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Abstract

In this paper we study a nonlocal dispersal susceptible-infected-susceptible (SIS) epidemic model with 
Neumann boundary condition, where the spatial movement of individuals is described by a nonlocal (convo-
lution) diffusion operator, the transmission rate and recovery rate are spatially heterogeneous, and the total 
population number is constant. We first define the basic reproduction number R0 and discuss the existence, 
uniqueness and stability of steady states of the nonlocal dispersal SIS epidemic model in terms of R0. Then 
we consider the impacts of the large diffusion rates of the susceptible and infectious populations on the 
persistence and extinction of the disease. The obtained results indicate that the nonlocal movement of the 
susceptible or infectious individuals will enhance the persistence of the infectious disease. In particular, our 
analytical results suggest that the spatial heterogeneity tends to boost the spread of the infectious disease.
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1. Introduction

This paper is concerned with the following nonlocal dispersal SIS epidemic model with

⎧⎪⎨
⎪⎩

∂S
∂t

= dS

∫
�

J (x − y) [S(y, t) − S(x, t)]dy − β(x)SI
S+I

+ γ (x)I, x ∈ �, t > 0,
∂I
∂t

= dI

∫
�

J (x − y) [I (y, t) − I (x, t)]dy + β(x)SI
S+I

− γ (x)I, x ∈ �, t > 0,

S(x,0) = S0(x), I (x,0) = I0(x), x ∈ �,

(1.1)

where � ⊂ R
n (n denotes the dimension) is a bounded domain; S(x, t) and I (x, t) denote the 

density of susceptible and infectious individuals at location x and time t , respectively; dS and 
dI are positive diffusion coefficients for the susceptible and infectious individuals; β(x) and 
γ (x) are positive continuous functions on �̄ that represent the transmission rate of susceptible 
individuals and the recovery of infectious individuals at x, respectively. The integral operator ∫
Rn J (x − y)(u(y, t) − u(x, t))dy describes diffusion processes. As in [18], if u(x, t) is thought 

of as the density at a point x at time t , and J (x −y) is thought of as the probability distribution of 
jumping from location y to location x, then 

∫
Rn J (x −y)u(y, t)dy is the rate at which individuals 

are arriving at position x from all other places and − 
∫
Rn J (x − y)u(x, t)dy is the rate at which 

they are leaving location x to travel to all other sites. Since integrals are taken over the domain �, 
we assume that diffusion takes places only in �. Individuals may not enter or leave the domain 
�. This is analogous to the homogeneous Neumann boundary condition in the literature, we also 
call it Neumann boundary condition, meaning that all the involved integrals are taken over the 
domain � (see the definition in Andreu-Vaillo et al. [4]).

It is known from Allen, Bolker and Lou [2] that the term SI
S+I

is a Lipschitz continuous 
function of S and I in the open first quadrant, we can extend its definition to the entire first 
quadrant by defining it to be zero when either S = 0 or I = 0. Throughout the paper, we assume 
that the total number of initial infectious individuals is positive; that is,

∫
�

I (x,0)dx > 0 with S0(x) ≥ 0 and I0(x) ≥ 0 for x ∈ �

and the dispersal kernel function J satisfies

(J) J (·) ∈ C(�̄), J (0) > 0, J (x) = J (−x) ≥ 0,
∫
Rn J (x)dx = 1 and 

∫
�

J (x − y)dy �≡ 1 for 
any x ∈ �.

Note that (1.1) is the nonlocal counterpart of the following SIS epidemic reaction-diffusion 
model ⎧⎪⎨

⎪⎩
∂S
∂t

= dS�S − β(x)SI
S+I

+ γ (x)I, x ∈ �, t > 0,
∂I
∂t

= dI�I + β(x)SI
S+I

− γ (x)I, x ∈ �, t > 0,

∂νS = ∂νI = 0, x ∈ ∂�, t > 0,

(1.2)

in which ν is the outward unit normal vector on ∂�. System (1.2) was first proposed by Allen, 
Bolker and Lou [2], who mainly discussed the impact of spatial heterogeneity of environment 
and movement of individuals on the persistence and extinction of a disease. Their results were 
extended by Peng and Liu [35], in which they proved that the endemic equilibrium is globally 



F.-Y. Yang et al. / J. Differential Equations 267 (2019) 2011–2051 2013
asymptotically stable if it exists and this result confirms a conjecture proposed in [2]. Peng [34]
provided further understanding regarding the roles of large or small migration rates of the sus-
ceptible and infectious populations on the spatial persistence and extinction of the infectious 
diseases, see also Peng and Yi [37]. Moreover, Peng and Zhao [36] considered (1.2) when the 
transmission rate and recovery rate are assumed to be spatially heterogeneous and temporally 
periodic. Recently, Cui and Lou [16] and Cui, Lam and Lou [15] studied the dynamics of (1.2)
with advection and found that advection can help to speed up the elimination of infectious dis-
eases. For other results about SIS epidemic models with spatial heterogeneity, we refer to Allen, 
Bolker and Lou [1,3], Huang, Han and Liu [23], Li, Peng and Wang [28] and Wu and Zou [51].

The nonlocal dispersal as a long range process can better describe some natural phenomena 
in many situations (Andreu-Vaillo et al. [4], Fife [18]). In fact nonlocal dispersal equations have 
attracted great attention and have been used to model different dispersal phenomena in popula-
tion ecology (Hutson et al. [24], Kao, Lou and Shen [25]), material science (Bates [7], Wang 
[50]), neurology (Sun, Yang and Li [43]), etc. For the study of nonlocal problems, we refer to 
Chasseigne, Chaves and Rossi [10], Cortázar, Coville and Elgueta [11], Sun, Li and Yang [42]
and Zhang, Li and Sun [54] about the asymptotic behavior, Bates et al. [8], Coville, Dávila and 
Martínez [14], Li, Sun and Wang [29], Li, Zhang and Zhang [30], Pan, Li and Lin [32], Shen 
and Zhang [40] and Sun, Li and Wang [45] about the traveling waves and entire solutions when 
� = R, and Bates and Zhao [9], Coville, Dávila and Martínez [13], Sun, Li and Wang [45] and 
Yang, Li and Sun [53] about the stationary solutions. In particular, the spectrum properties of 
nonlocal dispersal operators and their essential difference comparing with the random operators 
are studied in Coville [12], Coville, Dávila and Martínez [14], García-Melián and Rossi [19], 
Shen and Zhang [40] and Sun, Yang and Li [43].

Nonlocal epidemic models have also been extensively studied since the pioneer work of 
Kendall [26,27], in which he generalized the Kermack-McKendrick model to a space-dependent 
integro-differential equation and used the integral term βS(x, t) 

∫∞
−∞ K(x − y)I (y, t)dy to de-

scribe how infectious individuals at location y disperse to infect susceptible individuals at lo-
cation x. Kendall [27], Mollison [31] and Aronson [5] studied the existence of traveling wave 
solutions in the Kendall model. For further results on nonlocal epidemic models we refer to the 
monograph of Rass and Radcliffe [38] and a survey by Ruan [39].

Recently, in [52], we studied the following nonlocal dispersal SIS epidemic model with 
Dirichlet boundary condition

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dS

[∫
�

J (x − y)S(x, t)dy − S(x, t)
]+ �(x) − β(x)SI

S + I
+ γ (x)I in � ×R

+,

∂I

∂t
= dI

[∫
�

J (x − y)I (x, t)dy − I (x, t)
]+ β(x)SI

S + I
− γ (x)I in � ×R

+,

S(x,0) = S0(x), I (x,0) = I0(x) in �,

S(x, t) = I (x, t) = 0 in R
N\� ×R

+.

The basic reproduction number R0 was introduced and threshold-type results on the global dy-
namic in terms of R0 were established. In this model, the individuals can move in the whole Rn

but vanish outside �. In the biological interpretation, there is a hostile environment outside � and 
any individual that jumps outside dies instantaneously, which is similar to the so-called homoge-
nous Dirichlet boundary conditions for the random diffusion equations. Zhao and Ruan [55]
proposed a nonlocal model of within-host viral dynamics on a bounded domain in which virus 
movement is described by a nonlocal (convolution) diffusion operator, investigated the principal 
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eigenvalue of a perturbation of the nonlocal diffusion operator, and showed that if the principal 
eigenvalue is less or equal to zero, then the infection-free steady state is asymptotically stable 
while there is an infection steady state which is stable provided that the principal eigenvalue is 
greater than zero. The present paper is devoted to the dynamic behavior of system (1.1) with
Neumann boundary conditions.

It is well-known that the basic reproduction number R0 is an important threshold to deter-
mine the dynamic behavior of epidemic models. For system (1.1), it is natural to ask what the 
basic reproduction number is and how it decides the dynamic behavior of (1.1). As one of the 
important quantities in epidemiology, the basic reproduction number R0 of an infectious dis-
ease is defined as the expected number of secondary cases produced, in a completely susceptible 
population, by a typical infective individual (see, e.g., Heffernan, Smith and Wahl [22] and the 
reference therein). For autonomous epidemic models, Diekmann et al. [17] introduced R0 by us-
ing the next generation operators. Van der Driessche and Watmough [47] established the theory 
of R0 for compartment ODE models. Thieme [46] further developed a general theory of spec-
tral bounds and reproduction numbers for the infinite-dimensional population structure and time 
heterogeneity. For a nonlocal and time-delayed reaction-diffusion model of dengue fever, Wang 
and Zhao [48] gave the definition of R0 via a next generation operator and proved the threshold 
dynamics in terms of R0. Wang and Zhao [49] presented the theory of R0 for reaction-diffusion 
epidemic models with compartment structure and in particular, characterized R0 by means of the 
principal eigenvalue of an elliptic eigenvalue problem. As we know that the nonlocal eigenvalue 
problems may not have principal eigenvalues generally. Naturally, we want to know how to char-
acterize the basic reproduction number of nonlocal dispersal problems. Motivated by the works 
in [46,48,49], we intend to introduce the basic reproduction number R0 for model (1.1) and give 
its characterization. We further prove that R0 − 1 has the same sign as

μp(dI ) = sup
ϕ∈L2(�)

ϕ �=0

− dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�
(β(x) − γ (x))ϕ2(x)dx∫

�
ϕ2(x)dx

,

which is of interest by itself. In general, μp(dI ) may not be the principal eigenvalue of the 
nonlocal operator

M[u](x) := dI

∫
�

J (x − y)(u(y) − u(x))dy + (β(x) − γ (x))u(x),

which may lead to some essential differences between the nonlocal dispersal problems and the 
reaction-diffusion problems, see Coville [12], Hutson et al. [24], Shen and Zhang [40], Sun, Li 
and Yang [43], and Sun, Li and Wang [44]. To overcome this difficulty, we attempt to use the 
basic theory developed in [46] to give the definition of the basic reproduction number of system 
(1.1).

