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Abstract. In this paper, the four-dimensional cyclic replicator system u̇i =

ui[−(Bu)i +
∑4

j=1 uj(Bu)j ], 1 ≤ i ≤ 4, with b1 = b3 is considered, in which

the first row of the matrix B is (0 b1 b2 b3) and the other rows of B are cyclic

permutations of the first row. Our aim is to study the global dynamics and
bifurcations in the system, and to show how and when all but one species go

to extinction. By reducing the four-dimensional system to a three-dimensional

one, we show that there is no periodic orbit in the system. For the case
b1b2 < 0, we give complete analysis on the global dynamics. For the case

b1b2 ≥ 0, we extend some results obtained by Diekmann and van Gils (2009).
By combining our work with that in Diekmann and van Gils (2009), we present

the dynamics and bifurcations of the system on the whole (b1, b2)-plane. The

analysis leads to explanations for the phenomena that in some semelparous
species, all but one brood go extinct.

1. Introduction. Consider the replicator system [9, 11]

u̇i = ui[−(Bu)i +

n∑
j=1

uj(Bu)j ], i = 1, 2, ..., n, (1)

in which u is an n-dimensional vector in the simplex

Σn = {u ∈ Rn :

n∑
j=1

uj = 1, uj ≥ 0, j = 1, 2, ..., n}.

In (1), (Bu)i is the ith component of the vector Bu, while B is a circulant matrix

B =


0 b1 · · · bn−1

bn−1 0 · · · bn−2

...
...

. . .
...

b1 b2 · · · 0

 .
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Thus the rows of B are cyclic permutations of the first row. The system (1) is
derived by Diekmann and van Gils [9] from the cyclic competition system

ẋi = xi(1− (Ax)i), xi ≥ 0, i = 1, 2, ..., n, (2)

in which xi denotes the population density of the ith year class of semelparous
species. A species is called semelparous if each individual reproduces only once
in its life and dies immediately after the reproduction. While the reproduction
opportunity is unique per year and the length of the life cycle is just n years, the
individuals that reproduce in the ith year (modulo n) are the so-called ith year class,
i = 1, 2, ..., n [9]. In nature, there are various semelparous species such as cicadas,
Pacific salmon and many other insects [3, 6, 7, 8, 13, 14, 15]. While different year
classes of the species are identical except for their reproduction time, some of them
are extinct during the evolution. If all but one year class are extinct in a species,
the species is called periodical [2]. The most interesting periodical species is the
13th and 17th year cicadas of eastern North America. Applying to the population
dynamics of semelparous species, a series of interesting questions have been put
forward such as: what are the mechanisms that result in both the existence of only
one brood and the selection of this brood; how these year classes could coexist, etc.
[1, 4, 5, 16, 17].

In [9], Diekmann and van Gils obtained some interesting features of (2). For
example, all year classes have the same intrinsic growth rate, and the interaction
matrix A is circulant

A =


a1 a2 · · · an
an a1 · · · an−1

...
...

. . .
...

a2 a3 · · · a1

 , ai ≥ 0, i = 1, 2, ..., n,

in which 1
a1

denotes the carrying capacity of every year class and ai

a1
(i 6= 1) are the

competitive degrees from other year classes.
System (1) is derived from (2) mainly by the projection ui = xi/

∑n
j=1 xj with

(see [9], p.1163)

bi = ai+1 − a1, i = 1, 2, ..., n− 1. (3)

While xi is the population density of the ith year class, ui denotes the fraction
of the ith year class in the whole population. When n = 2, 3, the dynamics and
bifurcations of (1) are completely determined by Diekmann and van Gils [9]. When
n = 4, the dynamics and bifurcations of (1) are given in an almost complete picture
in [9], where a series of novel Lyapunov functions are constructed. For the case
n = 4, Wang et al. [18] showed the existence, growth and disappearance of periodic
orbits near heteroclinic cycles when the parameters b1, b2 and b3 vary in some
critical areas.

