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ENTIRE SOLUTIONS IN BISTABLE REACTION-DIFFUSION
EQUATIONS WITH NONLOCAL DELAYED NONLINEARITY

ZHI-CHENG WANG, WAN-TONG LI, AND SHIGUI RUAN

ABSTRACT. This paper is concerned with entire solutions for bistable reaction-
diffusion equations with nonlocal delay in one-dimensional spatial domain.
Here the entire solutions are defined in the whole space and for all time t € R.
Assuming that the equation has an increasing traveling wave solution with
nonzero wave speed and using the comparison argument, we prove the exis-
tence of entire solutions which behave as two traveling wave solutions coming
from both ends of the z-axis and annihilating at a finite time. Furthermore, we
show that such an entire solution is unique up to space-time translations and is
Liapunov stable. A key idea is to characterize the asymptotic behavior of the
solutions as t — —oo in terms of appropriate subsolutions and supersolutions.
In order to illustrate our main results, two models of reaction-diffusion equa-
tions with nonlocal delay arising from mathematical biology are considered.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with entire solutions of the bistable reaction-
diffusion equation with nonlocal delay of the form

(1.1) % dAu+g(u(x,t),/i/ih(y,—s)S(u(w—i—y,t—i—s))dyds),

t:

where z € R, ¢t > 0, d > 0, A is the Laplacian operator on R, 7 > 0 is a given
constant, and h € L' (R x [0, 7]) is a nonnegative kernel satisfying

(H1) fOT fooo h(y,s) dyds = 1 [normalization];
(H2) h(x,t) =h(—=a,t) for (x,t) € R x [0, 7] [spatial symmetry];
(H3) [ [57 eMh(y,s)dyds < oo for A > 0 [convergence].
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For the sake of convenience, we set

(h*v) (z,t) / / v(x+y,t+s)dyds

for any v € C (RQ). Then the spatial symmetry condition (H2) implies that

(h*v) (z,t) / / v(x—y,t—s)dyds.

The nonlinearity is induced by the functions g and S, which satisfy the following
assumptions:
(F1) g € C%([0,1] x [S(0),S(1)],R) and 03 g (u,v) > 0 for (u,v) € [0,1] x
[5(0), S(1)]; SGC’Z([O, 1],R) and S’ (u) > 0 for u € [0, 1].
(F2) ¢(0,5(0)) = g(1,5(1)) = 0, 019(0, S(0)) + 929 (0, 5(0)) 5°(0) < 0, and
O19(1, S(1)) + 029 (1,5(1)) 5(1) <0
We will assume that () has an increasing traveling wave solution with the wave
speed c. Hereafter, a traveling wave solution of (LI always refers to a pair (¢, c),
where ¢ = ¢(€) is a function in R and ¢ is a constant, such that u(z,t) := ¢(x + ct)
is a solution of (II]) and
(1.2 Jim 6(©) =0, lim_o(€) =
We call ¢ the traveling wave speed and ¢ the profile of the wave front. These
assumptions about the existence of traveling wave solutions have been justified for
a number of important special cases of (LI]) and some more general cases. For
example, if h(x,t) = §(t)d(x), §(+) is the Dirac delta function, then (L) reduces to
the local equation without delay

(1.3) %:dAu+g(u,S(u)),xeR,t>0.

There are many well-known results on traveling wave solutions of (I3]) with bistable
nonlinearity; see Fife and McLeod [12, [13], Volpert et al. [39], etc. For the related
results on convergency of solutions of (I3]), one can refer to Martin and Smith [27]
and Polécik [31], 32].

If S(u) = u and h(x,t) = 6(t — 7)d(x), then (II)) reduces to the local equation
with a discrete delay

(1.4) %_dALH—g( (z,t),u(z,t—7)),z €R, t>0,7 > 0.

For Huxley nonlinearity, Schaaf [36] showed that there is exactly one wave speed ¢
such that (I4) has a nontrivial strictly increasing traveling wave solution. More-
over, he gave the asymptotic behavior of such a traveling wave solution at infinity.
Smith and Zhao [38] further proved the global asymptotic stability, Liapunov sta-
bility and uniqueness of traveling wave solutions of (4] with a bistable nonlinear
term.

If h(z,t) = 6(t)J(x), then (LI reduces to the nonlocal equation

(1.5) % szu+g<u(x,t),/oo J(x—y)S(u(y,t))dy) ,x €R, ¢ > 0.