Then we are concerned with the global stability of the disease-free equilibrium and the en-
demic equilibrium of system (1.1). It is shown that the disease-free equilibrium is unique and 
globally stable when R0 < 1, which implies that the disease will die out. We establish the 
existence of an endemic equilibrium by using the sub-super solutions method and obtain the 
uniqueness of the endemic equilibrium following the method in Berestycki et al. [6] when 
R0 > 1. Generally, it is difficult to prove the stability of the endemic equilibrium of system 
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(1.1). However, when dS = dI , the global stability of the endemic equilibrium can be shown by 
constructing some auxiliary problems. This result implies that the disease will be persistent when 
R0 > 1. Finally, we discuss the effect of the diffusion rates dS and dI on the disease transmis-
sion. Necessarily, we find that the nonlocal movement of the susceptible or infectious individuals 
tends to enhance the persistence of the disease. We would like to mention that there are some dif-
ficulties to be overcome when we prove these results due to the lack of the regularity of solutions 
of (1.1) or the stationary solutions corresponding to system (1.1).

The paper is organized as follows. In Section 2, we characterize the basic reproduction number 
of system (1.1). Section 3 is devoted to the existence, uniqueness and global stability of the 
disease-free equilibrium and the endemic equilibrium. In Section 4, we discuss the effect of the 
diffusion rates of the susceptible and infectious individuals on the disease transmission. Finally, 
we give a brief discussion to complete the paper.

2. The basic reproduction number

In this section, we will give the definition of the basic reproduction number for system (1.1)
and provide its analytical properties. Let X = C(�̄) be the Banach space of real continuous 
functions on �̄. Throughout this section, X is considered as an ordered Banach space with a 
positive cone X+ = {u ∈ X| u ≥ 0}. It is well-known that X+ is generating, normal and has 
nonempty interior. Additionally, an operator T : X → X is called positive if T X+ ⊆ X+.

2.1. Preliminaries

Definition 2.1. A closed linear operator A in X is said to be resolvent-positive if the resolvent 
set of A , ρ(A ), contains a ray (ω, ∞) and the resolvent (λI − A )−1 is a positive bounded 
linear operator for all λ > ω.

Definition 2.2. The spectral bound of A is defined by

S(A ) = sup{Reλ| λ ∈ σ(A )},
where σ(A ) denotes the spectrum of A . The spectral radius of A is defined as

r(A ) = sup{|λ|; λ ∈ σ(A )}.

Theorem 2.3 (Thieme [46]). Let A be the generator of a C0−semigroup S on the ordered Ba-
nach space X with a normal and generating cone X+. Then, A is a resolvent-positive operator if 
and only if S is a positive semigroup, i.e., S(t)X+ ⊂ X+ for all t ≥ 0. If A is resolvent-positive, 
then

(λI − A )−1x = lim
b→∞

b∫
0

eλtS(t)xdt, λ > S(A ), x ∈ X.

Theorem 2.4 (Thieme [46]). Let B be a resolvent-positive operator on X, S(B) < 0 and A =
C +B a positive perturbation of B with C a bounded linear operator. If A is resolvent-positive, 
S(A ) has the same sign as r(−CB−1) − 1.
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In order to apply the basic theory in Thieme [46] to discuss the basic reproduction number of 
system (1.1), we first consider the eigenvalue problem

M[u](x) := dI

∫
�

J (x − y)(u(y) − u(x))dy + β(x)u(x) − γ (x)u(x) = −λu(x) in �, (2.1)

which will be also used to obtain the main result in this section. Define

λp(dI ) = inf
ϕ∈L2(�)

ϕ �=0

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�
(γ (x) − β(x))ϕ2(x)dx∫

�
ϕ2(x)dx

.

It is well-known that λp(dI ) may be the unique principal eigenvalue of (2.1), see [12,24,40,43].

Lemma 2.5. Set m(x) = −dI

∫
�

J (x − y)dy +β(x) − γ (x). Suppose there is some x0 ∈ Int (�)

satisfying that m(x0) = max�̄ m(x), and the partial derivatives of m(x) up to order n − 1 at x0
are zero. Then λp(dI ) is the unique principal eigenvalue of (2.1) and its corresponding eigen-
function ϕ is positive and continuous on �̄.

Lemma 2.6. λp(dI ) is the principal eigenvalue of (2.1) if and only if

λp(dI ) < min
�̄

⎧⎨
⎩dI

∫
�

J (x − y)dy + γ (x) − β(x)

⎫⎬
⎭ .

The proof of Lemma 2.6 is the same as Proposition 3.2 in Coville et al. [14].

Remark 2.7. Note that λp(dI ) is continuous on J , β(x) and γ (x), see the proof in Coville [12].

Below, we always assume β(x) − γ (x) is non-constant without other description.

Theorem 2.8. Assume that λp(dI ) is the principal eigenvalue of (2.1). Then the following alter-
natives hold:

(i) λp(dI ) is a strictly monotone increasing function of dI ;
(ii) λp(dI ) → min

�̄
{γ (x) − β(x)} as dI → 0;

(iii) λp(dI ) → 1
|�|

∫
�
(γ (x) − β(x))dx as dI → +∞;

(iv) If 
∫
�

β(x)dx ≥ ∫
�

γ (x)dx, then λp(dI ) < 0 for all dI > 0;
(v) If β(x∗) > γ (x∗) for some x∗ ∈ � and 

∫
�

β(x)dx <
∫
�

γ (x)dx, then the equation λp(dI ) =
0 has a unique positive root denoted by d∗

I . Furthermore, if dI < d∗
I , then λp(dI ) < 0 and 

if dI > d∗
I , then λp(dI ) > 0.

Proof. Let ϕ(x) be the corresponding eigenfunction to λp(dI ) and normalize it as ‖ϕ‖L2(�) = 1. 
Then
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λp(dI ) = dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx +
∫
�

(γ (x) − β(x))ϕ2(x)dx.

Obviously, ϕ(x) is not a constant. Otherwise, λp(dI ) = γ (x) − β(x) according to (2.1), which 
is a contradiction. Assume dI > dI1 . Then, following the variational characterization of λp(dI ), 
we have

λp(dI ) >
dI1

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx +
∫
�

(γ (x) − β(x))ϕ2(x)dx ≥ λp(dI1).

This proves (i).
Now let θ(x) = γ (x) − β(x) and θmin = min

�̄
θ(x). Consider the eigenvalue problem

dI

∫
�

J (x − y)(u(y) − u(x))dy − θminu(x) = −λu(x) in �. (2.2)

Thus, the principal eigenvalue of (2.2) is λ∗
p = θmin, see [20]. Hence, we have λp(dI ) ≥ θmin. 

Now, if we can prove that lim sup
dI →0

λp(dI ) ≤ θmin, then the result is obtained. On the contrary, 

assume there exists some ε > 0 such that

lim sup
dI →0

λp(dI ) ≥ θmin + ε.

By the definition of lim sup, there exists some d̂I > 0 such that if dI ≤ d̂I , then

λp(dI ) ≥ θmin + ε

2
.

Additionally, the continuity of θ(x) gives that there are some x0 ∈ � and r > 0 such that

θmin ≥ θ(x) − ε

4
for x ∈ Br(x0) ⊂ �.

Hence, λp(dI ) ≥ θ(x) + ε
4 for dI ≤ d̂I and x ∈ Br(x0). Let ϕ(x) be the eigenfunction to λp(dI ). 

Then, it follows from (2.1) that

∫
�

J (x − y)(ϕ(x) − ϕ(y))dy = λp(dI ) − θ(x)

dI

ϕ(x) ≥ ε

4dI

ϕ(x) in Br(x0).

Let λ1 be the principal eigenvalue of the linear problem

{∫
RN J (x − y)(u(y) − u(x))dy = −λu(x) in Br(x0),

u(x) = 0 in R
N\Br(x0).

It is well-known that 0 < λ1 < 1, see [19]. Let ψ(x) be the corresponding eigenfunction to λ1
normalized by ‖ψ‖L∞(Br (x )) = 1. Set
0
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�(x) = ϕ(x)

infBr(x0) ϕ(x)
, �(x) = ψ(x) ≤ 1.

Consider the following linear problem

{∫
RN J (x − y)(u(y) − u(x))dy = − ε

4dI
u(x) in Br(x0),

u(x) = 0 in R
N\Br(x0).

(2.3)

By the direct computation, we have

∫
Br(x0)

J (x − y)�(y)dy − �(x) + ε

4dI

�(x)

≤
∫
�

J (x − y)(�(y) − �(x))dy + ε

4dI

�(x) ≤ 0

and

∫
Br(x0)

J (x − y)�(y)dy − �(x) + ε

4dI

�(x)

=
∫

Br(x0)

J (x − y)ψ(y)dy − ψ(x) + ε

4dI

ψ(x) ≥ 0

provided dI ≤ min{d̂I , ε
4λ1

}. Then, by the super-sub solution method (see [21]), (2.3) admits a 

positive solution between �(x) and �(x), which implies that λ1 = ε
4dI

. This contradicts to the 
independence of dI about λ1. Thus, lim

dI →0
λp(dI ) = θmin and (ii) holds.

Now taking ϕ2 = 1
|�| , the definition of λp(dI ) yields that

λp(dI ) ≤
dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�
(γ (x) − β(x))ϕ2(x)dx∫

�
ϕ2(x)dx

= 1

|�|
∫
�

(γ (x) − β(x))dx ≤ max
�̄

(γ (x) − β(x)).

Since λp(dI ) is strictly increasing on dI , the limit of λp(dI ) exists as dI → +∞. Assume 
lim

dI →+∞λp(dI ) = λ∞. Then, λ∞ ≤ max�̄(γ (x) − β(x)). Letting ψdI
(x) be the corresponding 

eigenfunction to λp(dI ) and normalizing it by ‖ψdI
‖L∞(�) = 1, then we have

dI

∫
J (x − y)(ψdI

(y) − ψdI
(x))dy + (β(x) − γ (x))ψdI

(x) = −λp(dI )ψdI
(x) in �. (2.4)
�
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Note that there exists some d0 > 0 such that∫
�

J (x − y)dy + γ (x) − β(x) − λp(dI )

dI

> 0

for any dI ≥ d0. Then, for each dI ≥ d0, (2.4) implies that

ψdI
(x) =

∫
�

J (x − y)ψdI
(y)dy∫

�
J (x − y)dy + γ (x)−β(x)−λp(dI )

dI

∈ C(�̄). (2.5)

Choose a sequence {dI,n}∞n=1 satisfying dI,n → +∞ as n → +∞. Thus, the eigenfunction se-
quence {ψdI,n

} weakly converges to some ψ(x) in L2(�). Hence, we have

∫
�

J (x − y)ψdI,n
(y)dy →

∫
�

J (x − y)ψ(y)dy uniformly on �̄ as n → +∞.

Note that∫
�

J (x − y)dy + γ (x) − β(x) − λp(dI,n)

dI,n

→
∫
�

J (x − y)dy uniformly on �̄ as n → +∞.

Following (2.5), there is

ψdI,n
(x) → ψ(x) uniformly on �̄ as n → +∞.

Since ∫
�

J (x − y)(ψdI,n
(y) − ψdI,n

(x))dy = γ (x) − β(x) − λp(dI,n)

dI,n

ψdI,n
(x) in �,

we have ∫
�

J (x − y)(ψdI,n
(y) − ψdI,n

(x))dy → 0 uniformly on �̄ as n → +∞.

According to Proposition 3.3 in [4], we know ψ(x) is a constant. Integrating both sides of (2.4)
over �, we have ∫

�

(β(x) − γ (x))ψdI,n
(x)dx = −λp(dI,n)

∫
�

ψdI,n
(x)dx.

