occurs, we only need to consider two possibilities:
either {x,} is bounded or x, — —oo. If {x,} is bounded, without loss of generality, we may assume that x;, — xoo for
some X € R. Meanwhile, note that lim,_, o u (t*, x,, z0) = 0. Moreover, since (u¢, vg) > (0, 0), the comparison
principle implies (u(t*, x, ug), v(t*, x, vo)) > (0, 0) for all x € R. It follows from the continuity of u(z, x, ug) with
respect to x that

O:nli)rgou;n (t*,xn, z()) >nli)nolou(t*,xn, uo) :u(t*,xoo, uo) >0.

This shows that u(¢*, x0, o) = 0, which is a contradiction. This contradiction rules out the possibility that {x,} is
bounded. In case that x,, — —o0 as n — 00, in view of (4.17) and (4.18), we find that

Uy (t*, xn, 20) . u(t™, xn, uo) B

n—o00 U(t*, x, — ct* +z09) ~ n—o00 U(t*, x, — ct* +z09)

The contradiction yields that there exists a o7 > 1 for which u_ (t*, x, zo) < u(t*, x, ug) for all ¢ > 0. With the same
reasoning, we can show that there exists a oo > 1 such that v (t*, x, zo) < v(t*, x, vo) for all o > o».
Next we prove that

u(t*,x, uo) < uj(t*,x,z()), o =03 (4.19)

for some o3 > 1. Again, we shall argue by contradiction. Assume that this not true, then there exist two sequences
{x,,} and {0},} such that lim,,_, o ;, = 00 and

u(“,Ln (t*, Xn, Zo) < u(t*, Xn, uo). (4.20)

Thus, up to extraction of a subsequence, two cases may occur: either lim,,_, oo 2, = 00 or {z,,} is bounded from above,
* .
where z, = x,, — ct* + 20 + 0, (1 — e P, If lim,,_, o0 2» = 00, then we find:

1+8%¢ P (1) = lim u[fn (t*, xn, z0) < supu(r*, x,, up).
n—>oo n

This is a contradiction since the comparison principle implies that (u (¢, x, ug), v(t, x, vg)) < (1, 1) for any ¢ > 0. Thus
it is impossible that lim,,_, o, 2, = 00.
In case that {z,} is bounded from above. Then x,, — —o0, and it follows from (4.17) and (4.20) that

, ut (t*, xn, 20) . u(t*, xn, uo)
oo = lim < lim =
n—oo U(t*, x, — ct* +z9) n—oo U(t*, x, —ct* + z0)

This contradiction confirms (4.19). Similarly we can show that there exists a o4 > 1 such that v(¢*, x, vg) < v;r (t*, x)
once o > o4. Therefore, let 0* = max;—12.3 4{0;}, we have:

(uy (1%, x,20), vy (1%, x,20)) < (u(t*, x, u0), v(t*, x, v0)) < (uf (t*, x, 20), v (1%, x, 20)),

provided that o > o*. To prove (4.14), we observe that (u (,x,z0), v, (¢, x,z0)) < (1,1) and (u}(z, x, 20),
v;r (t,x,z0)) > (0,0). Furthermore, the comparison principle implies that

(0,0) < (u(t,x,u0), v(t, x,v0)) < (1,1) foranyr>r*.

Thus, (4.14) follows from Proposition 4.1. The proof is completed. O

Proposition 4.5. Suppose that all assumptions of Lemma 4.4 are satisfied. Let (U, W) € C ;’Z(R X R) and c solve
(3.1) with ¢ < c¢*. Let € be specified by (4.5). Let zy be the number such that

. U@O,x+2z0) . W(@O,x+z0)
lim — =1, im — =
x—>—00 k¢ (O)e)hcx x—>—00 k¢g (0)6)‘Cx
Then for each n > 0, there exist o, € R and D,) > 0 such that
Ut x —ct +20 = 1) = Dy ()ePF O™ Cut, x, o),
W(t, x — ct + 20 — 1) — Dyp1 (1)ePFTOE=D Cy(z, x, vp) 4.21)
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forall (t,x) € Rt x R, and

u(t, x,up) <U(t, x — ct + 20 + 1) + Dy (1)ePetOE=eD,

(t, x,v0) < W(t,x —ct +z0 + 1) + Dy (t)ePe O™ C’> (4.22)
whenever x — ct < oy,.

