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In this paper, two classes of single-species models with logistic growth and impulse dispersal (or migra-
tion) are studied: one model class describes dissymmetric impulsive bi-directional dispersal between
two heterogeneous patches; and the other presents a new way of characterizing the aggregate migration
of a natural population between two heterogeneous habitat patches, which alternates in direction peri-
odically. In this theoretical study, some very general, weak conditions for the permanence, extinction of
these systems, existence, uniqueness and global stability of positive periodic solutions are established by
using analysis based on the theory of discrete dynamical systems. From this study, we observe that the
dynamical behavior of populations with impulsive dispersal differs greatly from the behavior of models
with continuous dispersal. Unlike models where the dispersal is continuous in time, in which the travel
losses associated with dispersal make it difficult for such dispersal to evolve e.g., [25,26,28], in the pres-
ent study it was relatively easy for impulsive dispersal to positively affect populations when realistic
parameter values were used, and a rich variety of behaviors were possible. From our results, we found
impulsive dispersal seems to more nicely model natural dispersal behavior of populations and may be
more relevant to the investigation of such behavior in real ecological systems.

� 2012 Elsevier Inc. All rights reserved.
� �

1. Introduction

Due to the ubiquitous prevalence of organism movements in
nature and their significant impacts on species’ diversity [57], pop-
ulation dynamics [21] and genetic polymorphisms [22], dispersal,
migration, and other types of movement in a spatio-temporally
heterogeneous environment, have always attracted great interest
by biologists, ecologists and biomathematicians. This includes
studies of persistence and extinction [35,17,19,23,14,12,27,
1,48,50,3,37,53,52,7,10,11,33,59,60] and stability of equilibria and
periodic solutions [9,13,25,26,4–6,24,49,56,40].

Because of their distinctive significance, both as a basis for
metapopulation theory and as the starting point for modeling mul-
ti-species interactions in patchy environment, single-species dis-
persal models have been extensively studied, and many
important results have been obtained [13,14,12,25,26,28,4,5,
20,53,50].

A standard single-species logistic model with continuous con-
stant dispersal rate between two heterogeneous patches can be
written as follows
ll rights reserved.

).
_N1 ¼ r1N1 1� N1

k1
�mN1 þmð1� dÞN2;

_N2 ¼ r2N2 1� N2

k2

� �
�mN2 þmð1� dÞN1;

ð1:1Þ
where NiðtÞði ¼ 1;2Þ represents the population density in the ith
habitat at time t; ri and ki are the intrinsic rate of population in-
crease and the carrying capacity of population i; d is the fraction
of migrants dying during migration and m is the emigration rate,
a constant. Above dispersal model may be used to characterize
the mobility of bird or, insect [15]. Interest for above continuous
dispersal models mainly focused on the stability of equilibrium
e.g.. [13], and the effect of optimal dispersal rates on population size
and evolution e.g. [18,25,26,28].

Habitat heterogeneity in space has long been taught not to be
sufficient to promote evolution of dispersal. In particular, [25]
showed that, with sufficiently high dispersal, a population will be
stable if the average over the environment of the density dependent
terms indicates stability. Furthermore, [26] showed that, the condi-
tions for stability with a low dispersal rate are more stringent than
those for stability with a high dispersal rate. For any dynamics lead-
ing to an equilibrium which does exhibit spatial variation, dispersal
will be selected against. Hence, selection for dispersal must include
other factors. [28] found that the evolution of an optimal habitat
distribution may lead to a reduction in population size, and passive
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dispersal should always be selectively disadvantageous in a
spatially heterogeneous but temporally constant environment.

Therefore, the question is: what are the ‘‘other factors in the above
logistic dispersal model’’? and is it true that passive dispersal always
be selectively disadvantageous? In all of the above population dis-
persal models, it is assumed that migratory behavior of the modelled
populations is occurring at every point in time and is occurring simul-
taneously between any two patches; i.e. these models are continuous
bidirectional dispersal models. At the same time, authors carried into
research for above models mainly by utilizing techniques of analyz-
ing equilibrium since the model characterized here are continuous
dynamic systems. Actually, real dispersal behavior is very compli-
cated and is always influenced by environmental change and, some-
times by human activities. It usually occurs stochastically or
discontinuously [44], and it is often the case that species dispersal oc-
curs at some transitory intervals of time when individuals move
among patches to search for mates, food, refuge, etc.

Animal movements between regions or patches of habitat are
rarely continuous in time. They may occur during short intervals
of time within seasons or within the lifetimes of animals. There
are several general reasons for this.

First, the environmental conditions in the landscape matrix be-
tween habitat patches may permit normal movement patterns be-
tween patches only at certain times. This could be a result of either
seasonality or random events that influence the ability of individual
organisms to move between patches. For example, in marshes, high
water during the wet season may restrict movement of some small
mammals between drier patches, such as tree islands [45] within a
seasonally flooded marsh. Conversely, fish inhabiting pools and side
channels of a river system that are isolated during low water peri-
ods may be able to move back and forth among such waterbodies
when water levels are higher e.g. [58,39]. In these types of cases,
movement may be bidirectional when conditions permit.

Another general class of movements is connected with life cy-
cles of organisms. Many animals may disperse long distances from
their natal sites at certain stages in their life cycles, particularly be-
tween their birth and start of reproduction [16]. For example, in
Florida scrub jays, the females tend to move earlier and farther
[47], while among olive baboons, it is males that predominately
move [41]. Juvenile male Florida panthers leave the territories of
their mothers at about 14 months of age, and may travel over
100 miles to seek a territory. During the mating season, males of
many species may move long distances; for example, male stoats
searching for females [43]. Those movements associated with life
cycles can be considered as bidirectional, as individuals may be
starting from any habitat site on the landscape and moving in more
or less random directions away from their natal sites.

Therefore, it is not reasonable to characterize the population
movements in these cases with continuous dispersal models. This
short-time scale dispersal is more appropriately assumed to be in
the form of pulses in the modeling process, in order to be in much
better agreement with the real ecological situation. With the
developments and applications of impulsive differential equations
[2,34], theories of impulsive differential equations (hybrid dynam-
ical systems) have been introduced into population dynamics, and
many important studies have been performed [3,30,32,36,51,55].

Hui and Chen [30] proposed the following single-species Lotka–
Volterra model with impulsively bidirectional dispersal:

_N1ðtÞ ¼ N1ðtÞða1 � b1N1ðtÞÞ;
_N2ðtÞ ¼ N2ðtÞða2 � b2N2ðtÞÞ;

)
t – ns;

DN1 ¼ d1ðN2ðt�Þ � N1ðt�ÞÞ;
DN2 ¼ d2ðN1ðt�Þ � N2ðt�ÞÞ;

�
; t ¼ ns; n ¼ 1;2; . . . ;

8>>>><
>>>>:

ð1:2Þ

where ai bi ði ¼ 1;2Þ are the intrinsic growth and density-dependent
parameters of the population i;di is the net dispersal rate between
the ith patch and the jth patch ði – j; i; j ¼ 1;2Þ. DNi ¼ NiðnsþÞ�
Niðns�Þ, NiðnsþÞ ¼ limt!nsþNiðtÞ represents the density of the popu-
lation in the i-th patch after the n-th pulse dispersal at time t ¼ ns,
while Niðns�Þ ¼ limt!ns�NiðtÞ ¼ NiðnsÞ represents the density of the
population in the i-th patch before the n-th pulse dispersal event at
time t ¼ ns (s the period of dispersal between any two pulse events
is a positive constant). The dispersal behavior of populations be-
tween two patches occurs only at the impulsive instants
nsð n ¼ 1;2; � � �Þ. Sufficient criteria were obtained for the existence,
uniqueness and global stability of positively periodic solutions by
using discrete dynamical system theory.