In this paper, we focus on the global dynamics and bifurcations in system (1)
when n = 4 and b1 = b3. Through a radial projection, we reduce the four-
dimensional system to a three-dimensional one. Then we demonstrate that the
ω-limit sets of the system are contained in the ω-limit sets of several two-dimensional
systems, which are either Lotka-Volterra competitive systems or Lotka-Volterra co-
operative systems. Through the dynamical behavior of the Lotka-Volterra systems,
we present complete analysis on the global dynamics of the four-dimensional sys-
tem: (i) there is no periodic orbit of the system; (ii) for the case b1b2 < 0, thorough
analysis on the global dynamics is given; (iii) for the case b1b2 ≥ 0, some results
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given by Diekmann and van Gils [9] are extended; (iv) global bifurcations of the sys-
tem on the (b1, b2)-plane are shown. The analysis leads to the mechanisms how and
when all but one species in the system go extinct and how this species is selected.

2. The four-dimensional replicator system. In this section, we describe the
replicator system (1) when n = 4 and b1 = b3, and recall some previous results.

While b1 = b3, the matrix B becomes

B =


0 b1 b2 b1

b1 0 b1 b2

b2 b1 0 b1

b1 b2 b1 0

 .

Then system (1) becomes

u̇i = ui[−(Bu)i +

4∑
j=1

uj(Bu)j ], i = 1, 2, 3, 4, (4)

where
(Bu)1 = b1(u2 + u4) + b2u3, (Bu)2 = b1(u1 + u3) + b2u4,

(Bu)3 = b1(u2 + u4) + b2u1, (Bu)4 = b1(u1 + u3) + b2u2.

Let S be a circular matrix defined by

S =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Theorem 2.1. ([9]) The replicator system (4) is equivariant with respect to S, i.e.,
if u is a solution of (4), then Su is also a solution of (4).

Let Ei be the equilibrium where only the i-th species persists. Let Eij be the
equilibrium where only the i-th and j-th species persist. Let Eijk be the equilib-
rium where only the i-th, j-th and k-th species persist. Let E1234 be the equilibrium
where the four species coexist. Thus the equilibria of (4) (modulo cyclic permuta-
tion) are:

E1 = (1, 0, 0, 0), E12 = (
1

2
,

1

2
, 0, 0), E13 = (

1

2
, 0,

1

2
, 0),

E123 = (
b1

4b1 − b2
,

2b1 − b2

4b1 − b2
,

b1

4b1 − b2
, 0), E1234 = (

1

4
,

1

4
,

1

4
,

1

4
).

Let (see Fig.1)
L = {u ∈ Σ4 : u1 = u3, u2 = u4},
Π = {u ∈ Σ4 : u1 + u3 = u2 + u4}.

Theorem 2.2. ([9])

(i) The equilibrium E1 has eigenvalues −b1,−b1 and −b2 with corresponding
eigenvectors (1, 0, 0,−1),(−1, 1, 0, 0) and (−1, 0, 1, 0), respectively.

(ii) The equilibrium E12 has eigenvalues 1
2 ,−

1
2b2,− 1

2b2, and the eigenvalue 1
2 has

an eigenvector (1,−1, 0, 0).
(iii) The equilibrium E13 has eigenvalues 1

2b2,
1
2 (b2−2b1) and 1

2 (b2−2b1) with cor-

responding eigenvectors (1, 0,−1, 0),(0, 1, 0,−1) and ( 1
2 , 0,

1
2 ,−1), respectively.

(iv) The equilibrium E1234 has eigenvalues 1
4 (2b1 − b2), 1

4b2 and the eigenvalue
1
4 (2b1 − b2) has an eigenvector (−1, 1,−1, 1).
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Figure 1. In the simplex Σ4, the plane Π is in blue lines, while the
line L connecting E13 and E24 is in green. The plane ∆ is denoted
by the triangle in green lines with vertexes E1, E3 and E24. The
region above ∆ is the so-called ∆+, while the region below ∆ is
∆−.