Proof. We shall start with (4.21). Assume without loss of generality that zo = 0. We first show that there exists Dg >0
such that

(U0, x = n) = D0)e* %, W (0, x — ) — D1 (0)e* ) < (uo(x), vo(x)) (4.23)
for all x € R when D > DO. Indeed, there exists M;, > 0 such that
U@, x — 1) —¢0)e*F9%¥ Cup(x), WO, x — 1) — ¢1(0)eP<FTO¥ Cyp(x) forall |x| >
Since (uq, vo) = (0, 0) for all |x| < M,, there exists Dg > 1 for which
U0, x —n) — D (0)e* % Lup(x), W (0, x — 1) — Dp1(0)ePT¥ Cyp(x) forall |x| <

when D > Dg. Hence (4.23) follows. Let m™ := % for the duration of the proof. Since g,h € C 0.1
there exists £ > 0 such that
hu(t,u,v) — hy(1,0,0)| + |hy (2, u,v) — hy(1,0,0)| < fm*
Su(t, u,v) — g,(t,0,0)| + |gu(r,u, v) — gu(r,0,0)| < pm*
where S is given by (4.5). In view of Theorem 3.8, for any ¢ € ]0, 1[, there exists z¢ < 0 such that

(1 —e)ke*ip(t) <U(t,z —n) < (1 + e)ke*p (1)
(1 —e)ke*?ga(t) < W(t, z — 1) < (1 + &)kerZq(t)

when |u| + |v| <&,

forall z < z}. (4.24)
Now set m = max;{1, ‘z’—;} and m_ = ming{1, 4’—:’} and fix ¢ such that ¢ is sufficiently small, and

forall z <z].

N | ™I

m+ )\. z
(1 + —)(1 + &)kie** max{¢p + ¢g} <
m_ teR

e—Octorzd

m). Since (u(t, x, up), v(t, x, vo)) = (0,0) and (U, W) < (1, 1), it is readily seen

Let D; = - (14+k)(DY +
that

uy(t,%) = U(t,x = et — 1) = Dy 0TI <0 <ulr, x, u),
vy(1,2) 1= W(t,x — et =) = Dy 1 (e FOU™D <0< (e, x, vo)

forall (r,x) e {(t,x) e RT xR |x — 7).
Define z, := 1 ~In k(1+8) Clearly, 7+ < z¢ as long as ¢ is sufficiently small. It then follows from (4.24) that
’)

—(1+ 8)(1 + —)kqbem e ¢lk(1 — &) — Dy e Suy(r, x) < (1 +)kpe’?,

—(1+ e)<1 + %)k@e%z < My [k(l —g)— D;%e“} < vy (t, x) < (1 +e)kgge™* (4.25)
_ d

for all z = x — ct < z4. In addition, (u,(z,x),v,(,x)) < (0,0) for all (r,x) € {(r,x) | z4« < x —ct < za).
To summarize, we have that
(un(t, %), v,(t, ) < (u(t, x, u0), v(t,x,v0)) forall (f,x) € RT x {x >z, +ct},
[, %) [un(t,x) =0} U{(t, x) | vy(t,x) >0} SR x {x < z4 +ct},
(gn(O,x), v, (0, x)) < (uo(x), vo(x)) for all x e R.
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In order to prove that (u,(z, x), v,(t, x)) < (u(t, x, ug), v(t, x, vo)) for all (¢,x) € Rt x R, we show that (uy, vy)
is a sub-solution of (4.1) in R* x {x < z, + ct}. In fact, due to (4.24) and (4.25), we have that |U| + |W| < & and
lun| + lv,| < & whenever x — ct < z*. In light of the calculation made in the proof of Lemma 4.3, we readily see that

gt uy, vy) + (Uy)xx — (Up):

1
= D; ettt { /d)(t)[gu(t, 0,0) — gu(t, tuy + 1 — U, Ty + (1 —)W)]drt
0

1

—/¢1(t)gv(t,rgn+(l—r)U,ryn+(1—r)W)dt+2ﬂ¢(t) >0
0

and

h(t, Up, Qn) + d(yn)xx - (yn)t

1
> Dne(kche)(xct){ f¢(z)[hu(t, 0,0) — hy(t, Tuy + (1 = 1)U, tvy + (1 — )W) ]d7
0

1
+/¢1(t)[hv(t, 0,0) — hy(t, Tup + (1 = )U, tvy + (1 — )W) ]dT + 281 (1) ¢ >0
0

for all (¢, z) € {x — ct < z*}. Therefore, it follows from Proposition 4.1 that

(gn(t, x), vy(t, x)) < (u(t, X, up), v(t, x, vo)) for all (¢, x) e RT x R.