However, in the above impulsive dispersal models, it is as-
sumed that the dispersal occurs between homogeneous habitat
patches; i.e. the dispersal rate between any two patches is equal
or symmetrical [35,25,26,28] which is really too idealized for a real
ecosystem. Actually, in the real world, due to the heterogeneity of
the spatio-temporal distributions in nature, movement between
fragments of patches is usually not the same rate in both direc-
tions. In addition, once the individuals leave their present habitat,
they may not successfully reach a new one, due to predation, har-
vesting, or for other reasons, so that there are traveling losses.
Therefore, the dispersal rates among these patches are not always
the same. Rather, in real ecological situations they are different (or
dissymmetrical [14,38]). Therefore, it is our basic goal to investi-
gate single species models with dissymmetric impulse dispersal.

Based on the above considerations, in this paper, we will first
consider the following single species model with logistic growth
and dissymmetric impulsive bi-directional dispersal:
_N1ðtÞ ¼ r1N1ðtÞð1� N1ðtÞ
k1
Þ;

_N2ðtÞ ¼ r2N2ðtÞð1� N2ðtÞ
k2
Þ;

9=
; t – ns;

DN1ðtÞ ¼ b2N2ðt�Þ � a1N1ðt�Þ;
DN2ðtÞ ¼ b1N1ðt�Þ � a2N2ðt�Þ;

�
t ¼ ns; n ¼ 1;2; . . . ;

8>>>>><
>>>>>:

ð1:3Þ
where aiði ¼ 1;2Þ is the rate of population Ni emigrating from the ith
patch, and biði ¼ 1;2Þ is the rate of population Ni immigrating from the
i-th patch. Here we assume 0 6 bi 6 ai 6 1, which means that there
possibly exists mortality during migration between two patches.

Moreover, to the best of our knowledge, in all of the models
investigated, whether with continuous dispersal or the discontinu-
ous dispersal considered so far, there are hardly any papers that
consider the aggregate migration, or migration of the total popula-
tion as a whole. Such migration usually stems from what has been
termed ‘seasonal hostility’ or the impossibility to survive or repro-
duce in certain locales for part of a year [42]. In practice, in real
ecological systems, with alternating seasons, many kinds of birds
and mammals will migrate from cold regions to warm regions in
search of a better habitat to inhabit or breed. Anadromous fish will
go back from ocean to their birthplaces in stream to spawn, and
vice versa for some other species. An example is the annual migra-
tion of birds between the tropics and temperate or boreal regions.
For example, the blackburnian warbler is a small songbird that
nests in forests of the northeastern United States and southern
Canada during the spring and summer, but migrates to Central
and South America to live through the winter [29]. Other examples
include annual migrations of ungulates among grazing areas to fol-
low spatio-temporal changes in rainfall, or annual movements of
elk from higher to lower elevations to escape cold in winter. In
these cases, movement is unidirectional during each migration
period and may take place over fairly short time periods.

Obviously, this kind of discontinuous periodic migration behav-
ior occurs extensively in nature, which prompts us to model and
investigate it properly. Motivated by the above considerations, in
this paper, we further characterize and research the above-men-
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tioned dispersal migration by using the following single species
model with logistic growth and impulsively unilateral dispersal:

_N1ðtÞ ¼ r1N1ðtÞ 1� N1ðtÞ
k1

� �
; t 2 ð2ns; ð2nþ 1ÞsÞ;

_N2ðtÞ ¼ r2N2ðtÞ 1� N2ðtÞ
k2

� �
; t 2 ðð2nþ 1Þs; ð2nþ 2ÞsÞ;

N1ðtþÞ ¼ b2N2ðt�Þ; t ¼ ð2nþ 2Þs;
N2ðtþÞ ¼ b1N1ðt�Þ; t ¼ ð2nþ 1Þs; n ¼ 0;1;2; . . . :

8>>>>><
>>>>>:

ð1:4Þ

The population N ¼ ðN1;N2Þ inhabits two patches (patch 1 and
patch 2) and alternates periodically; i.e.. it lives in patch 1 during
time interval ð2ns; ð2nþ 1ÞsÞ, and at end of time period ð2nþ 1Þs,
it migrates, as a whole, to patch 2 with a success rate of b1. From
that point it lives through the time period ðð2nþ 1Þs; ð2nþ 2ÞsÞ,
and then migrates, as a whole, back to patch 1 at time ð2nþ 2Þs
with a success rate of b2. It continues migrating back and forth be-
tween the two patches at two different periods of time during the
year, where N1ðð2nþ 2ÞsþÞ ¼ limt!ð2nþ2ÞsþN1ðtÞ represents the den-
sity of population in the 1-st patch after the ð2nþ 2Þth pulse dis-
persal at time t ¼ ð2nþ 2Þs, N2ðð2nþ 1ÞsþÞ ¼ limt!ð2nþ1ÞsþN2ðtÞ
represents the density of the population in the 2nd patch after
the ð2nþ 1Þth pulse dispersal at time t ¼ ð2nþ 1Þs.
Niðð2nþ iÞs�Þ ¼ limt!ð2nþiÞs�NiðtÞ represents the density of the pop-
ulation in the i-nd patch before the ð2nþ iÞth pulse dispersal at time
t ¼ ð2nþ iÞs ði ¼ 1;2Þ. The parameters, bi, where 0 6 bi 6 1 repre-
sents the successful aggregate migration rate of population Ni from
the ith patch to the jth patch ði; j ¼ 1;2; i – jÞ.

The main purpose of this paper is to provide analytic criteria not
only for the permanence versus extinction of metapopulations, but
also for the existence, uniqueness and global stability of the positively
periodic solutions. We compare the implications of these criteria with
both continuous dispersal models and impulsive dispersal models.

This paper is organized as follows. In the next section, we intro-
duce the definition of permanence. From discrete dynamic system
theory, we establish stroboscopic maps in terms of models 1.3 and
1.4, by which we can obtain the dynamical behaviors of the sys-
tems (simultaneous bi-directional and alternating uni-directional).
In Section 3.1, the results of permanence and extinction for the sys-
tems are presented. The existence and uniqueness of positive peri-
odic solutions for the models are obtained by an analytic approach
in Section 3.2. In Section 3.3, the global stability of positive periodic
solutions for the systems are established by the discrete dynamic
systems theory. Discussions are presented in Section 4.

2. Preliminaries

Before going into details, we first draw a very clear definition of
permanence. The definitions of permanence or persistence are
numerous, but here we refer to [31,54,8].

Definition 2.1. Systems (1.3) and (1.4) are said to be permanent, if
there are positive constants mi and Mi such that

mi 6 lim inf
t!1

NiðtÞ 6 lim sup
t!1

NiðtÞ 6 Mi; i ¼ 1;2;

for any positive solutions NðtÞ ¼ ðN1ðtÞ;N2ðtÞÞ of systems (1.3) and
(1.4).

Next, to study the permanence, existence and uniqueness of
positively periodic solutions for systems (1.3) and (1.4), we take
x ¼ N1

k1
; y ¼ N2

k2
; k ¼ k2

k1
, which on substituting into (1.3) becomes

dx
dt ¼ r1xð1� xÞ;
dy
dt ¼ r2yð1� yÞ;

)
t – ns;

Dx ¼ b2ky� a1x;
Dy ¼ b1

k x� a2y;

�
t ¼ ns; n ¼ 1;2; . . .

8>>><
>>>:

ð2:1Þ
By calculating the first two equations of system (2.1) between
pulses, we have

xðtÞ ¼ 1
1þðxðnsþÞ�1�1Þer1 ðns�tÞ ;

yðtÞ ¼ 1
1þðyðnsþÞ�1�1Þer2 ðns�tÞ ;

8<
: ns < t < ðnþ 1Þs: ð2:2Þ

Similarly, considering the last two equations of system (2.1), we ob-
tain the following stroboscopic maps

xnþ1 ¼ ð1�a1Þxn
xnþð1�xnÞc1

þ b2kyn
ynþð1�ynÞc2

;

ynþ1 ¼ ð1�a2Þyn
ynþð1�ynÞc2

þ b1xn
kðxnþð1�xnÞc1Þ

;

8<
: ð2:3Þ

where xn ¼ xðnsþÞ; yn ¼ yðnsþÞ, 0 < c1 ¼ e�r1s < 1;0 < c2 ¼e�r2s < 1.
By the same method, we obtain the following equations between
two pulses from system (1.4)

dx
dt ¼ r1xð1� xÞ; t 2 ð2ns; ð2nþ 1ÞsÞ;
dy
dt ¼ r2yð1� yÞ; t 2 ðð2nþ 1Þs; ð2nþ 2ÞsÞ;

Dx ¼ b2ky; t ¼ ð2nþ 2Þs;

Dy ¼ b1
k x; t ¼ ð2nþ 1Þs; n ¼ 0;1;2; . . .

