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A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and three dis-
tributed delays is investigated, in which the first distributed delay describes the intracellular latency for the
virus-to-cell infection, the second delay represents the intracellular latency for the cell-to-cell infection, and

gﬂs}éo the third delay describes the time period that viruses penetrated into cells and infected cells release new
34K25 virions. The global stability analysis of the model is carried out in terms of the basic reproduction number
92C50 Ro. If Rp < 1, the infection-free (semi-trivial) equilibrium is the unique equilibrium and is globally stable; if
92D25 Ro > 1, the chronic infection (positive) equilibrium exists and is globally stable under certain assumptions.
Keywords: Examples and numerical simulations for several special cases are presented, including various within-host

dynamics models with discrete or distributed delays that have been well-studied in the literature. It is found
that the global stability of the chronic infection equilibrium might change in some special cases when the as-
sumptions do not hold. The results show that the model can be applied to describe the within-host dynamics
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of HBV, HIV, or HTLV-1 infection.
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1. Introduction

When a virus enters the human body, it targets cells with specific
receptors. The viral capsid protein binds to the specific receptors on
the host cellular surface and injects its core. For example, human im-
munodeficiency virus (HIV) infects vital cells in the human immune
system such as helper T cells (specifically CD4+ T-cells). Its surface
protein, gp120, specifically interacts with the chemokine receptors
on the surface of CD4+ T-cells. Once bound to the target cell, the HIV
RNA and various enzymes are injected into the cell. The hepatitis B
virus (HBV) gains entry into the cell by binding to the surface recep-
tor NTCP on the surface. Because HBV multiplies via RNA made by a
host enzyme, the viral genomic DNA is transferred to the cell nucleus
by host proteins called chaperones. After an intracellular period as-
sociated with transcription, integration, and the production of capsid
proteins, the infected cell releases hundreds of virions that can infect
other cells.

Mathematical models have been developed to describe the
within-host dynamics of various viral infections, mostly focusing on

* Research was partially supported by Zhejiang Provincial Natural Science Founda-
tion (No. LQ14A010004), NSFC (No.11201321), and NSF (DMS-1412454).
* Corresponding author: Tel.: 305 2842312; fax: 305 284 2848.
E-mail address: ruan@math.miami.edu (S. Ruan).

http://dx.doi.org/10.1016/j.mbs.2015.05.001
0025-5564/© 2015 Elsevier Inc. All rights reserved.

virus-to-cell spread in the bloodstream, such as human immunodefi-
ciency virus (HIV) (Kirschner and Webb [23], Miiller et al. [30], Nowak
and Bangham [34], Nowak and May [35], Perelson et al. [37], Perelson
and Nelson [38], Wodarz et al. [48]), hepatitis C virus (HCV) (Dixit
etal. [12], Neumann et al. [33], Dahari et al. [8], DebRoy et al. [9]), hu-
man T-cell lymphotropic virus [ (HTLV-1) (Stilianakis and Seydel [45],
Wodarz et al. [49]), etc. The basic within-host viral infection model
consists of three components: uninfected target cells, infected target
cells and free virus (Bonhoeffer et al. [5], Nowak and May [35]).

On the other hand, great attention has also been paid to the study
of in vitro cell-to-cell spread of virus since many features are easier to
determine experimentally in tissue cultures than in the bloodstream.
For example, HIV is thought to be active in areas such as the lymph
nodes and the brain where cell-to-cell spread would be a much more
important mode of infection than virus-to-cell spread (Dimitrov et al.
[11], Sturdevant et al. [47]). The data of Gummuluru et al. [ 18] demon-
strate that cell-to-cell spread of HIV is the predominant route of vi-
ral spread since viral replication in a system with rapid cell turnover
kinetics depends on cell-to-cell transfer of virus. Sigal et al. [43] ex-
amined replication from cell-to-cell spread of HIV in the presence of
clinical drug concentrations using a stochastic infection model and
found that replication is intermittent without substantial accumu-
lation of mutations. Also, Bangham [2] reported that HTLV-I infec-
tion is achieved primarily through cell-to-cell contact. Cell-to-cell
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spread not only facilitates rapid viral dissemination but may also pro-
mote immune evasion and influence disease (Sattentau [41]). Based
on these observations, researchers have constructed within-host vi-
ral infection models for the dynamics of cell-to-cell transmission of
HIV (Culshaw et al. [7]).

Upon infection with viruses, there is a short intracellular “eclipse
phase”, during which the cell is infected but has not yet begun pro-
ducing virus. For HIV infection, Spouge et al. [44] pointed out that
there are two methods to model this eclipse phase, by a time de-
lay or by an explicit class of latently infected cells, but did not con-
sider it in their models. Perelson et al. [37] studied a system with an
explicit class of latently infected cells. Herz et al. [21] assumed that
cells become productively infected T time units after initial infection
and found that including an intracellular delay did change the esti-
mates of the viral clearance rate but did not change the productively
infected T cell loss rate. Culshaw and Ruan [6] showed that such an
intracellular delay did not change the stability of the infected steady
state for clinically reported parameter values. Mittler et al. [29] as-
sumed that the intracellular delay was continuous and varied accord-
ing to a gamma distribution and observed dramatic changes in the
estimates of viral clearance. See also Banks et al. [3], Dixit et al. [13],
Grossman et al. [15-17], Lloyd [28], Nelson et al. [31,32], Lai and Zou
[25], Li and Shu [26], Pawelek et al. [36], Shu et al. [42], Wang et al.
[46], and Zhu and Zou [50] for HIV infection model with delay; Katri
and Ruan [22] for HTLV-1 infection models with delay; and Eiken-
berry et al. [14] for HBV infection models with delay.

Culshaw et al. [7] proposed a two-dimensional model of cell-to-
cell spread of HIV in tissue cultures, in which the intracellular in-
cubation period is modeled by a gamma distribution, and found out
that, differing from the cell-to-free virus spread models, the cell-to-
cell spread models can produce infective oscillations in typical tissue
culture parameter regimes and the latently infected cells are instru-
mental in sustaining the infection.

To have a better and complete understanding of the within-
host infection dynamics inside the whole body, it is necessary to
take both virus-to-cell and cell-to-cell transmissions into consid-
eration in modeling viral infections. In fact, recently Lai and Zou
[25] proposed a delay differential equations model to include both
infection modes of viral infection and spread, in which infection
ages via viruses and infected cells are described by two distributed
delays. They observed that the basic reproduction number of their
model might be underevaluated if either cell-to-cell spread or
virus-to-cell infection is neglected. Pourbashash et al. [39] used
ordinary differential equations to model the two mechanisms
of viral infection and conducted the local and global stability
analysis of the model. In general, there are very few studies con-
sidering both virus-to-cell and cell-to-cell transmissions on viral
infections.