— 00
Chen [7] proved the existence, uniqueness and global asymptotic stability of trav-
eling wave solutions of (LH) by developing the so-called squeezing technique.
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If g(u,v) = —au+v, S(u) = b(u) and h(z,t) = §(t — 7)J(x), then [I) reduces
to the nonlocal equation

(1.6) % szu—om(x,t)—l—/ J(@—y)b(u(y,t—7))dy,x € R,;t > 0,7 > 0,

— 00
which was studied by Ma and Wu [26]. Under the bistable assumption, they proved
the existence, uniqueness and global asymptotic stability of traveling wave solutions
of (LH).

Recently, Wang et al. [42] studied the reaction advection diffusion equation with
nonlocal delay and a bistable nonlinear term of the form

(1.7)
%:dAu—i-Bg—Z +g(u (x,t), (/_OT /_Z h(xz—y,—s)S (u (y,t—i—s))dyds) (x,t)) ,

and established the existence, uniqueness and global asymptotic stability of travel-
ing wave solutions of (7).

Since time delay and nonlocality play very important roles in biological and
epidemiological models (see Britton [5] and Ruan [34]), they have a crucial effect
on the dynamics of the equation ([I)); see Gourley et al. [19], Li et al. [23] [24],
Wang and Li [40] and Wu [45]. There has been significant progress in the study
of traveling wave solutions for both bistable and monostable equations; see, for
example, Ai [I], Ashwin et al. [2], Billingham [4], Faria et al. [14} [I5], Gourley and
Kuang [17, 18], Liang and Wu [25], Ou and Wu [29], Ruan and Xiao [35], Wang et
al. [4I], 43], Wu and Zou [46], Zou [48], and the references cites therein.

On the other hand, it has been observed that traveling wave solutions are special
examples of the so-called entire solutions that are defined in the whole space and for
all time ¢ € R. In particular, Chen and Guo [§], Fukao et al. [16], Guo and Morita
[20], Hamel and Nadirashvili [21] 22], Morita and Ninomiya [28] and Yagisita [47]
have shown that the study of entire solutions is essential for a full understanding
of the transient dynamics and the structure of the global attractors. These studies
showed the great diversity of different types of entire solutions of reaction-diffusion
equations in the absence of time delay. By constructing a global invariant manifold
with asymptotic stability, Yagisita [47] proved that, for the bistable equation, there
exists an entire solution which behaves as two traveling wave solutions coming
from both sides of the r—axis and annihilating in a finite time. The stability
and uniqueness of entire solutions were also considered. Yagisita’s argument was
substantially simplified by Fukao et al. [16], and the existence of an entire solution
emanating from the unstable standing pulse solution of (II]) was also obtained. For
the Fisher-KPP equation, Hamel and Nadirashvili [21] established five-dimensional,
four-dimensional and three-dimensional manifolds of entire solutions, respectively,
by combining two traveling wave solutions with different speeds and coming from
both sides of the real axis and some spatially independent solution. In [22], Hamel
and Nadirashvili further considered the existence of entire solutions of the Fisher-
KPP equation in high-dimensional spaces and obtained an amazingly rich class of
entire solutions. Chen and Guo [§] and Guo and Morita [20] developed a unified
approach based on the comparison principle to find entire solutions for both the
bistable and monostable cases. Furthermore, Chen et al. [J] considered entire
solutions of reaction-diffusion equations with bistable nonlinearities for the case
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¢ = 0. Morita and Ninomiya [28] showed some novel entire solutions which are
completely different from these observed in [8) [16] 20} 211 22| 47].

However, the above mentioned results are only concerned with entire solutions of
reaction-diffusion equations in the absence of time delay and nonlocality. The issue
of the existence of entire solutions for a general bistable equation with nonlocal delay
including the Huxley equation [36] and the single population with stage structure
and distributed maturation delay [3] is still open. The goal of this paper is to
resolve this issue.

In this paper, we consider some new types of entire solutions of (Il). Our
method is to construct appropriate supersolutions and subsolutions and then show
the existence of the desired entire solutions by comparison and the continuity of the
semiflow, which is inspired by Chen and Guo [8] and Guo and Morita [20] and are
done in Section 4. Before doing that, we study the asymptotic behavior of traveling
wave solutions at infinity in Section 3. Furthermore, the uniqueness and stability
of such an entire solution are established in Section 5.

Throughout the paper, we always assume that (H1), (H2), (H3), (F1) and (F2)
hold. Now we state our main results in this paper.