8>>>>>><
>>>>>>:

ð2:4Þ

By integrating and solving the first two equations of (2.4) be-
tween pulses, we get

xðtÞ ¼ 1
1þðxð2nsþÞ�1�1Þer1ð2ns�tÞ ; t 2 ð2ns; ð2nþ 1ÞsÞ;

yðtÞ ¼ 1
1þðyðð2nþ1ÞsþÞ�1�1Þer2 ðð2nþ1Þs�tÞ ; t 2 ðð2nþ 1Þs; ð2nþ 2ÞsÞ;

8<
:

ð2:5Þ

and we have the following stroboscopic maps by the same method

x2nþ2 ¼ b2ky2nþ1
y2nþ1þð1�y2nþ1Þc2

;

y2nþ1 ¼ b1x2n
kðx2nþð1�x2nÞc1Þ

;

8<
: ð2:6Þ

where y2nþ1 ¼ yðð2nþ 1ÞsþÞ; x2nþ2 ¼ xðð2nþ 2ÞsþÞ, 0 < c1 ¼ e�r1s <

1;0 < c2 ¼ e�r2s < 1. The positivity of any solution with initial val-
ues xðt0Þ > 0; yðt0Þ > 0, both for systems (2.3) and (2.6), is evident.
Moreover, we can see here (2.6) determines xk for even k and yk for
odd k.

Lastly, in order to establish the global stability of positively
periodic solutions, we introduce the following well known result
of discrete dynamical system theory:

Lemma 2.2 [46]. Let F : Rn
þ ! Rn

þ be continuous, C1 in int (Rn
þ), and

suppose DFð0Þ exists with limx!0þDFðxÞ ¼ DFð0Þ. In addition, assume

(a) DFðxÞ > 0, if x > 0;
(b) DFðyÞ < DFðxÞ, if 0 < x < y;

If Fð0Þ ¼ 0, let k ¼ qðDFð0ÞÞ. If k 6 1, then for every
x P 0; FðnÞðxÞ ! 0 as n!1; if k > 1, then either FðnÞðxÞ ! 1 as
n!1 for every x > 0 or there exists a unique nonzero fixed point q of
F. In the latter case, q > 0 and for every x > 0; FðnÞðxÞ ! q as n!1.

If Fð0Þ– 0, then either FðnÞðxÞ ! 1 as n!1 for every x P 0 or
there exists a unique fixed point q of F. In the latter case, q > 0 and for
every x > 0; FðnÞðxÞ ! q as n!1.

3. Main results

3.1. Permanence and extinction

In this subsection, we first present conditions to ensure that
systems (2.3) and (2.6) are permanent (or, alternatively, go to



L. Zhang et al. / Mathematical Biosciences 241 (2013) 188–197 191
extinction) which will imply the permanence (or extinction) of sys-
tems (1.3) and (1.4), respectively.

Theorem 3.1. System (2.3) is permanent (or extinct) if

b1b2 � ð1� a1Þð1� a2Þ½ �eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ
> 1 ðor 6 1Þ: ð3:1Þ
Proof. First, we prove that if b1b2 � ð1� a1Þð1� a2Þ½ �eðr1þr2Þsþ
er1sð1� a1Þ þ er2sð1� a2Þ > 1, then system (1.4) is permanent.
Since 0 6 bi 6 ai 6 1, 0 < ci ¼ e�ris 6 1ði ¼ 1;2Þ, from the first
equation of system (2.3), we have

xnþ1 ¼
1� a1

1þ ðx�1
n � 1Þc1

þ b2k
1þ ðy�1

n � 1Þc2

¼ 1� a1

1� c1 þ c1x�1
n
þ b2k

1� c2 þ c2y�1
n
<

1� a1

1� c1
þ b2k

1� c2
: ð3:2Þ

Similarly, we have

ynþ1 ¼
1� a2

1þ ðy�1
n � 1Þc2

þ b1

kð1þ ðx�1
n � 1Þc1Þ

¼ 1� a2

1� c2 þ c2y�1
n
þ b1

kð1� c1 þ c1x�1
n Þ

<
1� a2

1� c2
þ b1

kð1� c1Þ
: ð3:3Þ

Hence, by (3.2) and (3.3) we know that system (2.3) has an ultimate
upper bound.

In system (2.3), we define the map Hi : ð0;þ1Þ ! ð0;þ1Þ by

H1ðxnÞ ¼
1

1þ ðx�1
n � 1Þc1

; H2ðynÞ ¼
1

1þ ðy�1
n � 1Þc2

: ð3:4Þ

Thus, we have

xnþ1 ¼ ð1� a1ÞH1ðxnÞ þ b2kH2ðynÞ; ynþ1

¼ ð1� a2ÞH2ðynÞ þ
b1

k
H1ðxnÞ: ð3:5Þ

For any initial values x0 > 0 and y0 > 0, there are four cases:

Case 1: x0 P x1 > 0 and y0 P y1 > 0.
Case 2: 0 < x0 6 x1 and 0 < y0 6 y1.
Case 3: x1 P x0 > 0 and 0 < y1 6 y0.
Case 4: 0 < x1 6 x0 and y1 P y0 > 0.

For case 1, we have H1ðx0ÞP H1ðx1Þ and H2ðy0ÞP H2ðy1Þ. From
(3.2) we obtain x1 P x2 and y1 P y2. By the same argument we get
that

x0 P x1 P x2 P � � � xn P � � � > 0; y0 P y1 P y2 P � � � yn P � � � > 0:

For case 2, by the same argument above if x0 6 x1 and y0 6 y1,
for sequences fxng and fyng we can obtain

0 < x0 6 x1 6 x2 6 � � � xn 6 � � � ; 0 < y0 6 y1 6 y2 6 � � � yn 6 � � �

For case 3, from (3.2) and (3.3) we obtain that

H1ðxnÞ ¼
b2kynþ1 � ð1� a2Þxnþ1

b1b2 � ð1� a1Þð1� a2Þ
;H2ðynÞ

¼
b1
k xnþ1 � ð1� a1Þynþ1

b1b2 � ð1� a1Þð1� a2Þ
ð3:6Þ

and H1ðx1ÞP H1ðx0Þ > 0 and H2ðy0ÞP H2ðy1Þ > 0. Furthermore,
from (3.4) we get that
b2ky2 � ð1� a2Þx2

b1b2 � ð1� a1Þð1� a2Þ
P

b2ky1 � ð1� a2Þx1

b1b2 � ð1� a1Þð1� a2Þ
> 0;

b1
k x1 � ð1� a1Þy1

b1b2 � ð1� a1Þð1� a2Þ
P

b1
k x2 � ð1� a1Þy2

b1b2 � ð1� a1Þð1� a2Þ
> 0:

ð3:7Þ

There are two subcases for case 3:

3a: b1b2 � ð1� a1Þð1� a2Þ > 0.
3b: b1b2 � ð1� a1Þð1� a2Þ < 0.

