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Abstract: The dissemination of cattle brucellosis in Zhejiang province of China can be attributed to
the transport of cattle between cities within the province． In this paper，an n-patch dynamical model
is proposed to study the effect of cattle dispersal on brucellosis spread． Theoretically，we analyze the
dynamical behavior of the muti-patch model． For the 2-patch submodel，sensitivity analyses of the
basic reproduction number Ｒ0 and the number of the infectious cattle in term of model parameters are
carried out． By numerical analysis，it is obtained that the dispersal of susceptible cattle between pat-
ches and the centralization of infected cattle to the large scale patch can alleviate the epidemic and
are in favor of the control of disease in the whole region．
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1 Introduction
Brucella，one of the world's major zoonotic pathogens known，causes infectious abortion in animals and

Malta Fever in man［1］． Since many kinds of domestic animals，such as sheep，cattle，dogs，pig and so on，
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can be infected by brucella，brucellosis usually causes economic devastation on a global scale． China is no ex-
ception． In Zhejiang province which locates in the southern China，the livestock breeding，dairy，the leather
processing industry have gotten great development． A mass of dairy cows，beefs，row fur and other animal by-
products were taken to trade annually． But it has also brought lots of cattle brucellosis infection［2，3］． In fact，
the cow remains an intermittent carrier for years in China［4］． For cattle，transmission of brucella typically oc-
curs through direct contact with brucella carriers or oral contact with aborted foetal material including the bac-
teria throughout the byre［4，5］． Bull can spread infection through semen，but often the disease leads to infertil-
ity or arthritis． More detailed information about cattle brucellosis can be seen in［6］．

Since Brucellosis caused by brucella is a non-fatal disease，it is often overlooked by the majority of the
scientific community． The local government of Zhejiang province has regularly taken detection measures and
culled infected cattle immediately． Yet，the data of positive cattle brucellosis in Zhejiang are rising year by
year and it has influenced the local economy，even leads to the local prevalence of human brucellosis． From
Fig． 1，we can see that brucellosis has been spreading from north to south in Zhejiang province． So，one of
main reasons of the geographical spread of the disease is the transportation of cattle between cities within Zhe-
jiang province． Cattle transportation can cause cross infection of individuals among different regions． Besides，
through vehicles and staff movement，it can also lead to the disperdal of brucella surviving in environment．
Therefore，public health officials and scientific community should pay more attention to the transmission of cat-
tle brucellosis．

Dynamical systems method is one of the most useful and important tools in studying biological and epide-
miological models［7 － 13］． Some researches have applied dynamical systems method to study brucellosis［14 － 17］． In
1994，Gonzalez-Guzman and Naulin［14］were the first to apply dynamical models to study bovine brucellosis． In
2005，besides transmission within sheep and cattle populations，Zinsstag et al．［17］ considered the transmission
to humans in a dynamical model． The livestock are classified into three subclasses: the susceptible，the sero-
positive and the immunized． In 2009，Xie and Horan［15］ built a simple dynamical model with the susceptible，
the infected and the resistant subclasses to discuss brucellosis in the elk and cattle population． In 2010，Ain-
seba et al．［16］ considered two transmission modes about the ovine brucellosis in their model: direct mode
caused by infected individuals and indirect mode related to brucella in the environment． For the transmission
of brucellosis in China，there are also some studies［18 － 22］． Hou et al．［20］ investigated the transmission dynam-
ics of sheep brucellosis in Inner Mongolia Autonomous Ｒegion of China． Zhang et al．［21］ and Nie et al．［22］ es-
tablished dynamical models about dairy cattle brucellosis in Zhejiang and Jilin Provinces，respectively． Ac-
cording to the spatial spread of disease，there are two types of model we can apply:multi-patch models［23 － 30］

and reaction-diffusion models［31 － 33］． The goal of this paper is to establish an n-patch dynamical model to dis-
cuss the effects of cattle dispersal and brucella diffusion on the geographical spread of the disease．

The article is organized as follows． In Sections 2 ，we propose an n-patch model about cattle brucellosis
with cattle transportation and brucella diffusion，and analyze its dynamical behavior． In section 3，we apply
numerical method to discuss the transmission of the disease between two patches under different conditions． In
section 4，we give a brief discussion．

