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Abstract

In this paper we study a host-generalist parasitoid model with Holling II functional response where the 
generalist parasitoids are introduced to control the invasion of the hosts. It is shown that the model can 
undergo a sequence of bifurcations including cusp, focus and elliptic types degenerate Bogdanov-Takens 
bifurcations of codimension three, and a degenerate Hopf bifurcation of codimension at most two as the 
parameters vary, and the model exhibits rich dynamics such as the existence of multiple coexistent steady 
states, multiple coexistent periodic orbits, homoclinic orbits, etc. Moreover, there exists a critical value for 
the carrying capacity of generalist parasitoids such that: (i) when the carrying capacity of the generalist 
parasitoids is smaller than the critical value, the invading hosts can always persist despite of the predation 
by the generalist parasitoids, i.e., the generalist parasitoids cannot control the invasion of hosts; (ii) when 
the carrying capacity of the generalist parasitoids is larger than the critical value, the invading hosts either 
tend to extinction or persist in the form of multiple coexistent steady states or multiple coexistent periodic 
orbits depending on the initial populations, i.e., whether the invasion can be stopped and reversed by the 
generalist parasitoids depends on the initial populations; (iii) in both cases, the generalist parasitoids always 
persist. Numerical simulations are presented to illustrate the theoretical results.
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1. Introduction

Biological invasions have been an interesting and important issue since the pioneering work 
of Fisher [8], and many mathematical models have been proposed to identify factors that humans 
should concentrate on to stop invasions and even sometimes to reverse them (Hastings [11]). 
Owen and Lewis [18] firstly proposed a series of reaction-diffusion predator-prey models to de-
rive conditions under which specialist predators can slow, stall or reverse a spatial invasion of the 
prey. They examined the types of functional response which give such solutions and the circum-
stances under which the models are appropriate, and found that a slowdown of invasion can be 
obtained if the functional response is linear (Type I) and if the preys show a weak Allee effect 
in their growth. Later, Fagan et al. [7] confirmed the importance of Type I functional response 
and the Allee effect in stopping or reversing the process for specialist predators. However, the 
control capacity of a generalist predator depends on many factors, such as its preference, spatial 
and temporal scales, etc. (Walde [24]).

Motivated by the invasion of leaf-mining microlepidopteron attacking horse chestnut trees in 
Europe (in particular in France) and the need for a biological control and followed Owen and 
Lewis [18], Magal et al. [17] investigated the following host-parasitoid model with Holling Type 
II functional response

u̇ = r1u(1 − u
K1

) − ξuv
1+ξhu

,

v̇ = r2v(1 − v
K2

) + γ ξuv
1+ξhu

,
(1.1)

where u(t) and v(t) denote densities of the hosts (leafminers Cameraria orhidella) and generalist 
parasitoids (Minotetrastichus frontalis) at time t , respectively. r1 represents the intrinsic growth 
rate of the hosts in absence of parasitoids, r2 represents the intrinsic growth rate of the parasitoids 
in absence of hosts, K1 denotes the carrying capacity of the host population, K2 denotes the 
carrying capacity of the parasitoid population. ξ is the encounter rate of hosts and parasitoids, γ
is the conversion rate of parasitoids, h describes the harvesting time. ri , Ki (i = 1, 2), γ , ξ , h are 
all positive constants.

Magal et al. [17] analyzed the number and stability of equilibria in system (1.1) and showed 
that the model always predicts persistence of the parasitoids. Special cases in which small car-
rying capacity leads to complex dynamical behaviors were studied by numerical simulations. 
Depending on the parameter values, the model may predict that the hosts persist and go extinct 
or there is something like an Allee effect where the outcome depends on the initial host density. 
Most recently, Seo and Wolkowicz [22] revisited system (1.1), gave a more detailed analysis 
of the model, and revised the criteria for control strategies of the leaf miner population pro-
posed by Magal et al. [17]. They obtained analytical conditions that divide the K1K2−plane 
into regions in which there are zero, one, two, or three coexistence equilibria and considered the 
local and global stability of these equilibria. They then showed that the model displays interest-
ing dynamical behavior using a bifurcation theory approach and provided analytical expressions 
for fold and Hopf bifurcations and for the criticality of the Hopf bifurcations. Moreover, their 
numerical results show very interesting dynamics resulting from codimension one bifurcations 
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including Hopf, fold, transcritical, cyclic-fold, and homoclinic bifurcations as well as codimen-
sion two bifurcations including Bautin and Bogdanov-Takens bifurcations, and a codimension 
three Bogdanov-Takens bifurcation. Although plentiful results have been shown for system (1.1), 
the complete nonlinear dynamics and bifurcations still remain unknown and merit further inves-
tigation. This is the objective of this paper.

For simplicity, we first nondimensionalize system (1.1) with the following scaling

x = u

K1
, y = r2v

r1K2
, t̄ = r1t.

Dropping the bar of t̄ , model (1.1) becomes

ẋ = x(1 − x − by
a+x

),

ẏ = y(δ − y + cx
a+x

),
(1.2)

in which

a = 1

K1ξh
, b = K2

K1r2h
, c = γ

r1h
, δ = r2

r1
,

where a, b, c, δ are all positive constants. For system (1.2) (i.e., system (1.1)), we will show 
that there are cusp, focus and elliptic types of nilpotent singularities of codimension three and a 
weak focus of multiplicity at most two for various parameter values, and the model undergoes 
a sequence of bifurcations including cusp, focus and elliptic types degenerate Bogdanov-Takens 
bifurcations of codimension three, a Hopf bifurcation, and a degenerate Hopf bifurcation of codi-
mension at most two as the parameters vary.

The paper is organized as follows: In section 2, we analyze the existence and type of equilibria 
in model (1.2). In section 3, we discuss various possible bifurcations of model (1.2), and show 
that the model exhibits cusp, focus and elliptic types degenerate Bogdanov-Takens bifurcations 
of codimension three, a Hopf bifurcation, and a degenerate Hopf bifurcation of codimension at 
most two as the parameters vary. The paper ends with a brief discussion in section 4.

2. Equilibria and their types

By the biological implications, we only consider system (1.2) in R2+ = {(x, y)|x � 0, y � 0}. 
It is easy to see that the positive invariant and bounded region of system (1.2) is

� = {(x, y)|0 ≤ x ≤ 1,0 ≤ y ≤ δ + c

a + 1
}.

Notice that system (1.2) always has three boundary equilibria (0, 0), (1, 0) and (0, δ) for 
all permissible parameters. The Jacobian matrix of system (1.2) at any equilibrium E(x, y) of 
system (1.2) takes the form

J (E) =
⎛⎝ 1 − 2x − aby

(a+x)2 − bx
a+x

acy
2 δ − 2y + cx

a+x

⎞⎠ ,
(a+x)
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Fig. 2.1. Three boundary equilibria: A2 is an unstable hyperbolic node, A3 is a hyperbolic saddle, and (a) A1 is a 
hyperbolic saddle if δ < a

b
; (b) A1 is a stable hyperbolic node if δ > a

b
.

and

Det(J (E)) = (1 − 2x − aby

(a + x)2 )(δ − 2y + cx

a + x
) + abcxy

(a + x)3 ,

Tr(J (E)) = 1 + δ − 2(x + y) + cx

a + x
− aby

(a + x)2 .

It implies that E(x, y) is an elementary equilibrium if Det(J (E)) �= 0, a hyperbolic saddle if 
Det(J (E)) < 0, or a degenerate equilibrium if Det(J (E)) = 0, respectively.

Considering the Jacobian matrix of system (1.2) at these boundary equilibria, we can easily 
get the following lemma.

Lemma 2.1. System (1.2) always has three boundary equilibria A1(0, δ), A2(0, 0) and A3(1, 0). 
A2 is always a hyperbolic unstable node, A3 is always a hyperbolic saddle, and A1 is a hyper-
bolic saddle if δ < a

b
, a hyperbolic stable node if δ > a

b
and a degenerate equilibrium if δ = a

b
. 

The phase portraits are given in Fig. 2.1.

Remark 2.2. When δ < a
b

, i.e., K2 < r1
ξ

, from Lemma 2.1 and Fig. 2.1(a), we can see that the 
invading hosts can always persist in spite of the predation of hosts by generalist parasitoids if the 
carrying capacity for generalist parasitoids is smaller than a critical value r1

ξ
, i.e., the generalist 

parasitoids cannot control the invasion of hosts; When δ ≥ a
b

, i.e., K2 ≥ r1
ξ

, from Lemma 2.1
and Fig. 2.1(b), we can see that the invading hosts can go extinct because of the predation of the 
hosts by generalist parasitoids if the carrying capacity for generalist parasitoids is larger than the 
critical value r1

ξ
, i.e., the generalist parasitoids can stop or reverse the invasion of hosts. In both 

cases, the generalist parasitoids always persist.

Lemma 2.3. If δ = a
b

, then A1(0, δ) is a degenerate equilibrium. Moreover,

(I) if c �= a−a2
, then (0, δ) is a saddle-node, which includes a stable parabolic sector;
b



4622 C. Xiang et al. / J. Differential Equations 268 (2020) 4618–4662
Fig. 2.2. Three boundary equilibria when δ = a
b

, where A2 is an unstable hyperbolic node, A3 is a hyperbolic saddle, 
and (a) A1 is a saddle-node which includes a stable parabolic sector if c �= a−a2

b
; (b) A1 is a saddle-node which includes 

a stable parabolic sector if c = a−a2

b
and a = 1

2 ; (c) A1 is a degenerate saddle if c = a−a2

b
and 0 < a < 1

2 ; (d) A1 is a 
stable degenerate node if c = a−a2

b
and 1

2 < a < 1.

(II) if c = a−a2

b
, 0 < a < 1 and

(i) if a = 1
2 , then (0, δ) is a saddle-node, which includes a stable parabolic sector;

(ii) if 0 < a < 1
2 , then (0, δ) is a degenerate saddle;

(iii) if 1
2 < a < 1, then (0, δ) is a stable degenerate node.

The phase portraits are given in Fig. 2.2.

Proof. When δ = a
b

, we have Det(J (0, δ)) = 0 and Tr(J (0, δ)) = −δ. Firstly, letting (u, v) =
(x, y − δ) to translate (0, δ) to the origin, system (1.2) becomes

u̇ = u(1 − u − b(v+ a
b
)

a+u
),

v̇ = (v + a )(−v + cu ).
(2.1)
b a+u
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Secondly, making the following transformations

u = a

c
X, v = X + Y, t = −a

b
τ,

and still denoting τ by t , we obtain the Taylor expansions of system (2.1) around the origin as 
follows

Ẋ = â20X
2 + â11XY + â30X

3 + â21X
2Y + â40X

4 + â31X
3Y + f (X,Y ),

Ẏ = Y + b̂20X
2 + b̂11XY + b̂02Y

2 + b̂30X
3 + b̂21X

2Y + b̂40X
4 + b̂31X

3Y + g(X,Y ),
(2.2)

where f, g are smooth functions in at least order five of (X, Y), and

â20 = b(−a + a2 + bc)

a2c
, â11 = b2

a2 , â30 = b(a − bc)

a2c2 , â21 = − b2

a2c
, â40 = b(−a + bc)

a2c3 ,

â31 = b2

a2c2 , b̂20 = a2 + ab − a2b − b2c

a2c
, b̂11 = (a − b)b

a2 , b̂02 = b

a
,

b̂30 = − (a + b)(a − bc)

a2c2 , b̂21 = b(a + b)

a2c
, b̂40 = (a + b)(a − bc)

a2c3 , b̂31 = −b(a + b)

a2c2 .

By Theorem 7.1 in Zhang et al. [27], we know that (0, δ) is a saddle-node, which includes a 
stable parabolic sector if c �= a−a2

b
.

If c = a−a2

b
, then â20 = 0, by the center manifold theorem we suppose Y = m1X

2 + m2X
3 +

o(|X|3) and substitute it to the second equation of system (2.2). By using the first equation of 
system (2.2), we have

m1 = b

a2 − a
, m2 = (a − b + 2ab)b2

(a − 1)2a3 .

Substituting Y = m1X
2 +m2X

3 +o(|X|3) into the first equation of system (2.2), then the reduced 
equation restricted to the center manifold takes the following form

Ẋ = −b3(1 − 2a)

a3(1 − a)2 X3 + o(|X|3).

Noticing that when a = 1
2 , Ẋ = O(|X|4), we substitute a = 1

2 to the first equation of system (2.2)
and obtain

Ẋ = 64b4X4 + o(|X|4).

Again by Theorem 7.1 in Chapter 2 of [27], and notice that we have made a time transformation 
τ = − b

a
t , then (0, δ) is a stable degenerate node if 1

2 < a < 1; (0, δ) is a degenerate saddle if 
0 < a < 1

2 ; and (0, δ) is a saddle-node, which includes a stable parabolic sector if a = 1
2 . �
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Remark 2.4. When δ = a
b

, we have K2 = r1
ξ

, i.e., the carrying capacity of generalist parasitoids 
is equal to a critical value r1

ξ
, from Lemma 2.3 and Fig. 2.2, we can see that whether the invading 

hosts persist or go extinct depends on other factors including the carrying capacity K1 for the 
hosts and the conversion rate γ for generalist parasitoids.

We next consider the positive equilibria of system (1.2). If E(x, y) is a positive equilibrium 
of system (1.2), then x is a root of the following equation

x3 + (2a − 1)x2 + (a2 − 2a + bc + bδ)x + abδ − a2 = 0 (2.3)

in the interval (0, 1). Note that the third-order algebraic equation (2.3) can have one, two, or three 
positive roots in the interval (0, 1), correspondingly, so system (1.2) can have one, two, or three 
positive equilibria, respectively. In order to investigate the types of positive equilibria, we firstly 
let

f (x) = x3 + (2a − 1)x2 + (a2 − 2a + bc + bδ)x + abδ − a2,

f ′(x) = 3x2 + 2(2a − 1)x + (a2 − 2a + bc + bδ).
(2.4)

From f (x) = 0, we have

c = − (a+x)(a(x−1)−x+x2+bδ)
bx

. (2.5)

The Jacobian matrix of system (1.2) at E(x, y) can be simplified as follows

J(E) =
(

x( 1−x
a+x

− 1) − bx
a+x

acy

(a+x)2 −δ − cx
a+x

)
,

and

Det(J (E)) = x

(a + x)2 (2(c + δ)x2 + (3aδ − c − δ)x + aδ(a − 1) + ac),

Tr(J (E)) = − 1

a + x
(2x2 + (a + c + δ − 1)x + aδ).

Substituting (2.5) into Det(J (E)), we can rewrite Det(J (E)) as

Det(J (E)) = x(x−1)(a+x)(−a2+x2−2ax2−2x3+abδ)

bx(a+x)2

= x(1−x)(a+x)

bx(a+x)2 (xf ′(x) − f (x))

= x(1−x)
b(a+x)

f ′(x).