For subcase 3a, since b1b2 � ð1� a1Þð1� a2Þ > 0, from (3.7) we
can get that

b2kðy2 � y1ÞP ð1� a2Þðx2 � x1Þ;
b1

k
ðx2 � x1Þ

6 ð1� a1Þðy2 � y1Þ: ð3:8Þ

Then if y2 6 y1, we could get that x2 6 x1, which is similar to case 1.
If y2 P y1 and x2 P x1, it is similar to case 2. If y2 P y1; x2 6 x1 and
y2 P y3, then we obtain that x2 P x3, a conclusion that is similar to
case 1. If y2 P y1, x2 6 x1; y2 6 y3, then we obtain x2 6 x3, a conclu-
sion that is similar to case 2. Therefore, we acquire that if x1 P x0

and y1 6 y0, the sequences fxng and fyng is similar to case 1 or case
2 or there exist gðg > 0Þ, it satisfies

x1 P x2 P � � � xn P � � � > 0; yn P g:

For subcase 3b, by the same argument like subcase 3a, we get
the similar conclusions of sequences fxng and fyng.

For case 4, by a similar argument like case 3, we could obtain a
similar conclusion like case 1, 2 or there exist nðn > 0Þ, such that

0 < y1 6 y2 6 � � � yn 6 � � � ; xn P n:

Subsequently, we prove there are constants n > 0;g > 0 such that

lim inf
n!1

xn P n and lim inf
n!1

yn P g: ð3:9Þ

Otherwise, one of the following cases is true:

Case (1): there exists g > 0 such that lim infn!1yn ¼ g and
lim infn!1xn ¼ 0.

Case (2): there exists n > 0 such that lim infn!1xn ¼ n and
lim infn!1yn ¼ 0.

Case (3): lim infn!1xn ¼ 0 and lim infn!1yn ¼ 0.

Now, we exclude these cases one by one.
For case (1), since lim infn!1yn ¼ g > 0, from (3.4) and (3.5) we

have

xnþ1 ¼
1� a1

1þ ðx�1
n � 1Þc1

þ b2k
1þ ðy�1

n � 1Þc2
>

b2k
1þ ðy�1

n � 1Þc2

P
b2k

1þ ðg�1 � 1Þc2
> 0: ð3:10Þ

Taking the infimum limit on both sides of (3.10), we have
lim infn!1xn > 0. This is a contradiction.

Similarly, we can exclude case (2).
Based on the arguments above in Case 1 to 4, we know the

sequences fxng and fyng are either monotone increasing or
monotone decreasing or bounded. Therefore, for case (3), we know
sequences fxng and fyng must be monotone decreasing. So, we
have 0 < xnþ1 6 xn and 0 < ynþ1 6 yn, by (3.4) and (3.5) we have

1� a1

1þ ðx�1
n � 1Þc1

þ b2k
1þ ðy�1

n � 1Þc2
6 xn;

1� a2

1þ ðy�1
n � 1Þc2

þ b1

kð1þ ðx�1
n � 1Þc1Þ

6 yn:

ð3:11Þ

Thus, we have
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ð1� c1Þxn þ c1 � 1þ a1

1þ ðx�1
n � 1Þc1

P
b2k

1þ ðy�1
n � 1Þc2

;

ð1� c2Þyn þ c2 � 1þ a2

1þ ðy�1
n � 1Þc2

P
b1

kð1þ ðx�1
n � 1Þc1Þ

;

ð3:12Þ

which imply that

½ð1� c1Þxn þ c1 � 1þ a1�½ð1� c2Þyn þ c2 � 1þ a2� � b1b2 P 0:

ð3:13Þ
Taking the infimum limit on both sides of (3.13), we obtain

ðc1 � 1þ a1Þðc2 � 1þ a2Þ � b1b2 P 0: ð3:14Þ

That is

b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ 6 0; ð3:15Þ

which contradicts b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ > 0, i.e..
b1b2 � ð1� a1Þð1� a2Þ½ �eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ > 1. Fi-

nally, we can determine there exist constants ai; bið0 < ai <

biÞði ¼ 1;2Þ, such that a1 6 lim infn!1xn 6 lim supn!1xn 6 b1 and
a2 6 lim infn!1yn 6 lim supn!1yn 6 b2.

Therefore, system (1.4) is permanent if b1b2�½
ð1� a1Þð1� a2Þ�eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ > 1.

Next, we prove if

b1b2 � ð1� a1Þð1� a2Þ½ �eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ 6 1;

ð3:16Þ

then system (1.4) goes to extinct. Corresponding to (2.3), let us con-
sider the following system

Fðx; yÞ ¼
f1ðx; yÞ ¼ ð1�a1Þx

xþð1�xÞc1
þ b2ky

yþð1�yÞc2

f2ðx; yÞ ¼ ð1�a2Þy
yþð1�yÞc2

þ b1
kð1þðx�1�1Þc1Þ

:

8<
: ð3:17Þ

Obviously, Fðx; yÞ 2 C1 in int ðR2
þÞ and Fð0; 0Þ ¼ 0. We have

DFðx; yÞ ¼
c1ð1�a1Þ

½ð1�c1Þxþc1 �2
b2c2k

½ð1�c2Þyþc2 �2

b1c1

k½ð1�c1Þxþc1 �2
c2ð1�a2Þ

½ð1�c2Þyþc2 �2

2
4

3
5 ð3:18Þ

DFð0;0Þ ¼
ð1�a1Þ

c1

b2k
c2

b1
kc1

ð1�a2Þ
c2

2
4

3
5: ð3:19Þ

Obviously, DFðx; yÞ > 0 if ðx; yÞ > ð0; 0Þ;DFðx1; y1Þ < DFðx2; y2Þ if
ðx1; y1Þ > ðx2; y2Þ > ð0;0Þ, and limðx;yÞ!ð0;0ÞDFðx; yÞ ¼ DFð0; 0Þ. We
have the characteristic equation

k2 � 1� a1

c1
þ 1� a2

c2

� �
kþ ð1� a1Þð1� a2Þ

c1c2
� b1b2

c1c2
¼ 0: ð3:20Þ

Let q be the spectral radius of above linearized matrix (3.19), then

q ¼
1�a1

c1
þ 1�a2

c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�a1

c1
þ 1�a2

c2
Þ2 � 4ðð1�a1Þð1�a2Þ

c1c2
� b1b2

c1c2
Þ

q
2

¼
1�a1

c1
þ 1�a2

c2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a1

c1
� 1�a2

c2

� �2
þ 4 b1b2

c1c2

r
2

ð3:21Þ

Assume q > 1, then by (3.21) we can obtain

1� a1

c1
þ 1� a2

c2
þ b1b2

c1c2
> 1þ ð1� a1Þð1� a2Þ

c1c2
ð3:22Þ

i.e.

b1b2 � ð1� a1Þð1� a2Þ½ �eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ > 1;

ð3:23Þ

which contradicts with (3.16), therefore we have q 6 1, by
Lemma 2.2, we have Fnðx; yÞ ! ð0;0Þ as n!1, which means
that system (2.3) is extinct. This completes the proof of
Theorem 3.1. h
Remark 3.2. Based on the assumptions and the actual biological
meanings of parameters bi; ri and ai ði ¼ 1;2Þ, involving the migra-
tion period s, condition (3.1) in Theorem 3.1 is very weak and easy
to verify. Even if there exists a low rate of migration ai between
two patches and a high rate of mortality during migration bi, the
metapopulation can be permanent (or, alternatively, goes to
extinction), which differs from the results of continuous dispersal
models [25,28], where only a high rate of migration between
patches and a low rate of mortality during migration can stabilize
the population and the metapopulation might persist. Therefore,
our result means that the evolution of natural populations in a pat-
chy environment with discontinuous bilateral dispersal has a
greater number of outcomes that should be realizable in nature,
which nicely matches what occurs in the real ecological environ-
ment. Moreover, we can easily conclude that K ¼ b1b2�½
ð1� a1Þð1� a2Þ�eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ is a threshold
value for the persistence of system (2.3), i.e.. if K > 1 it will be per-
manent and if K 6 1 it will go to extinction.
Theorem 3.3. Assume that b1b2eðr1þr2Þs > 1 or ð6 1Þ, then system
(2.6) is permanent (or extinct).
Proof. First, we prove if b1b2eðr1þr2Þs > 1 then system (2.6) is per-
manent. Since 0 6 bi 6 1 and 0 6 ci ¼ e�ris 6 iði ¼ 1;2Þ, from sys-
tem (2.6) we have