Thus, there is

lim
n→+∞λp(dI,n) = 1

|�|
∫

(γ (x) − β(x))dx.
�
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Additionally, by the definition of λp(dI ), (iv) is obvious. Meanwhile, (v) is the direct conclusion 
of (i)-(iii). The proof is complete. �

Define an operator as follows

A[u](x) := dI

∫
�

J (x − y)(u(y) − u(x))dy − γ (x)u(x). (2.6)

We have the following result.

Proposition 2.9. If the operator A is defined by (2.6), then A is a resolvent-positive operator on 
X and S(A) < 0.

Proof. By the definition of the operator A, we know that A is a bounded linear operator on X. 
It is known that the operator A can generate a positive C0-semigroup, see [25]. Then, following 
from Theorem 2.3, we have that A is a resolvent-positive operator on X.

Let

σp := sup
ϕ∈L2(�)

ϕ �=0

− dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx − ∫
�

γ (x)ϕ2(x)dx∫
�

ϕ2(x)dx
.

Obviously, σp < 0. Let h(x) = −dI

∫
�

J (x − y)dy − γ (x). We may choose some function se-
quence {hn(x)}∞n=1 with ‖hn − h‖L∞(�) → 0 as n → +∞ such that the eigenvalue problem

An[ϕ](x) := dI

∫
�

J (x − y)ϕ(y)dy + hn(x)ϕ(x) = λϕ(x) in �

admits a principal eigenpair denoted by (σn
p , ϕn(x)), where σn

p → σp as n → +∞. Note that 
σn

p = S(An) for each given n (see Bates and Zhao [9]). Since σp < 0, there exists some δ > 0
such that σn

p < −δ provided n ≥ n0 for some n0 > 0. Thus, we have S(An) < −δ for n ≥ n0. 
Due to hn → h as n → +∞, we can obtain that S(An) → S(A) as n → +∞, see Lemma 3.1 in 
[41]. This implies that S(A) < 0. The proof is complete. �
2.2. The basic reproduction number

Consider the nonlocal dispersal problem

∂uI (x, t)

∂t
= dI

∫
�

J (x − y)(uI (y, t) − uI (x, t))dy − γ (x)uI (x, t), (2.7)

where x ∈ � and t > 0. If uI (x, t) is thought of as a density of the infected individuals at a point 
x at time t , J (x − y) is thought of as the probability distribution of jumping from location y to 
location x, then 

∫
�

J (y − x)u(y, t)dy is the rate at which the infected individuals are arriving 
at position x from all other places, and − 

∫
�

J (y − x)u(x, t)dy is the rate at which they are 
leaving location x to travel to all other sites. By the theory of semigroups of linear operators, 
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we know that the operator A can generate a uniformly continuous semigroup, denoted by T (t). 
Suppose that φ(x) is the distribution of initial infection at location x. Then the distribution of 
those infective members is at time t (as time evolution) is (T (t)φ) (x). Set F [ϕ](x) := β(x)ϕ(x)

for ϕ ∈ X. Hence, the distribution of new infection at time t is F [T (t)φ](x) and the total new 
infections are

∞∫
0

F [T (t)φ](x)dt.

Define

L[φ](x) :=
∞∫

0

F [T (t)φ](x)dt = β(x)

∞∫
0

T (t)φdt.

Then, inspired by the ideas of next generation operators (see [17,47–49]), we may define the 
spectral radius of L,

R0 = r(L),

as the basic reproduction number of system (1.1). We have the following result.

Theorem 2.10. R0 − 1 has the same sign as λ∗ := S(A + F ).

Proof. Since A is the generator of the semigroup T (t) on X and A is resolvent-positive, it then 
follows from Theorem 2.3 that

(λI − A)−1φ =
∞∫

0

e−λtT (t)φdt for any λ > S(A), φ ∈ X. (2.8)

Choosing λ = 0 in (2.8), we obtain

−A−1φ =
∞∫

0

T (t)φdt for all φ ∈ X. (2.9)

Then, the definition of the operator L implies that L = −FA−1. Let M := A + F . We know 
that M can generate a uniformly continuous positive semigroup, then M is resolvent-positive. 
Meanwhile, S(A) < 0. Thus, following from Theorem 2.4, we have S(M) has the same sign as 
r(−FA−1) − 1 = R0 − 1. The proof is complete. �

Note that if λp(dI ) is the principal eigenvalue of (2.1), then −λp(dI ) = S(A + F ). In this 
case, −λp(dI ) has the same sign as R0 − 1 according to Theorem 2.10. However, we still have 
the following result no matter λp(dI ) is the principal eigenvalue of (2.1) or not.

Corollary 2.11. λp(dI ) has the same sign as 1 − R0.
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In fact, this is easily seen from the proof in Proposition 2.9 that −λp(dI ) = S(A + F ). Thus, 
Corollary 2.11 is obvious from Theorem 2.10.

Additionally, following Theorems 2.8 and 2.10, we have the following corollaries.

Corollary 2.12. If β(x0) > γ (x0) for some x0 ∈ � and 
∫
�

β(x)dx <
∫
�

γ (x)dx. Then there 
exists some d∗ > 0 such that R0 > 1 for all 0 < dI < d∗ and R0 < 1 for dI > d∗.

Proof. Since β(x0) > γ (x0) for some x0 ∈ �, the continuity of β(x) and γ (x) gives that β(x) >
γ (x) for any x ∈ Br(x0), which Br(x0) is a ball with center x0 and radius r > 0. Let �∗ =
Br(x0) ∩ � and denote

ϕ̃ :=
{

C, x ∈ �∗,
0, x ∈ �\�∗

for some nonzero constant C. Then, by using the definition of λp(dI ) and the continuity of 
λp(dI ) on dI and taking ϕ̃ to be the test function, we have

λp(0) <
1

|�∗|
∫
�∗

(γ (x) − β(x))dx < 0.

Moreover, it follows from the definition of λp(dI ) that

λp(dI ) ≤ max
�̄

{γ (x) − β(x)}.

Then, there exists some d̂ > 0 such that

λp(dI ) < max
�̄

⎧⎨
⎩dI

∫
�

J (x − y)dy + γ (x) − β(x)

⎫⎬
⎭

for any dI > d̂ . According to Lemma 2.6, λp(dI ) is the principal eigenvalue of (2.1) for dI > d̂ . 
Thus, using Theorem 2.8, we have

lim
dI →+∞λp(dI ) = 1

|�|
∫
�

(γ (x) − β(x))dx.

Since λp(dI ) is nondecreasing on dI , there is some d∗ > 0 such that

λp(dI )

{
< 0 if 0 < dI < d∗,
> 0 if dI > d∗.

Using Corollary 2.11, we complete the proof. �
Corollary 2.13. If 

∫
�

β(x)dx >
∫
�

γ (x)dx, then R0 > 1 for any dI > 0. Further, if β(x) < γ (x)

for x ∈ �, then R0 < 1 for all dI > 0.
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This is easy seen from the definition of λp(dI ) and Corollary 2.11.

Lemma 2.14. Assume (μp, φ(x)) with φ(x) > 0 is a principal eigenpair of the weighted eigen-
value problem

−dI

∫
�

J (x − y)(φ(y) − φ(x))dy + γ (x)φ(x) = μβ(x)φ(x), x ∈ �. (2.10)

Then, μp is a unique positive principal eigenvalue and can be characterized by

μp = inf
ϕ∈L2(�)

ϕ �=0

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�

γ (x)ϕ2(x)dx∫
�

β(x)ϕ2(x)dx
.

Proof. Let (μi, φi(x)) (i = 1, 2) with φi(x) > 0 satisfying

−dI

∫
�

J (x − y)(φi(y) − φi(x))dy + γ (x)φi(x) = μiβ(x)φi(x).

Following these equations, it is easy to obtain that

(μ1 − μ2)

∫
�

β(x)φ1(x)φ2(x)dx = 0.

The positivity of φ1(x) and φ2(x) gives that μ1 = μ2. Further, according to (2.10), there is

μp =
dI

2

∫
�

∫
�

J (x − y)(φ(y) − φ(x))2dydx + ∫
�

γ (x)φ2(x)dx∫
�

β(x)φ2(x)dx
. (2.11)

Obviously, μp > 0.
In the following we prove that

μp = μ′
p := inf

ϕ∈L2(�)
ϕ �=0

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�

γ (x)ϕ2(x)dx∫
�

β(x)ϕ2(x)dx
.

In view of (2.11), we have μp ≥ μ′
p . Assume that μp > μ′

p . Then, there exists some μ∗ such 
that μ′

p < μ∗ < μp . Set

H(ϕ) = dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx +
∫
�

γ (x)ϕ2(x)dx

and define
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σ(μ) = sup
ϕ∈L2(�)

ϕ �=0

μ
∫
�

β(x)ϕ2(x)dx −H(ϕ)∫
�

ϕ2(x)dx
.

Then, it follows from (2.11) that σ(μp) = 0. Since μ∗ > μ′
p , there is some v ∈ L2(�) and v �= 0

satisfying

μ∗ >

dI

2

∫
�

∫
�

J (x − y)(v(y) − v(x))2dydx + ∫
�

γ (x)v2(x)dx∫
�

β(x)v2(x)dx
> 0.

This implies that σ(μ∗) > 0. On the other hand, by the definition of σ(μ), it is easy to see that 
σ(μ) is nondecreasing on μ. Due to μ∗ < μp , we have σ(μ∗) ≤ σ(μp). That is σ(μ∗) ≤ 0, 
which is a contradiction. This completes the proof. �
Corollary 2.15. If (μ∗, φ∗(x)) with φ∗(x) > 0 satisfies the following linear problem

{∫
RN J (x − y)(φ∗(y) − φ∗(x))dy = −μ∗γ (x)φ∗(x) in �,

φ∗(x) = 0 on R
N\�,

then μ∗ is unique and positive.

Theorem 2.16. If the nonlocal weighted eigenvalue problem

−dI

∫
�

J (x − y)(φ(y) − φ(x))dy + γ (x)φ(x) = μβ(x)φ(x), x ∈ �

admits a unique positive principal eigenvalue μp with positive eigenfunction and there exists 
some positive function ψdI

(x) ∈ L2(�) satisfying

L[ψdI
](x) = R0ψdI

(x),

then R0 = r(−FA−1) = 1
μp

and the following two conclusions hold:

(i) R0 → max
�̄

{ β(x)
γ (x)

} as dI → 0;

(ii) R0 →
∫
� β(x)dx∫
� γ (x)dx

as dI → +∞.

Proof. Note that

β(x)

∞∫
0

T (t)ψdI
dt = R0ψdI

(x).

In view of (2.9), we have −A−1ψdI
= ∫∞

0 T (t)ψdI
dt . Accordingly,

−β(x)A−1[ψd ](x) = R0ψd (x). (2.12)

I I
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Let ϕ = −A−1ψdI
. Obviously, ϕ is positive. It follows from (2.12) that −Aϕ = 1

R0
β(x)ϕ. That 

is, ( 1
R0

, ϕ) satisfies

−dI

∫
�

J (x − y)(ϕ(y) − ϕ(x))dy + γ (x)ϕ(x) = 1

R0
β(x)ϕ(x).