We now proceed to prove (4.22). Since (U (t, -), W(t, -)) is nondecreasing, by virtue of Lemma 4.4, it suffices to
show that (4.22) holds for each n < o*, where o* is specified by Lemma 4.4. By means of the same arguments used
at the beginning, we can show that for each n > 0, there exists D% > 0 such that

((0, x, up), v(0, x, v0)) < (U(0, x + 1) + D (0)e ™% W(0, x + 1) + Dpy(0)e< )

for all x € R whenever D > D,17. In terms of Lemma 4.4, we have:

u(l‘,x, MO) < U(t,x —ct +O_*(1 - e—ﬂl‘)) 4 5*¢e()»c-f‘E)(X—L'Z+S0+a*(l—efﬂ’))e—ﬁt’
v(t, X, UO) < W(t,x —ct —l—a*(l . e—ﬁt)) + 8*¢1e(kc+e)(x—ct+so+a*(1—e*ﬁt))e_ﬁt’
when (¢, x) € [t*,00) X {x <s — 59 — 0™ + ct}. Moreover, it follows from (4.17) that

lim (u(7,x, up), v(t, x,v9)) = (0,0) uniformly in [0, r*].

X—>—00

Therefore, there exists og € R such that

m*e m*g
(u(t, x,u0), v(t, x,v0)) < 7~ (LD and (Ut,x —ct+n), W(t,x —ct +1)) < (LD
+ % In 4p) maxtgi) T1(@+¢1) + Ee—()»c+€)(7n
aslongas (t,x) € RT x {x <og+ ct}, where n < o*. Let 0, = 009 + L Fote and D, = Tmax 0 @D

Here £ is the same as above and D% has been selected sufficiently large such that 2D,1] > ¢. Thus, we have D,‘f > D}’.
In addition, for each n € (0, 0*], it is easy to see that

e
(@ (2,20, Dy (0, 20) = (U (1, 24 0) + D e ™%, Wt 2+ m) + D gre™ ) < (1, 1)

for all z = x — ct < 0y. In particular, we have:
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m*e
4
for all (#,x) € RT x {x = 0, + ct}. Moreover, using the arguments similar to those presented in the proof of
Lemma 4.3, we can show that (i, v;) is a super-solution of (4.1) in {x — ct < 0,}. Then, by using Proposition 4.1

again, we obtain that

(u(t, x,u0), v(t, x,v0)) < (1, 1) < (iy (1, x), Uy (¢, x))

iy (t,x), 0,(t,x)) = (ut, x,up), v(t, x,v9)) forall (t,x) e RT x {x <oy, + ct}. (4.26)
n n 1

For each n > o™, choose 0, = 05+ and D;]Ir = D;L*, then we see that (4.26) is still true. Now set D, = max{D; , D;,L 1.
Then (4.21) and (4.22) follow. The proof is completed. O

Lemma 4.6. Suppose that (H1)—(H5) are satisfied. Assume that (U, W) € Cg’z(IR{ x R) and ¢ solve (3.1) with ¢ < c*.
Assume that (u(t,x), v(t,x)) € Cg’z(R X R) is a solution of (4.1) for all (t, x) € R x R such that

(Ut,z+z20+), Wt,z+z0+ ) < (ut, x), v, x) < (Ut z+z20+B), W(t, 2+ 20+ B))
for certain constants a, B and zo with o <0< B and zp € R, where z = x — ct. Assume that for each n > 0, there
exist 0, € R and D), € R™ such that
U(t,x — ct +20 — 1) — Dype®TOCD <yt x) SU(t, x — ct + 29 + 1) + Dygpe T,
W(t,x —ct + 20 — ) — Dyp1 e TOCTD Cy(r, x) < W(t, x — ct + 20 + 1) + DyreetOe—t)

forall (t,x) € {(t,x) | x — ct <oy}, where € is specified by (4.5). Then
(u(t, x), v(t, x)) = (U(t, x —ct+2z0), W(t,x —ct + z())) forall (t,x) e R x R.