In this paper we consider a within-host viral infection model with
both virus-to-cell and cell-to-cell transmissions and three distributed
delays, in which the first distributed delay describes the intracellular
latency for the virus-to-cell infection (Mittler et al. [29]), the second
delay represents the intracellular latency for the cell-to-cell infection
(Culshaw et al. [7]), and the third delay describes the time period that
viruses penetrated into cells and infected cells release new virions
(Nelson and Perelson [32]). The mathematical model is constructed
in Section 2. In Section 3, preliminaries are introduced, including the
positivity and boundedness of solutions, as well as the existence of an
infection-free equilibrium and a chronic infection equilibrium. The
global stability of equilibria is obtained in Section 4. Finally, exam-
ples and numerical simulations for several special cases of the main
model are presented, including various within-host dynamics mod-
els with discrete or distributed delays that have been well-studied
in the literature. Besides the stability of equilibria under some
conditions, it is also shown that periodic oscillations occur via Hopf
bifurcations.
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Fig. 1. Transfer diagram of the within-host viral infection.

2. Mathematical model

The compartmental model includes the concentrations of healthy
target cells T(t) which are susceptible to infection, infected cells T*(t)
that produces viruses, and viruses V(t). As assumed in De Leenheer
and Smith [10], if there is no infection in the healthy target cells, the
dynamics of T satisfy the equation
dT(t)

——= =n(T(t)), 21

G =) (21)
where n(T) is a function describing the natural change (including both
production and turnover) of healthy target cells. Furthermore, the
function n(T) is assumed to satisfy the following properties:

(H;) n(T) is continuously differentiable and there exists T > 0 such
that n(T% =0 and n(T)(T — T%) < 0, VT # TO;
(Hy) n'(T) <0, VT ¢ [0, T°].

There are two typical functions for n(T): n(T) =h—drT and
n(T)=h—-drT+1rT(1 - %) with h, dr,r, K > 0, see Culshaw and Ruan
[6], Li and Shu [26], Nowak and Bangham [34], Perelson and Nelson
[38], Shu et al. [42], Wang et al. [46], for example.

Let B be the virus-to-cell infection rate, 8, be the cell-to-cell
infection rate, ;1 and c be death rates of actively infected cells
and viruses, respectively. e~#1%1 is the survival rate of cells that
are infected by viruses at time t and become activated infected s,
time later with a probability distribution fi(s;). Then [5° 81T (t —
sV (t —s1) f1(sy)e H151dsy describes the newly activated infected
target cells which are infected by free viruses s; time ago (Mittler
et al. [29]). Similarly, f5° BoT(t — s2)T*(t — s) fo(s2)eH1%2ds, repre-
sents the newly activated infected target cells which are infected by
infected cells s, time ago (Culshaw et al. [7]). Let s3 be the random
variable that is the time between viral RNA transcription and viral
release and maturation with a probability distribution f3(s3). The in-
tegral [~ e~#2%3 f3(s3)T*(t — s3)ds3 describes the mature viral parti-
cles produced at time t (Nelson and Perelson [32]). b is the average
number of viruses that bud out from an infected cell, and e=#25 is
the survival rates of cells that start budding from activated infected
cells at time t and become free mature viruses s time later. Note that
S1, S, and s3 are all integration variables, without loss of generality,
they all will be represented by s.

A transfer diagram for the vivo infection of viruses is shown in
Fig. 1. The model is given as follows:

O _ ey - BTV - fTOT @),
dT;t(t) - /o Y BIT(E— SV (E —5) fi (s)e-M5ds

+ fo T BT (= )T (t - 5) fo(s)e5ds — 1 T (0),
% —b /0 " o3 £ ()T (¢ — 5)ds — cV (¢). (2.2)

fi(s): 10, 00) — [0, o) are probability distributions with compact sup-
port, fi(s) = 0, and [~ fi(s)ds =1, i=1,2,3. The distribution was
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chosen as a gamma distribution in Mittler et al. [29]:
Sn—]
—
(n—1)!b"
and the model was converted into a set of ordinary differential equa-
tions. The distributions can also be delta functions as in Zhu and Zou

[50], in such a case the model reduces to differential equations with
discrete delays.

—s/b, (2.3)

3. Preliminaries

Define the Banach space of fading memory type (see Atkinson and
Haddock [1], Hale and Kato [19], Kuang [24])

C= {q& € C((—o0, 0], R) |¢ (8)ex? is uniformly continuous
for 6 € (—o0,0] and ||@|| < oo},

where « is a positive constant and the norm ||¢|| = sup |¢(8)]e*?.

0<0
The nonnegative cone of C is defined by C;. = C((—o0, 0], R,).For ¢ €
C,letreCasgr(0) =p(t+6),0 e (—oo, 0]. We consider solutions
(T(t), T*(t), V(t)) of system (2.2) with initial conditions

(To, Tg, Vo) € C3 :=Cy x Cy x Cy. (3.1)
By the standard theory of functional differential equations (Hale and

Verduyn Lunel [20], Kuang [24]), we can obtain the existence of solu-
tions for t > 0. Let

m:/ eMsfi(s)yds i=1,2,
0

N3 = f e 12 f3(s)ds.
0

Theorem 3.1. Solutions of system (2.2) with initial conditions (3.1) are
positive and ultimately uniformly bounded for t > 0.

Proof. First, we prove that T(t) > 0 for all t > 0. Assume the con-
trary and let t; > 0 such that T(t;) = 0. Then from the first equa-
tion of system (2.2), we have T(t;) = n(0) > 0. Therefore T(t) < O for
t e (t; —e&,ty) and ¢ > 0 is sufficiently small. This contradicts with
the fact of T(t) > 0 for t € [0, t1). It follows that T(t) > O for ¢t > 0.
Let r(t) be the sum of the two integral terms in the second equation
of system (2.2). From the second and the third equations in (2.2), we
have

() = [mm + fo [r@)eﬂlfds]ew,

V() = [V(O)+ fo * pect /0 " f(s)e ST (& —s)dsd.f}e“,

which yield that T*(t) > 0, V(t) > 0 for small ¢t > 0. Now we prove that
T*(t) > 0 and V(t) > O for all t > 0. In fact, assume the contrary and let
t, > 0 be the first time such that min{T*(t;),V(t;)} = 0.If T*(t;) = 0,
T*(t) > 0for0 <t < t,and V(t) > 0 for 0 < t < t,, then we have

dT;EtZ) = /Ooo[ﬂﬂ"(tz —$)V(ta —$) fi(s)

+ BT (ty — $)T*(t — 5) fo(s)]e *%ds > 0.

