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a b s t r a c t

In this paper we discuss a model of allelopathy and bacteriocin in the chemostat with a
wild-type organism and a single mutant. Dynamical properties of this model show the
basic competition between twomicroorganisms. A qualitative analysis about the boundary
equilibrium, a state that both microorganisms vanish, is carried out. The existence and
uniqueness of the interior equilibriumare proved by a technical reduction to the singularity
of a matrix. Its dynamical properties are given by using the index theory of equilibria. We
further discuss its bifurcations. Our results are demonstrated by numerical simulations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Antibiotic resistance among bacteria has become a worldwide public health threat [1,2]. One of the limitations of using
broad-spectrum antibiotics is that they kill almost any bacterial species not specifically resistant to the drug [3]. Frequent
use of these antibiotics result in an intensive selection pressure for the evolution of antibiotic resistance in both pathogen
and commensal bacteria [4,3]. Alternative methods of combating infection has been considered [5,3].

Allelopathy is the chemical inhibition of one species by another [6,7]. Bacteriocin, a particular type of allelopathy, is a
toxin produced by bacteria that inhibits the growth of closely related species [8]. Bacteriocins provide an alternative solution
with their relatively narrow spectrum of killing activity. Special examples of bacteriocin productions involving more than
two competing organisms, such as the bacteriocins of Escherichia coli and Klebsiella pneumonia, are given in [5].

Various mathematical models have been proposed to examine the interaction between bacteriocin-producer and
sensitive strains ([9,10,8], etc.). Recently, Abell et al. [8] proposed chemostat-type competition models with mutation and
toxin production. Via numerical simulations, they showed how the coexistence of competitors depends upon the growth
rates and toxin sensitivity.

A chemostat is a laboratory bio-reactor used to culture microorganisms [11]. Competition for single and multiple
resources, the evolution of resource acquisition, and competition among organisms have been investigated in ecology and
biology using chemostats [12–17]. Since 1950 [15,16], chemostat models have been studied. We refer to the monograph of
Smith and Waltman [11], the surveys of Hsu and Waltman [18] and Ruan [19] and the references cited therein.

In this paper, we study the dynamics of the allelopathy model in the chemostat with a wild-type organism and a single
mutation proposed by Abell et al. [8]. Let S(t) be the concentration of the nutrient at time t , x(t) be the density of the
wild-type organism X at time t , and y(t) be the density of a mutant Y at time t , respectively. It is assumed that the two
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microorganisms X and Y compete for the nutrient, the wild-type organism X can mutate to the microorganism Y , and the
singlemutant of a parental species Y can revert to thewild-type X during reproduction. Themodel takes the following form:

S ′(t) = D(S0 − S(t)) −
1
γ
f1(S)x(t) −

1
γ
f2(S)y(t),

x′(t) = x(t)[(1 − α)f1(S) − D] + βf2(S)y(t),
y′(t) = y(t)[(1 − β)f2(S) − D] + αf1(S)x(t),

(1.1)

where D is the dilution rate, γ is the yield constant, 0 ≤ α ≤ 1 is the rate at which X mutates, 0 ≤ β ≤ 1 is the rate at which
Y reverts to X during reproduction, and fi(S) = miS/(ai + S) is the Michaelis–Menten–Monod function, in whichmi > 0 is
the maximum growth rate and ai > 0 is the Michaelis–Menten–Monod constant.

After rescaling the variables and some parameters and using the same notation, the model can be written as follows [8]:S ′
= 1 − S − f1(s)x − f2(S)y,

x′
= x[(1 − α)f1(S) − 1] + βf2(S)y,

y′
= y[(1 − β)f2(S) − 1] + αf1(S)x.

(1.2)

Let Σ = 1 − S − x − y. Then, Σ ′
= −Σ and system (1.2) can be replaced withΣ ′

= −Σ,
x′

= x[(1 − α)f1(1 − Σ − x − y) − 1] + βf2(1 − Σ − x − y)y,
y′

= y[(1 − β)f2(1 − Σ − x − y) − 1] + αf1(1 − Σ − x − y)x.
(1.3)

Since solutions of Σ ′
= −Σ all tend to 0 as t → +∞, system (1.2) is asymptotic to the two-dimensional system [20,11]

x′
= x

[
(1 − α)

m1(1 − x − y)
a1 + 1 − x − y

− 1
]

+ β
m2(1 − x − y)
a2 + 1 − x − y

y := f̃ (x, y),

y′
= y

[
(1 − β)

m2(1 − x − y)
a2 + 1 − x − y

− 1
]

+ α
m1(1 − x − y)
a1 + 1 − x − y

x := g̃(x, y)
(1.4)

in the region G = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}.
When α = β = 0, system (1.2) has been discussed in [13]. Later, Hsu et al. [14] presented some results for the case β = 0

and 0 < α < 1, which is equivalent to the case α = 0 and 0 < β < 1. Therefore, wemainly consider the case 0 < α, β ≤ 1
in this paper.

Based on the study on system (1.2) in [8], we first discuss the properties of the boundary equilibrium E0. We then
consider the existence and uniqueness of the interior equilibrium E1 by using a singular matrix. By employing the index
of the equilibrium, we study the stability of E1 by its Jacobian matrix.

The paper is organized as follows. In Section 2 we consider the boundary equilibria. The existence of the interior
equilibrium is addressed in Section 3 and the properties of the interior equilibrium are given in Section 4. Section 5 deals
with possible bifurcations of the model. Numerical simulations and some remarks are given in Section 6.

2. The boundary equilibria

To find the equalibria of system (1.4), we find zeros of the coupled equations f̃ (x, y) = 0, g̃(x, y) = 0, i.e.,
x
[
(1 − α)

m1(1 − x − y)
a1 + 1 − x − y

− 1
]

+ β
m2(1 − x − y)
a2 + 1 − x − y

y = 0,

y
[
(1 − β)

m2(1 − x − y)
a2 + 1 − x − y

− 1
]

+ α
m1(1 − x − y)
a1 + 1 − x − y

x = 0.
(2.1)

We can see that E0 = (0, 0) is the unique boundary equilibrium of system (1.4) when 0 < α ≤ 1 and 0 < β ≤ 1. In fact,
when x = 0, (2.1) is equivalent to that

β
m2(1 − y)
a2 + 1 − y

y = 0 and y
[
(1 − β)

m2(1 − y)
a2 + 1 − y

− 1
]

= 0,

implying that y = 0. Similarly, if y = 0, (2.1) exists if and only if x = 0. Furthermore, on x + y = 1, (2.1) is equivalent to
that y = 0 and x = 0, which obviously do not exist on x + y = 1. So there is no other boundary equilibrium except E0.