Theorem 2.3. ([9]) Let b1 = 0 and b2 be positive (negative). Almost all orbits (i.e.,
except for a set of initial conditions of measure zero) that start in the interior of the
simplex converge forward (backward) in time to a point on line segments EiEi+1,
i=1,2,3,4 (in particular all points on the segments are stationary) and backward
(forward) in time either to E13 or to E24.

Theorem 2.4. ([9])

(i) If b1 = b2 = 0, then all orbits of (4) are equilibria.
(ii) If b1 < 0 and b2 = 0, then any orbit that starts in the interior of the simplex

has its ω-limit set contained in the plane Π, which consists of equilibria.
(iii) If 2b1 < b2 < 0, then any orbit that does not start at the boundary of the

simplex has E1234 as its ω-limit set.
(iv) If 2b1 = b2 < 0, then any orbit that does not start at the boundary of the

simplex has its ω-limit set contained in the equilibrium line segment L.

Remark 1. While the system (1) comes from (2) where ai ≥ 0 for 1 ≤ i ≤ n, the
constraints on bi in (4) are

2b1 ≤ 1− b2,

2b1 ≥ b2 − 1,

3b2 ≥ 2b1 − 1.

(5)
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3. Global dynamics. In this section, we first show the nonexistence of periodic
orbits in system (4). Then we study the global dynamics of the system when
b1b2 < 0.

For the vector field of (4) in the region {u ∈ Σ4 : u4 > 0}, we make the following
projection

yi =
ui

u4
, i = 1, 2, 3, 4. (6)

With a substitution on time t (i.e., u4dt→ dt), we have

ẏ1 = −y1[b1 − b1y1 + (b1 − b2)y2 + (b2 − b1)y3],

ẏ2 = −b2y2(1− y2),

ẏ3 = −y3[b1 + (b2 − b1)y1 + (b1 − b2)y2 − b1y3].

(7)

Thus the vector field of (4) is radically projected onto that of (7) on the super-plane
{y = (y1, y2, y3, y4) ∈ R4

+ : y4 = 1}.
It follows from the second equation of (7) that the plane y2 = 1 is invariant.

When b2 6= 0, any orbit of (7) satisfies either y2 → 0, or y2 → 1, or y2 → ∞ as
t → ∞. Since y2 = u2

u4
, then y2 → 0 means u2 → 0, while y2 → ∞ means u4 → 0.

It follows from the symmetry of u2 and u4 in (4) that the dynamics of (4) on the
plane u4 = 0 are same as those on the plane u2 = 0. Thus we focus on the dynamics
of (7) on the plane y2 = 1 and y2 = 0.

Let b1 6= 0. On the plane y2 = 1, system (7) becomes

ẏ1 = −y1[2b1 − b2 − b1y1 + (b2 − b1)y3],

ẏ3 = −y3[2b1 − b2 + (b2 − b1)y1 − b1y3].
(8)

The system is a Lotka-Volterra model, which has four equilibria: O(0, 0),
O1( b2−2b1

−b1
, 0), O2(0, b2−2b1

−b1
), and P (1, 1) (see Fig. 2a). Since the Jacobian matrix

J of (8) at P satisfies trace(J) = 2b1 6= 0, P cannot be a center.
On the plane y2 = 0, system (7) becomes

ẏ1 = −y1[b1 − b1y1 + (b2 − b1)y3],

ẏ3 = −y3[b1 + (b2 − b1)y1 − b1y3].
(9)

The system (9) is also a Lotka-Volterra model. It has four equilibria: O(0, 0),
Q1(1, 0), Q2(0, 1) and Q( −b1

b2−2b1
, −b1
b2−2b1

) (see Fig. 3a).

By Theorem 7.8.1 in [12], we obtain the following result.

Lemma 3.1. ([12]) Solutions of system (4) converge to equilibria.

Let

∆ = {u ∈ Σ4 : u2 − u4 = 0}.