This contradicts T*(t;) =0and T*(t) > 0 for 0 < t < £,. If V(t;) =0,
V(t) > 0for0 <t < ty,and T*(t) > 0 for 0 < t < t,, then we obtain

av(t) bfoc e~125 fy () T*(t, — s)ds > 0,
0

e~
which is also a contradiction. Hence, T*(t) > 0 and V(t) > O for all
t>0.

Assumptions (Hy) and (H;) and the first equation of (2.2) imply
that
limsupT(t) < T°.

t—o0

Let
W(t)= /0 i ($)e T (t—s)ds+ /O  Fy($)e ST (t—5)ds+T* (£).

Choose /i < uy sufficiently small such that T%ji; < Aq, where A¢ =
sup n(T).Then
Te[0,T0]

o = /ow(fl (5) + f2(5))e*n(T (¢ = 5))ds
B /OC BiT(t —s)V(t —s) fr(s)e”"1*ds
0

-/ T BaT(t = )T (t — 5)f1 (5)e05ds — i T+ (¢)

< Ao +12) — i T*(t)
< 2x0(m +12) — LW (E).

It is obvious that

limsupW (t) < M,

t—o00 1

which implies that limsup T*(t) < %ﬁ”z) Then, from the third
t—o0

equation of system (2.2), we have
V(t) = b / Fo(s)e 15T (¢ — s)ds — ¢V (1)
0
_ 2bro (i +m2)m3
- 1
Thus, limsupV (t) < w Therefore, T(t), T*(t) and V(t) are

t—o0

ultimately uniformly bounded. O

—cV(t).

Theorem 3.1 implies that omega limit sets of system (2.2) are con-
tained in the following bounded feasible region:

r- {(T, Ty ect T < 0 ) < 220U,
1

Vil < 2bdo(n1 + m2)13 }
S Pt £

It can be verified that the region I' is positively invariant with respect
to system (2.2) and the system is well posed.

System (2.2) has an infection-free equilibrium Ey = (T, 0, 0). We
define the basic reproduction number as follows:
_ bBiTmins n BaTn,
o mr
which represents the average number of secondary infections. In fact,
W is the average number of secondary viruses caused by a
virus, that is the basic reproduction number corresponding to virus-
to-cell infection mode, while ’32157?”2 is the average number of sec-
ondary infected cells that caused by an infected cell, that is the basic

reproduction number corresponding to cell-to-cell infection mode.
The factors have the biological interpretations as follows:

Ro

e B1T%7; is the number of new infections caused by a virus in target
susceptible cells;

. ,%1 is the average time that an infectious cell survives;

o bns is the rate at which infected cells bud into viruses;

% gives the average life-span of a virus;

e B,1%n, represents the number of new infections caused by an in-

fected cell in target susceptible cells.

Then we have the following result.

Theorem 3.2. If Rg <1, then the infection-free equilibrium Ey =
(T9,0,0) is the only equilibrium of system (2.2). If Rg > 1, then Eg is
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unstable and system (2.2) has a unique chronic infection equilibrium

= (T, T*,V), where
_ LO’ ,1—.,* _ Cn(T) _, ‘-/: br]3f*.

Ro (bBinz +cB2)T ¢
Proof. The characteristic equation of system (2.2) at the equilibrium
EO is
(A = (T))[A? = (BaT%1z — ¢ — 1)

— (BT + bBi T 13 — cpey)] =0

where i = [g° e~ +hs fi(s)ds, i=1,2, and 3 =
Jo$ e~ W2tMs f(s)ds. Since n'(I°) < 0, we only need to consider
the following equation

A2 — (BaT%5 — ¢ — p)A — (¢BaTO% + bB1TO13 — cpg) = 0

which is equivalent to
A 72 Roz 2 Ro2 | Ro1 71 73
+1)(A+0)—Ro ——Atcl=—=—+——=])=0,
(M >( - (le Ro M2 Ro  Ro M3

~h

(3.2)
where
bB1Tn 113 B2Tn,
Rop = ————2 Ry = ==—1=,
o Clq 0 M1
Let

V) = (:1+1)<x+c>

12 Ro2 72 Roz | Ro1 M1 73
—Ro B8 ) 4 222 ZUTB YY)
0(772 Rao (le Ro  Ro m 7)3))

Thus, ¥ (0) = c(1 — Rg) < 0 when Ry > 1. Note that

ﬁ,s/ fis)ds =1, i=1.2.3.
0

Then, we have
vd) > (:1 + 1)()»+c)

1 Ro2 1 Ro2 Ro1 11
7R< —=A C(——+———))%+oo
n2 Ro M2 Ro  Romns
as A — +oo. This yields that equation (3.2) has at least one posi-
tive root. Therefore, the infection-free equilibrium Ej is unstable if

Ro > 1.

The chronic infection equilibrium E = (T, T*, V) satisfies

Tl(T) — ﬂ]f‘_/ — ﬂz'f]:* =0,
7}1}31T‘7 =+ )’]2/32’1:7:* — /.;L]T* = 0, (33)
bnsT* —cV = 0.

From the third equation of (3.3), we have V = bn;T*/c. Substituting

T i T* _ cn(T) _ i : T
it into the first equation, we have T* = Bins BT Substituting T

and V into the second equation, we obtain that

CM1 . TO
bBiminz +cmPa Ro
Thus, E exists if and only if n(T) > 0. Since n(T°) =0and 0 < T < T°
when Ry > 1, we conclude that n(T) > 0 and E is the unique chronic
infection equilibrium. O

T=

Using a similar argument as in the proof of Theorem 6.1 of Rést
and Wu [40], Theorem 2 of Liu et al. [27] and Theorem 4.2 of Lai and
Zou [25], we can prove the following theorem.

Theorem 3.3. If Ry > 1, then system (2.2) is uniformly persistent, that
is, there exists a constant oy > 0 such that

litminfT(t) > 0y, litminfT*(t) > 0y, li[mian(t) > 0p.

4. Global stability of equilibria

In this section, we construct a suitable Lyapunov function to in-
vestigate the global stability of the infection-free equilibrium and
chronic infection equilibrium for system (2.2).