x2nþ2 ¼
b2k

1� c2 þ c2y�1
2nþ1

<
b2k

1� c2
; ð3:24Þ

y2nþ1 ¼
b1

kð1� c1 þ c1x�1
2n Þ

<
b1

kð1� c1Þ
: ð3:25Þ

Next, in system (2.6), we have

x2nþ2 ¼
b1b2k

b1ð1� c2Þ þ c2kð1� c1Þ þ c1c2kx�1
2n

: ð3:26Þ

Let

/ðx2nÞ ¼
b1b2k

b1ð1� c2Þ þ c2kð1� c1Þ þ c1c2kx�1
2n

: ð3:27Þ

From (3.24) we see that the sequence fx2ng is bounded above and
/0ðxÞ > 0. Since a � b1ð1� c1Þ þ c1kð1� c1Þ > 0, (3.26) yields

x2n <
b1b2

c1c2
x2n: ð3:28Þ

If there exists N such that x2Nþ2 6 x2N . Then x2nþ2 6 x2n for all n P N
because / is an increasing function. From /ðx2nÞ < x2n, we have

b1b2k < ax2n þ c1c2k: ð3:29Þ

Dividing (3.29) by c1c2k, we have

b1b2

c1c2
< ax2n þ 1: ð3:30Þ

Therefore, by b1b2eðr1þr2Þs ¼ b1b2
c1c2

> 1 we have

x2n >

b1b2
c1c2
� 1

a
> 0: ð3:31Þ

Therefore, we have

lim inf x2n >

b1b2
c1c2
� 1

a
> 0: ð3:32Þ
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Similarly, in system (2.6),

y2nþ1 ¼
b1b2

kb2ð1� c1Þ þ c1ð1� c2Þ þ c1c2y�1
2n�1

: ð3:33Þ

By the same arguments like above, we can conclude

lim inf y2nþ1 >

b1b2
c1c2
� 1

b
> 0; ð3:34Þ

where b � kb2ð1� c1Þ þ c1ð1� c2Þ > 0. Based on above arguments,
we can see system (2.6) is permanent.

Next if b1b2eðr1þr2Þs 6 1, by (3.28), we can see

x2nþ2 < x2n: ð3:35Þ

Therefore, the sequence fx2ng is non-increasing. Let the limit of
fx2ng be c, then c P 0. Take limit for two sides of (3.26), we can
obtain

c ¼ b1b2k� c1c2k
b1ð1� c2Þ þ c2kð1� c1Þ

6 0: ð3:36Þ

Therefore, c ¼ 0, i.e. lim x2n ¼ 0
Similarly, by the same arguments like above, we can conclude

lim y2nþ1 ¼ 0. Therefore, if b1b2eðr1þr2Þs 6 1, system (2.6) is extinct.
This completes the proof of Theorem 3.3. h
Remark 3.4. The assumption b1b2eðr1þr2Þs > 1 in Theorem 3.3 is
very simple and easy to verify too, which means that a higher suc-
cessful rate of migration bi ði ¼ 1;2Þ, a higher growth rate ri and a
longer migration period s (that is, enough time to be restored,
mature, breed, etc.) will greatly enhance the survival of natural
populations, which is consistent with the real environment. The
result implies that the behavior of aggregate migration alternating
periodically between patches according to changes in the environ-
ment is the best way for natural populations to subsist and evolve.
This strategy will evolve by natural selection and will continue
from generation to generation, as in many natural populations.
Furthermore, we can easily conclude that K ¼ b1b2eðr1þr2Þs is a
threshold value of persistence for above system (2.6), i.e. if K > 1
it will be permanent, if K 6 1 it will be extinct.
3.2. Existence and uniqueness of positive periodic solutions

In this part, we will prove the existence and uniqueness of the
fixed points of systems (2.3) and (2.6), which means that systems
(1.3) and (1.4) have uniquely positive periodic solutions.

Corresponding to (2.3), let us consider the following system

x ¼ ð1�a1Þx
xþð1�xÞc1

þ b2ky
yþð1�yÞc2

;

y ¼ ð1�a2Þy
yþð1�yÞc2

þ b1
kð1þðx�1�1Þc1Þ

:

8<
: ð3:37Þ

From (3.37), we have

ð1� c1Þxþ c1 � 1þ a1 ¼ b2k 1þðx�1�1Þc1
1þðy�1�1Þc2

;

ð1� c2Þyþ c2 � 1þ a2 ¼ b1
k

1þðy�1�1Þc2
1þðx�1�1Þc1

:

8<
: ð3:38Þ

Thus,

ð1� c1Þxþ c1 � 1þ a1�½ð1� c2Þyþ c2 � 1þ a2� ¼ b2b1: ð3:39Þ

From the first equation of (3.38) we have

y ¼ c2½ð1� c1Þxþ c1 � 1þ a1�
b2k½1þ ðx�1 � 1Þ� þ ðc2 � 1Þ½ð1� c1Þxþ c1 � 1þ a1�

; ð3:40Þ

which may be put into (3.39). After some algebraic manipulation
this reduces to
ð1� c1Þ2ð1� c2Þð1� a2Þx3 þ ð1� c1Þ½b2kðc2 � 1þ a2Þð1
� c1Þ þ 2ð1� c2Þ � ð1� a2Þðc1 � 1þ a1Þ þ b1b2ð1
� c2Þ�x2 þ ½b2kð2c1 � 1þ a1Þðc2 � 1þ a2Þ � ð1� c1Þ þ ð1

� c2Þð1� a2Þðc1 � 1þ a1Þ2 � b1b2
2kð1� c1Þ þ b1b2ð1

� c2Þ � ðc1 � 1þ a1Þ�x� ½b1b2
2kc1 � kc1b2ðc1 � 1þ a1Þ

� ðc2 � 1þ a2Þ�
¼ 0: ð3:41Þ

Let

f ðxÞ ¼ /1x3 þ /2x2 þ /3x� /4; ð3:42Þ

where

/1 ¼ ð1� c1Þ2ð1� c2Þð1� a2Þ;
/2 ¼ ð1� c1Þ½b2kðc2 � 1þ a2Þð1� c1Þ þ 2ð1� c2Þð1� a2Þ
� ðc1 � 1þ a1Þ þ b1b2ð1� c2Þ�;
/3 ¼ b2kð2c1 � 1þ a1Þðc2 � 1þ a2Þð1� c1Þ þ ð1� c2Þð1� a2Þ
� ðc1 � 1þ a1Þ2 � b1b2

2kð1� c1Þ þ b1b2ð1� c2Þðc1 � 1þ a1Þ;
/4 ¼ b1b2

2kc1 � kc1b2ðc1 � 1þ a1Þðc2 � 1þ a2Þ:
ð3:43Þ

Then

f 0ðxÞ ¼ 3/1x2 þ 2/2xþ /3: ð3:44Þ

Let f 0ðxÞ ¼ 0, we have

x1;0 ¼
�/2 þ

ffiffiffiffi
D
p

3/1
; x2;0 ¼

�/2 �
ffiffiffiffi
D
p

3/1
; ð3:45Þ

where

D¼/2
2�3/1/3¼ð1� c1Þ2 b2

2k2ðc2�1þa2Þ2ð1� c1Þ2þð1� c2Þ2
h

�ð1�a2Þ2ðc1�1þa1Þ2þb2
1b2

2ð1� c2Þ2þb2kð1�c2Þð1�a2Þð1� c1Þ

�ðc2�1þa2Þð�2c1�1þa1Þþb1b2
2kðc2�1Þð1� c1Þða2�1�2c2Þ

þb1b2ð1�a2Þð1� c2Þ2ðc1�1þa1Þ
i
: ð3:46Þ

Obviously, the following conclusion is true: f ðxÞ ! �1 as
x! �1; f ðxÞ ! þ1 as x! þ1; f ðxÞðx 2 RÞ is a continuous
function.