While y2 = u2

u4
and y2 = 1 are invariant for (7), the plane ∆ (see Fig. 1) is invariant

for (4).
Next, we consider the dynamics of (4) in the case b1b2 < 0.

Theorem 3.2. Let b1 < 0 and b2 > 0.

(i) On the plane ∆, any orbit starting in intL (i.e., the interior of L) has E1234

as its ω-limit set, while any other orbit starting in int∆ (i.e., the interior of
∆) has E234 or E412 as its ω-limit set (Fig. 2b).



264 YUANSHI WANG, HONG WU AND SHIGUI RUAN

Figure 2. In (a), the equilibrium P is a saddle with a stable man-
ifold y1 = y3 (the deep-red line). Other orbits in intR+

2 converge
either to O1 or to O2, depending on their initial conditions. In (b),
the equilibrium E1234 has a stable manifold (the deep-red line).
Other orbits in int∆ converge either to E234 or to E412, depending
on their initial conditions.

Figure 3. In (a), the equilibrium Q is a saddle with a stable man-
ifold y1 = y3 (the deep-red line). Other orbits in intR+

2 converge
either to Q1 or to Q2, depending on their initial conditions. In (b),
the equilibrium E341 has a stable manifold (the deep-red line) on
the plane u2 = 0. Other orbits in the interior of the plane converge
either to E34 or to E41, depending on their initial conditions.

(ii) Above the plane ∆ (see Fig. 1), i.e., in the region

∆+ = {u ∈ Σ4 : u2 − u4 < 0},

the equilibrium E341 has a two-dimensional stable manifold in int∆+, while
any other orbit starting in int∆+ has E34 or E41 as its ω-limit set (Fig. 3b).

(iii) Below the plane ∆ (see Fig. 1), i.e., in the region

∆− = {u ∈ Σ4 : u2 − u4 > 0},
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the equilibrium E123 has a two-dimensional stable manifold in int∆−, while
any other orbit starting in int∆− has E12 or E23 as its ω-limit set.

Proof. (i) Since b1 < 0 and b2 > 0, system (8) is a Lotka-Volterra competitive
model. The equilibrium O is an unstable node, O1 and O2 are stable nodes, and P
is a saddle (Fig. 2a). While P has a one-dimensional stable manifold (i.e. the line
y1 = y3), other orbits in intR2

+ either converge to O1 or converge to O2, depending
upon their initial conditions. It follows from (6) that the result in (i) is proven.

(ii) In the region ∆+, we have y2 < 1. It follows from the second equation of
(7) that any orbit y(t) with y2(0) < 1 satisfies y2(t) → 0 as t → ∞. On the plane
y2 = 0, system (9) is a Lotka-Volterra competitive model. The equilibrium O is an
unstable node, Q1 and Q2 are stable nodes, and Q is a saddle (Fig. 3a). While Q
has a one-dimensional stable manifold (i.e. the line y1 = y3), other orbits in intR2

+

either converge to Q1 or converge to Q2, depending upon their initial conditions.
It follows from (6) that the result in (ii) is proven.

(iii) In the region ∆−, we have y2 > 1. It follows from the second equation of (7)
that any orbit y(t) with y2(0) > 1 satisfies y2(t) → ∞ as t → ∞. By (6), we have
u4 → 0 as t→∞. It follows from the symmetry of u2 and u4 in (4) and the result
in (ii) that the result in (iii) is proven.

The case b1 > 0 and b2 < 0 is considered as follows. By b2 < 0 and the
second equation of (7), any orbit y(t) of (7) satisfies y2(t) → 1 as t → ∞. On
the plane y2 = 1, system (7) becomes (8). It follows from the proof of Theorem
3.2(i) with time substitution t→ −t that, the equilibria E234, E412 and E1234 have
two-dimensional stable manifolds respectively, while other orbits of (4) in intΣ4

converge either to E13 or to E24, depending upon their initial conditions. Thus we
obtain the following results.