Theorem 4.1. If Ry < 1and f;(s) = fo(s), then the infection-free equi-
librium Ey(T°, 0, 0) of system (2.2) is globally asymptotically stable in T.

Proof. We define a Lyapunov function as follows:

T(f) ,31TO

L({t) =T()—=TIn == + n—T*(t) +

V(t)
+H/0 fi (5)671115/75['31Tf(t)vf(f)+ﬁ2n(f)7}*(f)]drds

0 [} 0
+ bﬂ% / fee s [ T(t)deds.
0 —s

Then the time derivative of L(t) along solutions of system (2.2)
satisfies

dL(t)
dt lpo

—(1- 2 - pirv - go11y - P - py1ov
T M
L BTV s paTe - T -1 e s
M Jo
0 oo
+ bﬁ% /0 f3()e™#5T*(t — s)ds + 1TV + B, TT*

— /00[131T(t—s)v(f—s)+,32T(t—s)T*(t — 9)1fi(s)e-isds

bﬂ1T/ Fo(s)e=H5 (T* — T*(t — 5))ds

TO bBiTns a1 ...

TO 1231 *
- (1 - T)n(T)+ LRy - T

If RO <1, then from (H;), %® |, =0 implies that T =T° and

= 0.Itis clear that the largestmvariant set Mg C M ={(T,T*,V):
dﬁf(f_)hz_z) =_O}_is the singleton {Ey}. By _the Lyapunov—LaSall_e in-
variance principle (see Kuang [24]), Ey is globally asymptotically
stable. O

Next, we investigate the global stability of the chronic infection
equilibrium E for system (2.2) when R > 1. Let

g(x):=x—1—Inx.
Thus, the function g has a global minimum at 1 and satisfies g(1) = 0.

Theorem 4.2. [f Rq > 1 and f(s) = f,(s), then the unique chronic in-
fection equilibrium E (T T*,V) of system (2.2) is globally asymptotically

stable in the interior F of I'.

Proof. We define a Lyapunov function as follows:
U(t) = Ui (t) + Uz (t) + Us (D),

where

Ui (t) =T(t) -

ZTO (T*(t) mnT*“))
T 77

,31TV (V(t) V(_t))’
bT]3T \%
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-5 TV

ﬁzTT* s [° o TOTH(T)
+ 771 /0 fi(s)e ™™ /Sg< = )drds,
and

Us(t) = 'B]TV/ f3(s)e” MZS/ ( f(f))drds

Calculating the time derivative of Uy, U, and Uz along solutions of
system (2.2), we have

du; (t)
dt

0= 217 [~ psrens o MO Yaras

(2.2)

= (1 - ;) (N(T) = n(T) + 1TV + B TT* — BTV — B,TT*)

1 '1'"* 00
+n1<1 - P) (/0 (BiT(t — )V (E —5)

+BT(E =T (- 9)]fi(s)e 5ds — iy T”)

ﬂlfv ‘7 OO — ST *
+ b T (1 - V) (b/o fa(s)e **T (t—s)ds—cV)

T
:<1_T

(n(T) = n(T)) + B1TV + BoTT* — BTV — B, TT*

~| ~ N

~ BTV —,32TT*I+,31TV+,32TT*+l/w[IB]T(t—s)V(t—s)
T m Jo
+B2T (t = $)T*(t — )] fi (s)e " 1°ds — %T*
1
BT T 9T 51 s
m T
g | ’B1TV HaST* _ BTV
+771T / f3(s)e™H25T*(t — s)ds b7 PV y
BTV e LB
3T* V/ f3(5)e T (f ) brbf* v,
du; (t)
it |

=BTV — X /Oo fi(s)e ™S BIT(t —s)V(t —s)ds
m Jo

it /Ooo fisye s in TEZIEZ9 4o

+BTT - L foo Fi($)e M BT (t — $)T*(t — 5)ds
m Jo

N B.TT / fi(s)e 5 In T(t—s)T*(t —s) ds.
o TT*
and
dUs (t) - T BTV /"O _
TV — = s)e H5T*(t — s)ds
At s =pi TR o f3(s) (t—s)
In #ds.

By using

= = = M1 U1
n(T) = STV + BoTT* = =——T* =

(T) = B B2 " e

we obtain that
du(t)

dt 2.2)

(1 - ) ((T) = n(T)) + BTV — BTV

T "“" A <s>e-“ﬁ[2 -

T(t —S)V(t—5s)
T i|ds

_'_M/OO fl(s)e_ﬂls[z — % —

i ln T(t—s)T*(t—s)]dS

~| =

T(t—s)V(t—s)T*
TVT*

+1In

T(t—s)T*(t —5s)
TT*

TT*
’BITV ¥ - zsm
- ffg(s)e“ i ds
( -5)
ds

,31 TV

f Fo(s)e—rasn L =S)

- (1 - T>(“(T) () - ﬁjfv [ 5 (s)e-f“ng)ds

BTV [ s [ TE =)V (E—95)T*
Com /0 fis)e g( VT )d

ﬂZTT* = —H1S i
-2 [ e g(T>ds

- LGTlT* /Ooo fi (S)e-uwg(T(t — ST)Z = S)>ds + BTV

o s VTt —s)
/0 fas)e s = s

VT BTV

+,31 IV
BTV

/ " f(s)e s In wds
0

- (1 - ;) (nr) —niy - B [, (s)e-ﬂlsg(i)ds

B ﬂlTV fvofl (s)e-/“Sg(T(t_S%;Z_S)T*>ds

ﬂZTT*/ fl(S)e ng(;)ds

BT [ (T =5)
SB[ fl(S)e“g( 4k >ds

BTV [ s (VT (=)
T fo Lse” g( VT )ds

From (H;) and (H,), we know that

(1 - ;)mm _n(f)) <o.

According to the property of g(x), we obtain that dU(t) l(2.2) <0.1tcan
be verified that dugt) |(2.2) = 0if and only if

T _T=—s)V(t—)T* T@t-5)T(t-s) VT (t-s)
T TVT* B TT+ VT
It means that the largest invariant set
Mycm=L1v): YOI g

Sdt |y
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is the singleton {E}. Again by the Lyapunov-LaSalle invariance prin-
ciple, the chronic infection equilibrium E of system (2.2) is globally
asymptotically stable. O

Remark 4.3. If Assumption (H;) does not hold, the chronic infection
equilibrium E may lose its stability and periodic oscillations can oc-
cur because of Hopf bifurcation. We will give an example in the next
section.