In order to determine the qualitative properties of E0, we calculate the Jacobian of system (1.4) at E0, i.e.,

J(E0) =


(1 − α)m1

a1 + 1
− 1

βm2

a2 + 1
αm1

a1 + 1
(1 − β)m2

a2 + 1
− 1


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and see that eigenvalues are zeros of the polynomial P(λ) := λ2
− T0λ + D0, where

T0 := tr J(E0) =
(1 − α)m1

a1 + 1
+

(1 − β)m2

a2 + 1
− 2,

D0 := det J(E0) =
(1 − α − β)m1m2

(a1 + 1)(a2 + 1)
−

(1 − α)m1

a1 + 1
−

(1 − β)m2

a2 + 1
+ 1.

Since the discriminant

∆0 := T 2
0 − 4D0 =


(1 − α)m1

a1 + 1
−

(1 − β)m2

a2 + 1

2

+ 4
αβm1m2

(a1 + 1)(a2 + 1)
> 0. (2.2)

It follows that E0 is neither a focus nor of the center type.

Theorem 1. (i) E0 is a saddle if D0 < 0. Moreover, the trajectories starting from G all go far away from E0, (ii) E0 is a stable node
if D0 > 0 and T0 < 0. (iii) E0 is an unstable node if D0 > 0 and T0 > 0. (iv) If D0 = 0, then the equilibrium E0 is a saddle–node
and E0 is stable in G.

Proof. In order to prove (i), we note that the stable manifold is tangent to the eigenvector (xs, ys) at E0 and the unstable
manifold is tangent to the eigenvector (xu, yu) at E0, where xs, ys, xu and yu satisfy

1
2

 (1 − α)m1

a1 + 1
− 4 −

(1 − β)m2

a2 + 1
−


(1 − α)m1

a1 + 1
−

(1 − β)m2

a2 + 1

2

+ 4
αm1βm2

(a1 + 1)(a2 + 1)

 xu +
βm2

a2 + 1
yu = 0,

1
2

 (1 − α)m1

a1 + 1
− 4 −

(1 − β)m2

a2 + 1
+


(1 − α)m1

a1 + 1
−

(1 − β)m2

a2 + 1

2

+ 4
αm1βm2

(a1 + 1)(a2 + 1)

 xs +
βm2

a2 + 1
ys = 0,

which means that xuyu > 0 and xsys < 0. Therefore, the intersection of the stable manifold and G is empty, while the
intersection of the stable manifold and G is nonempty. This proves (i).

When D0 > 0, we assure that T0 ≠ 0; otherwise, ∆0 = −4D0 < 0, a contradiction to (2.2). Thus we only need to discuss
the case of T0 < 0 and the case of T0 > 0. In the two cases the assumption D0 > 0 implies results (ii) and (iii), respectively.

In order to discuss the case (iv), we need to determine the qualitative properties in the degenerate case. Applying a time-
scaling transformation t = τ(a1 + 1 − x − y)(a2 + 1 − x − y), we can reduce system (1.4) orbital-equivalently to the
polynomial differential system

x′
= f (x, y),

y′
= g(x, y), (2.3)

where

f (x, y) := [(1 − α)m1 − 1 − a1](a2 + 1)x + βm2(a1 + 1)y + {a1 + (a2 + 2)[1 − (1 − α)m1]}x2

+ [(a2 + 2)(1 − (1 − α)m1) + a1 − βm2(a1 + 2)]xy − βm2(a1 + 2)y2 + [(1 − α)m1 − 1]x3

+ [βm2 − 2 + 2m1(1 − α)]x2y + [2βm2 − 1 + (1 − α)m1]xy2 + βm2y3,

g(x, y) := αm1(a2 + 1)x + [(1 − β)m2 − a2 − 1](a1 + 1)y − m1α(a2 + 2)x2

+ [(1 − (1 − β)m2)(a1 + 2) + a2 − αm1(a2 + 2)]xy + {a2 + (a1 + 2)[1 − (1 − β)m2]}y2

+ αm1x3 + [2m1α − 1 + m2(1 − β)]x2y + [αm1 − 2 + 2(1 − β)m2]xy2 + [(1 − β)m2 − 1]y3.

If D0 = 0, then

{(1 − α)m1 − (a1 + 1)}{(1 − β)m2 − (a2 + 1)} = αβm1m2. (2.4)

Assume that T0 ≥ 0. Then,

(a2 + 1)[(1 − α)m1 − (a1 + 1)] ≥ −(a1 + 1)[(1 − β)m2 − (a2 + 1)].

Substituting (2.4) in it, we get

(a2 + 1)((1 − α)m1 − (a1 + 1))2 ≤ −αβm1m2(a1 + 1),

which holds if and only if its both sides vanish. This contradicts to the inequality βm2αm1(a1 + 1) > 0. In fact, β > 0, α >
0,m1 > 0,m2 > 0, and a1 > 0. It concludes that T0 < 0. Therefore, only one of eigenvalues of the system vanishes but the
other is equal to T0 < 0.

Furthermore, with a transformation
u = −αm1(a2 + 1)x + ((1 − α)m1 − a1 − 1)(a2 + 1)y,
v = −αm1(a2 + 1)x − ((1 − β)m2 − a2 − 1)(a1 + 1)y,
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we change system (2.3) into the form
u̇ = U(u, v),
v̇ = µv + V (u, v),

(2.5)

whereµ = (1−α)m1(a2+1)+(1−β)m2(a1+1)−2(a1+1)(a2+1) and U, V are O(|u|2+|v|
2) and shown in Appendix A.