2 Model and dynamical behavior
There are 11 cities in Zhejiang province，where Hangzhou is the provincial capital． More generally，we

propose an epidemic dynamical model with cattle dispersal between n patches． The number of cattle in each
patch can be denoted by Ni，i = 1，2，…，n． For each patch，the cattle population is divided into three classes:
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Fig． 1 The distribution of infected dairy cattle in Zhejiang from 2001 to 2010．

(a) 2001． (b)2002． (c)2003． (d) 2004． (e)2005． ( f)2006． (g) 2007． (h)2008． ( i)2009． ( j) 2010．
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susceptible，exposed and infective individuals，the numbers of which at time t in ith patch are denoted by
Si( t)，Ei( t) and Ii( t)，respectively． During the infected period，the infected individuals ( the exposed and
the infectious individuals) discharge brucella into the environment． The quantity of brucella in environment is
denoted by Vi( t) ． Consequently，the susceptible cattle can be infected by contacting with the exposed cattle，
the infectious cattle and the brucella in environment． Compared with the infectious individuals，the transmis-
sion coefficient of the exposed individuals is relatively smaller． So the auxiliary parameter θ is introduced． The
internal relationship of each individual in n patches can be described in the following system and the parameter
meanings can be seen in Table 1，where parameters Ai，βi，αi，mi，δi，μi，ri and wi are all positive con-
stants． θ is a parameter whose value is between 0 and 1． aji，bji，cji and dji( j≠i) are non-negative constants．
aii，bii，cii and dii are non-positive constants．

dSi

dt
= Ai － βi Si Ii － θβi SiEi － αi SiVi － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n

dEi

dt
= βi Si Ii + θβi SiEi + αi SiVi － miEi － δi Ei +∑

n

j = 1
bjiEj， 1 ≤ i≤ n

dIi
dt

= δi Ei － miIi － μi Ii +∑
n

j = 1
cji Ij， 1 ≤ i≤ n

dVi

dt
= ri(Ei + Ii) － wiVi +∑

n

j = 1
djiVj， 1 ≤ i≤















 n

， (1)

Table 1 Description of parameters in the model (1) ．

Parameters Comments

Ai The birth number of cattle in ith patch per unit time

βi The infectious cattle-to-susceptible cattle transmission rate in ith patch

θ Auxiliary parameter

αi Brucella in environment-to-susceptible cattle transmission rate in ith patch

mi Natural elimination rate of cattle in ith patch

δi Clinical outcome rate of the exposed cattle in ith patch

μi Disease-related culling rate of infectious cattle in ith patch

ri Brucella quantity released by infected cattle in ith patch

wi Brucella death rate in ith patch

aji( j≠i) The immigration rate of the susceptible cattle from jth patch to ith patch

bji( j≠i) The immigration rate of the exposed cattle from jth to ith patch

cji( j≠i) The immigration rate of the infectious cattle from jth to ith patch

dji( j≠i) The immigration rate of brucella in environment from jth to ith patch

－ aii The emigration rate of the susceptible cattle in ith patch

－ bii The emigration rate of the exposed cattle in ith patch

－ cii The emigration rate of the infectious cattle in ith patch

－ dii The emigration rate of brucella in environment in ith patch

It is easy to know that there exist the following relationships for the migration rates．

∑
n

j = 1
aij = ∑

n

j = 1
bij = ∑

n

j = 1
cij = ∑

n

j = 1
dij = 0，  1 ≤ i≤ n． (2)
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Lemma 1 Let N* =
A
m
，where A =∑

n

i = 1
Ai and m = min{mi，1≤i≤n}，every forward orbit in Ｒ4n

+ of sys-

tem (1) eventually enters Γ = {( S，E，I，V)∈ Ｒ4n
+ : ∑

n

i = 1
( Si + Ei + Ii )≤N* }，and Γ is a positively

invariant set．
Firstly，we consider the existence and uniqueness of the disease-free equilibrium． Let the right hand side

of system (1) be zero and choose Ei = Ii = Vi = 0，we can obtain the following system．

Ai － miSi +∑
n

j = 1
ajiSj = 0， 1 ≤ i≤ n．

which can be expanded as follows．
－ m1 + a11 a21 a31 … an1

a12 － m2 + a22 a32 … an2

a13 a23 － m3 + a33 … an3

   … 
a1n a2n a3n … － mn + a















nn

S1

S2

S3


S















n

=

－ A1

－ A2

－ A3


－ A















n

Observing the coefficient matrix and combining Eq． (2)，we know that the coefficient matrix is absolutely di-
agonally dominant about columns． So the above system has a unique untrivial solution and the solution is posi-
tive． Thus the corresponding disease-free equilibrium of system (1) is existent and unique，which can be de-
noted as