(2.6)

According to the root formula of the third-order algebraic equation, we let

Ã = (2a − 1)2 − 3(a2 − 2a + bc + bδ),

� = −4Ã3 + ( − 3(1 − 2a)Ã + (1 − 2a)3 + 27(abδ − a2)
)2

.
(2.7)
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Fig. 2.3. The positive roots of f (x) = 0 when δ < a
b

. (a) Three single positive roots x1, x2 and x3; (b)(c) Two positive 
roots: a double root x∗ and a single root x1 (or x3); (d) A unique triple positive root x∗ ; (e)(f) A unique single positive 
root x3.

Since the maximum number of positive roots of (2.3) is determined by the constant term of 
equation (2.3), we classify the number and type of positive equilibria of system (1.2) into the 
following two cases: δ < a

b
(i.e., K2 < r1

ξ
) and δ ≥ a

b
(i.e., K2 ≥ r1

ξ
).

2.1. The case δ < a
b

(i.e., K2 < r1
ξ

)

In this case, system (1.2) has three boundary equilibria: a hyperbolic unstable node (0, 0), two 
hyperbolic saddles (1, 0) and (0, δ), and at most three positive equilibria. According to Fig. 2.3
about the curve f (x), we have the following lemma.

Lemma 2.5. When δ < a
b

(i.e., K2 < r1
ξ

), system (1.2) has at least one positive equilibrium and 
at most three positive equilibria. Moreover,

(I) if � < 0, then system (1.2) has three different positive equilibria: E2 is a hyperbolic saddle, 
and Ei(xi, yi)(i = 1, 3) is a hyperbolic stable node or focus if Tr(J (Ei)) < 0, a hyperbolic 
unstable node or focus if Tr(J (Ei)) > 0, and a weak focus or center if Tr(J (Ei)) = 0, 
where 0 < x1 < x2 < x3 < 1;

(II) if � = 0 and
(a) Ã > 0, then system (1.2) has two different positive equilibria: a degenerate equilibrium 

E∗(x∗, y∗), and an elementary equilibrium E1(x1, y1) (or E3(x3, y3)) which is a hy-
perbolic stable node or focus if Tr(J (Ei)) < 0, a hyperbolic unstable node or focus if 
Tr(J (Ei)) > 0, and a weak focus or center if Tr(J (Ei)) = 0, where x1 < x∗ < x3;

(b) Ã = 0, then system (1.2) has a unique positive equilibrium E∗( 1−2a
3 , 2(1+a)2

9b
), which is 

a degenerate equilibrium, where 0 < a < 1
2 ;



4626 C. Xiang et al. / J. Differential Equations 268 (2020) 4618–4662
Fig. 2.4. The coexistence of three positive equilibria and three boundary equilibria when δ < a
b

: an unstable focus E1, 
three saddles E2, A1 and A3, a stable focus E3, and an unstable node A2.

(III) if � > 0, then system (1.2) has a unique positive equilibrium E3(x3, y3), which is a hy-
perbolic stable node or focus if Tr(J (E3)) < 0, a hyperbolic unstable node or focus if 
Tr(J (E3)) > 0, and a weak focus or center if Tr(J (E3)) = 0, where 0 < x3 < 1.

Proof. From equation (2.6) and the derivative property of f (x), it is easy to see that
Det(J (Ei)) > 0 (i = 1, 3), Det(J (E2)) < 0, Det(J (E∗)) = 0, Det(J (E∗)) = 0, so E1, E2 and 
E3 are all elementary equilibria and only E2 is a hyperbolic saddle, E∗ and E∗ are all degenerate 
equilibria. �
Remark 2.6. When δ < a

b
, i.e., K2 < r1

ξ
, from Lemma 2.5 and Fig. 2.4, we can see that there 

exist multiple positive steady states in system (1.2), and the boundary equilibria are all unstable, 
i.e., the invading hosts can always coexist with the generalist parasitoids if the carrying capacity 
for the generalist parasitoids is smaller than the critical value r1

ξ
.

Next we consider the case (II )(a) in Lemma 2.5 and look for some parameter values (con-
ditions) such that E1(x1, y1) is a nonhyperbolic equilibrium satisfying Det(J (E1)) > 0 and 
Tr(J (E1)) = 0, and the degenerate equilibrium E∗(x∗, y∗) satisfying Tr(J (E∗)) = 0. From 
f (x∗) = f ′(x∗) = 0 and Tr(J (E∗)) = 0, we can express b, c and δ by x∗ and a as follows:

b = (1−x∗)(a+x∗)2

x∗(1−a−2x∗) , c = x∗(1−a−2x∗)2

a(1−x∗) , δ = x∗(1−a−2x∗)(a−x∗+2x2∗)

a(a+x∗)(1−x∗) . (2.8)

Moreover, since x1 + 2x∗ = 1 − 2a, from Tr(J (E1)) = 0 and (2.8), we can get

a = a1 � 10x2∗−9x∗+1+(1−x∗)
√−28x2∗+20x∗+1

6−8x∗ , (2.9)

where 0 < x∗ < 1
2 and x∗ �= 1

8 . In fact, from Tr(J (E1)) = 0 and (2.8), we also can get 

a = 1−3x∗ or a = 10x2∗−9x∗+1−(1−x∗)
√−28x2∗+20x∗+1 , while from a = 1−3x∗ and x1 + 2x∗ =
2 6−8x∗ 2
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1 − 2a, we have x1 = x∗, i.e., x1 is a triple root of f (x) = 0, which contradicts with the 
case (II )(a). From 0 < x∗ < 1

2 , we have 10x2∗ − 9x∗ + 1 < (1 − x∗)
√−28x2∗ + 20x∗ + 1, then 

10x2∗−9x∗+1−(1−x∗)
√−28x2∗+20x∗+1

6−8x∗ < 0. Thus, a �= 1−3x∗
2 and a �= 10x2∗−9x∗+1−(1−x∗)

√−28x2∗+20x∗+1
6−8x∗

for case (II )(a).
When b, c and δ satisfy equation (2.8), system (1.2) can be reduced as follows

ẋ = x(1 − x − (1−x∗)(a+x∗)2

x∗(1−a−2x∗)(a+x)
y),

ẏ = y(
x∗(1−a−2x∗)(a−x∗+2x2∗)

a(a+x∗)(1−x∗) − y + x∗(1−a−2x∗)2

a(1−x∗)(a+x)
x),

(2.10)

it is easy to calculate that system (2.10) has two positive equilibria

E1(x1, y1) = (1 − 2a − 2x∗,
2x∗(1 − a − 2x∗)2

(a + x∗)(1 − x∗)
), E∗(x∗, y∗) = (x∗,

x∗(1 − a − 2x∗)
a + x∗

).

Next, we define

a2 = 1−3x∗−(1−x∗)
√

1−8x∗
2 , a3 = 1−3x∗+(1−x∗)

√
1−8x∗

2 , (2.11)

and have the following results.

Theorem 2.7. If δ < a
b

, x∗(1 − 2x∗) < a < 1−2x∗
2 , 0 < x∗ < 1

2 (x∗ �= 1
8 ), and the conditions in 

(2.8) are satisfied, then system (1.2) has two positive equilibria E∗(x∗, y∗) and E1(x1, y1) (or 
E3(x3, y3)). Moreover,

(I) if a = a1, then
(i) E1 (or E3) is a weak focus with multiplicity at most two;
(ii) E∗ is a cusp of codimension two;

(II) if a = a3 and 8− 3√
100+12

√
69− 3√

100−12
√

69
12 < x∗ < 1

8 (or a = a2 and 0 < x∗ < 1
8 ), then

(i) E1 (or E3) is a stable hyperbolic focus (or node);
(ii) E∗ is a cusp of codimension three.

The phase portraits are given in Fig. 2.5.

Proof. (I)(i) We first verify that E1 is an unstable weak focus with multiplicity at most two. 

Translate E1 to the origin by letting u = x − (1 − 2a − 2x∗), v = y − 2x∗(1−a−2x∗)2

(a+x∗)(1−x∗) and t =
(a + u + x1)τ , the Taylor expansion of system (2.10) around the origin takes the form (still 
denote τ by t )

u̇ = ¯a10u + ¯a01v + ¯a20u
2 + ¯a11uv + ¯a30u

3 + ¯a21u
2v + o(|u,v|3),

v̇ = ¯b10u + ¯b01v + ¯b20u
2 + ¯b11uv + ¯b02v

2 + ¯b30u
3 + ¯b21u

2v + o(|u,v|3), (2.12)

where
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Fig. 2.5. Two positive equilibria when δ < a
b

. (a) An unstable weak focus E1 with multiplicity one and a cusp E∗ of 
codimension two. (b) A hyperbolic stable focus E3 and a cusp E∗ of codimension three.

¯a10 = −(1 − 2a − 2x∗)(1 − 3a − 4x∗), ¯a01 = − (1 − x∗)(1 − 2a − 2x∗)(a + x∗)2

x∗(1 − a − 2x∗)
,

¯a20 = −(2 − 5a − 6x∗), ¯a11 = − (1 − x∗)(a + x∗)2

x∗(1 − a − 2x∗)
, ¯a02 = 0, ¯a30 = −1,

¯a21 = 0, ¯a12 = 0, ¯a03 = 0, ¯b10 = 2x2∗(1 − a − 2x∗)3

(1 − x∗)2(a + x∗)
, ¯b01 = 2x∗(1 − a − 2x∗)3

(1 − x∗)(a + x∗)
,

¯b20 = 0, ¯b11 = −x∗(10x2∗ + (11a − 9)x∗ + 3a2 − 5a + 2)

(1 − x∗)(a + x∗)
, ¯b02 = −(1 − a − 2x∗),

¯b30 = 0, ¯b21 = 0, ¯b12 = −1, ¯b03 = 0.

Make a change of variables as follows(
u

v

)
=

(
− ¯a01

√
D̄

¯a10
2+D̄

− ¯a10 ¯a01
¯a10

2+D̄

0 1

)(
x

y

)
,

where D̄ = ¯a10 ¯b01 − ¯a01 ¯b10, then system (2.12) can be written as

ẋ = −
√

D̄y + f (x, y),

ẏ =
√

D̄x + g(x, y),
(2.13)

where

f (x, y) = ¯c20x
2 + ¯c11xy + ¯c02y

2 + ¯c30x
3 + ¯c21x

2y + ¯c12xy2 + ¯c03y
3 + o(|x, y|3),

g(x, y) = ¯d20x
2 + ¯d11xy + ¯d02y

2 + ¯d30x
3 + ¯d21x

2y + ¯d12xy2 + ¯d03y
3 + o(|x, y|3),
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¯cij and d̄ij can be expressed by āij and b̄ij , we omit their expressions here for the sake of brevity, 
and the first-order Liapunov number (Perko [19]) can be expressed as

σ1 = 1

16
(fxxx + fxyy + gxxy + gyyy

+ fxy(fxx + fyy) − gxy(gxx + gyy) − fxxgxx + fyygyy√
D̄

)|x=y=0

= 1

16
(6 ¯c30 + 2 ¯c12 + 2 ¯d21 + 6 ¯d03 + 2 ¯c11( ¯c20 + ¯c02) − 2 ¯d11( ¯d20 + ¯d02) − 4 ¯c20 ¯d20 + 4 ¯c02 ¯d02√

D̄
)

= − 2(1 − x∗)2R1

x3∗(5 − 6x∗ − w)4R2
,

where

R1 = 5120x10∗ + 128r1x
9∗ − 320r2x

8∗ + 32r3x
7∗ − 80r4x

6∗ + 8r5x
5∗ − 64r6x

4∗ + 480r7x
3∗

−24r8x
2∗ − 10r9x∗ + w + 1,

R2 = 352x5∗ − 4(227 − 4w)x4∗ + (788 + 6w)x3∗ − (243 + 41w)x2∗ + (12 + 22w)x∗ − 1 − w,

and

w =
√

−28x2∗ + 20x∗ + 1,

r1 = 195 − 68w, r2 = 490 − 121w, r3 = 9200 − 2127w, r4 = 3354 − 743w,

r5 = 15997 − 3277w, r6 = 470 − 81w, r7 = 6 − w, r8 = 95 − 6w, r9 = 1 + 2w.

Since σ1 is an irrational function with respect to only one variable x∗ in the interval 0 < x∗ < 1
2

(x∗ �= 1
8 ), we will see, in the section 3.3, that E1 is a weak focus with multiplicity at most two.

(I)(ii) Next we show that the degenerate equilibrium E∗ is a cusp of codimension two if 
a = a1. Translate E∗ to the origin by letting u = x − x∗, v = y − x∗(1−a−2x∗)

a+x∗ , and the Taylor 
expansion of system (1.2) around the origin takes the form

u̇ = x∗(1−a−2x∗)
a+x∗ u − (1−x∗)(a+x∗)

1−a−2x∗ v − a(a−1)+3ax∗+x2∗
(a+x∗)2 u2 − a(1−x∗)

x∗(1−a−2x∗)uv + o(|u,v|2),
v̇ = x2∗(1−a−2x∗)3

(1−x∗)(a+x∗)3 u − x∗(1−a−2x∗)
(a+x∗) v − x2∗(1−a−2x∗)3

(1−x∗)(a+x∗)4 u2 + x∗(1−a−2x∗)2

(1−x∗)(a+x∗)2 uv − v2 + o(|u,v|2).
(2.14)

Next we transform the linear part of system (2.14) to the Jordan canonical form. To do so, let

u = X + (a + x∗)
x∗(1 − a − 2x∗)

Y, v = x∗(1 − a − 2x∗)2

(1 − x∗)(a + x∗)2 X,

then system (2.14) can be rewritten as
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Ẋ = Y − x∗(1−a−2x∗)
(a+x∗)2 X2 − (1+a)

(1−x∗)(a+x∗)XY − 1
x∗(1−a−2x∗)Y

2 + o(|X,Y |2),
Ẏ = x2∗(1−a−2x∗)(1−2a−3x∗)

(a+x∗)3 X2 + 2x2∗−4x∗−a+1
(1−x∗)(a+x∗) XY + (1−a−3x∗)

x∗(1−a−2x∗)Y
2 + o(|X,Y |2).

(2.15)

By Remark 1 of section 2.13 in Perko [19] (see also Lemma 3.1 in Huang et al. [12]), we obtain 
an equivalent system of (2.15) in the small neighborhood of (0,0) as follows:

ẋ = y + o(|x, y|2),
ẏ = Dx2 + Exy + o(|x, y|2), (2.16)

where

D = x2∗(1 − a − 2x∗)(1 − 2a − 3x∗)
(a + x∗)3 , E = −2x3∗ − 2x2∗ + (1 + 3a)x∗ + a(a − 1)

(a + x∗)2(1 − x∗)
.

Since 0 < x∗ < 1
2 , x∗(1 − 2x∗) < a < 1−2x∗

2 and a �= 1−3x∗
2 , then 1 − a − 2x∗ > 0, and 1 − 2a −

3x∗ �= 0, it follows that D �= 0. On the other hand, substituting a = a1 into E, we have

E = 4(32x2∗ − 26x∗ + 1 + √
1 + 20x∗ − 28x2∗)

(1 − 2x∗ + √
1 + 20x∗ − 28x2∗)2

,

it is not difficult to show that E �= 0 if 0 < x∗ < 1
2 and x∗ �= 1

8 . Hence the positive equilibrium 
E∗ is a cusp of codimension two by the result in Perko [19].