Theorem 3.5. There exists a unique positive fixed point (n;g) of
system (2.3) if one of the following conditions is true:
(1) 1� c1 � a1 > 0;1� c2 � a2 > 0;/2 P 0;

(2) 1� c1 � a1 < 0;1� c2 � a2 < 0;/4 > 0 and
ð1� c2Þðc1 � 1þ a1Þ � b2kð1� c1Þ > 0;

(3) ð1� c1 � a1Þð1� c2 � a2Þ 6 0.

The proof of Theorem 3.5 will be given in Appendix A.

Remark 3.6. Although the conditions and development in Theo-
rem 3.5 are somewhat long and complicated compared with the
symmetrical pulse dispersal model [30], they are still very easy to
satisfy and understand. However, with the eye to the real
migratory behavior of natural populations, it is reasonable because
there are so many nondeterministic factors which can greatly
impact and change the evolving trajectories of migratory popula-
tions, such as the matching of periods between aggregate migra-
tion and individual reproduction (or growth), the delay (or
advance) of emigration from present patch or arrival to the new
region, to say nothing of natural disasters and man-made inter-
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ventions. Actually, the trajectories of natural populations in
heterogeneous environments are very subtly affected by many
factors, so there are hardly any purely periodic trajectories.

Corresponding to system (2.6), we have the following.

Theorem 3.7. System (2.6) has a unique positive fixed point (n;g) if
b1b2eðr1þr2Þs > 1.
Proof. Let n is the fixed point of (3.26), we have

n ¼ ðb1b2 � c1c2Þk
b1ð1� c2Þ þ c2kð1� c1Þ

> 0; ð3:47Þ

Similarly, let g is the fixed point of (3.33), we have

g ¼ b1b2 � c1c2

kb2ð1� c1Þ þ c1ð1� c2Þ
> 0: ð3:48Þ

Therefore, there exists a unique positive fixed point ðn, gÞ for system
(2.6). The proof is complete. h
Remark 3.8. Condition in Theorem 3.7 further proves that the
strategy of aggregate migration alternating periodically between
patches according to environmental changs in natural populations
is not only a very effective way for survival and orbit stability but
also can be easy to realize in the natural environment, which is less
influenced and restricted by nature than any other kinds of migra-
tion, and which is why it is prevalent in many natural populations.
3.3. Stability

Now, we prove that the positive fixed points ðn;gÞ of (2.3) and
(2.6) are globally stable by using Lemma 2.2, which means that
the positive periodic solutions of system (1.3) and (1.4) are globally
stable.

Firstly for system (2.3) we have the following

Theorem 3.9. If conditions of Theorem 3.5 hold, then for every
ðx; yÞ > ð0;0Þ; FðnÞðx; yÞ ! ðn;gÞ as n!1.
Proof. In order to apply Lemma 2.2 we need to show that anyone
of conditions (1), (2), or (3) in Theorem 3.5 imply that system (2.3)
is permanent. If condition (1) of Theorem 3.5 holds, then by

/2 ¼ ð1� c1Þ½b2kðc2 � 1þ a2Þð1� c1Þ þ b1b2ð1� c2Þ
þ 2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ�P 0; ð3:49Þ

we have

2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ þ b1b2ð1� c2Þ > 0: ð3:50Þ

Then, we have

b1b2 > �2ð1� a2Þðc1 � 1þ a1Þ; ð3:51Þ

so

b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ
> 2ða2 � 1Þðc1 � 1þ a1Þ � ðc2 � 1þ a2Þðc1 � 1þ a1Þ
¼ ða2 � 1� c2Þðc1 � 1þ a1Þ
¼ ðc2 � 1þ a2Þðc1 � 1þ a1Þ � 2c2ðc1 � 1þ a1Þ > 0: ð3:52Þ

If condition (2) holds, we have

/4 ¼ b1b2
2kc1 � kc1b2ðc1 � 1þ a1Þðc2 � 1þ a2Þ

¼ b2kc1½b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ� > 0: ð3:53Þ

Therefore, we have b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ > 0.
If condition (3) holds, obviously, we can see b1b2 � ðc1 � 1þ
a1Þðc2 � 1þ a2Þ > 0.

Therefore, if conditions of Theorem (3.5) hold, we always have
b1b2 � ðc1 � 1þ a1Þðc2 � 1þ a2Þ > 0, i.e. (3.1). Therefore, we have
system (2.3) is permanent. As similar as the arguments in
Theorem (3.1), we have Fðx; yÞ defined in (3.17) satisfies all
conditions in Lemma (2.2). From (3.17), let q be the spectral
radium of (3.19). Assume q 6 1, by (3.21) we can obtain
1� a1

c1
þ 1� a2

c2
þ b1b2

c1c2
6 1þ ð1� a1Þð1� a2Þ

c1c2
; ð3:54Þ

i.e.

½b1b2 � ð1� a1Þð1� a2Þ�eðr1þr2Þs þ er1sð1� a1Þ þ er2sð1� a2Þ 6 1;

which contradicts with (3.1), therefore, we have q > 1, where
0 < ci ¼ e�ris 6 1 ði ¼ 1;2Þ. By Lemma 2.2, we have
FðnÞðx; yÞ ! ðn;gÞ as !1. This completes the proof of Theorem 3.9.

For system (2.6) on the global stability, we have the following.
Theorem 3.10. If b1b2eðr1þr2Þs > 1, then for every ðx; yÞ >
ð0;0Þ; FðnÞðx; yÞ ! ðn;gÞ as n!1.
Proof. Corresponding to (2.6), let us consider the following system

x ¼ b1b2kx
½b1ð1� c1Þ þ c2kð1� c2Þ�xþ c1c2k

;

y ¼ b1b2y
½kb2ð1� c1Þ þ c1ð1� c2Þ�yþ c1c2

:

ð3:55Þ

From (3.55) we obtain that

FðxÞ ¼ b1b2kx
½b1ð1� c1Þ þ c2kð1� c2Þ�xþ c1c2k

;

FðyÞ ¼ b1b2y
½kb2ð1� c1Þ þ c1ð1� c2Þ�yþ c1c2

:

ð3:56Þ

Obviously, FðxÞ 2 C1 in int ðRþÞ and Fð0Þ ¼ 0. We have

DFðxÞ ¼ b1b2c1c2k2

f½b1ð1� c2Þ þ c2kð1� c1Þ�xþ c1c2kg2 ; ð3:57Þ

DFð0Þ ¼ b1b2

c1c2
: ð3:58Þ

Obviously, limx!0DFðxÞ ¼ DFð0Þ;DFðxÞ > 0 for any x > 0 and
DFðx1Þ < DFðx2Þ if x1 > x2 > 0. Let q be the spectral radius of
qðDFð0ÞÞ, then

q ¼ b1b2

c1c2
: ð3:59Þ

Since b1b2eðr1þr2Þs > 1, we have q > 1, therefore from Lemma 2.2, we
have FnðxÞ ! n as n!1. Similarly, we could obtain that FnðyÞ ! g
as n!1 for b1b2eðr1þr2Þs > 1. This completes the proof of Theo-
rem 3.10. h
Remark 3.11. Theorems 3.9 and 3.10 show that the orbits of
migrating populations are principally inclined to be attracted by
their ideal periodic orbit providing it exists. Namely, the globally
stable states of migrating populations are mostly determined by
their own accurate harmony with the real environment, long term
coincident dispersal periods, instantaneous emigration (immigra-
tion) from one patch and arrival (departure) to another patch. In
other words, stability of orbits greatly depends on the long-range
constants of the environmental parameters.
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Remark 3.12. In this paper, we mainly study two kinds of impul-
sive dispersal models of single species, and focus on comparing the
results between autonomous continuous dispersal model with
constant migration rates (e.g. model (1.1)) and autonomous dis-
continuous dispersal models with constant periodic migration
rates (models (1.2)). However, in the real world, we know there
is hardly any real constant environment, therefore, non-autono-
mous impulsive dispersal model with time-periodic variable
migration rates will be very reasonable and match well with the
real ecosystem. Therefore, there is an open question, i.e.. what is
the dynamical difference between non-autonomous discontinuous
dispersal model with time-periodic variable migration rates and
non-autonomous continuous dispersal model with time-periodic
variable migration rates.
4. Discussion

For system (2.1), we can easily find that the population dynam-
ics between two heterogeneous patches are not greatly influenced
by periodically bilateral impulse migration, no matter if there is a
high rate of migration (with low mortality rate during migration)
or a low rate of migration (with high mortality rate during migra-
tion), with highly frequent migration or infrequent migration. The
survival and stability (or extinction) of metapopulations are only
determined by threshold value K. In general, populations moving
between patches will steadily persist according to the behavior
they exhibit in each patch providing K > 1 even with the occur-
rence of periodic migration, but will lead to extinction if K 6 1.
These results are different from some earlier results about contin-
uous dispersal model with constant migration rates of single spe-
cies [25,26,28]. Those authors found that only a high rate of
dispersal between patches and low mortality during migration
can lead to stability of population trajectories and persistence of
the metapopulations. Therefore, our result means that the evolu-
tion of natural populations in a patchy environment with discon-
tinuous bilateral dispersal has a greater number of outcomes that
should be realizable in nature, which nicely matches what occurs
in the real ecological environment.