Following Lemma 2.14, it is clear that ( 1
R0

, ϕ) is the principal eigenpair of (2.10). Hence, R0 =
r(−FA−1) = 1

μp
. Meanwhile, R0 can be characterized by

R0 = sup
ϕ∈L2(�)

ϕ �=0

∫
�

β(x)ϕ2(x)dx

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx + ∫
�

γ (x)ϕ2(x)dx
. (2.13)

To prove (i) and (ii). Let R0 = R0(dI ) and η(x) = β(x)
γ (x)

. For any v ∈ L2(�) and v �= 0, we 
have

∫
�

β(x)v2(x)dx

dI

2

∫
�

∫
�

J (x − y)(v(y) − v(x))2dydx + ∫
�

γ (x)v2(x)dx

≤ max�̄ η(x)
∫
�

γ (x)v2(x)dx

dI

2

∫
�

∫
�

J (x − y)(v(y) − v(x))2dydx + ∫
�

γ (x)v2(x)dx

≤ max
�̄

η(x).

Hence, R0(dI ) ≤ max�̄ η(x) := η∗. To our goal, we only need to prove that lim inf
dI →0

R0(dI ) ≥ η∗. 

On the contrary, assume that there exists some ε > 0 such that

lim inf
dI →0

R0(dI ) ≤ η∗ − ε.

By the definition of liminf, there is some d0 > 0 such that

R0(dI ) ≤ η∗ − ε

2

for any dI ≤ d0. Additionally, the continuity of η(x) gives that there exists some x∗ ∈ �̄ so that

η∗ ≤ η(x) + ε

4
for any x ∈ Bρ(x∗),

in which Bρ(x∗) is a ball with center x∗ and radius ρ. Hence,

R0(dI ) ≤ η(x) − ε
for all x ∈ Bρ(x∗).
4
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It is noticed that for any x ∈ Bρ(x∗)

dI

∫
�

J (x − y)(ψdI
(x) − ψdI

(y))dy =
(

β(x)

R0(dI )
− γ (x)

)
ψdI

(x)

≥
(

β(x)

η(x) − ε
4

− γ (x)

)
ψdI

(x)

= εγ (x)

4(η(x) − ε
4 )

ψdI
(x)

≥ εγ (x)

4η∗
ψdI

(x).

On the other hand, it follows from García-Melián and Rossi [19] that the problem

{∫
RN J (x − y)(v(y) − v(x))dy = −μmax�̄{γ (x)}v(x) in Bρ(x∗),

v(x) = 0 on R
N\Bρ(x∗)

admits a principal eigenpair (μ̃, ϕ∗(x)) and 0 < μ̃ < 1
max�̄ γ (x)

. Now let

�(x) = ϕ∗(x)

infBρ(x∗) ϕ
∗(x)

, �(x) = KψdI
(x) for constant K > 1.

For the simple calculation, �(x) and �(x) are a pair of sub-super solutions of the following 
linear problem

{∫
RN J (x − y)(u(y) − u(x))dy = − εγ (x)

4dI η∗ u(x) in Bρ(x∗),
u(x) = 0 on R

N\Bρ(x∗)
(2.14)

when dI ≤ min{d0, ε
4μ̃η∗ }. Then, there is a positive solution of (2.14). Following Corollary 2.15, 

it is obtained that μ′
p := ε

4dI η∗ is a principal eigenvalue of (2.14) which depends on the parameter 
dI and this is a contradiction.

Next, we prove (ii). By the variational characterization of R0(dI ), it is easily seen that

R0(dI ) ≥
∫
�

β(x)dx∫
�

γ (x)dx
.

Since R0(dI ) is non-increasing on dI , the limit of R0(dI ) exists as dI → +∞. Notice that 
(R0(dI ), ψdI

(x)) satisfies

−dI

∫
�

J (x − y)(ψdI
(y) − ψdI

(x))dy + γ (x)ψdI
(x) = 1

R0(dI )
β(x)ψdI

(x). (2.15)

Choose some sequence {dI,n}∞n satisfying dI,n → +∞ as n → +∞ and normalize ψdI,n
(x) as 

‖ψd ‖L∞(�) = 1. Since there is some n0 > 0 such that

I,n
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�(x) :=
∫
�

J (x − y)dy +
γ (x) − β(x)

R0(dI,n)

dI,n

> 0

for all n ≥ n0, we have

ψdI,n
(x) =

∫
�

J (x − y)ψdI,n
(y)dy

�(x)

for all n ≥ n0. Thus, ψdI,n
(x) → ψ∗ strongly in L2(�) as n → +∞. This implies that ψ∗ satis-

fies ∫
�

J (x − y)(ψ∗(y) − ψ∗(x))dy = 0.

Hence, ψ∗ is a positive constant. Integrating both sides of (2.15) with dI,n and ψdI,n
(x) on �

yields that

∫
�

γ (x)ψdI,n
(x)dx = 1

R0(dI,n)

∫
�

β(x)ψdI,n
(x)dx.

Letting n → +∞, one has

lim
n→+∞R0(dI,n) =

∫
�

β(x)dx∫
�

γ (x)dx
.

This completes the proof. �
Remark 2.17. Comparing to the corresponding elliptic problem, the operator

L[ϕ](x) = β(x)

∞∫
0

T (t)ϕdt

is not a compact operator. Thus, r(L) may not be a principal eigenvalue of L and the basic 
reproduction number R0 cannot be characterized as (2.13) in general. However, (2.13) can still 
be used to determine the dynamic behavior of system (1.1) as a threshold value.

3. The dynamic behavior of system (1.1)(1.1)(1.1)

By the standard semigroup theory of linear bounded operator (Pazy [33]), we know from 
Kao, Lou and Shen [25] that (1.1) admits a unique nonnegative solution (S∗(x, t), I∗(x, t)) for 
all x ∈ � and t ∈ (0, Tmax) with Tmax the maximal existence time for solutions of (1.1), which is 
continuous with respect to x and t . That is, we have the following result.
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Proposition 3.1. Assume that (S0(·), I0(·)) ∈ X × X. Then there exists a Tmax > 0 such 
that system (1.1) has a unique solution (S∗(x, t), I∗(x, t)). Moreover, either Tmax = +∞ or 

lim
t→Tmax−0

‖(S∗(·, t), I∗(·, t))‖X×X = +∞.

Note that by the maximum principle, it is easy to get that both S∗(x, t) and I∗(x, t) are 
bounded on �̄ × (0, Tmax). Thus, Proposition 3.1 implies that Tmax = +∞. In fact, it follows 
from the second equation of (1.1) that I∗(x, t) satisfies

∂I∗(x, t)

∂t
≤ dI

∫
�

J (x − y)(I∗(y, t) − I∗(x, t))dy + (β(x) − γ (x))I∗(x, t). (3.1)

Consider the following initial value problem:

{
∂u(x,t)

∂t
= dI

∫
�

J (x − y)(u(y, t) − u(x, t))dy + (β(x) − γ (x))u(x, t), x ∈ �, t > 0,

u(x,0) = I0(x), x ∈ �.

(3.2)

By the maximum principle, the linear initial value problem (3.2) admits a unique solution u(x, t)
for all t > 0. According to the comparison principle, we have I∗(x, t) ≤ u(x, t) for x ∈ � and 
t > 0. On the other hand, following the first equation of (1.1), one can get that S∗(x, t) satisfies

∂S∗(x, t)

∂t
≤ dS

∫
�

J (x − y)(S∗(y, t) − S∗(x, t))dy + γ (x)I∗(x, t).

The analogous discussion can give that S∗(x, t) exists for all t > 0.
Additionally, by the strong maximum principle and the same discussion as above, we can 

obtain that S∗(x, t) > 0 and I∗(x, t) > 0 for x ∈ � and t > 0 for the assumption of S0(x) and 
I0(x) in the Introduction.

Let

N :=
∫
�

(S0(x) + I0(x))dx.

If we add up the first equation and the second equation of (1.1) and integrate it on �, then

∂

∂t

∫
�

(S∗(x, t) + I∗(x, t))dx = 0 for all t ≥ 0.

This implies that the total population size is constant, that is

∫
�

(S∗(x, t) + I∗(x, t))dx = N for all t ≥ 0.
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Definition 3.2. We say that a steady state (S̃(x), Ĩ (x)) of system (1.1) is globally stable if the 
solutions (S∗(x, t), I∗(x, t)) of (1.1) satisfy

lim
t→+∞(S∗(x, t), I∗(x, t)) = (S̃(x), Ĩ (x)) in X × X

for any initial data (S0(·), I0(·)) ∈ {X+ × X+}\ 
{(

N
|�| ,0

)}
.

In next subsection, we will consider the stationary problem of system (1.1):

{
dS

∫
�

J (x − y)(S(y) − S(x))dy = β(x)SI
S+I

− γ (x)I, x ∈ �,

dI

∫
�

J (x − y)(I (y) − I (x))dy = −β(x)SI
S+I

+ γ (x)I, x ∈ �.
(3.3)

3.1. The disease-free equilibrium

In this subsection, we discuss the existence and stability for the solution (S(x), I (x)) of (3.3)
with S(x) > 0 and I (x) = 0, which is called as the disease-free equilibrium of (1.1).

Lemma 3.3. System (3.3) admits a disease-free equilibrium (Ŝ, 0), which is unique and given by 
Ŝ = N

|�| on �̄.

Proof. Let (S̃, 0) be any disease-free equilibrium. Then, following (3.3), we obtain that

∫
�

J (x − y)(S̃(y) − S̃(x))dy = 0 in �.

It is well-known from [4, Proposition 3.3] that S̃(x) is a constant. And since 
∫
�

S̃(x)dx = N , we 
have S̃(x) = N

|�| on �̄. The proof is complete. �
Then, we have the following globally stability result.

Theorem 3.4. If R0 < 1, then all positive solutions of (1.1) converge to the disease-free equilib-

rium 
(

N
|�| ,0

)
as t → +∞ in X × X.

Proof. Since R0 < 1, we have −λp(dI ) = λ∗ < 0 (λ∗ is defined in Theorem 2.10) according 
to Corollary 2.11. That is λp(dI ) > 0. Recall that m(x) = −dI

∫
�

J (x − y)dy + β(x) − γ (x). 
Moreover, since m(x) is continuous on �̄, there exists some x0 ∈ �̄ such that m(x0) = max

x∈�̄

m(x). 

Define a function sequence as follows:

mn(x) =

⎧⎪⎨
⎪⎩

m(x0), x ∈ Bx0(
1
n
),

mn,1(x), x ∈ (Bx0(
2
n
)\Bx0(

1
n
)),

m(x), x ∈ �\B ( 2 ),
x0 n
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where Bx0(
1
n
) = {x ∈ �| |x − x0| < 1

n
}, mn,1(x) satisfies mn,1 ≤ m(x0), and mn,1(x) is continu-

ous in �. Indeed, mn,1(x) exists if only we take n is large enough, denoted by n ≥ n0 > 0. Thus, 
Lemma 2.5 implies that the eigenvalue problem

dI

∫
�

J (x − y)φ(y)dy + mn(x)φ(x) = −λφ(x)

admits a principal eigenpair, denoted by (λn
p(dI ), φn). According to Remark 2.7, there exists 

some n1 ≥ n0 such that for any n ≥ n1

λn
p(dI ) ≥ 1

2
λp(dI ) + ‖mn − m‖L∞ .