By the implicit function theorem, there is a unique function v = φ(u) such that φ(0) = 0 and V (u, φ(u)) = 0. Actually, we
can solve from µv + V (u, v) = 0 that

φ(u) = αm1{(a2 + 1)[(a2 + 2)(1 − (1 − α)m1) + a1]
− [(1 − β)m2 − (a2 + 1)](a1 + 1)(a2 + 2)}u2/[(1 − α)m1(a2 + 1)
+ (1 − β)m2(a1 + 1) − 2(a1 + 1)(a2 + 1)] + O(|u|3).

Substituting v = φ(u) in the first equation of (2.5), we get

U(u, φ(u)) = a1αm1(a2 + 1)2u2
+ O(|u|3),

which implies that E0 is a saddle–node of system (2.5). i.e., E0 is a saddle–node of system (1.4).
Moreover, since a1αm1(a2 + 1)2 > 0, the two hyperbolic sectors lie on the left but the parabolic sector lies on the right.

So E0 is stable in G. �

3. Existence of interior equilibria

It is muchmore difficult to determine the interior equilibria because muchmore complex computation is needed. In this
section we consider (1.4) in the interior of the region G, denoted by intG.

Theorem 2. System (1.4) has at most one interior equilibrium. Furthermore, system (1.4) has exactly one interior equilibrium
E1 = (x1, y1) if and only if E0 is unstable in G, where

x1 =
βm2z1(a1 + z1)(1 − z1)

(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)
, y1 =

−(a2 + z1)(K1z1 − a1)(1 − z1)
(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)

,

z1 =


−(a2K1 + a1K2) +

√
∆

2(αβm1m2 − K1K2)
, αβm1m2 ≠ K1K2,

a1a2
a2K1 + a1K2

, αβm1m2 = K1K2,

∆ = (a2K1 − a1K2)
2
+ 4αβm1m2a1a2,

K1 = (1 − α)m1 − 1, K2 = (1 − β)m2 − 1.

Proof. The system (2.1) of determining equilibria is equivalent to the system
x[(1 − α)m1(1 − x − y) − a1 − 1 + x + y](a2 + 1 − x − y) + βm2(1 − x − y)(a1 + 1 − x − y)y = 0,
y[(1 − β)m2(1 − x − y) − a2 − 1 + x + y](a1 + 1 − x − y) + αm1(1 − x − y)(a2 + 1 − x − y)x = 0,

which can be rewritten as[
(K1z − a1)(a2 + z) βm2z(a1 + z)

αm1z(a2 + z) (K2z − a2)(a1 + z)

] [
x
y

]
=

[
0
0

]
, (3.1)

where z := 1 − x − y. The system has an interior equilibrium if and only if there is a pair of nonzero x and y such that (3.1)
holds. It follows that the determinant of coefficient matrix of (3.1) is equal to zero, i.e.,

Υ (z) := (αβm1m2 − K1K2)z2 + (a2K1 + a1K2)z − a1a2 = 0. (3.2)

Since the region intG requires 0 < z < 1, we need to discuss positive roots of the quadratic equation (3.2).
Case 1. αβm1m2 − K1K2 > 0. In this case the quadratic equation (3.2) surely has a positive root, which must be

z1 =
−(a2K1 + a1K2) +

√
∆

2(αβm1m2 − K1K2)
, (3.3)

because

∆ := (a2K1 − a1K2)
2
+ 4αβm1m2a1a2 > 0 (3.4)
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and −a1a2 < 0. Thus, the quadratic equation (3.2) has at most one zero in the interval (0, 1) and system (1.4) has at most
one interior equilibrium. Furthermore, with z1 given by (3.3) we can determine the coordinates x1, y1 of the corresponding
equilibrium. Actually, from the first equation in (3.1), where z is replaced by z1, we get

{(a2 + z1)(K1z1 − a1)}x1 = −{(a1 + z1)βm2z1}y1.

Let

ξ =
x1

(a1 + z)βm2z1
. (3.5)

It implies that

y1 = −(a2 + z1)(K1z1 − a1)ξ . (3.6)

Noting that z1 = 1 − x1 − y1, from (3.5) and (3.6), we obtain

1 − z1 = [(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)]ξ,

which implies that

ξ =
1 − z1

(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)
.

Thus, by (3.5) and (3.6), we uniquely obtain
x1 =

βm2z1(a1 + z1)(1 − z1)
(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)

,

y1 =
−(a2 + z1)(K1z1 − a1)(1 − z1)

(a1 + z1)βm2z1 − (a2 + z1)(K1z1 − a1)
.

(3.7)

Case 2. αβm1m2 − K1K2 ≤ 0. In this case we have K1K2 > 0, implying that a2K1 + a1K2, the coefficient of the first degree
term in Υ (z), does not vanish. Since Eq. (3.2) has no positive roots when a2K1 + a1K2 < 0, we only need to discuss in the
case that a2K1 + a1K2 > 0. When a2K1 + a1K2 > 0, we obviously have

K1 > 0, K2 > 0. (3.8)

In the circumstance that αβm1m2 − K1K2 = 0, Eq. (3.2) reduces to a linear equation and has a unique root z1 =

a1a2/(a2K1 + a1K2). It lies in (0, 1) if and only if a2K1 + a1K2 − a1a2 > 0. Such a z1 determines the coordinates x1, y1
by the same (3.7) as in the discussion in Case 1. In the other circumstance, i.e., αβm1m2 − K1K2 < 0, the quadratic equation
(3.2) has two positive roots

z1 =
−(a2K1 + a1K2) +

√
∆

2(αβm1m2 − K1K2)
, z2 =

−(a2K1 + a1K2) −
√

∆

2(αβm1m2 − K1K2)
,

where ∆ is defined in (3.4). Clearly, z1 < z2. We claim that system (1.4) has at most one interior equilibrium, the same
point E1 = (x1, y1) as in Case 1, where x1 and y1 are given in (3.7). It suffices to prove that the equilibrium E2 = (x2, y2),
determined by z2, locates outside the region intG. For an indirect proof, assume that x2 > 0, y2 > 0. It is clear that 0 < z2 :=

1 − (x2 + y2) < 1. Since x2, y2 have the same expressions as x1, y1 in (3.7) where z1 is replaced with z2 and the numerator
of x2, i.e., βm2z2(a1 + z2)(1 − z2), is positive, we see that the common denominator (a1 + z2)βm2z2 − (a2 + z2)(K1z2 − a1)
is also positive. It follows from the numerator of y2, i.e., −(a2 + z2)(K1z2 − a1)(1 − z2), that K1z2 − a1 < 0. It is equivalent
to say

−K1(a2K1 + a1K2) − 2a1(αβm1m2 − K1K2) > K1
√

∆.