Proof. The proof shall be divided into four steps for the sake of clarity. Assume again that zg = 0.
Step 1. Define:

n*:inf{ne[O,-i-oo) ‘ <M(t,X)> < <U(t,x—ct+n)

v(t, x) W, x —ct+n)
Notice that n* is bounded and satisfies 0 < n* < 8 since (U (¢, -), W(t, -)) is monotonically increasing. Our goal is
to prove that (u(t, x), v(t, x)) < (U(t,x —ct), W(t,x — ct)) for all (z,x) € R x R. Namely, n* = 0. Assume to the
contrary that n* > 0. Then we claim that there exists ¢ € (—00, o+ | such that

2

), V(t,x)eRxR}.

(u(t,x),v(t,x)) < (U (t,x —ct + ”;) W(t,x —ct + ”;)) (4.27)

for all (¢, x) € {x — ct < o}. If this is not true, then there exist two sequences {#,} and {x,} such that

n

* *
lim (x, —ct;,) = —00 and (u(t,,,xn), v(tn,xn)) > (U(tn,xn —ct, + 77_)’ W(tn,x,1 —ct, + 77_))
On the other hand, we have:

Ultn,zn + ) + Dy (1) el TO W (tn, zn + I + Dy 1 () e et
lim : =0, lim =B =0,
=00 Uy, zn + %) n—0oo Wtn, zn + %)

where z,, = x,, — ct,,. Therefore, it follows from the assumption that

* *
(u(tna Xn), U(ty, xn)) < (U (t}’la Xp — Cly + %)7 W(tna Xp — Cly + %))
when x, — ct, < o for some o, € (—00, o+ |. This is a contradiction, hence (4.27) follows.
P

Step 2. We now show that

inf  U(t,x —ct+n%) —u(t,x) >0, inf  W(t,x —ct +n*) —v(t,x) >0, (4.28)

o<x—ct<o o<x—ct<o
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for any o > o. We only prove the first inequality as the other can be proved in the exactly same way. Assume to
the contrary that infy <y ;<o U(t, x — ¢t +1*) — u(t, x) = 0. Then there exist two sequences {#,} and {x,} such
that

o <xp—cty <o and lim [U(ty, Xy — cty + %) — u(ty, x,)] =0. (4.29)

n—oo

We need to take two cases into consideration, i.e., either {f,} is bounded or {f,} is unbounded. If {z,} is un-
bounded, up to extraction of a subsequence, we may assume without loss of generality that lim,_, . #, = o0.
Thus, there exists a sequence {j,} with j, € N* such that lim, .o j, = oo and t, € [j,T, (ju, + DT].
Lett, =t, — j,T. Clearly, 1, € [0, T]. Write z, = x, — ct,. Notice that {z,} is bounded and ¢, T = x,, — ct,, — z,.
Now set:

(n(t, x), 00 (t, x)) = (u(t + ju T, x + cjuT), vt + juT,x +cjuT)).

As both g and £ are periodic in ¢, (u,(t, x), v, (t, x)) are the solutions of (4.1) as well. Due to the regularities of {u,,}
and {v,} with respect to ¢ and x, up to extraction of a subsequence, {(u,, v,)} converges uniformly in any compact
set of R x R to a solution of (4.1) in R x R, denoted by (uoo (¢, X), Voo (¢, x)). Note that

(un(t, x), 00 (t, 0)) = (u(t + juT,x +cjnT), vt + juT, x4+ cjuT)) < (U(x —ct +n*), W(x —ct +n%)).

Consequently, we see that (s (2, X), Voo (£, X)) < (U (x —ct +n*), W(x —ct +n*)) for all (¢, x) € R x R. Moreover,
since both {7} and {z,,} are bounded, there exist #~, and z, and a subsequence of {(z,, z,)} (still denoted by {(z},, z,,)}
for convenience) such that lim,,—, o (#,, 2n) = (f0, Zoo)- Thus, it follows from (4.29) that