Normalizing φn(x) as ‖φn‖L∞(�) = 1 and letting u(x, t) = Me− 1
2 λp(dI )tφn(x), the direct calcu-

lation yields that

∂u(x, t)

∂t
− dI

∫
�

J (x − y)(u(y, t) − u(x, t))dy − β(x)uS∗
u + S∗

+ γ (x)u

≥ −1

2
λp(dI )Me− 1

2 λp(dI )tφn(x) − Me− 1
2 λp(dI )t

⎡
⎣dI

∫
�

J (x − y)φn(y)dy + mn(x)φn(x)

⎤
⎦

+(mn(x) − m(x))Me− 1
2 λp(dI )tφn(x)

≥
[
λn

p(dI ) − 1

2
λp(dI ) + (mn(x) − m(x))

]
Me− 1

2 λp(dI )tφn(x) ≥ 0,

provided n ≥ n1. Take M large enough such that u(x, 0) ≥ I0(x). Then, the comparison principle 
[54, Lemma 2.2] yields that I∗(x, t) ≤ u(x, t) for x ∈ � and t > 0. Consequently, we get that 
I∗(x, t) → 0 uniformly on �̄ as t → +∞.

It remains to prove that S∗(x, t) → N
|�| uniformly on �̄ as t → +∞. By the above discussion 

and the continuity of β(x) and γ (x), there exists some C0 > 0 such that

∥∥∥∥γ I∗ − βS∗I∗
S∗ + I∗

∥∥∥∥
L∞(�)

≤ C0e
− 1

2 λp(dI )t . (3.4)

Define

α = α(J,�) = inf
u∈L2(�),

∫
� u=0,u �≡0

dS

2

∫
�

∫
�

J (x − y)(u(y) − u(x))2dydx∫
�

u2(x)dx
. (3.5)

Following Proposition 3.4 and Lemma 3.5 in [4], we get

0 < α ≤ dS min
x∈�̄

∫
J (x − y)dy.
�
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Meanwhile, by the same method of the proof of Lemma 3.5 in [4], there holds

λp(dI ) ≤ min
�̄

⎛
⎝dI

∫
�

J (x − y)dy + γ (x) − β(x)

⎞
⎠ .

Set

S∗(x, t) = Ŝ1(x, t) + 1

|�|
∫
�

S∗(x, t)dx.

Due to I∗(x, t) → 0 uniformly on �̄ as t → +∞, we know 
∫
�

S∗(x, t)dx → N as t → +∞. 
Thus, one can get

1

|�|
∫
�

S∗(x, t)dx → N

|�| as t → +∞.

Note that 
∫
�

Ŝ1(x, t)dx = 0 and Ŝ1(x, t) satisfies

∂Ŝ1(x, t)

∂t
= dS

∫
�

J (x − y)(Ŝ1(y, t) − Ŝ1(x, t))dy + f (x, t), x ∈ �, t > 0, (3.6)

where

f (x, t) = γ (x)I∗ − β(x)S∗I∗
S∗ + I∗

− 1

|�|
∫
�

(
γ (x)I∗ − β(x)S∗I∗

S∗ + I∗

)
dx.

According to (3.4), there exists some positive constant c∗ > 0 such that

|f (x, t)| ≤ c∗e− 1
2 λp(dI )t .

Now, let W(t) = ∫
�

Ŝ2
1(x, t)dx. Hence, the direct calculation yields that

dW(t)

dt
= 2

∫
�

Ŝ1(x, t)
∂Ŝ1(x, t)

∂t
dx

= 2
∫
�

Ŝ1(x, t)

⎡
⎣dS

∫
�

J (x − y)(Ŝ1(y, t) − Ŝ1(x, t))dy + f (x, t)

⎤
⎦dx

= −dS

∫
�

∫
�

J (x − y)(Ŝ1(y, t) − Ŝ1(x, t))2dydx + 2
∫
�

Ŝ1(x, t)f (x, t)dx

≤ −2αW(t) + 4c∗Ne− 1
2 λp(dI )t .



2032 F.-Y. Yang et al. / J. Differential Equations 267 (2019) 2011–2051
This implies that

W(t) ≤W(0)e−2αt + ce−2αt

t∫
0

e(2α− 1
2 λp(dI ))sds

=
{

(W(0) + ct)e−2αt if λp(dI ) = 4α,

c1e
−2αt + c2e

− 1
2 λp(dI )t if λp(dI ) �= 4α

(3.7)

for some positive constants c, c1 and c2. On the other hand, it follows from (3.6) that

Ŝ1(x, t) = Ŝ1(x,0)e−a(x)t + e−a(x)t

t∫
0

ea(x)s

⎡
⎣dS

∫
�

J (x − y)Ŝ1(y, s)dy + f (x, s)

⎤
⎦ds, (3.8)

where a(x) = dS

∫
�

J (x − y)dy. By Hölder inequality, we have

∫
�

J (x − y)Ŝ1(y, s)dy ≤ c3W
1
2 (t) (3.9)

for some positive constant c3. Then, combining (3.7)-(3.9), it can be obtained that

|Ŝ1(x, t)| → 0 as t → +∞.

Consequently, we have

S∗(x, t) → N

|�| uniformly on �̄ as t → +∞.

This completes the proof. �
Remark 3.5. Theorem 3.4 implies that when R0 < 1, the disease will die out.

3.2. The endemic equilibrium

In this subsection, we consider the existence and uniqueness of the positive solutions of (3.3)
which is the so-called endemic equilibrium of (1.1). Also, the long-time behavior of positive 
solutions of (1.1) will be discussed.

Lemma 3.6. The pair of (S̃(x), Ĩ (x)) is a solution of (3.3) if and only if (S̃(x), Ĩ (x)) is a solution 
of
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k = dSS̃ + dI Ĩ , x ∈ �,

dI

∫
�

J (x − y)(Ĩ (y) − Ĩ (x))dy + β(x)S̃Ĩ

S̃ + Ĩ
− γ (x)Ĩ = 0, x ∈ �,

N =
∫
�

(S̃(x) + Ĩ (x))dx,

where k is some positive constant.

Proof. Suppose (S̃(x), Ĩ (x)) is a solution of (3.3). Then, adding the two equations of (3.3) yields 
that

∫
�

J (x − y)[(dSS̃(y) + dI Ĩ (y)) − (dSS̃(x) + dI Ĩ (x))]dy = 0, x ∈ �.

Thus, there is some constant k according to Proposition 3.3 in [4] such that

dSS̃(x) + dI Ĩ (x) = k, x ∈ �.

Meanwhile, the other cases are obvious.
In turn, if dSS̃(x) + dI Ĩ (x) = k, we have

dS

∫
�

J (x − y)(S̃(y) − S̃(x))dy + dI

∫
�

J (x − y)(Ĩ (y) − Ĩ (x))dy = 0, x ∈ �.

Then,

dS

∫
�

J (x − y)(S̃(y) − S̃(x))dy

= − dI

∫
�

J (x − y)(Ĩ (y) − Ĩ (x))dy = β(x)S̃Ĩ

S̃ + Ĩ
− γ (x)Ĩ ,

which implies that (S̃, Ĩ ) satisfies (3.3). This ends the proof. �
Let S(x) := S̃(x)

k
and I (x) := dI Ĩ (x)

k
, where k is defined as in Lemma 3.6. Then, we have the 

following result.

Lemma 3.7. The pair (S̃(x), Ĩ (x)) is a solution of (3.3) if and only if (S̃(x), Ĩ (x)) is a solution 
of
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 = dSS(x) + I (x), x ∈ �,

0 = dI

∫
�

J (x − y)(I (y) − I (x))dy + (β(x) − γ (x))I − dSβ(x)I 2

dSI + dI (1 − I )
, x ∈ �,

k = dIN∫
�
(dI S(x) + I (x))dx

.

(3.10)

Theorem 3.8. Suppose R0 > 1. Then (3.3) has a nonnegative solution (S̃(x), Ĩ (x)) which satis-
fies S̃(·), Ĩ (·) ∈ C(�̄) and Ĩ (x) �≡ 0 on �̄. Moreover, (S̃(x), Ĩ (x)) is a unique solution of (3.3), 
0 < S̃(x) < k

dS
and 0 < Ĩ(x) < k

dI
for some positive constant k dependent on dS, dI .

Proof. Since R0 > 1, we obtain that λp(dI ) < 0 according to Corollary 2.11. Without loss of 
generality, letting m(x) = −dI

∫
�

J (x − y)dy + β(x) − γ (x), we can find a function sequence 
{mn}∞n=1 such that ‖mn − m‖L∞(�) → 0 as n → +∞ and the eigenvalue problem

dI

∫
�

J (x − y)ϕn(y)dy + mn(x)ϕn(x) = −λϕn(x) in �

admits a principal eigenpair (λn
p(dI ), ϕn(x)). Furthermore, taking n large enough, provided n ≥

n0, we have

λn
p(dI ) ≤ 1

2
λp(dI ) − ‖mn − m‖L∞(�).

Now, constructing I(x) = δϕn(x) for some δ > 0 and a direct computation yields that

dI

∫
�

J (x − y)(I (y) − I (x))dx + (β(x) − γ (x))I − dSβ(x)I 2

dSI + dI (1 − I )

= −δλn
p(dI )ϕn(x) + δϕn(x)(m(x) − mn(x)) − dSβ(x)δ2ϕ2

n(x)

dSδϕn(x) + dI (1 − δϕn(x))

≥ −1

2
λp(dI )δϕn(x) − dSβ(x)δ2ϕ2

n(x)

dSδϕn(x) + dI (1 − δϕn(x))

≥ 0,

provided δ small enough. Denote I(x) = 1. Then, it is easy to verify that

dI

∫
�

J (x − y)(I (y) − I(x))dx + (β(x) − γ (x))I − dSβ(x)I
2

dSI + dI (1 − I)
= −γ (x) < 0,

which implies that I is a super solution. We can take δ > 0 sufficiently small such that I ≤ I on 
�̄. By the standard iteration method [12,21,54], there exists some I (·) ∈ L2(�) satisfying (3.10)
and 0 < I (x) ≤ 1.
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Now, we prove I (x) is continuous on �̄. Denote

�(x, I ) = β(x) − γ (x) − dSβ(x)I

dSI + dI (1 − I )
and �(x, I) = �(x, I )I.

By a direct computation, there is ∂I�(x, s) < 0 for all s > 0. For any x1, x2 ∈ �̄, we find that

dI

∫
�

(J (x1 − y) − J (x2 − y))I (y)dy − dI I (x1)

∫
�

(J (x1 − y) − J (x2 − y))dy

+ [�(x1, I (x1)) − �(x2, I (x1))]

= −
⎡
⎣−dI

∫
�

J (x2 − y)dy + ∂I�(x2, τ I (x1) + (1 − τ)I (x2))

⎤
⎦ (I (x1) − I (x2)),

(3.11)

in which 0 ≤ τ ≤ 1. Assume I (x1) ≥ I (x2) without loss of generality. Since ∂I�(x, s) < 0 for 
all s > 0, one can get

∂I�(x, s) = �(x, s) + ∂I�(x, s)s < �(x, s)

for all s > 0. Thus,

∂I�(x2, τ I (x1) + (1 − τ)I (x2)) ≤ �(x2, τ I (x1) + (1 − τ)I (x2)) < �(x2, I (x2)). (3.12)

Note that I (x2) satisfies

dI

∫
�

J (x2 − y)I (y)dy +
⎡
⎣−dI

∫
�

J (x2 − y)dy + �(x2, I (x2))

⎤
⎦ I (x2) = 0.