E0 = (S1
0，0，0，0，…，Si

0，0，0，0，…，Sn
0，0，0，0) ．

Applying the next generation matrix method，we can present the expression of the basic reproduction number．
Define

F =

β1S1 I1 + θβ1 S1E1 + α1 S1V1

0
0


βnSnIn + θβn SnEn + αn SnVn























0
0

，V =

m1E1 + δ1 E1 －∑
n

j = 1
bj1Ej

－ δ1 E1 + (m1 + μ1) I1 －∑
n

j = 1
cj1 Ij

－ r1(E1 + I1) + w1V1 －∑
n

j = 1
dj1Vj



mnEn + δn En －∑
n

j = 1
bjnEj

－ δn En + (mn + μn) In －∑
n

j = 1
cjnIj

－ rn(En + In) + wnVn －∑
n

j = 1
djnVj







































，

，

F =

F1 0 … 0

0 F2 … 0

  … 
0 0 … F













n

，

and
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V =

V11 V21 … Vn1

V12 V22 … Vn2

  … 
V1n V2n … V













nn

，

where，

Fi =
θβi Si

0 βiSi
0 αi Si

0

0 0 0








0 0 0

，Vij( i≠j)
=

－ bij 0 0

0 － cij 0

0 0 － d









ij

，

and

Vii =
mi + δi － bii 0 0

－ δi mi + μi － cii 0

－ ri － ri wi － d









ii

．

The basic reproduction number is Ｒ0 = ρ(FV
－ 1) ． Defining M = F － V and s(M): = max{Ｒeλ:λ is an eigen-

value of M}，we have the following result．
Lemma 2 There hold two equivalences［34］:

Ｒ0 ＜ 1s(M) ＜ 0， Ｒ0 ＞ 1s(M) ＞ 0． (3)
By Theorem 2 in［34］，the disease-free equilibrium E0 is locally asymptotically stable when Ｒ0 ＜ 1 and unsta-
ble when Ｒ0 ＞ 1． Now we further investigate the global dynamical behavior of E0 ．
Firstly，we consider the auxiliary system

dSi

dt
= Ai － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n， (4)

whose Jacobian matrix is
－ m1 + a11 a21 a31 … an1

a12 － m2 + a22 a32 … an2

a13 a23 － m3 + a33 … an3

   … 
a1n a2n a3n … － mn + a















nn

．

It is already known that the Jacobian matrix is absolutely diagonally dominant about column and the system
(3) has a unique positive equilibrium S0 = (S1

0，S2
0，S3

0，…，Sn
0) T ． Moreover，－mi + aii ＜ 0，1≤i≤n． So，

all eigenvalues of the Jacobian matrix have negative real parts which imply that S0 is locally stable． Since sys-
tem (4) is a linear system，equilibrium S0 is globally stable．

Theorem 1 When Ｒ0 ＜ 1，the disease-free equilibrium E0 of system (1) is globally asymptotically sta-
ble in Γ．

Proof Now，we only need to prove the global attraction of the disease-free equilibrium． Because Ｒ0 ＜
1，then s(M) ＜ 0． For small enough η，s(M +Mη) ＜ 0，where

Mη =

M1 0 … 0

0 M2 … 0

  … 
0 0 … M













n

，Mi =
θβiη βiη αiη
0 0 0









0 0 0

( i = 1… n) ．

It is obvious to know that
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dSi

dt
≤ Ai － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n． (5)

Then the following auxiliary system is introduced．
dSi

dt
= Ai － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n， (6)

The positive equilibrium S0 of system (6) has been proved to be globally stable． So，for η，there exists T such
that  t ＞ T，S( t)≤S0 + η，where S( t) = (S1( t)，…，Sn( t)) ． Thus，we obtain the following system．

dEi

dt
≤ βi(Si

0 + η) Ii + θβi(Si
0 + η)Ei + αi(Si

0 + η)Vi － miEi － δi Ei + ∑
n

j = 1
bjiEj， 1 ≤ i≤ n，

dIi
dt

= δi Ei － miIi － μi Ii +∑
n

j = 1
cji Ij， 1 ≤ i≤ n，

dVi

dt
= ri(Ei + Ii) － wiVi +∑

n

j = 1
djiVj， 1 ≤ i≤ n．

Because s(M +Mη) ＜ 0，the solution of the right side system tends to zero as t goes to infinity，which implies
lim
t→∞