5. Some special cases

System (2.2) was set up as a general model to describe the virus-
to-cell and cell-to-cell transmissions of certain viruses within the
host. There are three distributed delay terms. By choosing some spe-
cific kernels, the model reduces to various viral infection models
(with discrete or distributed delays) studied in the literature. In this
section, we present some such examples.

Example 5.1. Consider the special forms fi(s)

=f(s)=d8(s—11)

and f3(s) = 8(s — 1), where §(-) is the Dirac delta function. Then sys-
tem (2.2) reduces to

dT

O _ nr@) - HTOVE - STOT O,

dT*

dt(t) =e MI[BTE—T)V(t—11) + BT (t —T)T*(t — 11)]
— w1 T*(¢),
% = be "2RT*(t — 1p) — cV (t) (5.1)

with 71, 75 > 0. Applying Theorems 4.1 and 4.2 to system (5.1) yields
the following result.

_ by T (lel HoT)  pyT0e T

Theorem 5.2. If Ry - - <1, then the
infection-free equilibrium Eg of system (5.1) is globally asymptotically
stable; if Ry > 1, then the chronic infection equilibrium E of system (5.1)
is globally asymptotically stable.

Remark 5.3. If 7; = 7, =0, then system (5.1) reduces to an ODE
model for HIV infection considered in Pourbashash et al. [39] and the
global dynamics are completely determined by R.

Example 5.4. Consider n(T(t)) =h—drT(t), fi(s)

= fo(s) and

fa(s) =8(s—17), system (2.2) becomes to

O _h—arr - TOVEO - HTOT O,

ar© _ [TV E=5)+ BT -9 T @-s)le ™ Fi (5)ds
— T (1),

% = be "I T*(t — 17) — cV (1), (5.2)

where h, dr > 0 and T > 0. It is obvious that n(T) satisfies Assump-
tions (H;) and (H;). By Theorems 4.1 and 4.2, we have the following
result.

Theorem 5.5. If Ry = b’slTOqf 21, ﬁz; " <1, then the infection-
free equilibrium Eq of system (5.2) is globally asymptotically stable; if
Ro > 1, then the chronic infection equilibrium E of system (5.2) is glob-
ally asymptotically stable.

Remark 5.6. If 7y =0, then system (5.2) reduces to the system
describing the virus-to-cell and cell-to-cell transmissions of HIV
studied in Lai and Zou [25]. It is shown in [25] that E is globally
asymptotically stable if Ry < 1 while E is globally asymptotically sta-
ble if RO > 1.

200 20
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E’ : 10
100
5
50 0
0 5000 10000 0 5000 10000
t-time t-time
20
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15
10 10
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20 1 200
0 10 100
0 5000 10000 Tw 00 T
t-time

Fig. 2. Parameter values are h = 1, dr = 0.02, r = 0.018, K = 1500, 8; = 0.0002, 8, =
0.0003, 1 =0.03, b = 3,c=24and 7 =22, then Ry = 2.0574 > 1 and the chronic
infection equilibrium E of system (5.3) is globally asymptotically stable.

Example 5.7. Consider n(T(t))=h—d;T(t)+rT(t)(1— ¥)’
fi(s) = fo(s) =8(s — 1) and f5(s) = 5(5) system (2.2) becomes
=B T(OT(¢),
dT;t(t) = e MT[BT(t—T)V(t—T)+ BoT(t — T)T*(t — 7)]
= T*(t),
% = bT*(t) — cV(¢t), (5.3)

where h, dr, 1, K, 11 > 0 and t > 0. Clearly, n(T) satisfies the As-
sumption (Hy). Further, n(T) satisfies Assumption (H,) if d7 > r. From
Theorem 4.1 and Theorem 4.2, we have the following result.
Theorem 5.8. If Ry = bﬂlTijl_Ml[ < 1, then the infection-
free equilibrium Eq of system (5.3) is globally asymptotically stable; If
Ro > 1, then the chronic infection equilibrium E of system (5.3) is glob-
ally asymptotically stable.

BoTO0e H17

Fig. 2 presents the numerical simulations of system (5.3) following
the above theorem. In fact, the characteristic equation of system (5.3)
atEis
A3+ @22 + ajh + ag + (b2 (T)A? + by (T)A + bo(7))e™*" =0,

(5.4)

where

2r
az —C+M1+dr+ T+,31V+,32T*—T

ay = ciq + (c+u1)(dr+ 2r =T+ BV + BT fr)
2 _ i}

ap = CMl(dT + ?T+ﬂ1v+,32T* - T)7

by(7) = —BTe 7,
2
bl(T)Z—(ﬁ2<dT+T<r )+b,31+C52) e HiT,
2r -

bo(¥) = ~(bB1 + ) (dr + 3T -

When t = 0, equation (5.4) becomes
23 4 (az 4+ b2(0))A? + (ay 4 b1 (0))A + ag + b (0) =0

r)Te”“f.
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Since dr > r, we have

a; +b2(0) >0, a; +b1(0) >0,
By calculation, we obtain

(a1 +b1(0))(az + b2(0)) — (ao + bo(0)) > 0. (5.6)

Using the Routh-Hurwitz criterion, all roots of equation (5.4) have
negative real parts when 7 = 0. Let A = iw(w > 0) be a purely imag-
inary root of equation (5.4). Substituting it into (5.4) and separating
the real and imaginary parts, we have

ag + bQ(O) > 0. (5.5)

2

(bo(T) — by (T)w?) coswT + by (T)wsinwt = ayw? — ag,

— (bo(7) = by (T)w?) sinwt + by (T)wcoswT = W° — .
(5.7)
Squaring and adding both equations of (5.7) gives
F(@,7) 1= 0° + p2(1)0* + p1 (1)®” + po(7) =0, (58)

where

p2(t) = a3 — 2a; — b3(7).

p1(t) = af — 2a0a; — b (1) + 2bo(7)by (7).
Po(t) = ag — b3 ().

After some computations we obtain that

p2(t) = a5 — 2a; — b3(7)

2
h .

=ct+ud+ (T + KT> — (ByTe T)2
h 2

>CZ+M%+(T+KT) —u?

h 2
_ 2
= +<T+KT> >0,

p1(7) = a§ — 2a0a; — b3 (v) + 2bo ()b, (1)
h r ’ 2r

T _ Te—M1T - T
T+KT) (Baee (a7 + 27 1))
h

. 2 h 2
-I—KT) — U] <T+KT)

2
= (¢ +M1)

and

po(t) = ag —
= Czpl,%(ﬂl‘_/ —+ /327:*)<2<; =+

b§(7)

j) B ﬂzf*).