Since I > 0, there exists some δ > 0 such that

−dI

∫
�

J (x2 − y)dy + �(x2, I (x2)) < −δ. (3.13)

Hence, it follows from (3.12) and (3.13) that

−dI

∫
�

J (x2 − y)dy + ∂I�(x2, τ I (x1) + (1 − τ)I (x2) < −δ. (3.14)

Therefore, applying (3.11) and (3.14) yields that I (x) is continuous on �̄.
We claim that I (x) �= 1 for all x ∈ �̄. On the contrary, assume that there is x0 ∈ Int (�) such 

that I (x0) = 1. Thus, (3.10) yields that γ (x0) = dI

∫
�

J (x0 − y)(I (y) − I (x0))dy ≤ 0, which 
is a contradiction. On the other hand, if x0 ∈ ∂�, we can find a point sequence {xn} ⊂ � such 
that xn → x0 and I (xn) = 1, I (xn) → I (x0) as n → +∞. The same arguments can lead to a 
contradiction.



2036 F.-Y. Yang et al. / J. Differential Equations 267 (2019) 2011–2051
Next we prove the uniqueness of positive solutions of (3.3). Assume I1(x) is another solution 
of (3.3) and I (x) ≤ I1(x) ≤ 1 on �̄ without loss of generality. The other case can be obtained by 
the same method. Define

τ ∗ = inf{τ > 0| I (x) ≥ τI1(x), x ∈ �̄}.

By the boundedness of I (x) and I1(x), τ ∗ is well defined. We claim that τ ∗ ≥ 1. On the contrary, 
assume τ ∗ < 1. The direct calculation yields that

dI

∫
�

J (x − y)(τ ∗I1(y) − τ ∗I1(x))dy + (β(x) − γ (x))τ∗I1 − dSβ(x)τ ∗2I 2
1

dSτ ∗I1 + dI (1 − τ ∗I1)

= τ ∗β(x)

(
dSI1

dSI1 + dI (1 − I1)
− dSτ ∗I1

dSτ ∗I1 + dI (1 − τ ∗I1)

)
I1 > 0.

(3.15)

By the definition of τ ∗, there is some x0 ∈ � such that I (x0) = τ ∗I1(x0). Thus, we have

dI

∫
�

J (x0 − y)τ ∗I1(y)dy − dI

∫
�

J (x0 − y)dyτ ∗I1(x0) + (β(x0) − γ (x0))τ
∗I1(x0)

− β(x0)
dSτ ∗2I 2

1 (x0)

dSτ ∗I1(x0) + dI (1 − τ ∗I1(x0))

= dI

∫
�

J (x0 − y)(τ ∗I1(y) − I (y))dy ≤ 0.

(3.16)

Let ω(y) = τ ∗I1(y) − I (y) for y ∈ �. Combining (3.15) and (3.16), we have dI

∫
�

J (x0 −
y)ω(y)dy = 0. Thus, this implies that ω(y) = 0 almost everywhere in �. That is I (x) = τ ∗I1(x)

almost everywhere in �. Hence,

0 = dI

∫
�

J (x − y)(I (y) − I (x))dy + β(x)

(
1 − dSI (x)

dSI (x) + dI (1 − I (x))

)
I (x) − γ (x)I (x)

= τ ∗
[
dI

∫
�

J (x − y)(I1(y) − I1(x))dy + (β(x) − γ (x))I1(x) − dSβ(x)I 2
1 (x)

dSI1(x) + dI (1 − I1(x))

]

+τ ∗β(x)

(
dSI1(x)

dSI1(x) + dI (1 − I1(x))
− dSτ ∗I1(x)

dSτ ∗I1(x) + dI (1 − τ ∗I1(x))

)
I1(x)

= τ ∗β(x)

(
dSI1(x)

dSI1(x) + dI (1 − I1(x))
− dSτ ∗I1(x)

dSτ ∗I1(x) + dI (1 − τ ∗I1(x))

)
I1(x) > 0,

which is a contradiction. Thus, τ ∗ ≥ 1 and this implies that I (x) = I1(x). The uniqueness of 
positive solutions of (3.3) is obtained.



F.-Y. Yang et al. / J. Differential Equations 267 (2019) 2011–2051 2037
Note that S(·) = 1−I (·)
dS

∈ C(�̄). Meanwhile, (3.3) admits a unique solution pair (S̃, Ĩ ) and 

S̃(·) ∈ C(�̄), Ĩ (·) ∈ C(�̄). Additionally, there are 0 < Ĩ(x) < k
dI

, 0 < S̃(x) < k
dS

for some posi-
tive constant k dependent on dS and dI . The proof is complete. �

Finally we discuss the stability of stationary solution in the sense of Definition 3.2. First, we 
introduce a nonlocal dispersal problem as

{
∂u(x,t)

∂t
= d

∫
�

J (x − y)(u(y, t) − u(x, t))dy + (r(x) − c(x)u)u, x ∈ �, t > 0,

u(x,0) = u0(x), x ∈ �,
(3.17)

where d > 0 is a positive constant and u0(x) is a bounded continuous function.

Lemma 3.9. Assume r(·), c(·) ∈ C(�̄) and c(x) > 0 on �̄. Then the positive stationary solution 
u∗ of (3.17) is unique if and only if λp(d) < 0, in which

λp(d) = inf
ϕ∈L2(�),ϕ �=0

d
2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2dydx − ∫
�

r(x)ϕ2(x)dx∫
�

ϕ2(x)dx
.

Moreover, u∗ is globally asymptotically stable.

We can see the proof of Lemma 3.9 in [43,44]. Here, we omit it.

Theorem 3.10. Suppose dS = dI = d . The following alternatives hold:

(i) If R0 < 1, then all the positive solutions of (1.1) converge to the disease-free equilibrium 
( N
|�| , 0) as t → +∞ in X × X.

(ii) If R0 > 1, then all the positive solutions of (1.1) converge to (S̃(x), Ĩ (x)) as t → +∞ in 
X × X.

Proof. Note that (i) is contained in Theorem 3.4. Thus, we only need to prove (ii). Let v(x, t) =
S∗(x, t) + I∗(x, t). Then, it follows from (1.1) that

⎧⎪⎨
⎪⎩

∂v(x,t)
∂t

= d
∫
�

J (x − y)(v(y, t) − v(x, t))dy, x ∈ �, t > 0,∫
�

v(x, t)dx = N, t > 0,

v(x,0) ≥ 0, x ∈ �.

(3.18)

Obviously, N
|�| is the constant stationary solution of (3.18). Define

λ0 = inf
ψ∈L2(�),

∫
� ψ(x)dx=0,ψ �≡0

d
2

∫
�

∫
�

J (x − y)(ψ(y) − ψ(x))2dydx∫
�

ψ2(x)dx
.

By the same discussion as Theorem 3.6 in [4], we get

∥∥∥∥v(·, t) − N

|�|
∥∥∥∥ ∞

≤ C̃e−λ0t
L (�)
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for some positive constant C̃. Thus, v(x, t) → N
|�| uniformly on �̄ as t → +∞ due to the fact 

that v(·, t) ∈ C(�̄). Note that I∗(x, t) satisfies

{
∂I∗
∂t

= d
∫
�

J (x − y)(I∗(y, t) − I∗(x, t))dy + (β(x) − γ (x))I∗ − β(x)
v

I 2∗ , x ∈ �, t > 0,∫
�

I∗(x,0)dx > 0.

(3.19)

Since v(x, t) → N
|�| uniformly on �̄ as t → +∞, for any small ε > 0, we can find a large T > 0

such that

N

|�| − ε ≤ v(x, t) ≤ N

|�| + ε for all x ∈ �̄ and t ≥ T .

Inspired by the idea in Peng and Yi [35], we consider the following two auxiliary problems:

⎧⎨
⎩

∂I
∂t

= d
∫
�

J (x − y)(I (y, t) − I(x, t))dy + (β(x) − γ (x))I − β(x)
N
|�| +ε

I
2
, x ∈ �, t > 0,

I (x, T ) = I∗(x, T ) > 0, x ∈ �

(3.20)

and

⎧⎨
⎩

∂I
∂t

= d
∫
�

J (x − y)(I (y, t) − I (x, t))dy + (β(x) − γ (x))I − β(x)
N
|�| −ε

I 2, x ∈ �, t > 0,

I (x, T ) = I∗(x, T ) > 0, x ∈ �.

(3.21)

The comparison principle implies that I(x, t) and I (x, t) are respectively the upper and lower 
solutions of (3.19). Thus, we get

I (x, t) ≤ I∗(x, t) ≤ I(x, t) for all x ∈ �̄ and t ≥ T .

Since R0 > 1, we have λp(dI ) < 0. According to Lemma 3.9, there are two positive functions 
I ε(·) and I ε(·) ∈ C(�̄) such that

I(x, t) → I ε(x) and I (x, t) → I ε(x) uniformly on �̄ as t → +∞,

and I ε(x), I ε(x) are respectively the unique steady states of (3.20) and (3.21). That is, I ε(x) and 
I ε(x) satisfy

d

∫
�

J (x − y)(I ε(y) − I ε(x))dy + (β(x) − γ (x))I ε − β(x)

N
|�| + ε

I
2
ε = 0, x ∈ �

and
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d

∫
�

J (x − y)(I ε(y) − I ε(x))dy + (β(x) − γ (x))I ε − β(x)

N
|�| − ε

I 2
ε = 0, x ∈ �, (3.22)

respectively. By the same arguments as in [44], we know there exists some constant M inde-
pendent of ε such that I ε(x) ≤ M and I ε(x) ≤ M for all x ∈ �. Additionally, Iε(x) and I ε(x)

are monotone with respect to ε. In fact, assume ε1 < ε2, I ε1
(x) and I ε2

(x) are respectively the 
solutions of (3.22) as ε = ε1 and ε = ε2. The direct computation yields that

d

∫
�

J (x − y)(I ε1
(y) − I ε1

(x))dy + (β(x) − γ (x))I ε1
− β(x)

N
|�| − ε2

I 2
ε1

= β(x)

N
|�| − ε1

I 2
ε1

− β(x)

N
|�| − ε2

I 2
ε1

< 0.

By the uniqueness of positive solution of (3.22), we get I ε2
(x) < Iε1

(x) for x ∈ �. Meanwhile, 
the same arguments lead us to obtain that Iε(x) is strictly increasing on ε. Now, there exists a 
sequence {εn} with εn → 0 as n → +∞ such that

I εn
(x) → I1(x) as n → +∞ uniformly on �̄

and

I εn(x) → I2(x) as n → +∞ uniformly on �̄

for some positive continuous functions I1(x) and I2(x). Note that I1(x) and I2(x) satisfy the 
following equation

d

∫
�

J (x − y)(u(y) − u(x))dy + (β(x) − γ (x))u(x) − β(x)

N
|�|

u2(x) = 0 in �. (3.23)

Then, following Lemma 3.9, we know I1(x) = I2(x) due to the uniqueness of positive solutions 
of (3.23). Thus, we get that I∗(x, t) → I1(x) uniformly on �̄ as t → +∞ and S∗(x, t) → N

|�| −
I1(x) as t → +∞. By the uniqueness of positive solutions of (3.3), we have S̃(x) = N

|�| − I1(x)

and Ĩ (x) = I1(x). This completes the proof. �
Theorem 3.11. Assume β(x) = rγ (x) on �̄ for some positive constant r ∈ (0, +∞). If r ≤ 1, 
then the disease-free equilibrium is globally asymptotically stable.

