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There were a few errors in the paper which are corrected as follows.

1. Page 1231, line 4 from the bottom, the sentence after “which is defined as z0 such
that” should be revised as “ρ(W(ω,0, z0)) = 1 which can be calculated and detailed
computations are given in the Appendix”.

2. Page 1239, line 6 from the bottom, “226,920” should be replaced by “226,890”.

3. Page 1242, Fig. 7 should be revised as follows:

The online version of the original article can be found under doi:10.1007/s11538-012-9720-6.
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Fig. 7 The influence of parameters on R0. (a) versus A; (b) versus k; (c) versus γ ; (d) versus a. Other
parameter values in Table 1 do not change

4. In the Appendix, page 1248, all content after “Using (ii) in Theorem 2.1 in Wang
and Zhao (2008), we derive” should be replaced by the following paragraphs:

G(t) = F(t)

z
− V (t)

=

⎛
⎜⎜⎜⎝

−(m + σ + k) 0 β(t)Ŝ
z

0

0 −(m1 + σ1 + k1)
β1(t)Ŝ1

z
0

σγ 0 −(m + μ) 0
0 σ1γ1 0 −(m1 + μ1)

⎞
⎟⎟⎟⎠ ,

where β(t) = a[1 + b sin(π
6 t + 5.5)] and β1(t) = a1[1 + b1 sin(π

6 t + 5.5)]. We cal-
culate the monodromy matrix of the system

dx

dt
= G(t)x. (17)

By observing the matrix G(t), we can see that x1(t) and x3(t) are independent of
x2(t) and x4(t) and can be solved directly. To solve x2(t) and x4(t), consider the
system

dx2(t)

dt
= −(m1 + σ1 + k1)x2(t) + β1(t)Ŝ1

z
x3(t), (18)
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dx4(t)

dt
= −(m1 + μ1)x4(t) + σ1γ1x2(t). (19)

From Eq. (18), we have

x2(t) = e−(m1+σ1+k1)t

[
c2 +

∫ t

0

β1(s)Ŝ1

z
x3(s)e

(m1+σ1+k1)sds

]
, (20)

where c2 is an arbitrary constant. Combining Eqs. (19) and (20), we have

x4(t) = e−(m1+μ1)t

[
c4 +

∫ t

0
σ1γ1x2(s)e

(m1+μ1)sds

]
, (21)

where c4 is an arbitrary constant. We can verify that (0, c2e
−(m1+σ1+k1)t ,0,

σ1γ1c2
μ1−σ1−k1

[e−(m1+σ1+k1)t − e−(m1+μ1)t ]) and (0,0,0, c4e
−(m1+μ1)t ) are two linearly

independent solutions of system (17). Thus, by the necessary condition that the mon-
odromy matrix evaluated at T = 0 must be the identity matrix, we firstly give the
form of the monodromy matrix of system (17):

ΦF
z
−V

(T , z) = W(T,0, z) =

⎛
⎜⎜⎝

a11 0 a13 0
a21 a22 a23 0
a31 0 a33 0
a41 a42 a43 a44

⎞
⎟⎟⎠ ,

where

a22 = e−(m1+σ1+k1)T ,

a42 = σ1γ1

μ1 − σ1 − k1
e−(m1+μ1)T

[
e(μ1−σ1−k1)T − 1

]
,

a44 = e−(m1+μ1)T .

Note that a22 and a44 are two eigenvalues of the monodromy matrix and are irrelevant
to z. Hence, it suffices to estimate the monodromy matrix Φ1(T , z) of the following
system

(
dx1(t)

dt
dx3(t)

dt

)
=

(
−(m + σ + k)

a[1+b sin( π
6 t+5.5)]Ŝ

z

σγ −(m + μ)

)(
x1(t)

x3(t)

)
.

and find z0 such that ρ(Φ1(T , z0)) = 1, where Ŝ is defined in Sect. 4.
Since the above system is linear and periodic, we can apply the shifted Chebyshev

polynomials method presented in Sinha and Wu (1991). Following Fox and Parker
(1968) and Luke (1969), the shifted Chebyshev polynomials of the first kind are de-
fined on the interval [0,1] by T ∗

0 (t) = 1, T ∗
1 (t) = 2t − 1 and the recursion formula

T ∗
r+1(t) = 2(2t − 1)T ∗

r (t) − T ∗
r−1(t).
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By the definition, we can see that the shifted Chebyshev polynomials are orthogonal:

∫ 1

0
T ∗

r (t)T ∗
k (t)ω(t)dt =

⎧⎪⎨
⎪⎩

0 r �= k,
π
2 r = k �= 0,

π r = k = 0,

(22)

where ω(t) = (t − t2)−1/2 is the weight function given by Sinha and Butcher (1995).
Assume that f (t) is a continuous scalar function and can be expanded in shifted
Chebyshev polynomials:

f (t) =
∞∑
i=0

piT
∗
i (t), 0 ≤ t ≤ 1.