(II)(i) By case (I), we know that if a(a − 1) + (1 + 3a)x∗ − 2x2∗ + 2x3∗ = 0, i.e., a = a2 or 
a = a3, then E = 0, hence the degenerate positive equilibrium E∗ is a cusp of codimension at 
least three. Substituting a = a2 or a = a3 into Tr(J (E1)), we have

Tr(J (E1)) = −4(1 − x∗)(1 − 8x∗)
1 ± √

1 − 8x∗
< 0,

since 0 < x∗ < 1
8 , the positive equilibrium E1 is a stable hyperbolic focus or node.

(II)(ii) Next we discuss the exact codimension of cusp E∗ when a = a2 or a = a3. We first 
transform E∗ into the origin by letting u = x − x∗, v = y − x∗(1−a−2x∗)

a+x∗ , then the Taylor expan-
sion of system (2.10) around the origin takes the form

u̇ = x∗(1−a−2x∗)
a+x∗ u − (1−x∗)(a+x∗)

1−a−2x∗ v − (a−1)a+3ax∗+x2∗
(a+x∗)2 u2 − a(1−x∗)

x∗(1−a−2x∗)uv − a(1−x∗)
(a+x∗)3 u3

+ a(1−x∗)
x∗(a+x∗)(1−a−2x∗)u

2v + a(1−x∗)
(a+x∗)4 u4 + a(1−x∗)

x∗(a+x∗)2(−1+a+2x∗)
u3v + o(|u,v|4),

v̇ = x2∗(1−a−2x∗)3

(1−x∗)(a+x∗)3 u − x∗(1−a−2x∗)
a+x∗ v − x2∗(1−a−2x∗)3

(1−x∗)(a+x∗)4 u2 + x∗(1−a−2x∗)2

(1−x∗)(a+x∗)2 uv − v2

+ x2∗(1−a−2x∗)
(1−x∗)(a+x∗)5 u3 − x∗(1−a−2x∗)2

(1−x∗)(a+x∗)3 u2v − x2∗(1−a−2x∗)3

(1−x∗)(a+x∗)6 u4 + x∗(1−a−2x∗)2

(1−x∗)(a+x∗)4 u3v + o(|u,v|4).
(2.17)

Note that the coefficient of the term v in the first equation of (2.17) is nonzero, we can make 
transformations X = u and Y = du/dt such that (2.17) is changed to the following system
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Ẋ = Y,

Ẏ = α1X
2 + α2Y

2 + α3X
3 + α4X

2Y + α5XY 2 + α6X
4 + α7X

3Y + α8X
2Y 2 + o(|X,Y |4),

(2.18)

where

α1 = x2∗(1 − 2a − 3x∗)(1 − a − 2x∗)
(a + x∗)3 , α2 = 1 − 2x∗

x∗(1 − x∗)
,

α3 = x∗(1 − a − 2x∗)(4x3∗ + (9a − 2)x2∗ + 2a(2a − 3)x∗ + a − 2a2)

(1 − x∗)(a + x∗)4 ,

α4 = −1 + a + 2(a − 3)x∗ + 8x2∗
(1 − x∗)(a + x∗)2 , α5 = a(4x2∗ + (2a − 3)x∗ − a)

x2∗(1 − x∗)(a + x∗)2 ,

α6 = x∗(1 − a − 2x∗)(x3∗ + 3ax2∗ + a(2 + 5a)x∗ + a(2a2 − 1))

(1 − x∗)(a + x∗)5
,

α7 = 1 + a − 4x∗ + 4x2∗
(1 + x∗)(a + x∗)3 , α8 = −a(5x∗3 + (6a − 4)x2∗ + 2(a2 − 2)x∗ − a2)

x∗3(1 − x∗)(a + x∗)3 .

Introducing a new time variable τ by dt = (1 − α2X)dτ and rewriting τ as t , we obtain

Ẋ = Y(1 − α2X),

Ẏ = (1 − α2X)(α1X
2 + α2Y

2 + α3X
3 + α4X

2Y + α5XY 2 + α6X
4 + α7X

3Y

+ α8X
2Y 2 + o(|X,Y |4)).

(2.19)

The transformation x = X, y = Y(1 − α2X) brings (2.19) into

ẋ = y,

ẏ = α1x
2 + (α3 − 2α1α2)x

3 + (α1α2
2 − 2α2α3 + α6)x

4 + α4x
2y + (α7 − α2α4)x

3y

+(α5 − α2
2)xy2 + (α8 − α2

3)x2y2 + o(|x, y|4).
(2.20)

Next we let ω = √
1 − 8x∗, i.e., x∗ = 1−ω2

8 , then we have a2 = 1−3x∗−(1−x∗)
√

1−8x∗
2 =

(1−ω)(ω2−2ω+5)
16 , a3 = 1−3x∗+(1−x∗)

√
1−8x∗

2 = (1+ω)(ω2+2ω+5)
16 . Moreover, when a = a2, we have 

0 < ω < 1 since 0 < x∗ < 1
8 ; when a = a3, we have 0 < ω <

√
2

3√
100+12

√
69+2

3√
100−12

√
69−13

3 ≈
0.139681 since 8−(100+12

√
69)

1
3 −(100−12

√
69)

1
3

12 < x∗ < 1
8 , which comes from x∗(1 − 2x∗) < a <

1−2x∗
2 .

If a = a2 = (1−ω)(5−2ω+ω2)
16 and 0 < x∗ < 1

8 , then α1 = ω(1+ω)3

2(1−ω)(7+ω2)
> 0 since 0 < ω < 1. So 

we make the following changes of variables and time X = x, Y = y√
α1

and τ = √
α1t , system 

(2.20) becomes (still use t to denote τ )

Ẋ = Y,

Ẏ = X2 + (α3−2α1α2)
α1

X3 + (α1α2
2−2α2α3+α6)

α1
X4 + α4√

α1
X2Y + (α7−α2α4)√

α1
X3Y

+(α − α 2)XY 2 + (α − α 3)X2Y 2 + o(|X,Y |4).
(2.21)
5 2 8 2
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By Proposition 5.3 in Lamontage et al. [16] (see also Lemma 3.2 in Huang et al. [12]), we know 
that system (2.21) is equivalent to

Ẋ = Y,

Ẏ = X2 + MX3Y + o(|X,Y |4)), (2.22)

where

M = − 256
√

2√
(1 − ω)ω3(1 + ω)3(7 + ω2)3

< 0

for 0 < ω < 1, then the equilibrium E∗ is a cusp of codimension three (Dumortier et al. [5]).

If a = a3 = (1+ω)(5+2ω+ω2)
16 and 0.122561 ≈ 8− 3√

100+12
√

69− 3√
100−12

√
69

12 < x∗ < 1
8 , then α1 =

− ω(1−ω)3

2(1+ω)(7+ω2)
< 0 since 0 < ω <

√
2

3√
100+12

√
69+2

3√
100−12

√
69−13

3 ≈ 0.139681. We make the 

following changes of variables and time X = −x, Y = − y√−α1
and τ = √−α1t , system (2.20)

can be rewritten as (still use t to denote τ )

Ẋ = Y,

Ẏ = X2 − (α3−2α1α2)
α1

X3 + (α1α
2
2−2α2α3+α6)

α1
X4 + α4√−α1

X2Y − (α7−α2α4)√−α1
X3Y

+(α5 − α2
2)XY 2 − (α8 − α3

2)X2Y 2 + o(|X,Y |4).
(2.23)

Similar as above, we have

M = − 256
√

2√
(1 + ω)ω3(1 − ω)3(7 + ω2)3

< 0

for 0 < ω <

√
2

3√
100+12

√
69+2

3√
100−12

√
69−13

3 ≈ 0.139681, then the equilibrium E∗ is a cusp of 
codimension three ([5]). �

Next we consider the case (II)(b) of Lemma 2.5, where system (1.2) has a unique degenerate 

positive equilibrium E∗( 1−2a
3 , 2(1+a)2

9b
). From f ( 1−2a

3 ) = f ′( 1−2a
3 ) = 0, we can express c and δ

by a and b as follows

c = (1+a)3

27ab
, δ = (1+a)2(8a−1)

27ab
. (2.24)

Moreover, from Tr(J (E∗)) = 0 and (2.24), we have

b = 2(1+a)2

3(1−2a)
(2.25)

and get the following results.

Theorem 2.8. If δ < a
b

, 1
8 < a < 1

2 , and the conditions in (2.24) are satisfied, then system (1.2)

has a unique degenerate positive equilibrium E∗( 1−2a , 2(1+a)2
). Moreover,
3 9b
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Fig. 2.6. A unique positive equilibrium when δ < a
b

. (a) A degenerate nilpotent focus E∗ of codimension three. (b) A 
degenerate nilpotent elliptic equilibrium E∗ of codimension three.

(I) if b �= 2(1+a)2

3(1−2a)
, then E∗( 1−2a

3 , 2(1+a)2

9b
) is a stable (or an unstable) degenerate node if 0 <

b <
2(1+a)2

3(1−2a)
(or if b >

2(1+a)2

3(1−2a)
, respectively);

(II) if b = 2(1+a)2

3(1−2a)
, then E∗( 1−2a

3 , 1−2a
3 ) is a degenerate nilpotent focus of codimension three if 

1
8 < a < 5

16 or 5
16 < a < 2+3

√
2

16 ; a degenerate nilpotent elliptic equilibrium of codimension 

three if 2+3
√

2
16 ≤ a < 1

2 ; and a nilpotent symmetric cusp of codimension two if a = 5
16 .

The phase portraits are given in Fig. 2.6.

Proof. When c = (1+a)3

27ab
and δ = (1+a)2(8a−1)

27ab
, we have � = 0 and A = 0. Moreover,

Det(J (E∗)) = 0, Tr(J (E∗)) = 3(1 − 2a)b − 2(1 + a)2

9b
.

(I) When b �= 2(1+a)2

3(1−2a)
, we have Tr(J (E∗)) �= 0, i.e., there is only one zero eigenvalue for the 

Jacobian matrix J (E∗). Substituting (2.24) into system (1.2), we have

ẋ = x(1 − x − by
a+x

),

ẏ = y(
(1+a)2(8a−1)

27ab
− y + (1+a)3

27ab(a+x)
x).

(2.26)

Firstly, we transform the linear part of (2.26) to the Jordan canonical form. To do so, let

u = x − 1 − 2a
, v = y − 2(1 + a)2

,

3 9b
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then system (2.26) becomes

u̇ = 1−2a
3 u − (1−2a)b

1+a
v − 1−5a

1+a
u2 − 9ab

(1+a)2 uv − 18a
(1+a)2 u3 + 27ab

(1+a)3 u2v + 54a
(1+a)3 u4

− 81ab
(1+a)4 u3v + o(|u,v|4),

v̇ = 2(1+a)3

27b2 u − 2(1+a)2

9b
v − 2(1+a)2

9b2 u2 + 1+a
3b

uv − v2 + 2(1+a)

3b2 u3 − 1
b
u2v − 2

b2 u4

+ 3
(1+a)b

u3v + o(|u,v|4).

(2.27)

Secondly, to eliminate the v2 terms in system (2.27), we let

u = 3b

1 + a
x + 9(1 − 2a)b2

2(1 + a)3 y, v = x + y, τ = −2(1 + a)2 − 3(1 − 2a)b

9b
t,

and still denote τ by t , then system (2.27) can be rewritten as

ẋ = ˜a20x
2 + ˜a11xy + ˜a02y

2 + ˜a30x
3 + ˜a21x

2y + ˜a12xy2 + ˜a03y
3 + ˜a40x

4

+ ˜a31x
3y + ˜a22x

2y2 + ˜a13xy3 + ˜a04y
4 + o(|x, y|4),

ẏ = y + ˜b20x
2 + ˜b11xy + ˜b02y

2 + ˜b30x
3 + ˜b21x

2y + ˜b12xy2 + ˜b03y
3 + ˜b40x

4

+ ˜b31x
3y + ˜b22x

2y2 + ˜b13xy3 + ˜b04y
4 + o(|x, y|4),

(2.28)

where the coefficients are given in Appendix A.
By center manifold method, we suppose y = mx2 + nx3 + o(|x|4), substitute it to the second 

equation of system (2.28), and obtain that m = − 18b
2(1+a)2−3(1−2a)b

, n = 324b2((1+a)2+3(1−2a)b)

(1+a)2(2+2a2−3b+a(4+6b))2 .
Then the reduced equation restricted to the center manifold is as follows

ẋ = 486(1 − 2a)b3

(1 + a)2(2(1 + a)2 − 3(1 − 2a)b)2 x3 + o(|x|4).

By Theorem 7.1 of Chapter 2 in Zhang et al. [27], E∗ is a degenerate stable node if 0 < b <
2(1+a)2

3(1−2a)
and a degenerate unstable node if b >

2(1+a)2

3(1−2a)
.

(II) When b = 2(1+a)2

3(1−2a)
, we have Tr(J (E∗)) = 0. It follows that E∗( 1−2a

3 , 1−2a
3 ) is a nilpotent 

singularity with double-zero eigenvalue. To determine the exact type of E∗, we provide a series 
of explicitly smooth transformations to derive a normal form with terms up to the fourth order.

Firstly, we translate the unique positive equilibrium E∗( 1−2a
3 , 1−2a

3 ) to the origin and expand 
system (1.2) in power series up to the fourth order around the origin. Let

(I ) : u = x − 1 − 2a

3
, v = y − 1 − 2a

3
,

then system (1.2) becomes
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u̇ = 1−2a
3 u − 2(1+a)

3 v − 1−5a
1+a

u2 − 6a
(1−2a)2 uv − 18a

(1+a)2 u3 + 18a
1−a−2a2 u2v + 54a

(1+a)3 u4

− 54a
(1+a)2(1−2a)

u3v + o(|u,v|4),
v̇ = (1−2a)2

6(1+a)
u − 1−2a

3 v − (1−2a)2

2(1+a)2 u2 + 1−2a
2(1+a)

uv − v2 + 3(1−2a)2

2(1+a)3 u3 − 3(1−2a)

2(1+a)2 u2v

− 9(1−2a)2

2(1+a)4 u4 + 9(1−2a)

2(1+a)3 u3v + o(|u,v|4).