U(foo, Zoo t+ 77*) — Uoo(teo, Cloo + Z00)
= Lim [U(t}, 20 + 0*) — un(t). cty + 2n)]

n—oo
= Tim [U(; + ju T %0 =ty + 1) —u(ty + juT. ety + 2n +cjuT)]
n—oo

In other words, 1o (foo, Xoo) = U (oo, Xoo — Cloo + 1), Where Xoo = Zoo + Ctoo. Since
1
|:/gu(t, sUT + (1= $)too, sSWT + (1 — s)voo)ds:| (U —uos) + (U
0

* *

- uoo)xx o (UU - uoo)t <0,

it follows from the strong maximum principle that uso (t, x) = U (¢, x — ct +n™) for all (¢, x) € (—00, o] X R, where
U (t,5), W (t,5)) = (U(t, s + n*), W(t, s + n*)). On the other hand, thanks to (4.27), we have:

(un(t, %), v, (1, 0)) = (@ + jnT.x + cjuT), vt + juT,x +cjuT))

n* n*
<|\Ult,x—ct+— ), W|t,x —ct+ —
((x c—|—2) (x c+2)>

as long as x — ¢t < ¢. Then, by taking the limit, we find that u.o (¢, x) < U(¢, x —ct + g) forall (¢, x) € {x —ct < a}.
This is a contradiction because U (¢, - + g) < U(t, -+ n*). This contradiction rules out the possibility that {#,} is un-
bounded, and we are led to the case that {z,} is bounded. However, if {z,,} is bounded, then there exists (+*, x*) such
that u(t*, x*) = U (¢*, x* — ct* + n™), hence we can again deduce a contradiction with the same reasoning. Therefore,
(4.28) holds.

Step 3. In view of the assumption, we find that

lim sup |u(t,x)—1|=0, lim sup |v(t,x)—1|=0.
z x—ct>z TR0 x>z

Hence, there exists ¢ > g such that

(u(t,x), v(t,x)) € [1 — po, 1]2, (U(t,x —ct+ r]*), W(t, x—ct+ 7)*)) S [1 — po, 1]2 whenx —ct > 0o,
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where po is given in Proposition 3.9. As (U, W) is uniformly continuous in [0, T'] x [o, & + n*], by virtue of (4.28)
and the time periodicity of (U, W), there exists 1 € ["7, n™) for which

inf  U(t,x —ct+7n)—u(t,x) =0, inf W@, x—ct+n)—v(t,x)=>0. (4.30)

o<x—ct<o o<x—ct<o

We next show that

inf U(t,x —ct+7n)—u(,x)=0, info W, x —ct+7n)—v(t,x)=>0. “4.31)

x—ct>o x—ct>o

To this end, let

W, x)y=U@,x —ct+7) —ut,x) +8¢1(t) and (1, x)=U(t, x —ct +7) — u(t, x) + 8¢2(¢).
Define
§ =inf{8 € [0, 00) | (u®(r, x), v’ (z,x)) > (0,0) for all (£, x) € {x —ct >5}}.
We need to show Ehat 8 = 0. If this is not true, then with the same reasonin_g as that in Proposition 3.9, we infer that
either inf, _ ;> u® =0or infy_¢>5 v? =0. Assume again that infy_./>7 v? = 0. Then there exist two sequences {f,}
and {x,} such that {x,, — ct,} is bounded, x, — ct, > &, and lim,,_, o v (t,, x,) = 0. Moreover, we have:
1
|:/hv(t,sUﬁ +(1=)u,sW'+(1 —s)v)a’s:|v‘S + vﬁx — vf <0 forall (t,x) €{x —ct >0},
0

where U'(t,-) = U(t,- +7) and W'(¢t,-) = W(t,- + 7). If {t,} is bounded, then there exists (¢*,x*) such that
x* —ct* > & and v (t*, x*) = 0. Hence we can readily reach a contradiction by applying the (strong) maximum
principle.