Ei( t) = limt→∞
Ii( t) = limt→∞

Vi( t) = 0，1≤i≤n． By the theory of asymptotic autonomous systems［35］，it is also

known that S( t)→ S0 as t→∞ ． Then E0 is globally attractive when Ｒ0 ＜ 1．
Define

X = {(S1，E1，I1，V1，…，Sn，En，In，Vn): Si ≥ 0，Ei ≥ 0，Ii ≥ 0，Vi ≥ 0，i = 1，…，n}，
X0 = {(S1，E1，I1，V1，…，Sn，En，In，Vn) ∈ X: Ei ＞ 0，Ii ＞ 0，Vi ＞ 0，i = 1，…，n}，

X0 = X \X0 ．
Considering the auxiliary system

dSi

dt
= Ai － βi Si － θβi Si － αi Si － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n． (7)

For system (7)，similar as system (4)，there exists a unique positive equilibrium S0() and it is global as-
ymptotically stable． By the implicity function theorem，it follows that S0() is continuous in term of ． For
given τ，we can restrict  small enough such that S0()≥ S0 － τ for all t ＞ T1 ．

Theorem 2 When Ｒ0 ＞ 1，there exists positive constant  such that when ‖(Ei(0)，Ii(0)，Vi(0))‖
＜  for (Si(0)，Ei(0)，Ii(0)，Vi(0))∈X0，

lim
t→∞

sup max
i
‖(Ei( t)，Ii( t)，Vi( t))‖ ＞ ，i = 1，…，n． (8)

Proof Because Ｒ0 ＞ 1，s(M) ＞ 0． So，for small enough τ，s(M －Mτ) ＞ 0，where

Mτ =

M1 0 … 0

0 M2 … 0

  … 
0 0 … M













n

，Mi =
θβiτ β iτ αiτ
0 0 0









0 0 0

( i = 1… n) ．

Now we proceed by contradiction to prove the above conclusion． Suppose，there exist  and T ＞ 0 such that
Ei( t) ＜ ，Ii( t) ＜  and Vi( t) ＜ ，i = 1… n for all t ＞ T． Then for all t ＞ T，we can have that

dSi

dt
＞ Ai － βiSi － θβiSi － αiSi － miSi +∑

n

j = 1
ajiSj， 1 ≤ i≤ n． (9)

For the right side system，there exists a unique positive equilibrium S0() which is global asymptotically sta-
ble． There exists a large enough T1 ＞ T such that S( t)≥ S0() ． Because S0()≥ S0 － τ，S( t)≥ S0 － τ for
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all t ＞ T1 ． Thus，there holds
dEi

dt
≥ βi(Si

0 － τ) Ii + θβi(Si
0 － τ)Ei + αi(Si

0 － τ)Vi － miEi － δiEi + ∑
n

j = 1
bjiEj， 1 ≤ i≤ n，

dIi
dt

= δi Ei － miIi － μi Ii +∑
n

j = 1
cji Ij， 1 ≤ i≤ n，

dVi

dt
= ri(Ei + Ii) － wiVi +∑

n

j = 1
cjiVj， 1 ≤ i≤ n．

Because s(M －Mτ) ＞ 0，Ii( t)→∞，Ei( t)→∞，Vi( t)→∞ as t→∞，i = 1… n，which is a contraction． So，
inequality (8) is well-founded．

Theorem 3 When Ｒ0 ＞ 1，system (1) admits at least one positive equilibrium，and there exists positive
constant  such that every solution of (1) with (Si(0)，Ei(0)，Ii(0)，Vi(0))∈X0 satisfies

min{ lim
t→∞

inf
i
Ei( t)，limt→∞

inf
i
Ii( t)，limt→∞

inf
i
Vi( t)} ≥ ，i = 1，…，n． (10)