(2.29)

Secondly, we transform the linear part of system (2.29) to the Jordan canonical form. Let

(II) : u = 2(1 + a)

1 − 2a
X + 6(1 + a)

(1 − 2a)2 Y, v = X,

then system (2.29) can be rewritten as

Ẋ = Y − 2X2 − 9
1−2a

XY − 18
(1−2a)2 Y 2 + 6

1−2a
X3 + 72

(1−2a)2 X2Y + 270
(1−2a)3 XY 2 + 324

(1−2a)4 Y 3

− 36
(1−2a)2 X4 − 540

(1−2a)3 X3Y − 2916
(1−2a)4 X2Y 2 − 6804

(1−2a)5 XY 3 − 5832
(1−2a)6 Y 4 + o(|X,Y |4),

Ẏ = 8a−1
1−2a

XY + 18a
(1−2a)2 Y 2 − 2+8a

1−2a
X3 − 24(1+4a)

(1−2a)2 X2Y − 90(1+4a)

(1−2a)3 XY 2 − 108(1+4a)

(1−2a)4 Y 3

+ 12(1+4a)

(1−2a)2 X4 + 180(1+4a)

(1−2a)3 X3Y + 972(1+4a)

(1−2a)4 X2Y 2 + 2268(1+4a)

(1−2a)5 XY 3 + 1944(1+4a)

(1−2a)6 Y 4

+ o(|X,Y |4).
(2.30)

Thirdly, to eliminate the X2 and Y 2 terms in system (2.30), we make a near-identity transfor-
mation

(III) : X = x − 9(1 − 4a)

2(1 − 2a)2 x2, Y = y + 2x2 + 18a

(1 − 2a)2 xy + 18

(1 − 2a)2 y2,

then it brings system (2.30) into

ẋ = y + ˜c30x
3 + ˜c21x

2y + ˜c12xy2 + ˜c03y
3 + ˜c40x

4 + ˜c31x
3y + ˜c22x

2y2

+ ˜c13xy3 + ˜c04y
4 + o(|x, y|4),

ẏ = ˜d11xy + ˜d30x
3 + ˜d21x

2y + ˜d12xy2 + ˜d03y
3 + ˜d40x

4 + ˜d31x
3y + ˜d22x

2y2

+ ˜d13xy3 + ˜d04y
4 + o(|x, y|4),

(2.31)

where the coefficients are given in Appendix A.
Notice that

˜d11 ˜d30 = 4(5 − 16a)

1 − 2a
,

then ˜d11 ˜d30 �= 0 if a �= 5
16 , by Lemma 3.1 in Cai et al. [1], in a small neighborhood of (0, 0)

system (2.31) is locally topologically equivalent to the following system
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ẋ = y,

ẏ = ˜d11xy + ˜d30x
3 + ( ˜d21 + 3 ˜c30)x

2y + ( ˜d04 − ˜d11 ˜c11)x
4

+(4 ˜c40 + ˜d31 + ˜d11 ˜c21
3 + ˜d11 ˜d12

6 )x3y + Q(x,y),

(2.32)

where Q(x, y) is a smooth function of order at least five in (x, y). Moreover, since 1
8 < a < 1

2 , 
we have

5 ˜d30( ˜d21 + 3 ˜c30) − 3 ˜d11( ˜d40 − ˜d11 ˜c30) = −24(40a2 − 28a − 5)

(1 − 2a)3 �= 0

and

˜d30 = −4 < 0, ˜d11
2 + 8 ˜d30 = 128a2 − 32a − 7

(1 − 2a)2 ,

˜d11
2 + 8 ˜d30 = 0 if a = 2+3

√
2

16 ≈ 0.390165. By Lemma 3.1 in Cai et al. [1] we can obtain that 

E∗( 1−2a
3 , 1−2a

3 ) is a degenerate focus of codimension three if 1
8 < a < 5

16 or 5
16 < a < 2+3

√
2

16 ; a 

degenerate elliptic of codimension three if 2+3
√

2
16 ≤ a < 1

2 .
Finally, we prove that the unique positive equilibrium E∗( 1

8 , 18 ) is a nilpotent symmetric cusp 
of codimension two if (a, b, c, δ) = ( 5

16 , 49
16 , 7

80 , 1
10 ). Substituting a = 5

16 to system (2.31), we get 
the following system

Ẋ = Y − 64X3 − 1152X2Y − 8192XY 2 − 16384Y 3 + o(|X,Y |3),
Ẏ = −4X3 − 32X2Y − 128XY 2 − 2048Y 3 + o(|X,Y |3). (2.33)

Next we make another affine coordinate transformation

X = x − 1216

3
x3 − 5120x2y − 16384xy2, Y = y + 64x3 − 64x2y − 2048xy2,

then the third order terms in system (2.33) can be simplified and the equivalent system of system 
(2.33) is as follows

ẋ = y + o(|X,Y |3),
ẏ = −4x3 − 224x2y + o(|X,Y |3). (2.34)

According to the result on Page 259 of Chow et al. [2], ( 1
8 , 18 ) is a nilpotent symmetric cusp of 

codimension two. �
2.2. The case δ ≥ a

b
(i.e., K2 ≥ r1

ξ
)

In this case system (1.2) has three boundary equilibria: (0, 0) is an unstable hyperbolic node, 
(1, 0) is a hyperbolic saddle, (0, δ) is a stable hyperbolic node if δ > a

b
, and at most two positive 

equilibria.
According to the curve of f (x) in Fig. 2.7 and the root formula for third-order algebraic 

equation, we have the following results for the existence and number of positive equilibria.
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Fig. 2.7. The curve of f (x) when δ ≥ a
b

. (I) f (x) = 0 has no positive root, (II) f (x) = 0 has a positive double root x∗ , 
(III) f (x) = 0 has two different positive single roots x2 and x3.

Lemma 2.9. When δ ≥ a
b

(i.e., K2 ≥ r1
ξ
), system (1.2) has at most two positive equilibria. More-

over,

(I) if � > 0 or � = Ã = 0, then system (1.2) has no positive equilibrium;
(II) if � = 0 and Ã > 0, then system (1.2) has a unique positive equilibrium E∗(x∗, y∗), which 

is a degenerate equilibrium;
(III) if � < 0, then system (1.2) has two positive equilibria: E2(x2, y2) is a hyperbolic saddle, 

and E3(x3, y3) is a hyperbolic stable node or focus if Tr(J (E3)) < 0, a hyperbolic unstable 
node or focus if Tr(J (E3)) > 0, and a weak focus or center if Tr(J (E3)) = 0, where 0 <
x2 < x3 < 1.

The phase portraits are given in Fig. 2.8.

Proof. From equation (2.6) and the derivative property of f (x), it is easy to see that 
Det(J (E2)) < 0, Det(J (E3)) > 0, Det(J (E∗)) = 0, then E2 and E3 are all elementary equi-
libria and only E2 is a hyperbolic saddle, and E∗ is a degenerate equilibrium. �
Remark 2.10. When δ ≥ a

b
(i.e., K2 ≥ r1

ξ
), system (1.2) can exhibit bistability phenomenon: 

A1(0, δ) is a stable hyperbolic node and E3 is a stable hyperbolic focus. From Lemma 2.9 and 
Fig. 2.8(a), we can see that the invading hosts will go extinct if the initial populations lie in the 
left of the two stable manifolds of the equilibrium E2, and will persist if the initial populations 
lie in the right of the two stable manifolds of the equilibrium E2.

We firstly consider case (II) of Lemma 2.9, where system (1.2) has a unique positive equilib-
rium E∗(x∗, y∗), which is a degenerate equilibrium. From f (x∗) = f ′(x∗) = 0, c and δ can be 
expressed by a, b and x∗ as follows

c = (a+x∗)2(1−a−2x∗)
ab

, δ = (a+x∗)(a−x∗+2x2∗)

ab
. (2.35)

Moreover, from Tr(J (E∗)) = 0 and (2.35), b can be expressed by a and x∗ as follows

b = (a+x∗)2(1−x∗)
x∗(1−a−2x∗) . (2.36)

We have the following results.
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Fig. 2.8. (a) The coexistence of two positive equilibria and three boundary equilibria when δ ≥ a
b

: A1 is a stable hy-
perbolic node, A2 is an unstable hyperbolic node, A3 and E2 are hyperbolic saddle, and E3 is a stable hyperbolic 
focus. (b) A unique positive equilibrium E∗ which is a saddle-node with a stable parabolic sector when δ ≥ a

b
and 

0 < b <
(1−x∗)(a+x∗)2

x∗(1−a−2x∗)
.

Fig. 2.9. A unique positive equilibrium E∗ when δ ≥ a
b

. (a) A cusp E∗ of codimension two. (b) A cusp E∗ of codimension 
three.

Theorem 2.11. If δ ≥ a
b

, 1−2x∗
2 < a < 1 − 2x∗, 0 < x∗ < 1

2 , and the conditions in (2.35) are 
satisfied, then system (1.2) has a unique positive equilibrium E∗(x∗, y∗), which is a degenerate 
equilibrium. Moreover,

(I) when b �= (a+x∗)2(1−x∗)
x∗(1−a−2x∗) , then E∗ is a saddle-node, which includes a stable parabolic sector 

(or an unstable parabolic sector) if 0 < b <
(1−x∗)(a+x∗)2

x∗(1−a−2x∗) (or b >
(1−x∗)(a+x∗)2

x∗(1−a−2x∗) );

(II) when b = (a+x∗)2(1−x∗)
x∗(1−a−2x∗) , then E∗ is a cusp of codimension two if a �= a3; a cusp of codimen-

sion three if a = a3 and 0 < x∗ <
8−(100+12

√
69)

1
3 −(100−12

√
69)

1
3

12 ≈ 0.122561.

The phase portraits are given in Figs. 2.8(b) and 2.9.
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Proof. (I) If b �= (a+x∗)2(1−x∗)
x∗(1−a−2x∗) , then the Jacobian matrix of system (1.2) around E∗ has only one 

zero eigenvalue. We first transform E∗ into the origin by letting u = x−x∗, v = y− (a+x∗)(1−x∗)
b

, 
then the Taylor expansion of system (1.2) around the origin takes the form

u̇ = x∗(1−a−2x∗)
a+x∗ u − bx∗

a+x∗ v + a(1−a)+3ax∗+x∗2

(a+x∗)2 u2 − ab
(a+x∗)2 uv + o(|u,v|2),

v̇ = (1−x∗)(a+x∗)(1−a−2x∗)
b2 u − (1−x∗)(a+x∗)

b
v − (1−x∗)(1−a−2x∗)

b2 u2

+ 1−a−2x∗
b

uv − v2 + o(|u,v|2).
(2.37)

Letting u = b
1−a−2x∗ X + b2x∗

(1−x∗)(a+x∗)2 Y, v = X + Y and dt = (x∗−1)(a+x∗)2+bx∗(1−a−2x∗)
b(a+x∗) dτ , 

then system (2.37) can be rewritten as follows (still denote τ by t )

Ẋ = ˆa20X
2 + ˆa11XY + ˆa02Y

2 + o(|X,Y |2),
Ẏ = Y + ˆb20X

2 + ˆb11XY + ˆb02Y
2 + o(|X,Y |2). (2.38)

where

ˆa20 = − b2x∗(1 − x∗)(a + x∗)(1 − 2a − 3x∗)
(1 − a − 2x∗)((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))2 ,

ˆa11 = b2((1 − x∗)(a + x∗)(a − x∗ + 2x2∗) − bx∗(2x2∗ − 4x∗ − 1 − a))

(1 − x)((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))2 ,

ˆa02 = b2x∗(1 − a − 2x∗)(x4∗ + p1x
3∗ + p2x

2∗ + p3x∗ + p4)

(1 − x∗)(a + x∗)2((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))2 ,

ˆb20 = (a + x∗)(1 − x∗)(x2∗ − (1 − a − b)x∗ − a)

(1 − a − 2x∗)((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))
,

ˆb11 = − b(x5∗ + p5x
4∗ + p6x

3∗ + p7x
2∗ + p8x∗ + p9)

(a + x∗)((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))
,

ˆb02 = b(1 − x∗)(a + x∗)3(1 + p10 + p11 + p12)

((1 − x∗)(a + x∗)2 − bx∗(1 − a − 2x∗))2 ,

and

p1 = 3a − 2b − 1, p2 = 3a2 + 3b2 − 4ab − 3a + b,

p3 = a3 − 2a2b + ab2 − 3a2 + 2ab − b2,

p4 = a2(b − a), p5 = 4a − 1, p6 = 6a2 + 2b2 − 2ab − 4a − b,

p7 = a(4a2 + 4b2 − 4ab − 6a − b), p8 = a(a3 − 2a2b + ab2 − 4a2 + ab − b2),

p9 = a3(b − a), p10 = b2x2∗(1 − a − 2x∗)
(1 − x∗)(a + x∗)4 , p11 = bx∗(a + 2x∗ − 1)

(1 − x∗)(a + x∗)2 ,

p12 = b2x∗(a + 2x∗ − 1)(a(1 − x∗)(a + x∗)2 + bx∗(x2∗ + 3ax∗ + a2 − a))

2 6
.

(1 − x∗) (a + x∗)
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Notice that 1−2x∗
2 < a < 1 − 2x∗, then ˆa20 �= 0 and, according to Theorem 7.1 in Zhang et al. 

[27], the equilibrium E∗(x∗, (a+x∗)(1−x∗)
b

) is a saddle-node with a stable parabolic sector if 0 <

b <
(a+x∗)2(1−x∗)
x∗(1−a−2x∗) and a saddle-node with an unstable parabolic sector if (a+x∗)2(1−x∗)

x∗(1−a−2x∗) < b.
(II) The proofs are similar as those in cases (I)(ii) and (II)(ii) of Theorem 2.7, we omit the 

procedures for brevity. �
Remark 2.12. When δ ≥ a

b
(i.e., K2 ≥ r1

ξ
), we can see that the invading hosts will go extinct for 

some positive initial populations, and will persist for some other positive initial populations (see 
Theorem 2.11 and Fig. 2.8). On the other hand, from Fig. 2.9, we can see that the invading hosts 
will go extinct for almost all positive initial populations.

3. Bifurcations of system (1.2)

In this section, we are interested in studying various possible bifurcations in system (1.2). 
From Theorems 2.7 and 2.11, we know that system (1.2) may exhibit a cusp type degenerate 
Bogdanov-Takens bifurcation of codimension three around the equilibrium E∗, and a Hopf bi-
furcation around the equilibrium E1 or E3; From Theorem 2.8, we know that system (1.2) may 
exhibit a focus or elliptic type degenerate Bogdanov-Takens bifurcation of codimension three 
around the equilibrium E∗. Furthermore, from (2.3) we can see that the positive equilibrium de-
pends on a polynomial equation of degree three, which makes the full bifurcation analysis very 
difficult and challenging.