In case that {,,} is unbounded. With a slight abuse of notation, we still write that #, = j, T + ¢, with an unbounded
integer sequence {j,} and bounded sequence {f,}. Set again:

W (t,x) =ub(t + juT. x +cjaT) =U(t,x —ct +7) —u(t + juT. x + cjuT) + 801 (1),

v,gl(t, x) = vg(t 4+ T, x+cjpyT)=W(t,x —ct+n) —v(it+ ju,T,x +cjuT)+ Sga(1).
Notice that

1
[/hv(t,sUn (1= $)up, sWT+ (1 — s)vn)dsi| v+ ()., — (¥]), <0, V@1 €lx—ct>7),
0

where u, (t,x) =u(t + j,T,x + cj,T) and v,(¢t,x) = v(t + j, T,x + ¢j,T). By taking the limi:E, we can agai*n de-
rive a contradiction in the exactly same way as above and infer that (4.31) holds. As (U(z, - + "7), Wi, + "7)) <
W, -+n), W, -+1n)), from (4.27), (4.30), and (4.31), it follows that (u(z, x), v(t, x)) < (U, x —ct+7), W(t,x —

ct + 7)) for all (¢,x) € R x R. It apparently contradicts the definition of n*. Thus, we must have n* = 0. In other
words,

(u(t,x),v(t,x)) < (U@, x —ct), W(t,x —ct)) forall (r,x) e R x R.
Step 4. Define:

77*=inf{77€[0,+oo) ‘ (u(t,x)) > (U(t,x—ct_n)

v(t, x) W(t,x—ct—n)>’V(t’x)GRx]R},

Notice that 7, is bounded and satisfies 0 < 1, < —«. Arguing in a similar manner, we can show that 7, = 0, that is,

(Ut,x —ct), W(t,x —ct)) < (u(t,x),v(t,x)) forall (r,x) e R x R.

Therefore, it follows that (u (¢, x), v(t,x)) = (U (t,x —ct), W(t,x —ct)). O
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Theorem 4.7. Suppose that all the assumptions of Lemma 4.4 are satisfied. Let (U, W) € C bl’Z(R x R) and ¢ solve
(3.1) with ¢ < c*. Then

Jim |u(t, x,up) — U(t,x — ct +z0)| + |v(t, x, v9) — W(t,x — ct +20)| =0 (4.32)
— 00

for some zo € R. In particular, 7 is the unique number such that
. U@, x+z20) . W(0,x+z0)
lim ——=1 and Ilim ——— =
x=>=00 kg (0)erex o0 kgy(0)e<*

Proof. We assume again that zop = 0. Assume to the contrary that (4.32) is not true. Then there exist € > 0 and a
sequence {(f,, x,)} € RT x R such that lim,,_, », #, = 0o, and

|M(tﬂ9 Xp,uo) — U(ty, xy — Ctn)| + |U(tna Xp,yuo) — Wty, xp — Ctn)| Z €. (4.33)

Since t, — 0o as n — oo, there exists a sequence {j,} with j, € N* such that lim, .o j, = oo and
th € [jnT, (ju + 1)T]. As before, we let 1, = t, — j, T and write z, = x, — ct,,. If {z,,} is bounded, then set

(un(t’x)’ Un(ta x)) = (M(t + jnT»x + CjnTa MO), 'U(t + jnT»x + CjnTa U()))

Clearly, for each n, (u,(t,x),v,(t,x)) is a solution of (4.1) in (—j,7T,00) x R satisfying (u,(—j,T,x),
VU (—jnT, x)) = (uo(x 4+ cjuT), vo(x + cj, T)). Denote again by (1 (t, X), Voo (?, X)) the solution of (4.1) in R x R
to which {(u,, v,)} converges uniformly in any compact set. Due to Lemma 4.4, we see that

U(t,x —ct —0*) = 8* Ae™PUTID) <y (0,x) SU(t,x — et + %) + 8* Ae PUFID),
W(t,x—ct—o*)— §* Ae PUHIT) <y (1, x) < W(t,x —ct+0*)+ §* Ae PUFinT)
forall (7, x) € [t* — juT, 00) X R, where A = max{sup(, oycrxr &c(t,5), SUP(; 5)erxR Sc(?, )} It then follows that
U(t,x —ct —a*) LUeolt, x) < U(t,x —Ct+a*),
W(t,x —ct —0") Svoolt,x) <W(t,x —ct +0*) forall (r,x) eR x R.
Furthermore, Proposition 4.5 implies that for each n > 0, there exists D, such that
(Ut,x —ct —n) — Dype T Wt x —ct —n) — Dn¢1e(}‘f+é)(x_”)) < (un(t,x), v (1, X))
for all (¢, x) € [—j,T,00) x R, and
(un(t, x), v (t,x)) < (U(t,x —ct +n) + D,]qﬁe()”fﬂ)(x_”), W(t,x —ct+n)+ D,]qﬁle()‘#e)(x_m)
whenever (¢, x) € [—j, T, 00) x (—00, 0y + ct]. By taking the limits in above inequalities, we obtain that
(Ut,x—ct —n) — Dype T Wt x —ct —n) — Dn¢1e()‘f+6)(x_"’)) < (oo (t, X), Voo (2, X))
for all (¢, x) € R x R, and
(oo (t, %), Voo (1, %)) < (U(t, x — ct + 1) + Dype*TOD W (t, x — ct + 1) + DypreP< =)
for (t, x) € R x (=00, 0y, + ct]. Consequently, it follows from Lemma 4.6 that
(uoo(t, X), Voo(t, x)) = (U(t, x—ct), W(t,x — ct)). (4.34)