Proof Firstly，we show that system (1) is uniformly persistent with respect to (X0，X0) ． It is easy to
know that both X and X0 are positively invariant and X0 is relatively closed in X． Moreover，from Lemma 1，
system (1) is point dissipative． Set M = {(S(0)，E(0)，I(0)，V(0)):(S( t)，E( t)，I( t)，V( t))∈X0，

t≥0，i = 1，…，n}，where S( t) = (S1( t)，…，Sn( t))，E( t) = (E1( t)，…，En( t))，I( t) = ( I1( t)，…，
In( t))，V( t) = (V1( t)，…，Vn( t)) ． It is needed to show that

M = {(S( t)，0，…，0): S( t) ≥ 0} ． (11)
Noting that

{(S( t)，0，…，0): S( t) ≥ 0}  M， (12)
we only need to prove

M  {(S( t)，0，…，0): S( t) ≥ 0，i = 1，…，n} ． (13)
Suppose not． Assume (S(0)，E(0)，I(0)，V(0))∈M ． There exist an i0(1≤i0≤n) and a t0 such that (Ei0

( t0)，Ii0( t0)，Vi0( t0))
T ＞ 0． Then we can separate {1，…，n} into two sets Q1 and Q2 such that
(Ei( t0)，Ii( t0)，Vi( t0))

T = 0， i∈ Q1，

(Ei( t0)，Ii( t0)，Vi( t0))
T ＞ 0， i∈ Q2 ．

It is easy to know that Q1 and Q2 are not empty． For i∈Q2，without loss of generality，we assume Ei( t0) ＞ 0，
Ii( t0) = Vi( t0) = 0． From the equations Ii '( t0) = δiEi( t0) ＞ 0 and Vi '( t0) = riEi( t0) ＞ 0，we can know that
there is a small enough 0 ＞ 0 such that Ei( t) ＞ 0，Ii( t) ＞ 0，Vi( t) ＞ 0，i∈Q2 for t0 ＜ t ＜ t0 + 0 ． For j∈Q1，

we have Ej'( t0)≥ bijEi( t0) ＞ 0． So，there exists 1 ＞ 0 such that Ej( t) ＞ 0，j∈Q1 for t0 ＜ t ＜ t0 + 1 ． Simi-
larly，there exists 2 ＞ 0 such that Ij( t) ＞ 0，Vj( t) ＞ 0，j∈Q1 for t0 ＜ t ＜ t0 + 2 ． These mean that (S( t)，

E( t)，I( t)，V ( t)) X0 for t0 ＜ t ＜ t0 + ̂，̂ = min { 0，1，2 }，which contradicts the assumption that
(S(0)，E(0)，I(0)，V(0))∈M ． So，the equality (11) holds． Moreover，from Theorem 2，it can be known
that E0 is an isolated invariant set in X and Ws(E0)∩X0 = ． E0 is the only fixed point and acyclic in X0 ．
By Theorem 4． 3 in［36］and in Theorem 4． 6［37］，we can conclude that system (1) is uniformly persistent
with respect to (X0，X0) ．

By Theorem 2． 4 in［38］，system (1) has an equilibrium ( S* ，E* ，I* ，V* )∈X0 where S ( t) =
(S*

1 ，…，S
*
n )，E( t) = (E

*
1 ，…，E

*
n )，I( t) = ( I

*
1 ，…，I

*
n )，V( t) = (V

*
1 ，…，V

*
n ) ． From Ai － βi Si Ii －

θβi SiEi － αi SiVi －miSi +∑
n

j = 1
ajiSj = 0 and Ai ＞ 0，i = 1，…，n，we know S* ＞ 0． Then (S* ，E* ，I* ，V* ) is a

positive equilibrium of system (1) ．
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3 Application to two patches
In this section，for simplicity，assuming n = 2，we perform numerical simulation to study the effects of

cattle dispersal on brucellosis transmission． Let a12 = － a22，a21 = － a11，b12 = － b22，b21 = － b11，c12 =
－ c22，c21 = － c11，d12 = － d22，d21 = － d11 ． Then system (1) reduces to

dS1

dt
= A1 － β1 S1 I1 － θβ1 S1E1 － α1 S1V1 － m1S1 － a12S1 + a21S2

dE1

dt
= β1 S1 I1 + θβ1 S1E1 + α1 S1V1 － m1E1 － δ1 E1 － b12E1 + b21E2

dI1
dt

= δ1 E1 － m1 I1 － μ1 I1 － c12 I1 + c21 I2

dV1

dt
= r1(E1 + I1) － w1V1 － d12V1 + d21V2

dS2

dt
= A2 － β2 S2 I2 － θβ2 S2E2 － α2 S2V2 － m2S2 － a21S2 + a12S1

dE2

dt
= β2 S2 I2 + θβ2 S2E2 + α2 S2V2 － m2E2 － δ2 E2 － b21E2 + b12E1

dI2
dt

= δ2 E2 － m2 I2 － μ2 I2 － c21 I2 + c12 I1

dV2

dt
= r2(E2 + I2) － w2V2 － d21V2 + d12V





























1

． (14)