It is easy to obtain that pg(t) > 0 if dy > r. Thus, if dr > r, the chronic
infection equilibrium is locally asymptotically stable.

However, the stability may change when dr < r. If both (5.5) and
(5.6) hold, then all roots of equation (5.4) have negative real parts
when 7 = 0. From the above discussion, it follows that F(w, 7) =0
has positive roots if and only if pg(7) < 0, which is equivalent to

(Hy) B +dT—r<1 - 7) 0.

If (H3) holds, then F(0,7) = pg(t) < 0. Since

and

JF (w, T)
dw

the Implicit Function Theorem implies that there exists a unique C!
function w = w(t) > 0 such that F(w(t), ) =0for t > 0.

lim F(w,7) =+o00
w—~+00

= 60’ +4p,(T)@® +2p1(T)w? >0, for >0,

Let w = w(t) > 0 be the unique positive root of F(w(t), 7) =0.
From equation (5.7), it follows that

by (D)w(T) (a0* () —ag)— (w* (1) —ay (1)) (bo (T) - bz(r)wz(r))
b2 (1)@? (T)+(bo (T)—ba (T)w?(7))?

(a2 (1) =) (bo (1) ~b5 (1)@ (1)) +h1 (D (T) (@* (D) —@ (7))
b2 (T)w? (T)+(bo (T)—ba (T)w?(7))?

sinw(t)T =

cosw(T)T =

(5.9)

Define O(t) € [0, 277 ] such that sin6(t) and cos f(t) are given by the
right-hand sides of equation (5.9), respectively. Following Beretta and
Kuang [4], we define

0(t) +2nm
T w(n)

where Tpax = #i In %ﬂ Clearly, iw(t*) is a purely imaginary

root of equation (5.4) if and only if 7* is a root of function S, for some
nel.
The following result is due to Beretta and Kuang [4].

Sa(t) = , neN, 17e (0, Tna), (5.10)

Theorem 5.9. The characteristic equation (5.4) admits a pair of simple
and conjugate roots A (t*) = iw(t*) and A_(t*) = —iw(t*), w(T*)
> 0at t* € (0, Tmax) if Sn(t*) = 0 for some n € N. This pair of simple
conjugate pure imaginary roots crosses the imaginary axis from left to
right if k(t*) > 0 and crosses the imaginary axis from right to left if
k(T*) < 0, where

.

Kk (T*) = sign dReA‘ = sign dSa(7)
=S8N 47 ey & dr

Based on the above analysis, we obtain the following results by
Theorem 5.9 and the Hopf bifurcation theorem in Hale and Verduyn
Lunel [20].

Theorem 5.10. Assume that Ry > 1 and (H3) holds, we have the follow-
ing conclusions.

(i) If the function Sy(t) has no positive zeros in T € (0, Tmax), then
the chronic infection equilibrium E of system (5.3) is asymptoti-
cally stable for all 0 < T < Tmax;

(ii) If the function Sy(t) has positive simple zeros such that T; < 75 <

- < Tpand Shj (7;) # 0, then the chronic infection equilibrium

E of system (5.3) is asymptotically stable for T < [0, T1) U (T,
Tmax) and unstable when t € (t1, Tm), with a Hopf bifurcation
occurringwhent =tj, j=1,2,---,m.

In the following, we choose a set of parameters h = 1, dr = 0.02,
r=0.06, K = 1500, B; = 0.0002, B, =0.0003, b=3, c=2.4, and
1 = 0.03. Then we have Tmax &~ 97.761 and (H3) holds when 7 ¢
(0, T5), here 5 ~ 57.497. We draw the graphs of Sy and S; versus 7 on
(0, T5), see Fig. 3. It is clear that there is a critical value of the delay
7, denoted by 71, and Tt ~ 20.526. From Theorem 5.10, we conclude
that the equilibrium E is asymptotically stable for < [0, T1) U (75,
Tmax) and unstable for T € (74, T3), which are shown in Figs. 4-6.

Example 5.11. Assume $, = 0. Then system (2.2) becomes

dz# — n(T(t)) - BTEOV(O),
dmt) / PiT(t =)V (t —s)e " fi(s)ds — uaT*(),  (5.11)
dV(t) -

b/ e MEf3(s)T*(t —s)ds — cV (t).

Applymg Theorems 4.1 and 4.2 to system (5.11) yields the following
result.

Theorem 5.12. If Ry = % < 1, then the infection-free equilib-
rium Eq of system (5.11) is globally asymptotically stable; if Ry > 1, then
the chronic infection equilibrium E of system (5.11) is globally asymptot-
ically stable.
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Fig. 3. Graphs of functions Sp(7) and S;(7) for 7 € [0, 7).
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Fig. 4. The chronic infection equilibrium E of system (5.3) is asymptotically stable
when 7 € [0, 7). Here T = 19.
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Fig. 5. There are periodic solutions bifurcated from the chronic infection equilibrium
E of system (5.3) when t = 23.
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Fig. 6. The chronic infection equilibrium E of system (5.3) becomes asymptotically
stable again when t € (73, Tmax). Here T = 66.

Remark 5.13. Let h(x, v) = B1xv, then the system studied in Li and
Shu [26] is the same as system (5.11). The stabilities of equilibria of
system (5.11) obtained in Theorem 5.12 are the same as Theorem 3.1
and 3.2 in [26].

6. Discussion

When a virus (HBV, HIV, HTLV-1, etc.) enters the human body;, it
first targets specific cells in the bloodstream. After an intracellular
period associated with transcription, integration, and the production
of capsid proteins, the infected cell releases hundreds of virions that
can infect other cells. At the same time, in lymph nodes and the brain
the infected cells can spread the virus to other healthy cells directly.
In this article we considered a within-host viral infection model with
both virus-to-cell and cell-to-cell transmissions and three distributed
delays, in which the first distributed delay describes the intracel-
lular latency for the virus-to-cell infection, the second delay repre-
sents the intracellular latency for the cell-to-cell infection, and the
third delay describes the time period that viruses penetrated into
cells and infected cells release new virions. After giving some pre-
liminary results on the positivity and boundedness of solutions, we
presented some sufficient conditions to ensure the global stability
of the infection-free equilibrium and the chronic infection equilib-
rium. Since our model is a general system describing the virus-to-cell
and cell-to-cell transmissions of certain viruses within the host with
three distributed delay terms, it can be reduced to various viral in-
fection models (with discrete or distributed delays) studied in the lit-
erature by selecting some specific kernels, some such examples and
numerical simulations were given.