Theorem 3.3. Let b1 > 0 and b2 < 0. The equilibrium E1234 has a two-dimensional
stable manifold in the interior of the simplex (i.e. intΣ4), while any other orbit
starting in intΣ4 has E13 or E24 as its ω-limit set.

4. Global bifurcation. In this section, we study the bifurcations in system (4)
when parameters b1 and b2 vary. First, we extend some results given by Diekmann
and van Gils [9]. Then we draw the global bifurcation diagram.

Under conditions in the following Theorems 4.2 and 4.1, Diekmann and van Gils
[9] showed that almost all orbits of (4) converge to bdΣ4. Their proof is based on
Lyapunov functions. We extend their results through qualitative analysis.

Theorem 4.1. (i) If b1 > 0 and b2 > 0, then almost all orbits starting in the
interior of the simplex have their ω-limit sets in the set of Ei, i = 1, 2, 3, 4.

(ii) If b2 < 2b1 < 0, then almost all orbits starting in the interior of the simplex
have their ω-limit sets in the set of E13 and E24.

Proof. (i) Based on systems (8) and (9), we need to consider three cases: (i1)
2b1 > b2 > 0; (i2) 2b1 = b2 > 0; (i3) b2 > 2b1 > 0.

For the case (i1), we need to consider three situations: (i11) b1 < b2; (i12) b1 = b2;
(i13) b1 > b2. We focus on situation (i11), while similar discussion can be given for
(i12) and (i13).

When 2b1 > b2 > 0 and b1 < b2, it follows from the second equation of (7)
that the plane y2 = 1 is invariant. On this plane, system (8) is a Lotka-Volterra
competitive model. The equilibrium O is a stable node, O1 and O2 are saddles,
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and P is an unstable node (Fig. 4a). Thus O1 and O2 have a one-dimensional
stable manifold, respectively, other orbits either converge to O or converge to ∞,
depending upon their initial conditions. Therefore, on the plane ∆, the equilibria
E13, E234 and E412 of (4) have a one-dimensional stable manifold, respectively.
Other orbits (except E1234) in the interior of the plane have their ω-limit sets in
the set of E1, E3 and E24 (Fig. 4b).

By the second equation of (7), orbits with y2(0) < 1 satisfy y2(t)→ 0 as t→∞.
On the plane y2 = 0, system (9) is a Lotka-Volterra competitive model. The
equilibrium O is a stable node, Q1 and Q2 are saddles, and Q is an unstable node.
Therefore, on the plane u2 = 0, the equilibria E13, E34 and E41 of (4) have a
one-dimensional stable manifold, respectively. Any other orbit (except E341) in the
interior of the plane has E1, E3 or E4 as its ω-limit set.

For any orbit of (7) with y2(0) > 1, it satisfies y2(t)→∞ as t→∞, i.e. u4 → 0
in the corresponding solution of (4). By the symmetry of u2 and u4 in (7), on the
plane u4 = 0, the equilibria E12, E13 and E23 of (4) have a one-dimensional stable
manifold, respectively. Any other orbit (except E123) in the interior of the plane
has E1, E2 or E3 as its ω-limit sets.

Therefore, in the case (i11), almost all orbits have their ω-limit sets in the set of
Ei, i = 1, 2, 3, 4.

For the case (i2) with 2b1 = b2 > 0, the proof is similar to that for 2b1 > b2 > 0.
On the plane ∆, system (4) is integrable. L consists of equilibria, while other
orbits have their ω-limit sets in the set of E1 and E3. On the plane u2 = 0 which
corresponds to y2 = 0, E13 is an unstable node, E34 and E41 are saddles, and Ei

is a stable node, i=1,3,4. Thus almost all orbits have their ω-limit sets in the set
of Ei, i=1,3,4. By the symmetry of u2 and u4, almost all orbits of (4) have their
ω-limit sets in the set of Ei, i=1,2,3 on the plane u4 = 0. Therefore, almost all
orbits of (4) have their ω-limit sets in the set of Ei, i=1,2,3,4.