Proof. If r < 1, then we can get λp(dI ) > 0 by the definition of λp(dI ). In this case, the result 
is obtained in Theorem 3.4. Thus, we only need discuss the case r = 1, that is β(x) = γ (x). In 
this case, λp(dI ) = 0, see [20]. Consequently, system (1.1) is equivalent to
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂S(x,t)
∂t

= dS

∫
�

J (x − y)(S(y, t) − S(x, t))dy + β(x)I 2(x,t)
S(x,t)+I (x,t)

in � × (0,+∞),

∂I (x,t)
∂t

= dI

∫
�

J (x − y)(I (y, t) − I (x, t))dy − β(x)I 2(x,t)
S(x,t)+I (x,t)

in � × (0,+∞),∫
�
(S(x, t) + I (x, t))dx = N in (0,+∞),

S(x,0) = S0(x) ≥ 0, I (x,0) = I0(x) ≥ 0 in �.

(3.24)

Firstly, we claim that

‖S∗(·, t)‖L∞(�) ≤ C0 and ‖I∗(·, t)‖L∞(�) ≤ C0 (3.25)

for some positive constant C0 independent on t ≥ 0. Indeed, applying the second equation of 
(3.24) yields that

∂I∗(x, t)

∂t
≤ dI

∫
�

J (x − y)(I∗(y, t) − I∗(x, t))dy.

Hence, we consider the following problem

{
∂u(x,t)

∂t
= dI

∫
�

J (x − y)(u(y, t) − u(x, t))dy, x ∈ �,

u(x,0) = max�̄ I0(x), x ∈ �.

Thus, by the comparison principle, there is I∗(x, t) ≤ u(x, t) ≤ max�̄ I0(x) for all x ∈ � and 
t ≥ 0. On the other hand, for the first equation of (3.24), one can get that

∂S∗(x, t)

∂t
= − dS

∫
�

J (x − y)dyS∗(x, t) + dS

∫
�

J (x − y)S∗(y, t)dy + β(x)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)

=: − a(x)S∗(x, t) + W(S∗, I∗),

where a(x) = dS

∫
�

J (x − y)dy and

W(S∗, I∗) = dS

∫
�

J (x − y)S∗(y, t)dy + β(x)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)
.

Consequently, we have

S∗(x, t) = S0(x)e−a(x)t + e−a(x)t

t∫
0

W(S∗, I∗)(x, s)ea(x)sds.

Since a(x) ≥ α (α is defined as (3.5)) and

W(S∗, I∗)(x, s) ≤dS‖J‖L∞(�)

∫
�

S∗(y, t)dy + β(x)I∗(x, t)

≤dSN‖J‖L∞(�) + max{β(x)I0(x)},

�̄
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for any x ∈ � and t ≥ 0, we have

S∗(x, t) ≤ max
�̄

S0(x) + dSN‖J‖L∞(�) + max�̄{β(x)I0(x)}
α

.

Now, due to the fact (3.25), by the same method in [35], we can obtain that

I∗(x, t) → 0 uniformly on �̄ as t → +∞.

So, 
∫
�

S∗(x, t)dx → N as t → +∞. Let

S∗(x, t) = S1(x, t) + 1

|�|
∫
�

S∗(x, t)dx.

The direct computation yields that S1(x, t) satisfies

∂S1

∂t
= dS

∫
�

J (x − y)(S1(y, t) − S1(x, t))dy + f (x, t) (3.26)

for x ∈ �, t > 0 and 
∫
�

S1(x, t)dx = 0, in which

f (x, t) = β(x)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)
− 1

|�|
∫
�

β(x)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)
dx.

Obviously, we have lim
t→+∞f (x, t) = 0. Note that

∫
�

S1(x, t)f (x, t)dx =
∫
�

β(x)S1(x, t)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)
dx := g(t).

Hence, there is

|g(t)| ≤
∫
�

∣∣∣∣β(x)S1(x, t)I 2∗ (x, t)

S∗(x, t) + I∗(x, t)

∣∣∣∣dx ≤ C

∫
�

|S1(x, t)|I∗(x, t)dx ≤ C̃

∫
�

I∗(x, t)dx

for some positive constant C̃. Thus, we have lim
t→+∞g(t) = 0. Let α be defined as (3.5) and 

h(x) = dS

∫
�

J (x − y)dy. Then, there is 0 < α ≤ min
�̄

h(x). Define U(t) = ∫
�

S2
1(x, t)dx. By 

direct calculation, we get

dU(t)

dt
= 2

∫
S1(x, t)

∂S1(x, t)

∂t
dx
�
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= 2
∫
�

S1(x, t)

⎡
⎣dS

∫
�

J (x − y)(S1(y, t) − S1(x, t))dy + f (x, t)

⎤
⎦dx

= −dS

∫
�

∫
�

J (x − y)(S1(y, t) − S1(x, t))2dydx + 2g(t)

≤ −2αU(t) + 2g(t).

Thus, we have

U(t) ≤ U(0)e−2αt + 2e−2αt

t∫
0

e2αsg(s)ds.

That is

‖S1(·, t)‖L2(�) ≤
⎛
⎝U(0)e−2αt + 2e−2αt

t∫
0

e2αsg(s)ds

⎞
⎠

1
2

.

This implies that lim
t→+∞‖S1(·, t)‖L2(�) = 0. On the other hand, following (3.26), there is

S1(x, t) = e−h(x)tS1(x,0) + e−h(x)t

t∫
0

eh(x)s

⎡
⎣dS

∫
�

J (x − y)S1(y, s)dy + f (x, s)

⎤
⎦ds.

Note that

lim
t→+∞ e−h(x)t

t∫
0

eh(x)sf (x, s)ds = lim
t→+∞

f (x, t)

h(x)
= 0

and

e−h(x)t

t∫
0

eh(x)s

∫
�

J (x − y)|S1(y, s)|dyds ≤ Ce−h(x)t

t∫
0

eh(x)s‖S1(·, s)‖L2(�)ds

for some positive constant C. Thus, we get lim
t→+∞|S1(x, t)| = 0 for all x ∈ �̄. This implies 

that lim
t→+∞S∗(x, t) = N

|�| uniformly on �̄ as t → +∞. On the other hand, noticed that system 

(3.24) is quasi-monotone increasing, then the same arguments in [35] can get that ( N
|�| , 0) is 

asymptotically stable. This ends the proof. �
Remark 3.12. Note that when dS = dI , the epidemic disease will persist as R0 > 1 and die out 
as R0 < 1. When dS �= dI , Theorem 3.4 gives that the epidemic disease will be extinct as R0 < 1. 
The case R0 > 1 (dS �= dI ) is very complicated, we will study it in a further work.
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Remark 3.13. It is known from Theorem 3.4 that the epidemic disease always dies out as R0 < 1. 
But for the case R0 = 1, it is open. However, if the rate of the disease transmission is propor-
tional to the rate of the disease recovery (i.e. β(x) = rγ (x) for some positive constant r), then 
Theorem 3.11 implies that the epidemic disease will be completely extinct as R0 ≤ 1 (i.e. r ≤ 1). 
For the case R0 > 1 (i.e. r > 1), we conjecture that the epidemic disease will be persistence and 
leave it as an open problem.

4. The effect of the large diffusion rates

In this section, we discuss the effect of the large diffusion rate on the transmission of the 
disease. Throughout this section, we always assume that 

∫
�

β(x)dx >
∫
�

γ (x)dx. Following 
Corollary 2.13, we know R0 > 1 for all dI > 0 in this condition. Then, the positive solution 
(S̃, Ĩ ) of (3.3) exists.

Theorem 4.1. If we let dS, dI → +∞, then

(S̃, Ĩ ) →
(

N

|�|
∫
�

γ (x)dx∫
�

β(x)dx
,

N

|�|
(

1 −
∫
�

γ (x)dx∫
�

β(x)dx

))
.

Proof. Arguing as above, we know if (S̃, Ĩ ) is the solution of (3.3), then S̃, Ĩ ∈ C(�̄). Since ∫
�
(S̃(x) + Ĩ (x))dx = N , the continuity of S̃, Ĩ gives that

‖S̃(·)‖L∞(�) ≤ M̃ and ‖Ĩ (·)‖L∞(�) ≤ M̃,

where M̃ is a positive constant independent of dS and dI .
Choosing sequences {dS,n}∞n=1 and {dI,n}∞n=1 with dS,n → +∞ and dI,n → +∞ as n → +∞. 

Meanwhile, the corresponding solution of (3.3) is (S̃n, Ĩn). Thus, there are subsequences still 
denoted by S̃n and Ĩn, and S̃∗, Ĩ∗ such that

S̃n(x) → S̃∗(x) and Ĩn(x) → Ĩ∗(x) weakly in L2(�).

Note that ∥∥∥∥∥β(·)Ĩn(·)S̃n(·)
Ĩn(·) + S̃n(·)

− γ (·)Ĩn(·)
∥∥∥∥∥

L∞(�)

≤ C∗

for some positive constant C∗ dependent only on β, γ and �. Let

gn(x) = β(x)Ĩn(x)S̃n(x)

Ĩn(x) + S̃n(x)
− γ (x)Ĩn(x).

Then, S̃n(x) and Ĩn(x) satisfy

S̃n(x) =
⎡
⎣∫ J (x − y)dy

⎤
⎦

−1⎡
⎣∫ J (x − y)S̃n(y)dy − gn(x)

dS,n

⎤
⎦ (4.1)
� �



2044 F.-Y. Yang et al. / J. Differential Equations 267 (2019) 2011–2051
and

Ĩn(x) =
⎡
⎣∫

�

J (x − y)dy

⎤
⎦

−1⎡
⎣∫

�

J (x − y)Ĩn(y)dy + gn(x)

dI,n

⎤
⎦ , (4.2)

respectively. It is well-known that

∫
�

J (x − y)S̃n(y)dy →
∫
�

J (x − y)S̃∗(y)dy,

∫
�

J (x − y)Ĩn(y)dy →
∫
�

J (x − y)Ĩ∗(y)dy

for all x ∈ � as n → +∞. Thus, following from (4.1) and (4.2), we have

S̃n(x) → S̃∗(x) and Ĩn(x) → Ĩ∗(x) in C(�̄) as n → +∞.

On the other hand, S̃n(x) and Ĩn(x) satisfy

∫
�

J (x − y)(S̃n(y) − S̃n(x))dy = gn(x)

dS,n

and ∫
�

J (x − y)(Ĩn(y) − Ĩn(x))dy = −gn(x)

dI,n

.

Thus, S̃∗(x) and Ĩ∗(x) satisfy

∫
�

J (x − y)(S̃∗(y) − S̃∗(x))dy = 0 and
∫
�

J (x − y)(Ĩ∗(y) − Ĩ∗(x))dy = 0

for x ∈ �, respectively. This implies that S̃∗(x) and Ĩ∗(x) are all constants, still denoted by S̃∗
and Ĩ∗ for the convenience.