Taking the square of both sides, we have

4a1αβm1m2K1(a2K1 − a1K2) + 4a21α
2β2m2

1m
2
2 > 4K 2

1 αβm1m2a1a2,

which implies that αβm1m2 − K1K2 > 0, a contradiction to the assumption that αβm1m2 − K1K2 < 0.
In summary, in all cases we considered above, system (1.4) has at most one equilibrium in the region intG. Now we

further prove that system (1.4) has at least one equilibrium in this open region when E0 is unstable. Construct a closed
curve Γ with line segments AB := {(x, y) : x + y = 1, 0 ≤ x, y ≤ 1}, BB0 := {(x, y) : y = 0, 0 < ϵ ≤ x ≤ 1},
B0A0 := {(x, y) : x + y = ϵ, 0 ≤ x, y ≤ ϵ} and A0A := {(x, y) : x = 0, 0 < ϵ ≤ y ≤ 1}. Restricted to AB, system (1.4)
reduces to the form dx/dt = −x, dy/dt = −y, implying that both x and y decrease and trajectories staring from AB all enter
G. Restricted to A0A, system (1.4) implies that dx/dt = βm2(1 − y)y/(a2 + 1 − y) > 0, i.e., x(t) increases, and therefore
trajectories staring from A0A all enterG. Similarly, trajectories staring from BB0 all enterG. Moreover, all trajectories starting
from B0A0 go away from E0 as ϵ is chosen sufficiently small when E0 is unstable. This proves that all trajectories starting
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from Γ enter the region surrounded by Γ . Therefore, the winding number of the vector field (1.4) along the curve Γ is equal
to 1. As indicated in [21, p. 313] and [22, Chpater 3], there is at least one equilibrium in the interior of the region bounded
by the curve Γ . As a consequence, system (1.4) has exactly one interior equilibrium E1 when E0 is unstable.

Furthermore, we claim that no equilibrium exists in intGwhen E0 is stable. In this case, by Theorem1,we have T0 < 0 and
D0 ≥ 0, which respectively implies that ( (1−α)m1

a1+1 −1)+(
(1−β)m2
a2+1 −1) < 0 and (

(1−α)m1
a1+1 −1)( (1−β)m2

a2+1 −1) ≥
αβm1m2

(a1+1)(a2+1) > 0.

It means that (1−α)m1
a1+1 < 1 and (1−β)m2

a2+1 < 1. Hence,

K1 < a1, K2 < a2, (3.9)
Υ (1) = αβm1m2 − K1K2 + a1K2 + a2K1 − a1a2 ≤ 0, (3.10)

where Υ is defined in (3.2). In the case that αβm1m2 − K1K2 > 0, the quadratic function Υ is convex and has no zeros in
(0, 1) by (3.10) and the fact

Υ (0) = −a1a2 < 0. (3.11)

In the case that αβm1m2 − K1K2 = 0 the function Υ , linking two non-positive Υ (0) and Υ (1) linearly, also has no zeros in
(0, 1). In the case that αβm1m2 − K1K2 < 0, the quadratic function Υ is concave. If it has a positive zero then, as discussed
in the above Case 2, (3.8) holds, i.e., K1 > 0 and K2 > 0. By (3.9), 0 < K1K2 < a1a2. It follows that

σ :=
−a1a2

αβm1m2 − K1K2
> 1. (3.12)

If Υ (1) < 0 then, by (3.11) and (3.4), the function Υ has either no or two zeros in (0, 1), but (3.12), where we note that σ
is equal to the product of two zeros, implies that at least one zero of Υ lies outside [−1, 1]. This proves that Υ has no zeros
in (0, 1). If Υ (1) = 0 then one zero of Υ is z1 = 1 and the other zero is z2 = σ > 1 by (3.12). It also implies that Υ has no
zeros in (0, 1). Consequently, system (1.4) has no interior equilibria.

Summarizing the above discussion we see that system (1.4) has exactly one interior equilibrium if and only if E0 is
unstable. �

The proof of Theorem 2 also gives a computable condition for the existence of the interior equilibrium, i.e., system (1.4)
has exactly one interior equilibrium if and only if

0 < z1 < 1, K1z1 − a1 < 0, (3.13)

where z1, K1, K2 are defined in Theorem 2.

4. Properties of the interior equilibrium

By Theorem 2, we only need to discuss the unique interior equilibrium E1 in the region intG when the boundary
equilibrium E0 is unstable.

Theorem 3. E1 is asymptotically stable if it exists. Moreover, E1 is a stable node if

δ1 := m2z21(a1 + z1)4(a2 + z1)2β2
+ c1β + c0 ≥ 0, (4.1)

where

c1 = 2(a1 + z1)2(a2 + z1)m2z1[m1z1(1 + α)(a1 + z1)(a2 + z1)2 − z1(a1 + z1)2(a2 + z1)
−m1a1x1(a2 + z1)2 − 2m1a2y1z1(a1 + z1)(a2 + z1) + m2a2y1(a1 + z1)2],

c2 = (1 − α)2m1z21(a1 + z1)2(a2 + z1)4 − 2(1 − α)m1m2z21(a1 + z1)3(a2 + z1)3 + m2z21(a1 + z1)4(a2 + z1)2

− 2(1 − α)m2
1a1x1z1(a1 + z1)(a2 + z1)2 + 2(1 − 2α)m1m2a1x1z1(a1 + z1)2(a2 + z1)3

+ 2(1 − α)m1m2a2y1z1(a1 + z1)3(a2 + z1)2 − 2m2
2a2y1z1(a1 + z1)4(a2 + z1) + m2

1a
2
1x

2
1(a2 + z1)4

+ 2m1m2a1a2x1x2(a1 + z1)2(a2 + z1)2 + m2
2a

2
2y

2
1(a1 + z1)4

and x1, y1, z1 are defined by parameters α, β, a1, a2,m1,m2 as in (3.7) and (3.3).