For the case (i3) with b2 > 2b1 > 0, the proof is similar to that for 2b1 > b2 > 0.
On the plane ∆, E24 is an unstable node, E13 and E1234 are saddles, and E1 and
E3 are stable nodes. Thus almost all orbits have their ω-limit sets in the set of E1

and E3. On the plane u2 = 0, E13 is an unstable node, E34 and E41 are saddles,
and Ei is a stable node, i=1,3,4. By the symmetry of u2 and u4, almost all orbits of
(4) have their ω-limit sets in the set of Ei, i=1,2,3 on the plane u4 = 0. Therefore,
almost all orbits of (4) have their ω-limit sets in the set of Ei, i=1,2,3,4.

(ii) For the situation b2 < 2b1 < 0, the proof is the same as that for 2b1 > b2 > 0
when we replace t with −t.

Theorem 4.2. If b1 > 0 and b2 = 0, then the plane Π consists of equilibria, and
any other orbit starting in the interior of the simplex has its ω-limit set in line
segments E1E3 and E2E4, which consist of equilibria (Fig. 5).

Proof. Since b2 = 0, it follows from the second equation of (7) that every plane
y2 = c is invariant, where c ≥ 0. Let y2 = c in (7), then (7) becomes

ẏ1 = −b1y1(1 + c− y1 − y3),

ẏ3 = −b1y3(1 + c− y1 − y3).
(10)

Thus the line y1 + y3 = 1 + c consists of equilibria of (10). Since V = y3/y1

is a constant of motion of (7), any orbit that does not start at an equilibrium
converges either to O, or to ∞. Hence, for system (4), the plane {∆c : u2 = cu4}
is invariant, which is a planar region surrounded by a triangle with vertexes E1, E3
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Figure 4. In (a), the equilibrium P is an unstable node and O1

and O2 are saddles. All orbits except P converge either to 0, or to
∞. In (b), the equilibrium E1234 is an unstable node. All orbits
(except E1234) in the interior of ∆ converge either to E1, or to E3,
or to E24, depending on their initial conditions.

Figure 5. In (a), the plane ∆c is the region surrounded by the
triangle with vertexes E1, E3 and e24, while e24 is any point on
the line segment E2E4. The line segments E1E3 and E2E4 (in
deep-red color) consist of equilibria. In (b), the two line segments
in deep-red color consist of equilibria, while any other orbit on ∆c

has its ω-limit set in the set of e24 and the line segments.

and e24(0, c
1+c , 0,

1
1+c ) (Fig. 5a). Here e24 is any point on the line segment E2E4.

On the plane ∆c, the line u1 + u3 = u2 + u4 consists of equilibria, while any other
orbit on ∆c converges either to e24 or to a point on the line segment E1E3 (Fig.
5b).

Therefore, the plane Π consists of equilibria, while any other orbit starting in
the interior of the simplex has its ω-limit set in the line segments E1E3 and E2E4,
which consist of equilibria.
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Based on Theorems 2.3-2.4, Theorems 3.2-3.3 and Theorems 4.1-4.2, we show the
global bifurcations of (4) in the following table, from which we draw the bifurcation
diagram in Fig. 6.

5. Applications and discussion. In this paper, we considered a four-dimensional
cyclic replicator system. By applying a radial projection on the vector field, we
reduced the four-dimensional system to a three-dimensional one and showed the
nonexistence of periodic orbits. Then we presented the global dynamics for the case
b1b2 < 0 and extended some results for the case b1b2 ≥ 0 in [9]. By combining
our results with those in [9], we provided a complete description on both the global
dynamics and bifurcations in the system.

The results in this paper provide explanations on how and when all but one
semelparous brood go to extinction. As shown in Fig. 6, all but one species go
extinct if and only if b1(= b3) > 0 and b2 > 0. By (3), we have

a2

a1
> 1,

a3

a1
> 1,

a4

a1
> 1. (11)
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Figure 6. The ω-limit sets of almost all orbits of (4). In each
region, we have i=1,2,3,4. For example, in the region of b1 > 0 and
b2 > 0, the ω-limit sets Ei means that the set of E1, E2, E3 and
E4 forms the ω-limit sets of almost all orbits of (4) when b1 > 0
and b2 > 0.