For model (2.4), we found that the survival and stability (or extinc-
tion) are depends on the threshold value K ¼ b1b2eðr1þr2Þs >

1 ðor 6 1Þ, which is very simple and easy to be satisfied in the real
environment. The result implies that the behavior of aggregate migra-
tion alternating periodically between patches according to changes in
the environment is the best way for natural populations to subsist and
evolve. This strategy will evolve by natural selection and will continue
from generation to generation, as in many natural populations.

In brief, depending on whether there is simultaneous bi-direc-
tional impulse dispersal (migration) or aggregate migration (peri-
odic back and forth migration of the whole population), the form
of the dispersal plays different roles in the dynamics of metapopu-
lations. The form of the dispersal affects simultaneous bi-direc-
tional dispersal relatively little, but greatly impacts periodic
back-and-forth migration when there is an assumption of con-
stancy of environmental parameters. Comparing these results with
those of continuous dispersal models, we conclude that impulse
dispersal models encompass more realistic features of nature that
are difficult to analyze by continuous models, which means the hy-
brid dynamical models will be a better choice to model and inves-
tigate the dynamics of metapopulations.
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Appendix A. Proof of Theorem 3.4

Proof. If (1) is true, since /2 P 0, we have

ð1� c1Þ½b2kðc2 � 1þ a2Þð1� c1Þ þ b1b2ð1� c2Þ þ 2ð1� c2Þ
� ð1� a2Þðc1 � 1þ a1Þ�P 0: ðA:1Þ

Thus,

b2kðc2 � 1þ a2Þð1� c1Þðc1 � 1þ a1Þ þ 2ð1� c2Þð1� a2Þ
� ðc1 � 1þ a1Þ2 6 �b1b2ð1� c2Þðc1 � 1þ a1Þ: ðA:2Þ

Hence,

/3 6 b2kð2c1 � 1þ a1Þðc2 � 1þ a2Þð1� c1Þ þ ð1� c2Þð1� a2Þ
� ðc1 � 1þ a1Þ2 � b1b2

2kð1� c1Þ � b2kðc2 � 1þ a2Þð1� c1Þ
� ðc1 � 1þ a1Þ � 2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2

¼ b2kc1ðc2 � 1þ a2Þð1� c1Þ � b1b2
2kð1� c1Þ

� ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2 < 0: ðA:3Þ

From the definition of /2, we have

2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ þ b1b2ð1� c2Þ > 0; ðA:4Þ

then

b1b2 > �2ð1� a2Þðc1 � 1þ a1Þ; ðA:5Þ

which implies that

/4 > c1b2k½2ða2 � 1Þðc1 � 1þ a1Þ � ðc2 � 1þ a2Þðc1 � 1þ a1Þ�
¼ c1b2kða2 � 1� c2Þðc1 � 1þ a1Þ > c1b2kðc2 � 1þ a2Þðc1 � 1þ a1Þ
> 0: ðA:6Þ

Because /3 < 0, we obtain
ffiffiffiffi
D
p

> j/2j. From the above analysis, we
have x1;0 > 0; x2;0 < 0 and f ð0Þ ¼ �/4 < 0. Since f ðxÞðx 2 ð�1;þ
1ÞÞ is continuous, there exists a unique n 2 ð0;þ1Þ such that
f ðnÞ ¼ 0 by intermediate value theorem. From /4 > 0 and the image
of (3.40), we know that n > 1�c1�a1

1�c1
and g ¼ yðnÞ > 1�c2�a2

1�c2
> 0. Thus,

there is a unique ðn;gÞ.
If (2) is true, we could obtain that /2 > 0. Now, we let

x�1 ¼
1� c1 � a1

1� c1
; x�2 ¼

1
1� c1

b1b2

c2 � 1þ a2
� c1 þ 1� a1

� 	
: ðA:7Þ

We get that x�1 < x�2; yð0Þ ¼ 1
1�c2

b1b2
c1�1þa1

� c2 þ 1� a2

h i
, yðx�2Þ ¼ 0.

For any

n 2 ð0; x�2Þ; we have yðnÞ

2 0;
1

1� c2

b1b2

c1 � 1þ a1
� c2 þ 1� a2

� 	� �
: ðA:8Þ

Hence, yðnÞ > 0. We have

f ðx�2Þ ¼ /1x�32 þ /2x�22 þ /3x�2 � /4

¼ /1x�32 þ /2x�22 þ /3x�2 � b2kc1ð1� c1Þðc2 � 1þ a2Þx�2
¼ /1x�32 þ /2x�22 þ �/3x�2 ðA:9Þ

where

�/3 ¼ b2kð2c1 � 1þ a1Þðc2 � 1þ a2Þð1� c1Þ þ ð1� c2Þð1� a2Þ

� ðc1 � 1þ a1Þ2 � b1b2
2kð1� c1Þ þ b1b2ð1� c2Þðc1 � 1þ a1Þ

� b2kc1ð1� c1Þðc2 � 1þ a2Þb2kð1� c1Þðc2 � 1þ a2Þðc1 � 1þ a1Þ
þ ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2 þ b1b2½ð1� c2Þðc1 � 1þ a1Þ
� b2kð1� c1Þ� > 0: ðA:10Þ
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Since /1 > 0;/2 > 0; �/3 > 0;/4 > 0 and x�2 > 0, we obtain that
f ðx�2Þ > 0; f ð0Þ ¼ �/4 < 0. If D P 0, then x2;0 < 0, by intermediate
value theorem, we could find a unique n 2 ð0; x�2Þ such that
f ðnÞ ¼ 0 and g ¼ yðnÞ, where

g ¼ yðnÞ 2 0;
1

1� c2

b1b2

c1 � 1þ a1
� c2 þ 1� a2

� 	� �
: ðA:11Þ

If D < 0, then f ðxÞ is monotone increasing for all x 2 ð�1;þ1Þ.
Therefore, by the same arguments above, there exists a unique n
and g satisfying the conclusion.If (3) is true, we give the proof in
the following cases:

case 1: ð1� c1 � a1Þð1� c2 � a2Þ < 0.
case 2: ð1� c1 � a1Þð1� c2 � a2Þ ¼ 0.