Below, we need to show that S̃∗ and Ĩ∗ are all positive.

Case I: Assume Ĩ∗ = 0, S̃∗ > 0. Let În(x) = Ĩn(x)

‖Ĩn(·)‖L∞(�)

. Thus, În(x) satisfies

dI,n

∫
�

J (x − y)(În(y) − În(x))dy + β(x)S̃n(x)În(x)

S̃n(x) + Ĩn(x)
− γ (x)În(x) = 0 in �. (4.3)

The same arguments as above yield that În(x) → 1 as n → +∞ for all x ∈ �. Integrating both 
sides of (4.3) over � and letting n → +∞, we have 

∫
�

β(x)dx = ∫
�

γ (x)dx, which is a contra-
diction.

Case II: Assume Ĩ∗ > 0, S̃∗ = 0. Integrating (4.3) on � and letting n → +∞, we have a 
contradiction with − 

∫
γ (x)dx = 0.
�
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Case III: Assume Ĩ∗ = 0, S̃∗ = 0. This is impossible because of 
∫
�
(S̃n(x) + Ĩn(x))dx = N .

Thus, we get S̃∗ > 0 and Ĩ∗ > 0. Meanwhile, we know

∫
�

β(x)S̃∗Ĩ∗
S̃∗ + Ĩ∗

dx =
∫
�

γ (x)Ĩ∗dx and S̃∗ + Ĩ∗ = N

|�| .

Hence, the direct computation gives that

S̃∗ = N
∫
�

γ (x)dx

|�| ∫
�

β(x)dx
, Ĩ∗ = N

|�|
(

1 −
∫
�

γ (x)dx∫
�

β(x)dx

)
.

This completes the proof. �
Theorem 4.2. If dS → +∞, then

(S̃(x), Ĩ (x)) →
(

dIN∫
�
(dI + θ∗(x))dx

,
Nθ∗(x)∫

�
(dI + θ∗(x))dx

)
,

where θ∗(x) is the unique positive solution of the following problem

dI

∫
�

J (x − y)(u(y) − u(x))dy + (β(x) − γ (x))u − β(x)u2

dI + u
= 0 in �. (4.4)

Proof. Inspired by the method in [34], let θ(x) = dSI (x). Then, according to (3.10), we have

dI

∫
�

J (x − y)(θ(y) − θ(x))dy + (β(x) − γ (x))θ − β(x)θ2

θ + dI (1 − d−1
S θ)

= 0 in �. (4.5)

Note that the positive solution θ(x) of (4.5) is monotone increasing on dS . Indeed, for any 
dS1 < dS2 , letting θ1(x) and θ2(x) be solutions of (4.5) corresponding to dS = dS1 and dS = dS2

respectively, then there is

dI

∫
�

J (x − y)(θ1(y) − θ1(x))dy + (β(x) − γ (x))θ1 − β(x)θ2
1

θ1 + dI (1 − d−1
S2

θ1)

= β(x)θ2
1

θ1 + dI (1 − d−1
S1

θ1)
− β(x)θ2

1

θ1 + dI (1 − d−1
S2

θ1)
> 0.

This gives that θ1(x) is a subsolution of (4.5) with dS = dS2 . Thus, according to the super-sub 
solutions method ([21]) and the uniqueness of solution of (4.5), we have θ1(x) < θ2(x) for all 
x ∈ �. Since θ(·) ∈ C(�̄), there exists some x0 ∈ �̄ such that θ(x0) = max

�̄

θ(x). Then, it follows 

from (4.5) that
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(β(x0) − γ (x0))θ(x0) − β(x0)θ
2(x0)

θ(x0) + dI (1 − d−1
S θ(x0))

≥ 0.

That is

θ(x0) ≤ dI (β(x0) − γ (x0))

γ (x0)
(1 − d−1

S θ(x0))

≤ dI |β(x0) − γ (x0)|
γ (x0)

.

Thus, we have

θ(x) ≤ dI max
�̄

( |β(x) − γ (x)|
γ (x)

)
.

Since θ(x) is monotone increasing and uniformly bounded on dS , there exists some sequences 
{dS,n}∞n=1 satisfying dS,n → +∞ as n → +∞ such that θn(x) = dS,nIn(x) → θ∗(x) in C(�̄)

for some nonnegative function θ∗(x) as n → +∞, where θn(x) is the solution of (4.5) with 
dS = dS,n. Thus, θ∗(x) is the unique positive solution of (4.4). We claim that θ∗(x) �= 0. On the 
contrary, assume that θ∗(x) = 0. Let

θ̂n(x) = θn(x)

‖θn‖L∞(�)

.

Then, θ̂n(x) satisfies

dI

∫
�

J (x − y)(θ̂n(y) − θ̂n(x))dy + (β(x) − γ (x))θ̂n − β(x)θ̂nθn

θn + dI (1 − d−1
S,nθn)

= 0 in �.

Note that there is some θ̂ (x) > 0 such that θ̂n(x) → θ̂ (x) as n → +∞ and θ̂ satisfies

dI

∫
�

J (x − y)(θ̂(y) − θ̂ (x))dy + (β(x) − γ (x))θ̂(x) = 0 in �.

It follows from Lemma 2.5 that λp(dI ) = 0. This is a contradiction according to the discussion 
in Section 3.

On the other hand, we know θn(x) = dS,nIn(x). Thus, there holds In(x) = θn(x)
dS,n

→ 0 as n →
+∞. Due to dS,nSn(x) = 1 − In(x), we have dS,nSn(x) → 1 as n → +∞. Hence, applying 
(3.10) yields that

S̃n(x) = kSn(x) = dINSn(x)∫
�
(dI Sn(x) + In(x))dx

= dINdS,nSn(x)∫
�
(dI dS,nSn(x) + dS,nIn(x))dx

and

Ĩn(x) = k

d
In(x) = NIn(x)∫

(d S (x) + I (x))dx
= NdS,n(x)In(x)∫

(d d S (x) + d I (x))
.

I � I n n � I S,n n S,n n
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Consequently, we obtain that

S̃n(x) → dIN∫
�
(dI + θ∗(x))dx

as n → +∞

and

Ĩn(x) → Nθ∗(x)∫
�
(dI + θ∗(x))dx

as n → +∞.

This ends the proof. �
Theorem 4.3. If dI → +∞, then

(S̃(x), Ĩ (x)) → (S∗(x), I ∗) in C(�̄),

where S∗(x) is a positive function and I ∗ is a positive constant. Moreover, (S∗(x), I ∗) satisfies

{
dS

∫
�

J (x − y)(S∗(y) − S∗(x))dy + γ (x)I ∗ − β(x)S∗(x)I∗
S∗(x)+I∗ = 0, x ∈ �,∫

�
(S∗(x) + I ∗)dx = N.

(4.6)

Proof. Choose some sequence {dI,n}∞n=1 satisfying dI,n → +∞ as n → +∞ and let (S̃n(x),

Ĩn(x)) be the solutions corresponding to system (3.3). By the same discussion as in Theorem 4.1, 
we have that there is some constant I ∗ such that Ĩn(x) → I ∗ as n → +∞. On the other hand, 
since S̃n(x) is bounded, we can find some subsequence still denoted by {S̃n}∞n=1, weakly con-
verges to some nonnegative function S∗(x) in L2(�). Now, denote

a(x) = dS

∫
�

J (x − y)dy, hn(x) = dS

∫
�

J (x − y)S̃n(y)dy,

Gn(x) = (a(x) − γ (x) + β(x))Ĩn(x) − hn(x), Hn(x) = γ Ĩ 2
n (x) + hn(x)Ĩn(x).

Thus, we have

hn(x) → dS

∫
�

J (x − y)S∗(y)dy as n → +∞

and

Gn(x) → (a(x) − γ (x) + β(x))I ∗ − dS

∫
�

J (x − y)S∗(y)dy as n → +∞.

Meanwhile,

Hn(x) → γ I ∗2 + dSI ∗
∫

J (x − y)S∗(y)dy as n → +∞.
�
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Seen from the first equation of (3.3), Sn(x) satisfies

a(x)S2
n(x) + Gn(x)Sn(x) − Hn(x) = 0.

Consequently, we have

Sn(x) = −Gn(x) +√
G2

n(x) + 4a(x)Hn(x)

2a(x)
.

This implies that

Sn(x) → S∗(x) in C(�̄) as n → +∞.

Additionally, the same arguments as in Theorem 4.1 yield that S∗(x) > 0 and I ∗ > 0. Obviously, 
(S∗(x), I ∗) satisfies (4.6). The proof is complete. �
5. Discussion

In the current paper, we firstly give the basic reproduction number R0 of system (1.1), which is 
an important threshold value to discuss the dynamic behavior of (1.1). We prove that the disease 
persists when R0 > 1, but when R0 < 1, the disease dies out. Moreover, we also consider the 
effect of the large diffusion rates for the susceptible individuals or the infected individuals on 
the disease transmission and find that the nonlocal movement of the susceptible individuals or 
infected individuals will enhance the persistence of the disease.

In Section 2, we have proved the main result Theorem 2.10, and established the relations 
between R0 and λp(dI ) even if λp(dI ) is not always a principal eigenvalue of the operator M
defined by (2.1). Note that if β(x) = β and γ (x) = γ are all positive constants, then the linear 
problem

−dI

∫
�

J (x − y)(u(y) − u(x))dy + γ u(x) = μβu(x) in �

admits a principal eigenpair (μp, ϕ(x)), where μp = γ
β

. Thus, it follows from Lemma 2.16 that 

R0 = 1
μp

= β
γ

in this case. By the same discussion as Subsections 3.1 and 3.2, we have that the 
disease persists if β > γ and the disease dies out if β < γ . But when the spatial heterogeneity 
is concerned, we know from Corollaries 2.12 and 2.13 that the disease may persist even though 
there are some sites such that β(x) < γ (x). That is, the spatial heterogeneity can enhance the 
spread of the disease. In fact, from [2], x is a low-risk site if the local disease transmission 
rate β(x) is lower than the local disease recovery rate γ (x), and the high-risk site is defined in 
reverse. Meanwhile, � is a low-risk domain if 

∫
�

β(x)dx ≤ ∫
�

γ (x)dx and a high-risk domain 
if 
∫
�

β(x)dx >
∫
�

γ (x)dx. In the view of the biological point, Corollary 2.12 implies that the 
disease may spread even if the habitat of the species is low-risk as long as there is some high-risk 
site and the movement of the infected individuals is slow. But the quick movement of the infected 
individuals may suppress the spread of the disease. Following from Corollary 2.13, we know that 
the disease will always persist if the species live in a high-risk domain and be extinct if the habitat 
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of the species is filled with the low-risk sites. We hope these results will be useful for the disease 
control.

Additionally, due to the effect of the nonlocal dispersal for system (1.1), we only discuss the 
effect of the large diffusion rates of the susceptible individuals or the infected individuals on 
the disease transmission. Other cases are left for future work. Also, we know that the diffusive 
ability of the species is different, here the diffusive ability represents the diffusive rates and the 
dispersal distance. Thus, it is more realistic to discuss that the susceptible individuals and the 
infected individuals have different dispersal strategy, that is the dispersal kernel functions are 
distinct from each other. This problem is of interest and it may have more complex dynamic 
results.
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