The ecological meaning of ai

a1
is as follows. The first equation of (2) for n = 4 is

ẋ1 = x1(1− a1x1 − a2x2 − a3x3 − a4x4).

Then ai

a1
is the competitive degree from the ith year class to the 1st year class,

i = 2, 3, 4. As shown in [17-21], the competitive degree is called strong (weak) if
ai

a1
> 1 (< 1). By (11), the underlying reason for the persistence of only one brood is

that the competition between each pair of broods is fierce, while the selection of the
brood depends on both initial conditions and the degrees of competition. While van
der Drissche and Zeeman [10] put forward an intriguing conjecture that all but one
competitor would go to extinction in strongly competitive Lotka-Volterra systems,
we confirmed the conjecture in a specific model.

The analysis in this work also shows that when the competition between each pair
of species in (2) is weak (i.e., ai

a1
< 1), then the species coexistence is not guaranteed.

As shown in Fig. 6, the four species can coexist if and only if b1(= b3) < 0, b2 < 0
and b2 ≥ 2b1. The reason of coexistence is as follows. Since b2 < 0, then any
orbit of (7) with y2(0) > 0 satisfies y2(t) → 1 as t → ∞. On the plane y2 = 1,
system (7) is either a Lotka-Volterra system with weak competition (if b2 ≥ b1), or
a Lotka-Volterra system with weak cooperation (if b2 < b1). Thus the species can
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coexist. However, when b2 < 2b1, system (7) becomes a Lotka-Volterra system with
strong competition. Thus the three species yi = ui

u4
in system (7) cannot coexist,

which corresponds to the non-coexistence of the four species ui = xi

Σ4
j=1xj

, i.e., the

non-coexistence of the four species xi, i=1,2,3,4.
When interactions among the four species consist of both strong and weak com-

petitions, our analysis shows the way how some of the species coexist. As shown in
Fig. 6, two non-consecutive species could coexist if b1(= b3) > 0 and b2 < 0, which
corresponds to a2

a1
> 1, a3

a1
< 1 and a4

a1
> 1. Thus the 2nd and 4th species are in

strong competition with the 1st species, while the 3rd species is in weak competition
with it. Since b2 < 0, any orbit of (7) with y2(0) > 0 satisfies y2(t)→ 1 as t→∞.
On the plane y2 = 1, system (7) is a Lotka-Volterra system with strong cooperation,
while the intrinsic growth rates of both species are negative. Thus the species y1

and y3 converge either to 0 or to infinity, which corresponds to the extinction of
species u1 and u3 (and the coexistence of u2 and u4) or to the extinction of species
u2 and u4 (and the coexistence of u1 and u3). Similar discussion can be given for
the situation b2 < 2b1 ≤ 0.

As shown in Fig. 6, two consecutive species could coexist if b1(= b3) < 0 and
b2 > 0, which corresponds to a2

a1
< 1, a3

a1
> 1 and a4

a1
< 1. Thus the 2nd and 4th

species are in weak competition with the 1st species, while the 3rd species is in
strong competition with it. As shown in the proof of Theorem 3.2, system (9) is
a Lotka-Volterra system with strong competition. Thus two consecutive species ui

and ui+1 go extinct while the other two species ui+2 and ui+3 coexist, i=1,2,3,4.
Similar discussion can be given for the situation b1 = 0 and b2 > 0.

In this work, we assumed b1 = b3. Since different year classes of semelparous
species are identical except for their reproduction time, their competitive ability may
be equal (i.e. a2 = a4). Thus the assumption b1 = b3 is possible in real environment.
Despite the simplicity of the system, our work is helpful in both analyzing replicator
equations and understanding ecological complexity in competitive systems.
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