On the other hand, since {z;} and {z,} are both bounded, by taking subsequences if necessary, we find that
limy, o0 (1), 2n) = (foo, Zoo) fOr some (foo, 2oo) € [0, T1 x R. Since {(u,, v,)} converges uniformly to (4o, Voo) in
compact subsets of R x R, we have:

(”oo(too» Cloo + Zo0)s Voo (foos Cloo + Zoo))
= nli)rgo(un (t,;, ct) + Zn), Up (t,/i, ct) + Zn))
= Him (u(t, + juT. cty, + 2 + cjn T, u0) v(ty + juT. ¢ty + 20 + cjnT. v0))

= hm (“(tn, xl’la MO)’ v(tn, xna UO))
n—o0
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Moreover, we observe that
(U (too: 200)s W (tos, 200)) znlip;o(U(t;l, ), W(t),zn)) = nli)H;O(U(t,', + jnT 2n), W(t) + jaT, zn))

= lim (U (ty, Xn — ctn), W (tn, X5 — cty)).

n—oo

Hence, it follows from (4.33) that

|uoo(t007 Cloo + Z00) — Ulloo, Zoo)| + |Uoo(tc>07 Cloo + Z00) — Wto, Zoo)| = e
However, this contradicts (4.34). Thus {z,,} has to be unbounded in terms of (4.33). Assume that lim;,_, 5o 7, = —00.
Then it follows from Lemma 4.4 that
hm (M(tl’lv -xl’l’ “0)» v(tl’lv -xl’l’ UO)) = hm (U(tl’lv Zn)a W(tn’ Zl’l)) = (O’ O)
n—oo n—0oo
Likewise, if lim,,_, o 2, = 00, then we have:
11m (u(truxn’ MO)7 U(tfh xnv UO)) = llm (U(tfh Z}’l)v W(tl’l’ Zn)) = (1’ 1)
n— oo n—oo

They both contradict (4.33). Therefore, (4.32) follows. The proof is completed. O

Remark 4.8. With additional assumptions on g and /, the same type of methods utilized in this section can be adopted
to prove the asymptotic stability of time periodic traveling waves with the wave speed c*. This issue will be addressed
in our forthcoming paper.
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Appendix A

In this Appendix, we prove a result on the limiting behavior of solutions of (4.1) with prescribed initial data which
was used in the proof of Lemma 4.4.

Proposition A.l1. Suppose that (H1)-(HS) are satisfied. Assume that (u(t, x, ug), v(t, x,vg)) solves (4.1) with
(u(0, x, u0), v(0, x, vo)) = (uo(x), vo(x)) and that

. uo(x) . vo(x)
Iim ——— =1, lim
X—>—00 k¢ (O)e)\cx

=00 kpg(0)erex
for some positive constant k, where ¢ < c¢*. Let I C [0, +00) be any compact subinterval. Then there exists zg € R
such that
o fu(t,x,ug) U@, x —ct +20)| . @, x,ug) = Wt x —ct +20)|
lim =0, lim =

0
x——00 U(t,x —ct +z0) xX——00 W, x —ct+ zp)

uniformly in t € I, where ¢ < c* and 7o € R is the unique number such that

U, x + zo) . W(@O,x+z0)
lim —— =1, lim —— =
x>0 kg (0)eret =00 kepg(0)eh*
Proof. Once again, we shall assume without loss of generality that zo = 0 through the proof. Let p(r) € C3(R) be
a real positive function with the following properties: (i) (|[o(r)| + |’ (r)]) < C 1e791"! for certain positive constants