For system (14)，it is easy to calculate that its disease-free equilibrium is P0 = (S1
0，0，0，0，S2

0，0，0，0)，

where S1
0 =

A1(m2 + a21) + a21A2

(m1 + a12)(m2 + a21) － a12a21

and S2
0 =

A2(m1 + a12) + a12A1

(m1 + a12)(m2 + a21) － a12a21

． And Ｒ0 =

ρ(FV － 1)，where

F =
F1 0

0 F( )
2

，V =
V11 V21

V12 V( )
22

．

Also，we can obtain the basic reproduction numbers Ｒ1，Ｒ2 of two patches under the situation that there exists
no migration of cattle and the diffusion of brucella between them as follows．

Ｒ1 =
A1β1θ

m1(δ1 + m1)
+

A1β1δ1
m1(δ1 + m1) (m1 + μ1)

+
A1α1 r1(m1 + δ1 + μ1)

m1w1(δ1 + m1)(m1 + μ1)
，

Ｒ2 =
A2β2θ

m2(δ2 + m2)
+

A2β2δ2
m2(δ2 + m2) (m2 + μ2)

+
A2α2 r2(m2 + δ2 + μ2)

m2w2(δ2 + m2)(m2 + μ2)
．

Now，we mainly have a look at the effect of some parameters and population scales on the basic reproduction
number and the number of the infected individuals，respectively．

Example 1 When all the parameter values are same between two patches and the dispersal rates of each
subpopulation from one patch to the other are taken as the same． Assume that A1 = A2 = 13000; m1 = m2 =
0． 25; δ1 = δ2 = 6; μ1 = μ2 = 0． 85; r1 = r2 = 5; w1 = w2 = 6; a12 = a21 = b12 = b21 = c12 = c21 = d12 = d21 = 0． 1;
β1 = β2 = 2． 1 × 10 －6; θ = 0． 5．
(1) If α1 = α2 = 2． 2 × 10 －5，Ｒ0 = Ｒ1 = Ｒ2 = 1． 0886． In this case，the brucellosis in two patches will become
endemic with time (see Fig． 2) ．
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(2) If α1 = α2 = 1． 8 × 10 －5，Ｒ0 = Ｒ1 = Ｒ2 = 0． 9096． In this case，the infectious cattle in two patches will
disappear with time (see Fig． 3) ．

Fig． 2 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．

The initial values will be taken as S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，

S2(0) = 40000，E2(0) = I2(0) = V2(0) = 0．

Fig． 3 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．

S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，S2(0) = 40000，E2(0) = I2(0) = V2(0) = 0．

Figs． 2 and 3 confirm that the basic reproduction number Ｒ0 is the transmission threshold of brucellosis in
two patches． Besides，the sensitivity of the basic reproduction number Ｒ0 in term of β1，α1，A1，a12，b12，c12，
d12 can be seen in Fig． 4． From Fig． 4，we know that Ｒ0 will increase with the increase of A1 ． Comparing with
β1，the effect of α1 on Ｒ0 is larger． What is interesting is that the transport of susceptible cattle can reduce Ｒ0，

which implies that the dispersal of susceptible cattle can relief the transmission situation of brucellosis in the
whole region． However，the transport of the infected cattle or the diffusion of brucella has no influence on Ｒ0 ．