Proof. Qualitative properties of E1 are determined by the signs of the trace T1, the determinant D1 and the discriminant ∆1
of the Jacobian matrix of system (1.4) at E1. Simple computation shows that

T1 =
(K1z1 − a1)(a1 + z1) − m1a1x1

(a1 + z1)2
+

(K2z1 − a2)(a2 + z1) − m2a2y1
(a2 + z1)2

,

D1 = 1 −
(1 − α)m1z1

a1 + z1
−

(1 − β)m2z1
a2 + z1

+
(1 − α − β)m1m2z21
(a1 + z1)(a2 + z1)

+
m1a1x1

(a1 + z1)2
+

m2a2y1
(a2 + z1)2

−
(1 − α − β)m1m2a2z1y1

(a1 + z1)(a2 + z1)2
−

(1 − α − β)m1m2a1z1x1
(a1 + z1)2(a2 + z1)

,
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∆1 =
(1 − α)2m1z21

(a1 + z1)2
+

2m1m2z21(α(1 + β) − (1 − β))

(a1 + z1)(a2 + z1)
+

(1 − β)2m2z21
(a2 + z1)2

−
2(1 − α)m2

1a1x1z1
(a1 + z1)3

+
2m1m2a1x1z1(1 − 2α − β)

(a1 + z1)2(a2 + z1)
+

2m1m2a2y1z1(1 − α − 2β)

(a1 + z1)(a2 + z1)2
−

2(1 − β)m2
2a2y1z1

(a2 + z1)3

+
m2

1a
2
1x

2
1

(a1 + z1)4
+

2m1m2a1a2x1x2
(a1 + z1)2(a2 + z1)2

+
m2

2a
2
2y

2
1

(a2 + z1)4
.

From the first equation in (3.1) we see that K2z1 − a2 < −2m1z1(a2 + z1)x1/{(a1 + z1)y1} < 0 since a1, a2,m1, K2, x1, y1, z1
are all positive. Similarly K2z1 − a2 < 0 by the second equation in (3.1). It follows that T1 < 0. We further claim that

D1 ≥ 0.

In fact, if D1 < 0, i.e., E1 is a saddle, then the index of E1 is equal to−1. Consider the closed curve Γ composed in the proof of
Theorem 2. The fact that all trajectories starting from Γ enter the region surrounded by Γ implies that the winding number
of the vector field (1.4) along the curve Γ is equal to 1. This makes a contradiction to the Theorem on the sum of indices
([21, p. 313], [22, Chpater 3]) because of the uniqueness of the interior equilibrium (given in Theorem 2).

In what follows we discuss the case D1 > 0 and the case D1 = 0 separately.
In the case D1 > 0, E1 is either a stable node or a stable focus because T1 < 0. Furthermore, E1 is a node if the inequality

∆1 ≥ 0 holds. This inequality can be simplified as the condition (4.1) because a1 + z1 > 0 and a2 + z1 > 0.
In the case D1 = 0, the equilibrium E1 is degenerate. Clearly, ∆1 = T 2

1 > 0 in this case, i.e., condition (4.1) is satisfied
naturally. Since T1 < 0, the two eigenvalues at E1 are λ1 = 0 and λ2 = T1 < 0. This enables us to diagonalize the linear part
of the cubic system (2.3) so that the system is transformed into the form

dx
dt

= G2(x, y) + G3(x, y),

dy
dt

= −y + H2(x, y) + H3(x, y),
(4.2)

where Gj,Hj are homogeneous polynomials of degree j (j = 2, 3) and the interior equilibrium E1 is translated to the origin.
By Theorem 7.1 in [22, Chapter 2], the origin of (4.2) is either a stable node or a saddle or a saddle–node. However, by
Bendixson’s formula (see [23], [22, Chapter 3])

J = 1 +
e − h
2

,

where J is the index of the equilibrium, h is the number of hyperbolic sectors near the equilibrium and e is the number of
elliptic sectors, we get either J = −1 when E1 is a saddle or J = 0 when E1 is a saddle–node, both of which contradict to the
Theorem on the sum of indices ([21, p.313], [22, Chapter 3]) because the winding number of the vector field (1.4) along the
curve Γ is equal to 1, as proved in the paragraph above (3.10). This implies that E1 is a stable node. �

5. Bifurcations

It is indicated in Sections 3 and 4 that system (1.4) has either exact one equilibrium in G when D0 > 0 and T0 < 0 or
exact two equilibria in G in the other case. The following theorem displays the mechanism for the new one to arise. Let
T01 := T0(a1 + 1)(a2 + 1), D01 := D0(a1 + 1)2(a2 + 1)2, and

µ0 :=

[
3(1 − α)m1(a2 + 1) − 4(a1 + 1)(a2 + 1) + (1 − β)m2(a1 + 1) −


T 2
01 − 4D01

]
×

[
2(a1 + a2 + 2) − (1 − β)m2(3a1 + 5) − 3(1 − α)m1(a2 + 1) + 4(a1 + 1)(a2 + 1) +


T 2
01 − 4D01

]
+ 4αβm1m2(a1 + 2)(a2 + 1) − 2[a1 + (a2 + 2)(1 − (1 − α)m1)] [3(1 − α)m1(a2 + 1)

+ (1 − β)m2(a2 + 1) − 4(a1 + 1)(a2 + 1) +


T 2
01 − 4D01

]
,

ν10 := (3 − α)m1(a2 + 1) − 4(1 + a1)(1 + a2) + (1 − β)m2(a1 + 1) +


T 2
01 − 4D01

where T0 and D0 are defined as in Theorem 1.