3.1. Cusp type degenerate Bogdanov-Takens bifurcation of codimension three

From Theorems 2.7 and 2.11, we know that system (1.2) has a cusp E∗(x∗, x∗(1−a−2x∗)
a+x∗ ) of 

codimension three if the parameters satisfy

δ < a
b
, a = a2, (b, c, δ) = (

(1−x∗)(a+x∗)2

x∗(1−a−2x∗) ,
x∗(1−a−2x∗)2

a(1−x∗) ,
x∗(1−a−2x∗)(a−x∗+2x2∗)

a(a+x∗)(1−x∗) ), 0 < x∗ < 1
8 ;

(3.1)

or

δ < a
b
, a = a3, (b, c, δ) = (

(1−x∗)(a+x∗)2

x∗(1−a−2x∗) ,
x∗(1−a−2x∗)2

a(1−x∗) ,
x∗(1−a−2x∗)(a−x∗+2x2∗)

a(a+x∗)(1−x∗) ),

and
8−(100+12

√
69)

1
3 −(100−12

√
69)

1
3

12 < x∗ < 1
8 ;

(3.2)

or

δ ≥ a
b
, a = a3, (b, c, δ) = (

(1−x∗)(a+x∗)2

x∗(1−a−2x∗) ,
x∗(1−a−2x∗)2

a(1−x∗) ,
x∗(1−a−2x∗)(a−x∗+2x2∗)

a(a+x∗)(1−x∗) ),

and 0 < x∗ <
8−(100+12

√
69)

1
3 −(100−12

√
69)

1
3

12 .

(3.3)

In the following we study if system (1.2) can undergo a cusp type degenerate Bogdanov-Takens 
bifurcation of codimension three in a small neighborhood of equilibrium E∗(x∗, x∗(1−2a−2x∗)

a+x∗ )

as parameters (a, b, c, δ) varies in a small neighborhood of (a0, b0, c0, δ0) which satisfies (3.1), 
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(3.2) or (3.3). We firstly present the definition and a universal unfolding about a cusp type de-
generate Bogdanov-Takens bifurcation of codimension three (see Dumortier et al. [5], Chow et 
al. [2] or Li et al. [15]).

Definition 3.1. The bifurcation that results from unfolding the following normal form of a cusp 
of codimension three

ẋ = y,

ẏ = x2 ± x3y
(3.4)

is called a cusp type degenerate Bogdanov-Takens bifurcation of codimension three.

Proposition 3.2. A universal unfolding of the above normal form (3.4) is given by

ẋ = y,

ẏ = μ1 + μ2y + μ3xy + x2 ± x3y + R(x, y,μ),
(3.5)

where

R(x, y,μ) = y2O(|x, y|2) + O(|x, y|5) + O(μ)(O(|y|2) + O(|x, y|3)) + O(μ2)O(|x, y|).
(3.6)

We firstly consider the bifurcation around the cusp E∗ of codimension three when (3.1) is 

satisfied. For simplicity, we let ω = √
1 − 8x∗, then a2 = 1−3x∗−(1−x∗)

√
1−8x∗

2 = (1−ω)(5−2ω+ω2)
16 . 

When a = a2, from (3.1), we have

a = (1−ω)(5−2ω+ω2)
16 , b = (1−ω)(7+ω2)2

16(1+ω)2 , c = (1+ω)3(7+ω2)

16(ω2−2ω+5)
, δ = (1−ω)(1+ω)2

2(ω2−2ω+5)
, (3.7)

if we choose a, c and δ as bifurcation parameters, then the unfolding system of (1.2) is as follows

ẋ = x(1 − x −
(1−ω)(7+ω2)2

16(1+ω)2
y

(1−ω)(5−2ω+ω2)
16 +λ1+x

),

ẏ = y(
(1−ω)(1+ω)2

2(5−2ω+ω2)
+ λ2 − y + (

(7+ω2)(1+ω)3

16(5−2ω+ω2)
+λ3)x

(1−ω)(5−2ω+ω2)
16 +λ1+x

),

(3.8)

where λ = (λ1, λ2, λ3) is a parameter vector in a small neighborhood of (0, 0, 0). If we can 
transform the unfolding system (3.8) into the versal unfolding (3.5) of Bogdanov-Takens singu-
larity (cusp case) of codimension three by a series of near-identity transformations, and check the 
nondegenerate condition D(μ1,μ2,μ3)

D(λ1,λ2,λ3)
�= 0 for small λ, then we can claim that system (3.8) (i.e., 

system (1.2)) undergoes a cusp type degenerate Bogdanov-Takens bifurcation of codimension 
three.

Theorem 3.3. When δ < a
b

and the conditions in (3.1) are satisfied, the degenerate equilibrium 

E∗(x∗, x∗(1−a−2x∗)
a+x∗ ) (i.e., E∗( 1−ω2

8 , (1+ω)2

8 )) of system (1.2) is a cusp of codimension three. Sys-
tem (1.2) undergoes a cusp type degenerate Bogdanov-Takens bifurcation of codimension three 
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in a small neighborhood of E∗ as (a, b, c, δ) varies in a small neighborhood of (a0, b0, c0, δ0), 
where (a0, b0, c0, δ0) satisfies (3.7). More precisely, system (1.2) can exhibit the coexistence of a 
stable homoclinic loop and an unstable limit cycle, coexistence of two limit cycles (the inner one 
unstable and the outer stable), and the existence of a semi-stable limit cycle for different sets of 
parameters.

Proof. Firstly, we translate the equilibrium E∗( (1−ω2)
8 , (1+ω)2

8 ) of system (3.8) when λ = 0 into 
the origin and expand system (3.8) in power series around the origin. Let

X = x − (1 − ω2)

8
, Y = y − (1 + ω)2

8
,

then system (3.8) becomes

Ẋ = a00 + a10X + a01Y + a20X
2 + a11XY + a30X

3 + a21X
2Y + a40X

4 + a31X
3Y

+ o(|X,Y |4),
Ẏ = b00 + b10X + b01Y + b20X

2 + b11XY + b02Y
2 + b30X

3 + b21X
2Y + b40X

4

+ b31X
3Y + o(|X,Y |4),

(3.9)

where the coefficients are given in Appendix B, and all the coefficients depend on λi(i = 1, 2, 3)

which we omit for brevity.
Next, note that the coefficient a01 of the term Y in the first equation of (3.9) is nonzero, we 

make transformations x1 = X and y1 = dX
dt

such that (3.9) is changed to the following equation

ẋ1 = y1,

ẏ1 = c00 + c10x1 + c01y1 + c20x
2
1 + c11x1y1 + c02y

2
1 + c30x

3
1 + c21x

2
1y1 + c12x1y

2
1+ c40x

4
1 + c31x

3
1y1 + c22x

2
1y2

1 + o(|x1, y1|4),
(3.10)

where the coefficients are given in Appendix B.
Now following the procedure in Li et al. [15] (see also Huang et al. [14]), we use several steps 

to transform system (3.10) into the versal unfolding of a Bogdanov-Takens singularity (cusp 
case) of codimension three.

(I) Removing the y2
1 -term from ẏ1 in system (3.10). We let x1 = x2 + c02

2 x2
2 , y1 = y2 +

c02x2y2, then system (3.10) is changed into

ẋ2 = y2,

ẏ2 = d00 + d10x2 + d01y2 + d20x
2
2 + d11x2y2 + d30x

3
2 + d21x

2
2y2 + d12x2y

2
2 + d40x

4
2

+ d31x
3
2y2 + d22x

2
2y2

2 + o(|x2, y2|4),
(3.11)

where the coefficients are given in Appendix B.
(II) Removing the x2y

2
2 -term from ẏ2 in system (3.11). Let x2 = x3 + d12

6 x3
3 , y2 = y3 +

d12x2y3, then we obtain the following system
2 3
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ẋ3 = y3,

ẏ3 = e00 + e10x3 + e01y3 + e20x
2
3 + e11x3y3 + e30x

3
3 + e21x

2
3y3 + e40x

4
3

+ e31x
3
3y3 + R1(x3, y3, λ),

(3.12)

where the coefficients are given in Appendix B, and R1(x3, y3, λ) has the property of (3.6).

(III) Removing the x3
3 and x4

3 -terms from ẏ3 in system (3.12). Note that e20 = ω(1+ω)3

2(7+ω2)(1−ω)
+

O(λ) �= 0 for 0 < ω < 1 and small λ. We let

x3 = x4 − e30

4e20
x2

4 + 15e2
30 − 16e20e40

80e2
20

x3
4 , y3 = y4,

dτ = (1 + e30

2e20
x4 + 48e20e40 − 25e2

30

80e2
20

x2
4 + 48e20e30e40 − 35e3

30

80e3
20

x3
4)dt,

and obtain the following system from system (3.12) (still denote τ by t ):

ẋ4 = y4,

ẏ4 = f00 + f10x4 + f01y4 + f20x
2
4 + f11x4y4 + f30x

3
4 + f21x

2
4y4 + f40x

4
4

+ f31x
3
4y4 + R2(x4, y4, λ),

(3.13)

where the coefficients are given in Appendix B, and R2(x4, y4, λ) has the property of (3.6).

(IV) Removing the x2
4y4-term from ẏ4 in system (3.13). Note that f20 = ω(1+ω)3

2(7+ω2)(1−ω)
+

O(λ) �= 0 for 0 < ω < 1 and small λ. Letting

x4 = x5, y4 = y5 + f21

3f20
y2

5 + f 2
21

36f 2
20

y3
5 ,

and introducing a new time variable τ by dτ = (1 + f21
3f20

y5 + f 2
21

36f 2
20

y2
5)dt , then system (3.13) can 

be rewritten as (still denote τ by t )

ẋ5 = y5,

ẏ5 = g00 + g10x5 + g01y5 + g20x
2
5 + g11x5y5 + g31x

3
5y5 + R3(x5, y5, λ)),

(3.14)

where

g00 = f00, g10 = f10, g01 = f01 − f00f21

f20
, g20 = f20, g11 = f11 − f10f21

f20
,

g31 = f31 − f21f30

f20
,

and R3(x5, y5, λ)) has the property of (3.6).
(V) Changing g20 to 1 and g31 to -1 in ẏ5 in system (3.14). We can see that g20 =
ω(1+ω)3

2(7+ω2)(1−ω)
+ O(λ) > 0 and g31 = − 256

ω(1−ω)(7+ω2)2 + O(λ) < 0 for 0 < ω < 1 and small λ. 
By making the following changes of variables and time:
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x5 = g
1
5
20g

− 2
5

31 x6, y5 = −g
4
5
20g

− 3
5

31 y6, t = −g
− 3

5
20 g

1
3
31τ,

system (3.14) becomes (still denote τ by t )

ẋ6 = y6,

ẏ6 = h00 + h10x6 + h01y6 + h11x6y6 + x2
6 − x3

6y6 + R4(x6, y6, λ)),
(3.15)

where

h00 = g00g
4
5
31g

− 7
5

20 , h10 = g10g
2
5
31g

− 6
5

20 , h01 = −g01g
1
5
31g

− 3
5

20 , h11 = −g11g
− 2

5
20 g

− 1
5

31 ,

and R4(x6, y6, λ) has the property of (3.6).
(VI) Removing the x6-term from ẏ6 in system (3.15). Let x6 = x7 − h20

2 , y6 = y7, then 
system (3.16) becomes

ẋ7 = y7,

ẏ7 = μ1 + μ2y7 + μ3x7y7 + x2
7 − x3

7y7 + R5(x7, y7, λ)),
(3.16)

where R5(x7, y7, λ)) has the property of (3.6), and

μ1 = h00 − h2
10

4
= q1λ1 + q2λ2 + q3λ3 + o(λ),

μ2 = h01 + 1

8
(h3

10 − 4h10h11) = q4λ1 + q5λ2 + q6λ3 + o(λ),

μ3 = h11 − 3

4
h2

10 = q7λ1 + q8λ2 + q9λ3 + o(λ),

the coefficients qi(i = 1, 2, 3, 4, 5, 6, 7, 8, 9) are given in Appendix B.
With the help of Mathematica software, we obtain that

D(μ1,μ2,μ3)

D(λ1, λ2, λ3)
= 128 5

√
16 5

√
(1 − ω)3(3 + ω)(ω2 − 2ω + 5)(3ω2 − 6ω + 7)

5
√

ω21(1 + ω)36(7 + ω2)6
+ O(λ) �= 0

for 0 < ω < 1 and small λ, it is obvious that system (3.16) is exactly in the form of system (3.5), 
by the results in Dumortier et al. [5] and Chow et al. [2], system (3.16) is the versal unfold-
ing of the Bogdanov-Takens singularity (cusp case) of codimension three, the remainder term 
R5(x7, y7, λ) satisfying the property of (3.6) has no influence on the bifurcation phenomena, and 

the dynamics of system (1.2) in a small neighborhood of the positive equilibrium ( 1−ω2

8 , (1+ω)2

8 )

as (a, c, δ) varying near (a0, c0, δ0) are equivalent to system (3.16) in a small neighborhood of 
(0, 0, 0) as (μ1, μ2, μ3) varying near (0, 0, 0).

Next we describe the bifurcation diagram of system (3.16) following Fig. 3 of Dumortier et 
al. [5] based on a time reversal transformation. The bifurcation diagram has the conical structure 
in R3 starting from (μ1, μ2, μ3) = (0, 0, 0). It can be shown by drawing its intersection with the 
half sphere

S = {(μ1,μ2,μ3)|μ2 + μ2 + μ2 = ε2,μ1 ≤ 0, ε > 0 sufficiently small}.
1 2 3



C. Xiang et al. / J. Differential Equations 268 (2020) 4618–4662 4645
Fig. 3.1. Bifurcation diagram for system (3.16).

To see the trace of intersection clearly, we draw the projection of the trace onto the (μ2, μ3)-plane, 
see Fig. 3.1. The curves C, H, L denote the homoclinic bifurcation curve, Hopf bifurcation curve 
and saddle-node bifurcation curve of limit cycles, respectively. b1 and b2 are the Bogdanov-
Takens bifurcation points. c2 and h2 correspond to a homoclinic bifurcation of codimension two 
and a Hopf bifurcation of codimension two, respectively. The point d represents a parameter 
value of simultaneous Hopf and homoclinic bifurcations, where an unstable limit cycle coexists 
with a stable homoclinic loop. For parameter values in the triangle dh2c2, there exist exactly 
two limit cycles: the inner one is unstable and the outer one is stable. The detailed bifurcation 
phenomena can be referred to Dumortier et al. [5] (see also Li et al. [15] or Huang et al. [14]). �

The typical phase portraits for a cusp type degenerate Bogdanov-Takens bifurcation of codi-
mension three in system (1.2) are given in Fig. 3.2. The coexistence of a cusp E∗ of codimension 
three and a hyperbolic focus E3 is given in Fig. 3.2(a), the coexistence of an unstable limit cycle 
and a stable homoclinic loop is given in Fig. 3.2(b), and the existence of two limit cycles (the 
inner one is unstable and the outer one is stable) is given in Fig. 3.2(c).

Next we consider the bifurcation around the cusp E∗ of codimension three when the con-
ditions in (3.2) or (3.3) are satisfied. For simplicity, we still let ω = √

1 − 8x∗, then a3 =
1−3x∗+(1−x∗)

√
1−8x∗

2 = (1+ω)(5+2ω+ω2)
16 . When a = a3, from (3.2), we have

a = (1+ω)(5+2ω+ω2)
16 , b = (1+ω)(7+ω2)2

16(1−ω)2 , c = (1−ω)3(7+ω2)

16(ω2+2ω+5)
, δ = (1+ω)(1−ω)2

2(ω2+2ω+5)
, (3.17)

and E∗(x∗, y∗) = E∗( 1−ω2

8 , (1−ω)2

8 ), if we choose a, b and δ as bifurcation parameters, then the 
unfolding system of (1.2) is as follows
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Fig. 3.2. Typical phase portraits of system (1.2) in a cusp type degenerate Bogdanov-Takens bifurcation of codimension 
three. (a) The coexistence of a cusp E∗ of codimension three and a hyperbolic focus E3; (b) The coexistence of an 
unstable limit cycle and a stable homoclinic loop; (c) The existence of two limit cycles.