The coefficients pi are given by

pi = 1

δ

∫ 1

0
ω(τ)f (τ)T ∗

i (τ )dτ, i = 0,1,2,3, . . . ,

and

δ =
{

π
2 i �= 0,

π i = 0.
(23)

Noticing the fact that the shifted Chebyshev polynomials are defined on the inter-
val [0,1], we can use a linear transformation t = 12t∗ and rewrite the above system
as follows:

dy

dt∗
= [

A
(
t∗

)]
y, (24)

where y = (y1(t
∗), y2(t

∗))T = (x1(12t∗), x3(12t∗))T and

[
A

(
t∗

)] = 12

(
−(m + σ + k)

a(1+b sin(2πt∗+5.5)Ŝ
z

σγ −(m + μ)

)
,

which is a 2 × 2 matrix of principal period 1. Denote A(t∗) = A0 + A1(t
∗), where

A0 = 12

(
−(m + σ + k) aŜ

z

σγ −(m + μ)

)
,

A1
(
t∗

) = 12

(
0 ab(sin(2πt∗+5.5))Ŝ

z

0 0

)
.

Let

CA = 12

(
0 abŜ

z

0 0

)
,
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which is the coefficient matrix of A1(t
∗). The solution vector y(t∗) and the function

sin(2πt∗ + 5.5) of system (25) can be expanded in terms of the shifted Chebyshev
polynomials on the interval [0,1] as follows. Here, we take 15 terms of the shifted
Chebyshev polynomials.

yj

(
t∗

) ≈
14∑
i=0

b
j
i T

∗
i

(
t∗

) ≡ T∗T
(
t∗

)
bj , j = 1,2.

sin
(
2πt∗ + 5.5

) ≈
14∑
i=0

diT
∗
i

(
t∗

) ≡ T∗T
(
t∗

)
d,

where

bj = {
b

j

0 , b
j

1 , b
j

2, . . . , b
j

14

}T
, j = 1,2.

d = {d0, d1, d2, . . . , d14}T
= {−0.2147,−0.4034,−0.6850,0.4726,0.2137,−0.0739,

−0.0205,0.0048,9.8228 × 10−4,−1.7717 × 10−4,−2.8356 × 10−5,

4.1476 × 10−6,5.1665 × 10−7,1.0990 × 10−7,9.2387 × 10−7},
and

T∗T
(
t∗

) = {
T ∗

0

(
t∗

)
, T ∗

1

(
t∗

)
, . . . , T ∗

14

(
t∗

)}
.

For convenience, we introduce some notation. Let

T̂
(
t∗

) = I ⊗ T∗T
(
t∗

)
, ȳ(0) = y(0) ⊗ (1,0, . . . ,0)T ,

where ⊗ represents the Kronecker product, I is a 2 × 2 identity matrix, and y(0) is
the initial condition.

According to the method proposed by Sinha and Wu (1991), the monodromy ma-
trix is given by

Φ1(1, z) = T̂(1)B̄, (25)

where Φ1(0, z) = I . B̄ = [b̄1, b̄2] can be obtained by

[I − Z]b̄ = ȳ(0),

with initial conditions y1(0) = (1,0), y2(0) = (0,1). Z is a 30 × 30 constant matrix
defined by

Z = A0 ⊗ ḠT + CA ⊗ ḠT Q̄ = 12

(
−(m + σ + k)ḠT aŜ

z
ḠT (I + bQ)

σγ ḠT −(m + μ)ḠT

)
,

where Ḡ the 15 × 15 integration operational matrix, Q the 15 × 15 product operation
matrix, given respectively by
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Ḡ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 · · · 0 0

− 1
8 0 1

8 · · · 0 0

− 1
6 − 1

4 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
1

336 0 0 · · · 0 1
56

− 1
390 0 0 · · · − 1

52 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d0
d1
2

d2
2 · · · d13

2
d14
2

d1 d0 + d2
2

d1+d3
2 · · · d12+d14

2
d13+d15

2

d2
d1+d3

2 d0 + d4
2 · · · d11+d15

2
d12+d16

2· · · · · · · · · · · · · · · · · ·
d13

d12+d14
2

d11+d15
2 · · · d0 + d26

2
d1+d27

2

d14
d13+d15

2
d12+d16

2 · · · d1+d27
2 d0 + d28

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

in which d15 = · · · = d28 = 0. After obtaining the monodromy matrix, we can find z0,
that is, the basic reproduction number satisfying ρ(Φ1(1, z0)) = 1.

Using Matlab, we obtain z0 = 1.0321. Note that if we discrete the system
(18)–(19) with the identity matrix as the initial state and solve z0 directly, then
z0 = 1.032. We can see that these two values are very close.
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