Theorem 4. If ν10µ0 ≠ 0, system (1.4) experiences a transcritical bifurcation at E0 whenD0 = 0. More concretely, for sufficiently
small D0, a stable equilibrium appears in the first quadrant when ν10µ0D0 > 0 and an unstable equilibrium appears in the third
quadrant when ν10µ0D0 < 0.
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Proof. As shown in Theorem 1, E0 is a saddle–node as D0 = 0. Applying the transformation
u = −αm1(a2 + 1)x +


[(1 − α)m1 − a1 − 1](a2 + 1) −

1
2


T01 +


T 2
01 − 4D01


y,

v = −αm1(a2 + 1)x +


[(1 − α)m1 − a1 − 1](a2 + 1) −

1
2


T01 −


T 2
01 − 4D01


y

(5.1)

to diagonalize the linear part of system of (2.3), we change system (2.3) into the form

[
u′

v′

]
=


1
2


T01 +


T 2
01 − 4D01


0

0
1
2


T01 −


T 2
01 − 4D01


 [

u
v

]
+

[
q1(u, v)
q2(u, v)

]
, (5.2)

where q1(u, v) and q2(u, v) are composed of those terms of degree 2 or 3. With a rescaling dτ = (T01 −


T 2
01 − 4D01)ds,

the system can be reduced to the following suspended system of (5.2)
u′

= 2D01u +


T01 −


T 2
01 − 4D01


q1(u, v),

v′
=

1
2


T01 −


T 2
01 − 4D01

2

v +


T01 −


T 2
01 − 4D01


q2(u, v),

D′

01 = 0.

(5.3)

By the centermanifold theory (see [24]), asD0 = 0 system (5.3) has a two-dimensional centermanifoldW c
: v = W (u,D01)

near E0. In order to obtain the second-order approximation of functionW , let

W (u,D01) := ϕ(u,D01) + O(|u,D01|
3), (5.4)

where ϕ(u,D01) := ν1u2
+ ν2uv + ν3v

2, and let

(N ϕ)(u,D01) := ϕ′(u,D01)


2D01u +


T01 −


T 2
01 − 4D01


q1(u, ϕ(u,D01))


−

1
2


T01 −


T 2
01 − 4D01

2

ϕ(u,D01) −


T01 −


T 2
01 − 4D01


q2(u, ϕ(u,D01)).

By Theorem 3 in [24, Chapter 1], from the requirement (N ϕ)(u,D01) = O(|u,D01|
3), we can solve ν2 = ν3 = 0 and

ν1 =


ν10

4αm1(a2 + 1)(T 2
01 − 4D01)

 [
3(1 − α)m1(a2 + 1) − 4(a1 + 1)(a2 + 1) + (1 − β)m2(a1 + 1)

+


T 2
01 − 4D01

] [
2(a1 + a2 + 2) − (1 − β)m2(3a1 + 5) − 3(1 − α)m1(a2 + 1) + 4(a1 + 1)(a2 + 1)

+


T 2
01 − 4D01

]
+ 4αβm1m2(a1 + 2)(a2 + 1) − 2[a1 + (a2 + 2)(1 − (1 − α)m1)]

[
3(1 − α)m1(a2 + 1)

+ (1 − β)m2(a2 + 1) − 4(a1 + 1)(a2 + 1) +


T 2
01 − 4D01

]
.

Thus, we can substitute (5.4) in (5.3) and obtain the equation

u′
= 2D01u + µu2

+ µ1u3
+ O(|u,D01|)

4, (5.5)

the restricted system on W c , where

µ :=
ν10µ0

4αm1(a2 + 1)(T 2
01 − 4D01)

, (5.6)

µ0 is defined in the beginning of this section and µ1 is expressed in Appendix A. Clearly, the expression (5.5) shows that
a transcritical bifurcation [25, p. 201] occurs at E0 as D01 varies through the bifurcation value D01 = 0 when µ ≠ 0. Since
D01 has the same zeros with D0, the transcritical bifurcation occurs at E0 as D0 varies through the bifurcation value D0 = 0.
More concretely, when ν10µ0D0 < 0, the origin O is stable and the other equilibrium A−1 appears on the negative u-axis but
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Fig. 1. Phase portraits in cases (S1)–(S3).

is unstable; when D0 = 0, the two equilibria coincide at O; when ν10µ0D0 > 0, the origin O remains an equilibrium but is
unstable while a stable equilibrium A1 arises on the positive u-axis.

Finally, the transformation (5.1) gives the correspondence between A1, A−1 and the equilibria B1, B−1 of system (2.3),
which lie in the first quadrant and the third one, respectively. Note that the third quadrant is of no practical interests. �

This proof shows that equilibrium B1 (actually the same as the interior equilibrium E1) arises from a transcritical
bifurcation as D01 varies through the bifurcation value D0 = 0. This explains how E1 is produced. We ignore B−1 since it
does not appear in the first quadrant.

In Theorem 4, the required nondegenerate condition ν10µ0 ≠ 0 appears in the expression (5.6) of µ. If this condition is
violated, i.e., ν10µ0 = 0, system (5.5) turns into the form

u′
= 2D01u + µ1u3

+ O(|u,D01|)
4 (5.7)

and the coefficient µ1 becomes a decisive quantity. Unfortunately, µ1 = 0. If µ1 ≠ 0, a pitchfork bifurcation [25, p. 201]
occurs at E0 as D01 passing through the bifurcation value D01 = 0. It means that the origin is the unique equilibrium as
D01µ1 > 0, implying as known in Section 3 that the function Υ defined in (3.2) has no real zeros, i.e.,

αβm1m2 > K1K2, ∆ = (a2K1 − a1K2)
2
+ 4αβm1m2a1a2 < 0. (5.8)

This is an obvious contradiction because all parameters are positive. For the same reason we assure that the first nonzero
coefficient in the expansion (5.7) appears in an even term. The corresponding bifurcations can be discussed similarly to the
proof of Theorem 4.

Note that no bifurcations occur at the interior equilibrium E1, although its degeneracy for D1 = 0 is shown in the proof
of Theorem 3. In fact, when D1 = 0 the asymptotically stable equilibrium E1 does not coincide with E0; otherwise, their
coincidence gives a saddle–node, which contradicts to the stability of E1 as shown in Theorem 4. Moreover, ignoring E0,
there also does not occur a bifurcation at E1, which lies in the interior of G for D1 ≥ 0; otherwise, the only possibility is the
pitchfork bifurcation as shown in Theorem 4, which produces three equilibria in the first quadrant as D1 > 0 and makes a
contradiction to the uniqueness of interior equilibria (given in Theorem 2).