ẋ = x(1 − x − (

(1+ω)(7+ω2)2

16(1−ω)2
+λ2)y

(1+ω)(5+2ω+ω2)
16 +λ1+x

),

ẏ = y(
(1+ω)(1−ω)2

2(5+2ω+ω2)
+ λ3 − y +

(7+ω2)(1−ω)3

16(5+2ω+ω2)
x

(1+ω)(5+2ω+ω2)
16 +λ1+x

),

(3.18)

where λ = (λ1, λ2, λ3) is a parameter vector in a small neighborhood of (0, 0, 0).

Theorem 3.4. When the conditions in (3.2) or (3.3) are satisfied, the degenerate equilibrium 
E∗(x∗, x∗(1−a−2x∗)

a+x∗ ) (i.e., E∗( 1−ω2

8 , (1−ω)2

8 )) of system (1.2) is a cusp of codimension three. Sys-
tem (1.2) undergoes a cusp type Bogdanov-Takens bifurcation of codimension three in a small 
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neighborhood of E∗ as (a, b, c, δ) varies in a small neighborhood of (a0, b0, c0, δ0), where 
(a0, b0, c0, δ0) satisfies (3.17). More precisely, system (1.2) can exhibit the coexistence of a stable 
homoclinic loop and an unstable limit cycle, the coexistence of two limit cycles (the inner one 
unstable and the outer stable), and the existence of a semi-stable limit cycle for different sets of 
parameters.

Proof. The proof is similar to that of Theorem 3.3. After making a sequence of transformations 
as those in the proof of Theorem 3.3, we obtain the following equivalent system of system (3.18)

ẋ7 = y7,

ẏ7 = μ1 + μ2y7 + μ3x7y7 + x2
7 − x3

7y7 + R̃5(x7, y7, λ),
(3.19)

where μ1, μ2 and μ3 are the C∞ function of λ1, λ2, λ3 and ω, and R̃5 has the property of (3.6).
Under the help of Mathematica, when the conditions in (3.2) or (3.3) are satisfied, we obtain

D(μ1,μ2,μ3)

D(λ1, λ2, λ3)
= −128 5

√
16 5

√
(1 + ω)3(3 − ω)(5 + 2ω + ω2)(7 + 6ω + 3ω2)

5
√

ω21(1 − ω)36(7 + ω2)6
+ O(λ) �= 0

for 0 < ω < 1 and small λ, it is obvious that system (3.19) is exactly in the form of system 
(3.5), by the results in Dumortier et al. [5] and Chow et al. [2], system (3.19) is the versal un-
folding of the Bogdanov-Takens singularity (cusp case) of codimension three, the remainder 
term R̃5(x7, y7, λ) satisfies the property of (3.6) and has no influence on the bifurcation phe-
nomena, and the dynamics of system (1.2) in a small neighborhood of the positive equilibrium 

( 1−ω2

8 , (1−ω)2

8 ) as (a, b, δ) varying near (a0, b0, δ0) are equivalent to system (3.19) in a small 
neighborhood of (0, 0, 0) as (μ1, μ2, μ3) varying near (0, 0, 0). �
3.2. Focus and elliptic types degenerate Bogdanov-Takens bifurcation of codimension three

Theorem 2.8(II) indicates that if

b = 2(1+a)2

3(1−2a)
, c = (1+a)(1−2a)

18a
, δ = (1−2a)(8a−1)

18a
, (3.20)

then the unique triple positive equilibrium E∗ of system (1.2) is a degenerate nilpotent focus or 
elliptic singularity of codimension three, system (1.2) may exhibit degenerate focus or elliptic 
type Bogdanov-Takens bifurcation of codimension three around E∗. If we choose b, c and δ as 
bifurcation parameters, then the unfolding system of system (1.2) is as follows

ẋ = x(1 − x − (
2(1+a)2

3(1−2a)
+λ1)y

a+x
),

ẏ = y(
(1−2a)(8a−1)

18a
+ λ2 − y + (

(1+a)(1−2a)
18a

+λ3)x

a+x
),

(3.21)

where λ = (λ1, λ2, λ3) is a parameter vector in a small neighborhood of (0, 0, 0).

Theorem 3.5. If δ < a
b

, 1
8 < a < 1

2 , a �= 5
16 , and the conditions in (3.20) are satisfied, then the 

unique triple positive equilibrium E∗ of system (1.2) is a degenerate nilpotent focus or elliptic 
singularity of codimension three. Moreover, if we choose b, c and δ as bifurcation parameters, 
then
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(i) when 5
16 < a < 2+3

√
2

16 , system (1.2) undergoes a focus type degenerate Bogdanov-
Takens bifurcation of codimension three around E∗ in a small neighborhood of the point 
(a0, b0, c0, δ0) of the parameter space, where (a0, b0, c0, δ0) satisfies (3.20). Thus, system 
(1.2) can exhibit a big limit cycle enclosing three hyperbolic positive equilibria, two big limit 
cycles enclosing three hyperbolic positive equilibria, and a big limit cycle enclosing three 
hyperbolic positive equilibria and a small limit cycle for different sets of parameters;

(ii) when 2+3
√

2
16 ≤ a < 1

2 and a �= 23+3
√

65
112 , system (1.2) undergoes an elliptic type degenerate 

Bogdanov-Takens bifurcation of codimension three around E∗ in a small neighborhood of 
the point (a0, b0, c0, δ0) of the parameter space, where (a0, b0, c0, δ0) satisfies (3.20). Thus, 
system (1.2) can exhibit the coexistence of three positive equilibria and a homoclinic loop, 
and one or two limit cycles enclosing only one positive equilibrium for different sets of 
parameters.

Proof. Firstly, we make a sequence of smooth coordinate transformations (I ), (II) and (III), 
which were used in the proof of Theorem 2.8, to get the following system from system (3.21)

Ẋ = y + ˜c00(λ) + ˜c10(λ)X + ˜c01(λ)Y + ˜c20(λ)X2 + ˜c11(λ)XY + ˜c02(λ)Y 2

+ ˜c30(λ)X3 + ˜c21(λ)X2Y + ˜c12(λ)XY 2 + ˜c03(λ)Y 3 + O(|X,Y |4),
Ẏ = ˜d00(λ) + ˜d10(λ)X + ˜d01(λ)Y + ˜d20(λ)X2 + ˜d11(λ)XY + ˜d02(λ)Y 2

+ ˜d30(λ)X3 + ˜d21(λ)X2Y + ˜d12(λ)XY 2 + ˜d03(λ)Y 3 + O(|X,Y |4),

(3.22)

where ˜cij (λ) and d̃ij (λ) are smooth functions whose long expressions are omitted here for 
the sake of brevity, ˜c00(0) = ˜c10(0) = ˜c01(0) = ˜c20(0) = ˜c11(0) = ˜c02(0) = ˜d00(0) = ˜d10(0) =
˜d01(0) = ˜d20(0) = ˜d02(0) = 0, ˜c30(0) = ˜c30, ˜c21(0) = ˜c21, ˜c12(0) = ˜c12, ˜c03(0) = ˜c03, ˜d11(0) =
˜d11, ˜d30(0) = ˜d30, ˜d21(0) = ˜d21, ˜d12(0) = ˜d12, ˜d03(0) = ˜d03, and ˜c30, ˜c21, ˜c12, ˜c03, ˜d11, ˜d30,˜d21, ˜d12, ˜d03 are given in system (2.31).

Secondly, to simplify the third order terms when λ = 0, we make the following coordinate 
transformation

(IV ) : X = x + 2 ˜c21 + ˜d12

6
x3 + ˜c12 + ˜d03

2
x2y + ˜c03xy2, Y = y − ˜c30x

3 + ˜d12

2
x2y + ˜d03xy2,

and rewrite system (3.22) as follows

ẋ = y + ˜e00(λ) + ˜e10(λ)x + ˜e01(λ)y + ˜e20(λ)x2 + ˜e11(λ)xy + ˜e02(λ)y2 + ˜e30(λ)x3

+ ˜e21(λ)x2y + ˜e12(λ)xy2 + ˜e03(λ)y3 + O(|x, y|4),
v̇ = ˜f00(λ) + ˜f10(λ)x + ˜f01(λ)y + ˜f20(λ)x2 + ˜f11(λ)xy + ˜f02(λ)y2 + ˜f30(λ)x3

+ ˜f21(λ)x2y + ˜f12(λ)xy2 + ˜f03(λ)y3 + O(|x, y|4),

(3.23)

where ˜eij (λ) and f̃ij (λ) can be expressed by ˜ci,j (λ), d̃ij (λ), we also omit their expressions here 
to save spaces.
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Thirdly, introduce the following transformation

X = x,

Y = x + ˜e00(λ) + ˜e10(λ)x + ˜e01(λ)y + ˜e20(λ)x2 + ˜e11(λ)xy + ˜e02(λ)y2 + ˜e30(λ)y3

+ ˜e21(λ)x2y + ˜e12(λ)xy2 + ˜e03(λ)y3 + O(|x, y|4),

and rewrite system (3.23) as

Ẋ = Y,

Ẏ = ˜g00(λ) + ˜g10(λ)X + ˜g01(λ)Y + ˜g20(λ)X2 + ˜g11(λ)XY + ˜g02(λ)Y 2

+ ˜g30(λ)X3 + ˜g21(λ)X2Y + ˜g12(λ)XY 2 + ˜g03(λ)Y 3 + O(|X,Y |4),
(3.24)

where g̃ij (λ) can be expressed by ˜eij (λ) and f̃ij (λ), we also omit their expressions here. With the 

help of Mathematica software we calculate that ˜g30(0) = −4 < 0 and ˜g21(0) = 3(224a2−92a−1)

2(1−2a)3 �=
0 if a �= 23+3

√
65

112 .
Fourthly, to remove the X2-term in the second equation of system (3.24), we let X = x −

˜g20(λ)
3 ˜g30(λ)

, Y = y, then system (3.24) can be rewritten as

ẋ = y,

ẏ = ˜h00(λ) + ˜h10(λ)x + ˜h01(λ)y + ˜h11(λ)xy + ˜h02(λ)y2

+ ˜h30(λ)x3 + ˜h21(λ)x2y + ˜h12(λ)xy2 + ˜h03(λ)y3 + O(|x, y|4),
(3.25)

where

˜h00(λ) = ˜g00(λ) + 2 ˜g20
3(λ) − 9 ˜g10(λ) ˜g20(λ) ˜g30(λ)

27 ˜g30
3(λ)

, ˜h10(λ) = ˜g10(λ) − ˜g20
2(λ)

3 ˜g30(λ)
,

˜h03(λ) = ˜g03(λ), ˜h01(λ) = ˜g01(λ) + ˜g20(λ)( ˜g20(λ) ˜g21(λ) − 3 ˜g11(λ) ˜g30(λ))

9 ˜g30
2(λ)

,

˜h11(λ) = ˜g11(λ) − 2 ˜g20(λ) ˜g21(λ)

3 ˜g30(λ)
,

˜h02(λ) = ˜g02(λ) − ˜g12(λ) ˜g20(λ)

3 ˜g30(λ)
, ˜h30(λ) = ˜g30(λ), ˜h21(λ) = ˜g21(λ), ˜h12(λ) = ˜g12(λ).

Fifthly, in order to change ˜h30(λ) to −1 in the second equation of system (3.25), we let

x = X

3
√

− ˜h30(λ)

, y = Y,

then system (3.25) can be rewritten as
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Ẋ = 3
√

− ˜h30(λ)Y,

Ẏ = j00(λ) + j10(λ)X + j01(λ)Y + j11(λ)XY + j02(λ)Y 2 + j30(λ)X3 + j21(λ)X2Y

+ j12(λ)XY 2 + j03(λ)Y 3 + O(|X,Y |4),
(3.26)

where

j00(λ) = ˜h00(λ), j10 = ˜h10(λ)

3
√

− ˜h30(λ)

, j01(λ) = ˜h01(λ), j11(λ) = ˜h11(λ)

3
√

− ˜h30(λ)

,

j02(λ) = ˜h02(λ), j30(λ) = −1, j21(λ) = ˜h21(λ)

3
√

˜h30
2
(λ)

, j12 = ˜h12(λ)

3
√

− ˜h30(λ)

, j03(λ) = ˜h30(λ).

Finally, let

X = (−j30(λ))
5
6

j21(λ)
x, Y = (−j30(λ))

3
2

j2
21(λ)

y, t = j21(λ)

−j30(λ)
τ,

then we can get the versal unfolding of system (3.21) as follows (still denote τ by t )

ẋ = y,

ẏ = η1(λ) + η2(λ)x − x3 + y[η3(λ) + A(λ)x + x2] + y2Q(x,y,λ) + O(|x, y|4), (3.27)

where

A(λ) = j11(λ)√−j30(λ)
,Q(x, y,λ) = j02(λ)

√−j30(λ)

j21(λ)
− j12(λ)j30(λ)

j2
21(λ)

x + j2
30(λ)j03(λ)

j3
21(λ)

y,

η1(λ) = j00(λ)j3
21(λ)

(−j30(λ))
5
2

, η2(λ) = j10(λ)j2
21(λ)

j2
30(λ)

, η3(λ) = −j10(λ)j21(λ)

j30(λ)
.