The global dynamics of the general model indicate that, under cer-
tain conditions, the chronic infection equilibrium is globally asymp-
totically stable. This shows that the model can be applied to describe
the within-host dynamics of HBV, HIV, or HTLV-1 infection, since
the main character of these viruses is that there is no specific treat-
ment for such infections which are lifetime. Note that when the in-
tracellular periods for the virus-to-cell and cell-to-cell spreads are de-
scribed by discrete delays (see model (5.3)), Hopf bifurcation may oc-
cur, which could induce oscillations in the cell and virus populations
(see Theorem 5.10). However, as pointed out in Culshow and Ruan
[6] and Culshaw et al. [7], an intracellular delay for the virus-to-cell
transmission does not change the stability of the infected steady state
for clinically reported parameter values in the bloodstream whereas
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the cell-to-cell spread models can produce infective oscillations in
typical tissue culture parameter regimes and the latently infected
cells are instrumental in sustaining the infection. This shows that the
oscillations in our general model are caused by the cell-to-cell trans-
mission, which further demonstrates that it is necessary to consider
both virus-to-cell and cell-to-cell transmissions in order to better un-
derstand the within-host dynamics of these viral infections.

Our results also indicate that the target-cell dynamics, i.e., the
function n(T) in the model, is important to determine dynamics of the
model. If the function n(T) satisfies Assumption (H;) and Assumption
(Hy), no Hopf bifurcations occur. If Assumption (H,) does not hold,
the dynamics of the model will be more complicated. Moreover, if
Assumption (H;) does not hold, the uniqueness of the infection-free
equilibrium is not guaranteed, the dynamics of the model are not
clear and deserve further consideration.

References

[1] EV. Atkinson, ].R. Haddock, On determining phase spaces for functional differen-
tial equations, Funkcial. Ekvac. 31 (1988) 331-347.

[2] CR.M. Bangham, The immune control and cell-to-cell spread of human
T-lymphotropic virus type 1, ]. Gen. Virol. 84 (2003) 3177-3189.

[3] H.T.Banks, D.M. Bortz, S.E. Holte, Incorporation of variability into the modeling of
viral delays in HIV infection dynamics, Math. Biosci. 183 (2003) 63-91.

[4] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential sys-
tems with delay dependent parameters, SIAM J. Math. Anal. 33 (2002) 1144-
1165.

[5] S. Bonhoeffer, R.M. May, G.M. Shaw, M.A. Nowak, Virus dynamics and drug ther-
apy, Proc. Natl. Acad. Sci. USA 94 (1997) 6971-6976.

[6] R.\V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of
CD4* T-cells, Math. Biosci. 165 (2000) 27-39.

[7] R\V. Culshaw, S. Ruan, G. Webb, A mathematical model of cell-to-cell spread of
HIV-1 that includes a time delay, J. Math. Biol. 46 (2003) 425-444.

[8] H. Dahari, A. Loa, R.M. Ribeiroa, A.S. Perelson, Modeling hepatitis C virus dynam-
ics: liver regeneration and critical drug efficacy, J. Theor. Biol. 247 (2007) 371-381.

[9] S. Debroy, B.M. Bolker, M. Martcheva, Bistability and long-term cure in a within-
host model of hepatitis C, J. Biol. Syst. 19 (2011) 533-550.

[10] P. De Leenheer, H.L. Smith, Virus dynamics: a global analysis, SIAM J. Appl. Math.
63 (2003) 1313-1327.

[11] D.S. Dimitrov, R.L. Willey, H. Sato, L.-J. Chang, R. Blumenthal, M.A. Martin, Quan-
titation of human immunodeficiency virus type 1 infection kinetics, J. Virol. 67
(1993) 2182-2190.

[12] N.M. Dixit, J.E. Layden-Almer, T.J. Layden, A.S. Perelson, Modelling how ribavirin
improves interferon response rates in hepatitis C virus infection, Nature 432
(2004a) 922-924.

[13] N.M. Dixit, M. Markowitz, D.D. Ho, A.S. Perelson, Estimates of intracellular delay
and average drug efficacy from viral load data of HIV-infected individuals under
antiretroviral therapy, Antivir. Ther. 9 (2004b) 237-246.

[14] S. Eikenberry, S. Hews, ]J.D. Nagy, Y. Kuang, The dynamics of a delay model of
hepatitis B virus infection with logistic hepatocyte growth, Math. Biosci. Eng. 6
(2009) 283-299.

[15] Z. Grossman, M. Feinberg, V. Kuznetsov, D. Dimitrov, W. Paul, HIV infection: how
effective is drug combination treatment? Immunol. Today 19 (1998a) 528-532.

[16] Z. Grossman, M. Feinberg, W.E. Paul, Multiple modes of cellular activation and
virus transmission in HIV infection: a role for chronically and latently infected
cells in sustaining viral replication, Proc. Natl. Acad. Sci. USA 95 (1998b) 6314-
6319.

[17] Z. Grossman, M. Polis, M.B. Feinberg, et al., Ongoing HIV dissemination during
HAART, Nat. Med. 5 (1999) 1099-1104.

[18] S. Gummuluru, C.M. Kinsey, M. Emerman, An in vitro rapid-turnover assay for
human immunodeficiency virus type 1 replication selects for cell-to-cell spread
of virua, J. Virol. 74 (2000) 10882-10891.

[19] J.K. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkcial.
Ekvac. 21 (1978) 11-41.

[20] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Appl.
Math. Sci., Springer-Verlag, New York, 1993.

[21] A.V.M. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May, M.A. Nowak, Viral dynamics
in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Natl.
Acad. Sci. USA 93 (1996) 7247-7251.

[22] P.Katri, S. Ruan, Dynamics of human T-cell lymphotropic virus i (HTLV-I) infection
of CD4+T-cells, Comptes Rendus Biol. 327 (No. 11) (2004) 1009-1016.

[23] D.E. Kirschner, G. Webb, A model for treatment strategy in the chemotherapy of
AIDs, Bull. Math. Biol. 58 (1996) 167-190.

[24] Y. Kuang, Delay Differential Equations with Applications in Population Biology,
Academic Press, San Diego, 1993.

[25] X. Lai, X. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection
and cell-to-cell transmission, SIAM J. Appl. Math. 74 (2014) 898-917.

[26] M.Y. Li, H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo
viral infections, SIAM ]. Appl. Math. 70 (2010) 2434-2448.