6. Numerical simulations and remarks

Wesimulate orbits of the system (1.4) to demonstrate our Theorems 2 and 3.We consider the following cases (S1)–(S3):

Parameter values (m1, a1, α),
(m2, a2, β)

Equilibrium Ei Eigenvalues λ1, λ2 of J(Ei) Properties

(S1) (5, 0.7, 0.1), (1, 0.4, 0.1)
E0 = (0, 0) λ1 = 1.657, λ2 = −0.368 Saddle
E1 = (0.692, 0.109) λ1 = −3.117, λ2 = −0.712 Stable node

(S2) (3.1, 0.7, 0.2), (2.4, 0.4, 0.1)
E0 = (0, 0) λ1 = 0.754, λ2 = 0.247 Unstable node
E1 = (0.200, 0.499) λ1 = −0.327, λ2 = −1.418 Stable node

(S3) (0.2, 0.4, 0.2), (0.3, 1, 0.1) E0 = (0, 0) λ1 = −0.852, λ2 = −0.899 Stable node

The phase portraits in the cases (S1)–(S3) are plotted separately in Fig. 1, showing that the wild-type organism X and the
mutant Y coexist in both (S1) and (S2), E0 is a saddle in case (S1) but an unstable node in case (S2), and both X and Y finally
go to extinction in case (S3) while E0 is a stable node.
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Fig. 3. The graph of δ1(β) when α = 0.1 (left), 0.4 (middle), and 0.9 (right), separately.

When a1 > 0, a2 > 0 are small enough and m1 > 0,m2 > 0 are large enough, we see that D0 < 0 as α is small and
D0 > 0 as α is large and β is small, implying that the condition D0 = 0 in Theorems 1 and 4 is reasonable. However, it is still
difficult to prove either D1 ≠ 0 or D1 = 0 for some parameters. Fixing a1 = 0.7, a2 = 0.4,m1 = 5 andm2 = 1 for instance,
consider the function

D1(β) := 1 −
5(1 − α)z1
0.7 + z1

−
(1 − β)z1
0.4 + z1

+
5(1 − α − β)z21

(0.7 + z1)(0.4 + z1)
+

3.5x1
(0.7 + z1)2

+
0.4y1

(0.4 + z1)2

−
2(1 − α − β)z1y1

(0.7 + z1)(0.4 + z1)2
−

3.5(1 − α − β)z1x1
(0.7 + z1)2(0.4 + z1)

,

parametrized by α, where x1, y1, z1 are shown in Appendix B. It is shown in Fig. 2 that D1(β) has no zeros when α = 0.1,
0.4, 0.9. It seems natural to assert that, in contrast to the statement of Theorem 3, E1 is a stable focus if δ1 < 0, but it is hard
to find a choice of parameters for the simulation of focus at E1. It suggests a conjecture that E1 is a node.

Furthermore, with the same parameters a1 = 0.7, a2 = 0.4,m1 = 5 and m2 = 1, we calculate the function
δ1(β) = ς2β

2
+ ς1β + ς0, where ς0, ς1, ς2 are shown in Appendix B. Its graphs, plotted in Fig. 3 for the three choices

α = 0.1, 0.4 and 0.9, show that δ1 has no zeros in (0, 1). However, it is still difficult to rule out the possibility of the
inequality δ1 < 0.

We have studied the dynamics of an allelopathy model with a single mutant. It was shown that the model has a unique
stable interior equilibrium under certain conditions, which differs from the typical dynamics of chemostat models. If x and
y denote the populations of the wild-type and resistant bacteria, respectively, the model and results may be used to discuss
population dynamics of antibiotic-resistant bacteria [26,27]. It will be interesting to study the dynamics of the generalmodel
(11) in [8] with multiple mutants. We leave this for future consideration.
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Appendix A. Expressions of U(u, v),V (u, v)

U(u, v) := a1αm1(a2 + 1)2u2
+ {−αm1(a2 + 1)[(1 − (1 − α)m1)(a2 + 2) + a1 − βm2(a1 + 2)]

+ [(1 − α)m1 − 1 − a1](a2 + 1)[−αm1(a2 + 2) + (1 − (1 − β)m2)(a1 + 2) + a2]}uv
+ (a2 + 1){αβm1m2(a1 + 2) + ((1 − α)m1 − 1 − a1)[(1 − (1 − β)m2)(a1 + 2) + a2]}v2

− αa1m1(a2 + 1)u3
+ (a2 + 1){−αm1(−2 + 2(1 − α)m1 + βm2)

+ ((1 − α)m1 − 1 − a1)[(1 − β)m2 − 1 + 2αm1]}u2v + (a2 + 1){αβm1m2(a1 + 2)
+ ((1 − α)m1 − 1 − a1)[(1 − (1 − β)m2)(a1 + 2) + a2]}uv2

+ {−αm1(a2 + 1)βm2 + ((1 − α)m1 − 1 − a1)(a2 + 1)((1 − β)m2 − 1)}v3,

V (u, v) := αm1{−(a2 + 1)[(1 − (1 − α)m1)(a2 + 2) + a1] + [(1 − β)m2 − a2 − 1](a1 + 1)(a2 + 2)}u2

+ {−αm1(a2 + 1)[(1 − (1 − α)m1)(a2 + 2) + a1 − β(a1 + 2)]
− [(1 − β)m2 − a2 − 1](a1 + 1)(−αm1(a2 + 2) + (1 − (1 − β)m2)(a1 + 2) + a2)}uv
+ {αβm1m2(a2 + 1)(a1 + 2) − [(1 − β)m2 − a2 − 1](a1 + 1)[(1 − (1 − β)m2)(a1 + 2) + a2]}v2

+ {−αm1(a2 + 1)(−1 + (1 − α)m1) − [(1 − β)m2 − a2 − 1](a1 + 1)αm1}u3

+ {−αm1(a2 + 1)(−2 + 2(1 − α)m1 + βm2) − [(1 − β)m2 − a2 − 1](a1 + 1)[(1 − β)m2 − 1
+ 2αm1]}u2v + {−αm1(a2 + 1)(−1 + (1 − α)m1 + 2βm2)

− [(1 − β)m2 − a2 − 1](a1 + 1)(2(1 − β)m2 − 2 + αm1)}uv2

+ {−αm1(a2 + 1)βm2 − [(1 − β)m2 − a2 − 1](a1 + 1)[(1 − β)m2 − 1]}v3

µ1 =
1

αm1(a2 + 1)2[((1 − α)m1(a2 + 1) − (1 − β)m2(a1 + 1))2 + 4αβm1m2(a1 + 1)(a2 + 1)]