Since 1
8 < a < 1

2 and a �= 5
16 , by lengthy calculation, we have

∣∣∣∂(η1(λ), η2(λ), η3(λ))

∂(λ1, λ2, λ3)

∣∣∣
λ=0

= − 81a(224a2 − 92a − 1)6

131072(2a − 1)13(1 + a)3 �= 0

if a �= 23+3
√

65
112 . Moreover, we have

A(0) = 16a − 5

2(1 − 2a)
,

and it is easy to show that 0 < A(0) < 2
√

2 if 5
16 < a < 3

√
2+2

16 , and A(0) ≥ 2
√

2 if 2+3
√

2
16 ≤ a <

23+3
√

65 or 23+3
√

65 < a < 1 .
112 112 2
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By the results in Dumortier et al. [4] or Xiao and Zhang [25], we know that system (3.27) is 
a generic 3-parameter family of nilpotent focus (or elliptic) singularity of codimension three if 
1
8 < a < 2+3

√
2

16 and a �= 5
16 (or 2+3

√
2

16 ≤ a < 1
2 and a �= 23+3

√
65

112 ), and system (1.2) undergoes a 
degenerate focus or elliptic type Bogdanov-Takens bifurcation of codimension three around E∗

when (b, c, δ) vary in a small neighborhood of ( 2(1+a)2

3(1−2a)
, (1+a)(1−2a)

18a
, (1−2a)(8a−1)

18a
). �

3.3. Hopf bifurcation and degenerate Hopf bifurcation of codimension two

In this subsection, we discuss Hopf bifurcation around E1(x1, y1) or E3(x3, y3) in system 
(1.2). For simplicity, we use the same technique as in Dai et al. [3] and make the following 
scaling for system (1.2)

x̄ = x
xi

, ȳ = y
yi

, τ = √
xiyi t (i = 1,3). (3.28)

Dropping the bar and still denoting τ by t , then system (1.2) becomes

ẋ = x(α − βx − By
A+x

),

ẏ = y(γ − y
β

+ Cx
A+x

),
(3.29)

where

α = 1√
xiyi

, β =
√

xi

yi

, γ = αδ, A = a

xi

, B = b

βxi

, C = cα,

and α, β , γ , A, B and C are all positive constants. Since (1, 1) is an equilibrium of system (3.29), 
then we have

B = (α − β)(1 + A), C = −(γ − 1
β
)(1 + A), (3.30)

and

α > β, γ < 1
β
, α > 0, β > 0, γ > 0, A > 0. (3.31)

Make a time variation τ = t
A+x

, then system (3.29) becomes (still use t to denote τ )

ẋ = x
(
(α − βx)(A + x) − (α − β)(A + 1)y

)
,

ẏ = y
(
(γ − y

β
)(A + x) − (γ − 1

β
)(A + 1)x

)
.

(3.32)

Since the transformation (3.28) is a linear sign-reserving transformation, system (3.32) and sys-
tem (1.2) have the same qualitative property. The Jacobian matrix of system (3.32) at a positive 
equilibrium E(x, y) takes the form

J (E) =
⎛⎝ 2(α − Aβ)x − 3βx2 − (α + Aα − β − Aβ)y + Aα −(α − β)(A + 1)x

− (A(1−βγ )+1−y)y (1+A−Aβγ )x−2Ay−2xy+Aβγ

⎞⎠ ,
β β
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and

D̃ � Det(J (1,1)) = (A + 1)(β(2 + Aβγ ) − α(1 + Aβγ − A))

β
,

Tr(J (1,1)) = α − (A + 2)β − A + 1

β
.

We let

α∗ = 1 + A + (2 + A)β2

β
, γ∗ = 2(A2β3 + A2β + Aβ3 − β3)

A(1 + β2 + 2Aβ2 + 2β4 + 2Aβ4)
,

and have the following results.

Lemma 3.6. If γ <
2β+α(A−1)
Aβ(α−β)

and the conditions in (3.31) are satisfied, then we have

(I) E(1, 1) is a stable hyperbolic focus or node if 0 < α < α∗, and an unstable hyperbolic focus 
or node if α > α∗;

(II) E(1, 1) is a weak focus or center if α = α∗.

Proof. Since 0 < β < α, from Det(J (1, 1)) = (A+1)(β(2+Aβγ )−α(1+Aβγ−A))
β

> 0, we have γ <

2β+α(A−1)
Aβ(α−β)

. From Tr(J (1, 1)) = α − (A + 2)β − A+1
β

= 0, we have α = α∗. The results fol-
low. �

We next consider Case (II) in Lemma 3.6 and explore the exact multiplicity of the weak focus 
E(1, 1) when α = α∗. Firstly we check the transversality condition

d

dα
(Tr(J (1,1)))|α=α∗ = 1 > 0.

We investigate the nondegenerate condition and stability of the bifurcating periodic orbit from 
the positive equilibrium E(1, 1) of system (3.32) by calculating the first Liapunov coefficient. 
When α = α∗, using the formula of the first Liapunov number σ in Perko [19], we have

σ1 = (1 + A)(1 + β2)Q

8A(1 − βγ )(A(1 − βγ )(1 + β2) − 1)
,

where

Q = γ {A(1 + β2 + 2Aβ2 + 2β4 + 2Aβ4)} − {2(A2β3 + A2β + Aβ3 − β3)}.

From α = α∗ and Det(J (1, 1)) > 0, we have

γ <
A(1 + β2) − 1

2 ,

Aβ(1 + β )
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i.e., A(1 − βγ )(1 + β2) − 1 > 0. Moreover, from 0 < βγ < 1, we have 8A(1 − βγ )(A(1 −
βγ )(1 + β2) − 1) > 0. Thus, the sign of σ1 is the same as Q. From Q = 0, i.e., σ1 = 0, we have

γ = γ∗ = 2(A2β3 + A2β + Aβ3 − β3)

A(1 + β2 + 2Aβ2 + 2β4 + 2Aβ4)
,

where

A2β3 + A2β + Aβ3 − β3 > 0, γ∗ < min{A(1+β2)−1
Aβ(1+β2)

, 1
β
}. (3.33)

Theorem 3.7. When α = α∗, γ <
A(1+β2)−1
Aβ(1+β2)

, and the conditions in (3.31) are satisfied, the fol-
lowing statements hold.

(I) If γ > γ∗, then E(1, 1) is an unstable weak focus with multiplicity one, and system (3.32)
exhibits a subcritical Hopf bifurcation;

(II) If γ < γ∗, then E(1, 1) is a stable weak focus with multiplicity one, and system (3.32)
exhibits a supercritical Hopf bifurcation;

(III) If γ = γ∗, then E(1, 1) is a weak focus with multiplicity at least two, and system (3.32)
exhibits a degenerate Hopf bifurcation.

Next, using the formal series method in Zhang et al. [27] and MATLAB software, when 
α = α∗ and γ = γ∗, we obtain the second Liapunov coefficient as follows

σ2 = −β(1 + A)4(1 + β2)Q1Q2

12(A + Aβ2 + 2β4)2D̃
3
2

,

where

D̃ = Det(J (1,1)) > 0, Q1 = 1 + (1 + 2A)β2 + 2(1 + A)β4,

Q2 = 1 + 3β4 + 6β6 + 2A2(1 + β2)2 + 2A(1 + β2)2(1 + β2).

Since A > 0 and β > 0, we have Q1 > 0, Q2 > 0, i.e., σ2 < 0 when α = α∗, γ = γ∗ and the 
conditions in (3.31) and (3.33) are satisfied.

Theorem 3.8. If α = α∗, γ = γ∗, and the conditions in (3.31) and (3.33) are satisfied, then the 
equilibrium E(1, 1) of system (3.32) (i.e., the equilibrium E1(x1, y1) or E3(x3, y3) of system 
(1.2)) is a stable weak focus with multiplicity exactly two. System (3.32) (or system (1.2)) can 
undergo a degenerate Hopf bifurcation of codimension two around E(1, 1) (or E1(x1, y1) or 
E3(x3, y3)). Thus, system (3.32) (or system (1.2)) exhibits the coexistence of two limit cycles (the 
inner one unstable and the outer stable) for some parameters.

Finally, we present some numerical simulations to show the existence of limit cycles. In 
Fig. 3.3(a), we show the existence of one stable limit cycle arising from a supercritical Hopf 
bifurcation around the equilibrium E(1, 1) of system (3.32), Fig. 3.3(b) is the local amplified 



4654 C. Xiang et al. / J. Differential Equations 268 (2020) 4618–4662
Fig. 3.3. (a) A stable limit cycle created by the supercritical Hopf bifurcation of system (3.32) with α = 8.002, β = 1
2 , 

γ = 1 and A = 2; (b) Amplified phase portrait of (a) showing the existence of a stable limit cycle; (c) An unstable limit 
cycle created by the subcritical Hopf bifurcation of the system (3.32) with 12296

1375 − 0.05, β = 11
5 , γ = 19

50 and A = 77
50 ; 

(d) Amplified phase portrait of (c) showing the existence of an unstable limit cycle.

phase portrait of Fig. 3.3(a); In Fig. 3.3(c), we show the existence of one unstable limit cy-
cle arising from a subcritical Hopf bifurcation around the equilibrium E(1, 1) of system (3.32), 
Fig. 3.3(d) is the local amplified phase portrait of Fig. 3.3(c).

Next we give some numerical simulations in Fig. 3.4(a) to show the existence of two limit cy-
cles based on Theorems 3.7 and 3.8, Fig. 3.4(b) is the local amplified phase portrait of Fig. 3.4(a). 
Firstly, we fix A = 1 and β = 2, then get α = 7 and γ = 20

77 from α = α∗ and γ = γ∗, respec-
tively, i.e., E(1, 1) is a stable weak focus with multiplicity two for those fixed parameters. Next 
we first perturb γ such that γ increases to 20

77 + 0.01, then E(1, 1) becomes an unstable weak 
focus with multiplicity one, a stable limit cycle occurs around E(1, 1) which is the outer limit 
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Fig. 3.4. (a) The existence of two limit cycles (the inner one unstable and the outer stable) enclosing a stable hyperbolic 
focus E(1, 1) in system (3.32) with α = 7, β = 2, γ = 20

77 + 0.01 and α = 7 − 0.002; (b) The local amplified phase 
portrait of (a).

cycle in Fig. 3.4. Secondly, we perturb α such that α decreases to 7 − 0.002, then E(1, 1) be-
comes a stable hyperbolic focus, another unstable limit cycle occurs around E(1, 1), which is the 
inner limit cycle in Fig. 3.4.

Remark 3.9. From Fig. 3.3(a) and Fig. 3.4, where K2 < r1
ξ

, we can see that the boundary equi-
libria are all unstable, and there exist multiple positive equilibria or multiple limit cycles, i.e., the 
invading hosts and generalist parasitoids can always tend to coexistent steady states or coexistent 
periodic orbits, if the carrying capacity for the generalist parasitoids is smaller than a critical 
value r1

ξ
. From Fig. 3.3(c) and (d), when K2 ≥ r1

ξ
, we can see that the boundary equilibrium 

A1 is a stable hyperbolic node, and there exist multiple positive equilibria and an unstable limit 
cycle, i.e., the invading hosts will die out for almost all positive initial populations outside the 
unstable periodic orbit, tend to periodic outbreaks for almost all positive initial populations on 
the unstable periodic orbit, and persist in the form of a positive steady state when the positive 
initial populations lie inside the unstable periodic orbit, if the carrying capacity for the generalist 
parasitoids is larger than a critical value r1

ξ
.

4. Conclusions

In this paper, we rivisited a host-generalist parasitoid model with Holling II functional re-
sponse, which was proposed by Magal et al. [17]. After performing a complete qualitative and 
bifurcation analysis depending on all four parameters, our results revealed that model (1.2) ex-
hibits complex dynamics and bifurcations, such as the existence of cusp, focus and elliptic types 
degenerate Bogdanov-Takens bifurcations of codimension three, Hopf bifurcation, and degener-
ate Hopf bifurcation of codimension at most two. Thus, there exist various parameter values such 
that model (1.2) exhibits one or two limit cycles enclosing only one positive equilibrium, or the 
coexistence of a limit cycle and a homoclinic loop, or a big limit cycle enclosing three hyperbolic 
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positive equilibria, or two big limit cycles enclosing three hyperbolic positive equilibria, or a big 
limit cycle enclosing three hyperbolic positive equilibria and a small limit cycle, etc. We also 
presented numerical examples which have one and two limit cycles, and the coexistence of an 
unstable limit cycle and a stable homoclinic loop, respectively.

Complex bifurcation phenomena have been found in some models arising in applications, such 
as Bogdanov-Takens bifurcation of codimension two in Ruan and Xiao [20], cusp type degener-
ate Bogdanov-Takens bifurcation of codimension three in Zhu et al. [26] (see also Li et al. [15], 
Huang et al. [12], [14]), focus type degenerate Bogdanov-Takens bifurcation of codimension 
three in Xiao and Zhang [25] (see also Huang et al. [13]), saddle type degenerate Bogdanov-
Takens bifurcation of codimension three in Etoua and Rousseau [6], elliptic type degenerate 
Bogdanov-Takens bifurcation of codimension three in Cai et al. [1]. Moreover, Shan et al. [23]
observed the existence of nilpotent cusp, focus and elliptic singularities of codimension three in 
a SIR type of compartmental model with hospital resources. In this paper, we have established 
the existence of cusp, focus and elliptic types degenerate Bogdanov-Takens bifurcations of codi-
mension three in model (1.2). To the best of our knowledge, we believe that this is the first time 
the existence of three topological types Bogdanov-Takens bifurcations of codimension three in a 
single model is rigorously proved.

We also found that there exists a critical value for the carrying capacity of the generalist 
parasitoids such that: (i) when the carrying capacity for the generalist parasitoids is smaller than 
the critical value, the invading hosts can always persist in spite of the predation of hosts by 
the generalist parasitoids, i.e., the generalist parasitoids cannot control the invasion of hosts; 
(ii) when the carrying capacity for the generalist parasitoids is larger than the critical value, the 
invading hosts can tend to extinction, or persist in the form of multiple coexistent steady states or 
multiple coexistent periodic orbits depending on the initial populations, i.e., whether the invading 
hosts can be stopped and reversed by the generalist parasitoids depends on the initial populations; 
(iii) in both cases, the generalist parasitoids always persist. These results may be useful for the 
control of invading species by introducing generalist predators.

The ODE model (1.1) and its PDE version

ut = Duxx + r1u(1 − u
K1

) − ξuv
1+ξhu

,

vt = Dvxx + r2v(1 − v
K2

) + γ ξuv
1+ξhu

(4.1)

(under certain boundary conditions) were proposed in Magal et al. [17] to study the invasion 
problem of lepidopteron, Cameraria orhidella (Lep. Gracillariidae), in the east of Europe since 
1985 and in France since 1998. This moth attacks horse chestnut trees by mining their leaves and 
infested chestnut trees turn completely yellow early summer and lose almost all leaves. There are 
three generations of C. ohridella per year from May to October and the spatial spread is estimated 
to be about 60 km per year (Sefrova and Lastuvka [21]). Moths disperse a few hundred meters 
per generation (Gilbertet al. [9]). In order to control the invasion of the leafminer, several para-
sitoids were introduced to attack the leafminer. The most common parasitoid is Minotetrastichus 
frontalis (Hym. Eulophidae). Parasitism rate varies from 0 to 33.4%, with an average low of 
6.5% (Grabenweger et al. [10]). In this paper we have provided detailed bifurcation analysis of 
the ODE host-parasitoid model (1.1). Though some numerical simulations were carried out for 
the PDE model (4.1) in Magal et al. [17], detailed mathematical analysis on the spatial dynam-
ics such as the existence of traveling waves of the PDE model (4.1) has not been done, which 
deserves further investigation.
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Appendix A. Coefficients in the proof of Theorem 2.8

In this appendix, we list the expressions of some coefficients that were used in the proof of 
Theorem 2.8.