For case 1, if ð1� c1 � a1Þ < 0; ð1� c2 � a2Þ > 0, we obtain
/4 > 0 and

D P ð1� c1Þ2 b2kðc2 � 1þ a2Þð1� c1Þð1� c2Þð1� a2Þð�3c1Þf
þ b1b2

2kð1� c2Þ � ð1� c1Þð2þ c2 � 2a2Þ þ 2b1b2ð1� a2Þ

� 1� c2Þ2ðc1 � 1þ a1Þ
� o

> 0: ðA:12Þ

If /2 P 0, then x2;0 < 0; f ð0Þ ¼ �/4 < 0. By the same argument with
(1), we conclude that there exists a unique pair ðn; gÞ, where

n 2 ð0;þ1Þ; g ¼ yðnÞ > 1� c2 � a2

1� c2
> 0: ðA:13Þ

If /2 < 0, then

ð1� c1Þ½b2kðc2 � 1þ a2Þð1� c1Þ þ 2ð1� c2Þð1� a2Þðc1

� 1þ a1Þ þ b1b2ð1� c2Þ�
< 0: ðA:14Þ

This implies that

b2kðc2�1þa2Þð1� c1Þðc1�1þa1Þþ2ð1� c2Þð1�a2Þðc1�1þa1Þ2

<�b1b2ð1� c2Þðc1�1þa1Þ ðA:15Þ

and

/3 < b2kð2c1 � 1þ a1Þðc2 � 1þ a2Þð1� c1Þ þ ð1� c2Þ

� ð1� a2Þðc1 � 1þ a1Þ2 � b1b2
2kð1� c1Þ � b2kðc2 � 1þ a2Þ

� ð1� c1Þðc1 � 1þ a1Þ � 2ð1� a2Þð1� c2Þðc1 � 1þ a1Þ2

¼ b2kc1ðc2 � 1þ a2Þð1� c1Þ � ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2

� b1b2
2kð1� c1Þ < 0: ðA:16Þ

Furthermore,
ffiffiffiffi
D
p

> j/2j. So, x1;0 > 0, x2;0 < 0; f ð0Þ < 0. Similarly, by
the intermediate value theorem, there is a unique ðn;gÞ, where
n 2 ð0;þ1Þ, g ¼ yðnÞ > 1�c2�a2

1�c2
> 0.

If ð1� c1 � a1Þ > 0; ð1� c2 � a2Þ < 0, we obtain /4 > 0 and

D > ð1� c1Þ2 b2kð1� c2Þð1� a2Þð1� c1Þðc2 � 1� a2Þð1� c1 � a1Þ½

þb2kð1� c2Þð1� c1Þð1� a2Þðc2 � 1þ a2Þð�2c1 � 1þ a1Þ

þb1b2
2kð1� c2Þð1� c1Þðc2 � 1þ a2Þ þ b1b2

2kðc2 � 1Þð1� c1Þ

� a2 � 1� 2c2Þð � ¼ ð1� c1Þ2 b2kðc2 � 1þ a2Þð1� c1Þð1� c2Þ½

� 1� a2Þð�3c1Þ þ 3c2b1b2
2kð1� c2Þð1� c1Þ

� i
> 0: ðA:17Þ

Therefore, x1;0; x2;0 exist. From (3.40), we have
f ðx�1Þ ¼ /1x�31 þ /2x�21 þ /3x�1 � /4

¼ /1
1� c1 � a1

1� c1

� 	3

þ /2
1� c1 � a1

1� c1

� 	2

þ /3
1� c1 � a1

1� c1

� 	
� /4

¼ b1b2
2kða1 � 1Þ < 0: ðA:18Þ

From system (3.36), we obtain that if x < 1�c1�a1
1�c1

then y < 1�c2�a2
1�c2

< 0.
Thus, we only consider x > 1�c1�a1

1�c1
. Since

f ðx�2Þ ¼
1

ð1� c1Þðc2 �1þ a2Þ3
c2b3

1b3
2ð1� c2Þ þ c2b2

1b2
2ðc2 � 1þ a2Þ

h

� c1 �1þ a1Þðc2 �1Þ �2b2kc1ðc2 � 1þ a2Þ4ð1� c1Þðc1 � 1þ a1Þ
�
� 1� c2Þð1� a2Þðc1 �1þ a1Þ3ðc2 �1þ a2Þ3
� i

> 0; ðA:19Þ

by the intermediate value theorem, there exists a unique ðn;gÞ, such
that n 2 ðx�1; x�2Þ;g 2 ð0;þ1Þ and f ðnÞ ¼ 0.

For case 2, if 1� c1 � a1 > 0; 1� c2 � a2 ¼ 0, we have

/2 ¼ ð1� c1Þ½2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2 � b1b2ðc2 � 1Þ� > 0;

D P 3c2b1b2
2kð1� c1Þ3ð1� c2Þ > 0;

/4 ¼ c1b1b2
2k > 0; f ð0Þ ¼ �c1b1b2

2k < 0:

ðA:20Þ

We know that x2;0 < 0. Furthermore, since f ðx�1Þ < 0, we acquire a
unique ðn;gÞ by the intermediate value theorem, such that

g ¼ yðnÞ n 2 1� c1 � a1

1� c1
;þ1

� �
;g 2 ð0;þ1Þ

� �
: ðA:21Þ

If 1� c1 � a1 ¼ 0; 1� c2 � a2 > 0, we obtain that

/3 ¼ b2kc1ðc2 � 1þ a2Þð1� c1Þ � b1b2
2kð1� c1Þ < 0; ðA:22Þ

f ð0Þ ¼ �c1b1b2
2k < 0 and

ffiffiffiffi
D
p

> j/2j. So, there exist x1;0 > 0; x2;0 < 0.
Furthermore, by the intermediate value theorem, there exists a un-
ique ðn;gÞ, such that g ¼ yðnÞ > 0, where n 2 ð0;þ1Þ, and
g 2 ð1�c2�a2

1�c2
;þ1Þ.

If 1� c1 � a1 < 0; 1� c2 � a2 ¼ 0, it implies that

/2 ¼ ð1� c1Þ½2ð1� c2Þð1� a2Þðc1 � 1þ a1Þ2 þ b1b2ð1� c2Þ� > 0;

D P ð1� c1Þ2f3c2b1b2
2kð1� c2Þð1� c1Þ þ 2b1b2 � ð1� a2Þ

� ð1� c2Þ2ðc1 � 1þ a1Þg
> 0; ðA:23Þ

f ð0Þ ¼ �c1b1b2
2k < 0:

Thus, by the intermediate value theorem we obtain x2;0 < 0 and
there exists a unique positive ðn;gÞ, where n 2 ð0;þ1Þ,
g 2 ð0; b1b2

ð1�c2Þðc1�1þa1Þ
Þ, such that g ¼ yðnÞ > 0. If 1� c1 � a1 ¼ 0;1�

c2 � a2 < 0, we have

/2 ¼ ð1� c1Þ½b2kð1� c1Þðc2 � 1þ a2Þ � b1b2ðc2 � 1Þ� > 0;

f ðx�2Þ ¼
c2b3

1b3
2ð1� c2Þ

ð1� c1Þðc2 � 1þ a2Þ3
> 0; ðA:24Þ

f ð0Þ ¼ �c1b1b2
2k < 0;
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D P ð1� c1Þ2 b2kðc2 � 1þ a2Þð1� c1Þð1� c2Þð1� a2Þð�3c1Þf

þ3c2b1b2
2kð1� c2Þð1� c1Þ

o
:

If D P 0, then x2;0 < 0, by the intermediate value theorem, we could
find a unique n 2 ð0; x�2Þ such that f ðnÞ ¼ 0 and g ¼ yðnÞ, where

g ¼ yðnÞ 2 0;
1

1� c2

b1b2

c1 � 1þ a1
� c2 þ 1� a2

� 	� �
: ðA:25Þ

If D < 0, then we have f ðxÞ as monotone increasing for all
x 2 ð�1;þ1Þ. Therefore, by the same arguments above, we find
there exists a unique ðn; gÞ satisfying the conclusion.If
1� c1 � a1 ¼ 0;1� c2 � a2 ¼ 0, since

/2 ¼ b1b2ð1� c1Þð1� c2Þ > 0; /3 ¼ �b1b2
2kð1� c1Þ

< 0; /4 > 0; ðA:26Þ

we get
ffiffiffiffi
D
p

> j/2j; x1;0 > 0; x2;0 < 0 and f ð0Þ < 0. Hence there exists a
unique ðn;gÞ, such that n 2 ð0;þ1Þ by intermediate value theorem,
where g 2 ð0;þ1ÞÞ;g ¼ yðnÞ. The proof is complete. h
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