[27] S.Liu, S. Wang, L. Wang, Global dynamics of delay epidemic models with nonlin-
ear incidence rate and relapse, Nonlinear Anal. RWA 11 (2011) 119-127.

[28] A.L.Lloyd, The dependence of viral parameter estimates on the assumed viral life
cycle: limitations of studies of viral load data, Proc. R. Soc. Lond. B 268 (2001)
847-854.

[29] J. Mittler, B. Sulzer, A. Neumann, A. Perelson, Influence of delayed virus produc-
tion on viral dynamics in HIV-1 infected patients, Math. Biosci. 152 (1998) 143-
163.

[30] V. Miiller, A.EM. Marée, R.J. De Boer, Small variations in multiple parameters ac-
count for wide variations in HIV-1 set-points: a novel modelling approach, Proc.
R. Soc. Lond. B 268 (2001) 235-242.

[31] P.W. Nelson, ].D. Murray, A.S. Perelson, A model of HIV-1 pathogenesis that in-
cludes an intracellular delay, Math. Biosci. 163 (2000) 201-215.

[32] P.W. Nelson, A.S. Perelson, Mathematical analysis of delay differential equation
models of HIV-1 infection, Math. Biosci. 179 (2002) 73-94.

[33] A.U. Neumann, N.P. Lam, H. Dahari, D.R. Gretch, T.E. Wiley, TJ. Layden, A.S. Perel-
son, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-
alpha therapy, Science 282 (1998) 103-107.

[34] M.A. Nowak, C.R.M. Bangham, Population dynamics of immune responses to per-
sistent viruses, Science 272 (1996) 74-79.

[35] M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Principles of Immunology
and Virology, Oxford University Press, Oxford, 2000.

[36] K.A. Pawelek, S. Liu, F. Pahlevani, L. Rong, A model of HIV-1 infection with two
time delays: mathematical analysis and comparison with patient data, Math.
Biosci. 235 (2012) 98-109.

[37] A.S.Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells,
Math. Biosci. 114 (1993) 81-125.

[38] A.S.Perelson, PW. Nelson, Mathematical analysis of HIV-I: dynamics in vivo, SIAM
Review 41 (1999) 3-44.

[39] H. Pourbashash, S.S. Pilyugin, C.C. McCluskey, P. De Leenheer, Global analysis of
within host virus models with cell-to-cell viral transmission, Discrete Contin.
Dyn. Syst. B 19 (2014) 3341-3357.

[40] G. Rost, J. Wu, SEIR epidemiological model with varying infectivity and infinite
delay, Math. Biosci. Eng. 5 (2008) 389-402.

[41] Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses, Nat. Rev.
Microbiol. 6 (2008) 815-826.

[42] H.Shu, L. Wang, ]. Watmough, Global stability of a nonlinear viral infection model
with infinitely distributed intracellular delays and CTL immune responses, SIAM
J. Appl. Math. 73 (2013) 1280-1302.

[43] A. Sigal, ].T. Kim, A.B. Balazs, E. Dekel, A. Mayo, R. Milo, D. Baltimore, Cell-to-cell
spread of HIV permits ongoing replication despite antiretroviral therapy, Nature
477 (2011) 95-98.

[44] ].L. Spouge, R.I. Shrager, D.S. Dimitrov, HIV-1 infection kinetics in tissue cultures,
Math. Biosci. 138 (1996) 1-22.

[45] N.L Stilianakis, J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-
[ infection, Bull. Math. Biol. 61 (1999) 935-947.

[46] Y. Wang, Y. Zhou, ]. Wu, ]. Hefferman, Oscillatory viral dynamics in a delayed HIV
pathogenesis model, Math. Biosci. 219 (2009) 104-112.

[47] CB. Sturdevant, S.B. Joseph, G. Schnell, RW. Price, R. Swanstrom, et al.,
Compartmentalized replication of R5 T cell-tropic HIV-1 in the central ner-
vous system early in the course of infection, PLoS Pathog. 11 (3) (2015),
doi:10.1371/journal.ppat.1004720.1004720.

[48] D.Wodarz, A.L. Lloyd, V.A.A. Jansen, M.A. Nowak, Dynamics of macrophage and T
cell infection by HIV, ]. Theor. Biol. 196 (1999) 101-113.

[49] D. Wodarz, M.A. Nowak, C.R.M. Bangham, The dynamics of HTLV-I response and
the CTL response, Immunol. Today 20 (1999) 220-227.

[50] H. Zhu, X. Zou, Impact of delays in cell infection and virus production on HIV-1
dynamics, Math. Med. Biol. 25 (2008) 99-112.


http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0001
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0001
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0001
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0002
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0002
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0003
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0003
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0003
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0003
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0004
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0004
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0004
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0005
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0005
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0005
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0005
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0005
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0006
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0006
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0006
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0007
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0007
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0007
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0007
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0008
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0008
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0008
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0008
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0008
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0009
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0009
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0009
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0009
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0010
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0010
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0010
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0011
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0012
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0012
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0012
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0012
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0012
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0013
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0013
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0013
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0013
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0013
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0014
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0014
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0014
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0014
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0014
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0015
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0016
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0016
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0016
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0016
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0017
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0017
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0017
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0017
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0018
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0018
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0018
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0018
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0019
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0019
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0019
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0020
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0020
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0020
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0021
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0022
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0022
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0022
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0023
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0023
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0023
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0024
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0024
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0025
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0025
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0025
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0026
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0026
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0026
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0027
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0027
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0027
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0027
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0028
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0028
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0029
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0029
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0029
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0029
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0029
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0030
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0030
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0030
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0030
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0031
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0031
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0031
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0031
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0032
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0032
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0032
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0033
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0034
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0034
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0034
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0035
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0035
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0035
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0036
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0036
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0036
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0036
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0036
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0037
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0037
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0037
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0037
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0038
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0038
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0038
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0039
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0039
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0039
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0039
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0039
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0040
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0040
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0040
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0041
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0041
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0042
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0042
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0042
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0042
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0043
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0044
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0044
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0044
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0044
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0045
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0045
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0045
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0046
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0046
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0046
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0046
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0046
http://dx.doi.org/10.1371/journal.ppat.1004720
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0048
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0048
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0048
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0048
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0048
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0049
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0049
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0049
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0049
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0050
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0050
http://refhub.elsevier.com/S0025-5564(15)00101-7/sbref0050

	Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions
	1 Introduction
	2 Mathematical model
	3 Preliminaries
	4 Global stability of equilibria
	5 Some special cases
	6 Discussion
	 References