˜a20 = 0, ˜a11 = 27(8a − 1)b2

2(1 + a)2(2 + 2a2 − 3b + a(4 + 6b))
,

˜a02 = 27(2a − 1)(1 + a2 + a(2 − 9b))b2

2(1 + a)4(2 + 2a2 − 3b + a(4 + 6b))
,

˜a30 = 243(1 + 4a)b3

(1 + a)2(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a21 = −243b3(1 + 4a)(1 + a2 − 6b + 2a(1 + 6b))

(1 + a)4(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a12 = 729b4(8a2 − 2a − 1)(4 + 4a2 − 15b + a(8 + 30b))

4(1 + a)6(2 + 2a2 − 3b + a(4 + 6b))2
,

˜a03 = −2187b5(1 − 2a)2(1 + 4a)(1 + a2 − 3b + a(2 + 6b))

4(1 + a)8(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a40 = − 2187b4(1 + 4a)

(1 + a)4(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a31 = 2187b4(1 + 4a)(2 + 2a2 − 15b + a(4 + 30a))

2(1 + a)6(2 + 2a2 − 3b + a(4 + 6b))2
,

˜a22 = −19683b5(8a2 − 2a − 1)(2 + 2a2 − 9b + 2a(2 + 9b)))

4(1 + a)8(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a13 = 59049b6(1 − 2a)2(1 + 4a)(2 + 2a2 − 7b + 2a(2 + 7b))

8(1 + a)10(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜a04 = −59049b7(2a − 1)3(1 + 4a)(1 + a2 − 3b + a(2 + 6b))

8(1 + a)12(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜b20 = 18b

2 + 4a + 2a2 − 3b + 6ab
, ˜b11 = 9b(1 + a2 + a(2 − 2ab) + 6b)

(1 + a)2(2 + 2a2 − 3b + a(4 + 6b))
,

˜b02 = 9b(2 + 8a3 + 2a4 + 9b2 + a(8 − 63b2) + 6a2(2 + 15b2))

2(1 + a)4(2 + 2a2 − 3b + a(4 + 6b))
,

˜b30 = − 162b2(1 + a2 + a(2 + 9b))

2 2 2 , ˜b40 = 1458b3(1 + a2 + a(2 + 9b))

4 2 2 ,

(1 + a) (2 + 2a − 3b + a(4 + 6b)) (1 + a) (2 + 2a − 3b + a(4 + 6b))
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˜b21 = 162b2(1 + a4 − 6b + a3(4 + 21b) + a(4 + 9b − 54b2) + 6a2(1 + 6b + 18b2))

(1 + a)4(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜b12 = −243b3(2a − 1)(4 + 4a4 − 15b + 2a3(8 + 33b) + a(16 + 36b − 135b2) + 3a2(8 + 39b + 90b2))

2(1 + a)6(2 + 2a2 − 3b + a(4 + 6b))2
,

˜b03 = 729b4(1 − 2a)2(1 + a4 − 3b + a3(4 + 15b) + a(4 + 9b − 27b2) + 3a2(2 + 9b + 18b2))

2(1 + a)8(2 + 2a2 − 3b + a(4 + 6b))2 ,

˜b31 = −729b3(2 + 2a4 − 15b + 8a3(1 + 6b) + a(8 + 18b − 135b2) + 3a2(4 + 27b + 90b2))

(1 + a)6(2 + 2a2 − 3b + a(4 + 6b))2
,

˜b22 = 6561b4(2a − 1)(2 + 2a4 − 9b + 4a3(2 + 9b) + a(8 + 18b − 81b2) + 3a2(4 + 21b + 54b2))

2(1 + a)8(2 + 2a2 − 3b + a(4 + 6b))2
,

˜b13 = −19683b5(1 − 2a)2(2 + 2a4 − 7b + 8a3(1 + 4b) + a(8 + 18b − 63b2) + 3a2(4 + 19b + 42b2))

4(1 + a)10(2 + 2a2 − 3b + a(4 + 6b))2
,

˜b04 = 19683b6(2a − 1)3(1 + a4 − 3b + a3(4 + 15b) + a(4 + 9b − 27b2) + 3a2(2 + 9b + 18b2))

4(1 + a)12(2 + 2a2 − 3b + a(4 + 6b))2
.

˜c30 = 6 − 48a

(1 − 2a)2 , ˜c21 = 81(8a − 1)

2(1 − 2a)3 , ˜c12 = 108(8a − 1)

(1 − 2a)4 , ˜c03 = − 324

(1 − 2a)4 ,

˜c40 = 9(272a2 − 104a + 11)

2(1 − 2a)4 , ˜c31 = 27(424a2 − 142a + 19)

2(1 − 2a)5
, ˜c22 = −486(4a2 − 10a + 1)

(1 − 2a)6
,

˜c13 = 11664a

(1 − 2a)6
, ˜c04 = 5832

(1 − 2a)6
, ˜d11 = 16a − 5

1 − 2a
, ˜d30 = −4, ˜d21 = 3(32a2 + 28a − 13)

2(1 − 2a)3 ,

˜d12 = 72(31a2 − 13a + 1)

(1 − 2a)4 , ˜d03 = − 108

(1 − 2a)3 , ˜d40 = −12(44a2 − 17a + 2)

(1 − 2a)3 ,

˜d04 = − 11664a

(1 − 2a)6
, ˜d31 = −4464a2 + 576a + 18

(1 − 2a)4 , ˜d22 = 81(104a3 − 30a2 − 45a + 8)

(1 − 2a)6
,

˜d13 = −324(208a2 − 64a + 7)

(1 − 2a)6
.

Appendix B. Coefficients in the proof of Theorem 3.3

Here we provide the expressions of some coefficients that were used in the proof of Theo-
rem 3.3.

a00 = (1 − ω2)(7 + ω2)λ1

4((1 − ω)(7 + ω2) + 16λ1)
, a01 = − (1 − ω)2(7 + ω2)2

8(1 + ω)((1 − ω)(7 + ω2) + 16λ1)
,

a10 = (1 − ω2)2(7 + ω2)2 + 16(1 − ω)(7 + ω2)(5 + 3ω2)λ1 + 512(3 + ω2)λ2
1

8((1 − ω)(7 + ω2) + 16λ1)2 ,

a20 = −4096λ3
1 + 768m3λ

2
1 + 16m2λ1 − m1

((1 − ω)(7 + ω2) + 16λ1)3 ,

a11 = − (1 − ω)(7 + ω2)2((1 − ω)(ω2 − 2ω + 5) + 16λ1)

2 2 2 ,

(1 + ω) ((1 − ω)(7 + ω ) + 16λ1)
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a30 = −32(1 − ω)(7 + ω2)2((1 − ω)(ω2 − 2ω + 5) + 16λ1)

((1 − ω)(7 + ω2) + 16λ1)4 ,

a21 = 16(1 − ω)(7 + ω2)2((1 − ω)(ω2 − 2ω + 5) + 16λ1)

(1 + ω)2((1 − ω)(7 + ω2) + 16λ1)3 ,

a40 = 512(1 − ω)(7 + ω2)2((1 − ω)(ω2 − 2ω + 5) + 16λ1)

((1 − ω)(7 + ω2) + 16λ1)5
,

a31 = −256(1 − ω)(7 + ω2)2((1 − ω)(ω2 − 2ω + 5) + 16λ1)

(1 + ω)2((1 − ω)(7 + ω2) + 16λ1)4 ,

b00 = (1 + ω)2
(
2((1 + ω)4 − 8(ω2 − 2ω + 5)λ2)λ1 − (1 − ω)(5 − 2ω + ω2)((7 + ω2)λ2 + 2(1 + ω)λ3)

)
8(ω2 − 2ω + 5)((ω − 1)(7 + ω2) − 16λ1)

,

b10 = − (1 + ω)2
(
ω3 − 3ω2 + 7ω − 5 − 16λ1

)(
(1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3

)
8(ω2 − 2ω + 5)(ω3 − ω2 + 7ω − 7 − 16λ1)2 ,

b01 = 1

8

( (ω2 − 1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)(ω3 − ω2 + 7ω − 7 − 16λ1)
+ 4(1 − ω)(1 + ω)2

ω2 − 2ω + 5

− 2(1 + ω)2 + 8λ2
)
,

b20 = −2(1 + ω)2((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)3 ,

b11 = ((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)2 , b02 = −1,

b30 = 32(1 + ω)2((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)4 ,

b21 = −16(((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)3 ,

b40 = −512((1 + ω)2((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)5
,

b31 = 256((1 − ω)(5 − 2ω + ω2) + 16λ1)((1 + ω)3(7 + ω2) + 16(ω2 − 2ω + 5)λ3)

(ω2 − 2ω + 5)((1 − ω)(7 + ω2) + 16λ1)4 ,

m1 = (1 + ω)(3 + ω2)(1 − ω)2(7 + ω2)2, m2 = (1 − ω)(1 − 3ω)(7 + ω2)2,

m3 = (1 − ω)(7 + ω2).

c00 = a2
01b00 − a00a01b01 + a2

00b02

a01
, c01 = a01a10 − a00a11 + a01b01 − 2a00b02

a01
,

c10 = a2
01a11b00 − a2

01a10b01 + 2a00a10b02 − a2
00a11b02 + a3

01b10 − a00a
2
01b11

a2
01

,

c20 = a21b00 − a20b01 + a11b10 + a01b20 − a10b11 − a00b21 + m4

a3 ,
01
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c11 = a00a
2
11 − a01a10a11 + 2a2

01a20 − 2a00a01a21 − 2a01a10b02 + 2a00a11b02 + a2
01b11

a2
01

,

c02 = a11 + b02

a01
, c12 = 2a01a21 − a11b02 − a2

11

a2
01

, c31 = m5 + m6 + m7

a4
01

,

c30 = a31b00 − a30b01 + a21b10 − a20b11 + a11b20 − a10b21 + a01b30 − a00b31 + m8

a4
01

,

c21 = 3a30 + b21

+ a01a10a
2
11 − a00a

3
11 − a2

01a11a20 − 2a2
01a10a21 + 3a00a01a11a21 − 3a00a

2
01a31 + m9

a3
01

,

c40 = a31b10 − a30b11 + a21b20 − a20b21 + a11b30 − a10b31 + a01b40 − a40b01

+ m10 + m11 + m12

a4
01

,

c22 = a3
11 − 3a01a11a21 + 3a2

01a31 + a2
11b02 − a01a21b02

a3
01

,

m4 = a2
01a

2
10b02 − 2a00a01a10a11b02 + a2

00a
2
11b02 + 2a00a

2
01a20b02 − a2

00a01a21b02,

m5 = −a01a10a
3
11 − a00a

4
11 + a2

01a
2
11a20 + 3a2

01a10a11a21 + 4a00a01a
2
11a21 − 2a3

01a20a21,

m6 = −2a00a
2
01a

2
21 − a3

01a11a30 − 3a3
01a10a31 − 4a00a

2
01a11a31 + 4a4

01a40,

m7 = −2a01a10a
2
11b02 + 2a2

01a11a20b02 + 2a2
01a10a21b02 − 2a3

01a30b02 + a4
01b31.

m8 = a2
00a

4
11 − 4a2

00a01a
2
11a21 + 2a2

00a
2
01a

2
21 + 4a2

00a
2
01a11a31 − a2

01a
2
10a11b02

+2a00a01a10a
2
11b02 + 2a3

01a10a20b02 − 2a00a
2
01a11a20b02 − 2a00a

2
01a10a21b02

+ 2a00a
3
01a30b02,

m9 = 2a01a10a11b02 − 2a00a
2
11b02 − 2a2

01a20b02 + 2a00a01a21b02,

m10 = a00a10a
4
11 − a00a01a

3
11a20 − 4a00a01a

2
11a21 + 3a00a

2
01a11a20a21 + 2a00a

2
01a10a

2
21

+ a00a
2
01a

2
11a30,

m11 = −2a00a
3
01a21a30 + 4a00a

2
01a10a11a31 − 3a00a

3
01a20a31 − a00a

3
01a11a40 + a01a

2
10a

2
11b02,

m12 = −2a2
01a10a11a20b02 + a3

01a
2
20b02 − a2

01a
2
10a21b02 + 2a3

01a10a30b02.

d00 = c00, d10 = c10 − c00c02, d01 = c01, d20 = c20 + c00c
2
02 − c10c

2
02

2
,

d11 = c11, d30 = c30 − c00c
3
02 + c10c

2
02

2
, d21 = c21 + c11c02

2
, d12 = c12 + 2c2

02,

d31 = c31 + c02c21,

d40 = 4c00c
4
02 − 2c10c

3
02 + c20c

2
02 + 2c02c30 + 4c40

4
, d22 = c22 + 3c02c12

2
− c3

02.

e00 = d00, e10 = d10, e01 = d01, e20 = d20 − d00d12
, e11 = d11, e30 = d30 − d10d12

,

2 3
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e21 = d21, e40 = d40 + d00d
2
12

4
− d12d20

6
, e31 = d31 + d11d12

6
.

f00 = e00, f10 = e10 − e00e30

2e20
, f01 = e01,

f20 = 1 + 45e00e
2
30 − 60e10e20e30 − 48e00e20e40

80e2
20

,

f11 = e11 − e01e30

2e20
, f30 = e10(35e2

30 − 32e20e40)

40e2
20

,

f21 = e21 − 60e11e20e30 − 45e01e
2
30 + 48e01e20e40

80e2
20

,

f40 = 100e10e20e30(16e20e40 − 15e2
30) + e00(2304e2

20e
2
40 − 275e4

30 − 1440e20e
2
30e40)

6400e4
20

,

f31 = e31 + 7e11e
2
30

8e2
20

− 5e30e21 + 4e11e40

5e20
.

q1 = 8 5
√

16(1 − ω)3(3 + ω2)

(ω2 − 2ω + 5)
5
√

ω11(1 + ω)6(7 + ω2)
, q2 = −2 5

√
16(1 − ω)8(7 + ω2)4

5
√

ω11(1 + ω)16
,

q3 = − 4 5
√

16(1 − ω)8

5
√

ω11(1 + ω)11(7 + ω2)
, q4 = 8 5

√
2(1 − ω)2)(ω4 − 3ω3 + 9ω2 − 9ω + 42)

5
√

ω9(1 + ω)9(7 + ω2)4(ω2 − 2ω + 5)
,

q5 = −4 5
√

2(1 − ω)2(7 + ω2)(3ω2 − 6ω + 7)

5
√

ω9(1 + ω)19
, q6 = −8 5

√
2(1 − ω)2(3ω2 − 6ω + 7)

5
√

ω9(1 + ω)14(7 + ω2)4
,

q7 = 2 5
√

16(5ω6 − ω5 + 52ω4 − 98ω3 + 109ω2 − 205ω + 42)

5
√

ω11(1 − ω)2(1 + ω)11(7 + ω2)6(ω2 − 2ω + 5)
,

q8 =
5
√

16(3ω2 − 6ω + 7)(2ω3 − ω2 + 4ω − 1)

5
√

ω11(1 − ω)2(1 + ω)21(7 + ω2)
, q9 = 2 5

√
16(3ω2 − 6ω − 1)(3ω2 − 6ω + 7)

5
√

ω11(1 − ω)2(1 + ω)16(7 + ω2)6
.
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