C: and §; (i) I%I + I%I + If),((rr))l < C; for some positive constant C,. By rescaling, we may assume that
p(0) =1 and § > 2./k, in other words, § > 2). for any ¢ < ¢*. Such a function can be easily constructed, for

instance, p(r) = m has the desired properties.
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Now we write p*(y) = p(y — x) and set:
ﬁ(tv )’) :,Ox(y)[u(t, Y, l/t()) - U(tv y— Ct)]a ﬁ(ta )’) — px(Y)[U(t’ Y, MO) - W(t’ y— Ct)]-
Then
8yt — ity = p* (M|l — Ul — [u— Ulyy} = o5, 0l — Ul =205 ()[u — U1,
p;‘y(y)l2 205
P*(y) p*(y)

2(p(»))?
[ -], + =22

:on(y)[g(tvuvv)_g(t’Uv W)]_ y 'Ox(y)

[0 () —U)].
Define

(Liw)(t,y) :=w; — Wyy +

203 (y) [2<p§(y)>2 — Py <y>]
Wy — ~ w
p*(y)
Then, we find that
1 1
Liu= { /gu(t,su + (1 =s)U,sv+(1 —s)W)ds]ﬁ + { /gv(t,su + (1 —=s)U,sv+(1 —s)W)ds}f).
0 0
Likewise, we have:

1 1
L) = [/hu(t,su—i-(l —s)U,sv+ (1 —s)W)ds]ﬁ—i—[/hv(t,su—i—(l —s)U,sv+ (1 —s)W)ds]f),
0 0

where

2py () [2(p§ )* — p;‘y(y)]w
pr(y) P*(y)
By the variation of constants formula and Gronwall’s inequality, we obtain that

(Law) (2, y) :=w; —dwyy +

|12(t, y)\LOO(R) < CeKtHﬁ(Oa y)|LOO(R) + |ﬁ(0’ y)|Loo(R)]’ tel

for certain positive constants C and K, which depend only upon d, Ci, Cz, and M , Where M =
25Up; s 5yeRx[—2.21x[-2.21U&u(t, 5, )|+ |gu(t, 5, )| + [hu (2, 5, ")+ |hy (2, 5, 5")|} (see Theorem 2.10 in Chapter IIT
of [14] or Theorem 3.1.3 of [32]).

Without loss of generality, we may assume that I C [0, T']. Thus,

u(t,x,up) —U(t,x —ct)| < CeXT sup  {|p* W) [uo(y) — UQO, »]| + [0 ) [vo(y) — WO, ]|}

=<
+CefT sup | ‘{|p" N[uo() = U O, ]|+ 0" 0)[vo(y) = WO, ]|}
ly—x|=>3
Since

0" [0 () — U O, ]| + 0" M [vo(») — W (0, »)]| <4C1e™>  whenever [y — x| > Ll

2
uop(y) >'
U (0, 1—
(”( U, y)

uo(y)
U@,y)

Furthermore, if y e {s e R: |s — x| < %}, then

0" ) [uo(y) — U0, y)]| < Cre ==

< Clc/e*tslyfxlelcy 1—

uo(y)

< ClC/e—Sly—xle}\cly—xle)»cx
U(@,y)

1—

uo(y)

< CiCle* .
Uu@,y)

1—
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Here we used the fact that 0 < U (0, x) < C’e*<* for some positive constant C’ (see Theorem 3.8).
Similarly, we have

0" () = WO, ]| < C1C |1 = 0] whenever [y =11 < 5.

Consequently, for each ¢ € I, it follows that

= e uo(y) vo(y) ~ ol
u(t,x,ug) — U, x —ct) < Cet* sup Hl—i —i—'l—— +Ce 2,
| | U(,y) W, y)

ly—x| <3

where C is a positive constant that depends on C, Cy, K, and T'.

As
i HI_L@) +‘1_MH=0
y—>—00 U, y) WO, y)

’

by Theorem 3.8, we readily infer that

I, x, -U I, x —ct . :
lim it x. o) (t.x = ct)l =0 uniformlyinz e [.
x—>—00 U(t,x —ct)

Likewise, we have:

tv ) - W tv —ct . .
lim [vit, x, vo) (t.x = ct)l =0 wuniformlyint e I.
x——00 Wi(t,x —ct)

The proof is completed. O
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