Example 2 When the numbers of cattle in two patches are different，the disease situation will be differ-
ent from Example 1． Assume that the number of cattle in the first patch is larger than the second patch． A1 =
20000; A2 = 10000; m1 = m2 = 0． 25; δ1 = δ2 = 6; μ1 = μ2 = 0． 85; r1 = r2 = 5; w1 = w2 = 6; β1 = β2 =
2． 1 × 10 －6; θ = 0． 5; α1 = α2 = 2． 2 × 10 －5 ．
(1) If the dispersal rate of the first patch is smaller than the second patch，a12 = b12 = c12 = d12 = 0． 3，

a21 = b21 = c21 = d21 = 0． 1． In this case，Ｒ0 = 1． 1785，Ｒ1 = 1． 3993，Ｒ2 = 0． 6997(see Fig． 5) ．
(2) If the dispersal rate of the first patch is larger than the second patch，a12 = b12 = c12 = d12 = 0． 1，

a21 = b21 = c21 = d21 = 0． 3． In this case，Ｒ0 = 1． 4059，Ｒ1 = 1． 3993，Ｒ2 = 0． 6997(see Fig． 6) ．
From Figs． 5 and 6，we can see that the patch whose dispersal rate is bigger，the number of infectious cat-

tle will be smaller． For the patch that has larger cattle population，the emigration of susceptible cattle can re-
duce Ｒ0，see Fig． 7． However，the emigration of the brucella carriers and the diffusion of brucella can increase
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Ｒ0 ． For the patch that has smaller cattle population，the emigration of all subpopulation can reduce Ｒ0 ．

Fig． 4 Ｒ0 in term of parameters A1，β1，α1，a12，b12，c12，d12，a21，b21 ．

Fig． 5 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．
The initial values will be taken as S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，

S2(0) = 20000，E2(0) = I2(0) = V2(0) = 0．

Example 3 We need to know that when the basic reproduction numbers Ｒ1 and Ｒ2 of two patches are
both less than 1，what is about Ｒ0? The parameter values are the same as Example 2 except for α1 and α2 ． As-
sume α1 = α2 = 1． 8 × 10 －5 ．
(1) If the dispersal rate of the first patch is larger than the second patch，a12 = b12 = c12 = d12 = 0． 3，

a21 = b21 = c21 = d21 = 0． 1． In this case，Ｒ0 = 0． 9548，Ｒ1 = 0． 9096，Ｒ2 = 0． 6997． The brucellosis in two pat-
ches will disappear with time． (see Fig． 8)
(2) If the dispersal rate of the first patch is larger than the second patch，a12 = b12 = c12 = d12 = 0． 1，

a21 = b21 = c21 = d21 = 0． 3． In this case，Ｒ0 = 1． 0233，Ｒ1 = 0． 9096，Ｒ2 = 0． 6997． The infectious disease in
two patches will become endemic with time． (see Fig． 9)
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Fig． 6 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．

The initial values will be taken as S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，S2(0) = 20000，E2(0) = I2(0) = V2(0) = 0．

Fig． 7 Ｒ0 in term of parameters a12，b12，c12，d12，a21，b21，c21，d21 ．

Fig． 8 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．

The initial values will be taken as S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，S2(0) = 20000，E2(0) = I2(0) = V2(0) = 0．

254



Analysis of a multi-patch dynamical model about cattle brucellosis

Fig． 9 The number of the infectious cattle with time． (a) in the first patch． (b) in the second patch．

The initial values will be taken as S1(0) = 40000，E1(0) = 7，I1(0) = 12，V1(0) = 100，

S2(0) = 20000，E2(0) = I2(0) = V2(0) = 0．

From Figs． 8 and 9，we can see that if the basic reproduction numbers of two patches without cattle and bru-
cella dispersal are less than 1，with the change of dispersal rates between patches，the basic reproduction
number in the whole region will be variable． It can be less than 1，also can be more than 1 as the dispersal
rates increase．

4 Discussion
For Zhejiang province of China，the recent prevalance of brucellosis in cattle is believed to be caused by

the transportation of cattle and brucella between cities in Zhejiang province． In this article，we applied an n-
patch dynamical model to study the effect of dispersal of cattle and brucella on the spatial transmission of bru-
cellosis． Firstly，we analyzed the dynamical behavior of the model． More specifically，assuming n = 2，we car-
ried out the sensitivity analysis of the basic reproduction number and the number of the infectious cattle in term
of different parameter values． Finally，it is obtained that the dispersal of the susceptible cattle can relief the
spread of brucellosis in the whole region． However，the emigration of the brucella carriers or the diffusion of
brucella in patch whose rasing quantity of cattle is larger can increase Ｒ0 ． On the contrary，the emigration of
the brucella carriers or the diffusion of brucella in patches where the amount of live cattle is smaller can reduce
Ｒ0 ． In summary，the dispersal of the susceptible population of each patch and the centralization of the infected
cattle to the patches where the breeding scale is bigger are in favor of the controlling of the disease．
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