×


((1 − β)m2 − a2 − 1)(a1 + 1)
2((1 − α)m1 − a1 − 1 − αm1)


− 2α2βm2

1m2(a1 + 2)(a2 + 1)2

+
1
2
(a1 + (a2 + 2)(1 − (1 − α)m1))(3(1 − α)m1(a2 + 1)

+ (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) − Θ)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)
− 4(1 + a1)(1 + a2) + Θ) + αm1(a2 + 1)((1 − (1 − α)m1)(a2 + 2) + a1
− βm2(a1 + 2))(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1) + 4(a1 + 1)(a2 + 1))

−
1
2
(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) − Θ)

×

[
−2(a2 + (1 − (1 − β)m2)(a1 + 2))αm1(a2 + 1) +

1
2
(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

− 4(1 + a1)(1 + a2) − Θ)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) + Θ)

−
1
2
((1 − (1 − β)m2)(a1 + 2) + a2 − αm1(a2 + 2))(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

+ 4(a1 + 1)(a2 + 1))
]

+
1

αm1Θ

[
1
8
((1 − α)m1 − 1)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

− 4(1 + a1)(1 + a2) + Θ)3 +
1
4
αm1(a2 + 1)(βm2 − 2 + 2(1 − α)m1)(3(1 − α)m1(a2 + 1)

+ (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) + Θ)2

+
1
2
α2m2

1(a2 + 1)2(2βm2 − 1 + (1 − α)m1)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

− 4(1 + a1)(1 + a2) + Θ) + α3βm3
1m2(a2 + 1)3 −

1
2(a2 + 1)

(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

− 4(1 + a1)(1 + a2) − Θ)


1
8
(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) + Θ)3

+
1
4
(2αm1 − 1 + (1 − β)m2)(a2 + 1)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1) − 4(1 + a1)(1 + a2) + Θ)2

+
1
2
αm1(αm1 − 2 + 2(1 − β)m2)(3(1 − α)m1(a2 + 1) + (1 − β)m2(a1 + 1)

− 4(1 + a1)(1 + a2) + Θ)(a2 + 1)2 + ((1 − β)m2 − 1)α2m2
1(a2 + 1)3

]
,

where Θ :=


((1 − α)m1(a2 + 1) − (1 − β)m2(a1 + 1))2 + 4αβm1m2(a1 + 1)(a2 + 1).
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Appendix B. Expressions of x1, y1, z1, ς0, ς1, ς2

z1 :=
1
β

(−0.2 + 0.25α + 0.0875β + 0.0125ϖ),

x1 := −0.00625(20α − 73β + ϖ − 16)(20α + 63β + ϖ − 16)(20α + 7β + ϖ − 16)/(64ϖ − 1024
+ 3840α − 160αϖ + 832β − 80βϖ − 4800α2

+ 100α2ϖ − 3760αβ + 135αβϖ + 35β2ϖ

+ 2000α3
+ 3400α2β + 1645αβ2

+ 245β3),

y1 :=
1
β

(25.6ϖ − 409.6 + 2048α − 96αϖ − 793.6β + 38.4βϖ − 3840α2
+ 120α2ϖ + 2080αβ

− 68αβϖ + 755.2β2
− 64β2ϖ + 3200α3

− 50α3ϖ − 1480α2β + 25α2βϖ − 2798αβ2

+ 94.875αβ2ϖ + 448β3
− 1000α4

+ 150α3β + 2072.5α2β2

+ 664.125αβ3)/(64ϖ − 1024 + 3840α − 160αϖ + 832β − 80βϖ − 4800α2
+ 100α2ϖ

− 3760αβ + 135αβϖ + 35β2ϖ + 2000α3
+ 3400α2β + 1645αβ2

+ 245β3),

ς0 = 25z81α
2
− 40z81α + 16z81 + 75z71α

2
− 117z71α + 45.6z71 + 21z61x1α − 28z61x1 + 3.2z61y1

− 4z61y1α + 92.25z61α
2
− 139.8z61α + 52.89z61 − 62.3z51x1 + 44.1z51x1α + 9.04z51y1

− 11.6z51y1α + 59.6z51α
2
− 87.41z51α + 31.982z51 + 12.25z41x

2
1 + 2.8z41x1y1 − 54.25z41x1

+ 35.7z41x1α + 0.16z41y
2
1 + 9.992z41y1 − 13.24z41y1α + 21.36z41α

2
− 30.204z41α

+ 10.6521z41 + 19.6z31x
2
1 − 23.212z31x1 + 6.16z31x1y1 + 13.944z31x1α + 0.448z31y

2
1

+ 5.3816z31y1 − 7.42z31y1α + 4.032z31α
2
− 5.4768z31α + 1.8564z31 + 0.132496z21 + 0.3136z21α

2

− 4.8944z21x1 + 11.76z21x
2
1 − 0.40768z21α + 4.956z21x1y1 + 2.6208z21x1α + 0.4704z21y

2
1 + 1.40728z21y1

− 2.0384z21y1α + 3.136z1x21 + 0.18816z1x1α − 0.40768z1x1 + 0.142688z1y1
+ 1.7248z1x1y1 − 0.21952z1y1α + 0.21952z1y21 + 0.3136x21 + 0.219520x1y1 + 0.038416y21,

ς1 := 10z81α + 8z81 + 33z71α + 25.8z71 + 44.7z61α − 7z61x1 − 7.2z61y1 + 34.02z61 − 18.2z51x1 − 20.64z51y1
+ 31.79z51α + 23.446z51 + 12.516z41α − 18.55z41x1 − 23.232z41y1 + 8.8998z41 + 2.5872z31α
+ 1.764z31 − 9.268z31x1 − 12.8016z31y1 − 2.2736z21x1
+ 0.21952z21α − 3.44568z21y1 + 0.142688z21 − 0.21952x1z1 − 0.362208y1z1,

ς2 := z81 + 3.6z71 + 5.34z61 + 4.172z51 + 1.8081z41 + 0.41160z31 + 0.038416z21 ,

where ϖ :=

256 − 640α + 224β + 400α2 + 280αβ + 49β2.
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