Theorem 1.1. Assume that equation ([ILIl) admits an increasing traveling wave
solution ¢ with speed ¢ > 0. Then for any given constants 61 and 0y there exists
a solution ® (z,t) of (LI) defined for all (x,t) € R? such that 0 < & (z,t) < 1,
2%

S¢ > 0 and

lim {sup|¢>(x,t) —¢(x+ct+61) +sup|®(z,t)— (b(—m—i—ct—l—Hg)} =0.
t——c0 | z>0 z<0
In particular, the entire solution is Liapunov stable. Furthermore, assume that
h(z,t) = J(x)0(t — 7) and @ (x,t) is another solution of (LI) satisfying 0 <
O (z,t) <1 and
(UT) there exist constants a > 0 and Ty € R, and functions [(-) and r (-)
such that for allt < Ty and s € [—T,0],

(1.8)
{%(%HS)Z% Ve (oo, ()] Ur(1),00),

O (z,t+s) <oy Vaemin{l(t)+a,r(t)—a},max{l(t)+a,r(t)—a}l],
where ag and By are constants satisfying
(1.9) g (u, S (u)) <0 inue (0, and g (u, S (w)) >0 inu € [Bo,1).

Then ® (x,t) is also Liapunov stable, and there exist xo € R and tg € R such that

D (z,t) = @ (x + x0,t + to) for any (z,t) € R%,

Theorem 1.2. Assume that equation [ILIl) admits an increasing traveling wave
solution ¢ with wave speed ¢ < 0. Then for any given constants 61 and 05 there
exists a solution ® (z,t) of (L)) defined for all (x,t) € R? such that0 < ® (z,t) < 1,
9% <0 and

o < U an

lim {sup|<I>(x,t) —¢(—xz+ct+61)| +sup|®(z,t) —qb(:c+ct—|—02)} = 0.

t——00 | >0 z<0
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In particular, the entire solution is Liapunov stable. Furthermore, assume that
h(z,t) = J(x)é(t — 7) and @ (z,t) is another solution of (LI satisfying 0 <
O (z,t) <1 and
(U™) there exist constants a > 0 and Ty € R, and functions 1(-) and r ()
such that for allt < Ty and s € [—7,0],

O (z,t+s)> 0B Vaemn{l(t)+art)—a},max{l(t)+a,r(t)—a}],
Q(x,t+s)<ay Ve (—ool(t)Ulr(t),o0),

where ag and By are constants satisfying
g (u, S (u)) <0 inue(0,a0] and g (u,S (u)) >0 inu € [By,1).
Then ® (x,t) is also Liapunov stable, and there exist xog € R and tg € R such that
D (2,t) =D (x + 20, t + to) for any (z,t) € R%,

Remark 1.3. If there exists o € (0, 7) such that h(z,t) satisfies f:o [25 h(z, t)dzdt

=1, that is, [;° [*°_ h(z,t)dzdt = 0, then ® (z,t) in Theorems [T and L2 is still

a translation of ®, respectively. See Remark

Remark 1.4. For the case h(z,t) = 6(x)d(t), Theorem [Tl concludes Theorem 1.1(i)
of Fukao et al. [16], Theorem 1.1 of Guo and Morita [20] and Theorem 1.1 of Yagisita
[47). Theorem concludes Theorems 1 and 2 of Chen and Guo [§].

In the following, we give two applications of Theorems [[.]] and
Example 1.5. Consider the typical Huxley nonlinearity

u(l—u)(v—a) for0<u<1,veR,
) (u—a) otherwise

with @ € (0,1), @ # 3. This is a special case of equation (L) with S (u) = u
and h (z,t) =0 (x) 6 (t —7), 7 > 0. Following Theorem 3.13 of Schaaf [36], p. 603],
we know that (II]) has an increasing traveling wave solution with speed ¢ > 0 if
a € (0,3) and an increasing traveling wave solution with speed ¢ < 0 if a € (3, 1).
Thus, Theorems [l and hold for (1)) with the Huxley nonlinearity when
a € (0, %) and a € (%, 1), respectively.

Example 1.6. Al-Omari and Gourley [3] derived a nonlocal reaction-diffusion
model for a single population with stage structure and distributed maturation delay,
namely,

G = Dil\u; + b (un (2,1)) — yui (1)

- fOT Jo G (z,y,5) f(5)e™75b (um (y,t — s)) dyds,
% = DAy, — d (up, (2,t))
+ fOT fQ G (z,y,8) f(s)e7%b (um (y,t — s)) dyds,

(1.10)
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where [ f(s)ds =1, Q2 C RY is open and bounded, G(z, y,t) is the solution subject
to the homogeneous Neumann boundary condition of

If the bounded domain  is replaced by the whole real line (—oo,00), then the
second equation of (I.I0) reduces to

8u_m = Dy Ay, — d (uy, (z,1))

ot
/T/ 771 _(“ID_'?Qf( )e b (um (y,t — s)) dyd
+ A T Dige i s)e Um y7 yas.

Ma and Wu [26] considered a special case (L6l of (TII). In [42], we showed that
(III) has an increasing traveling wave solution under the following conditions:
(C1) There exist 0 < a; < az < a3 such that eb(a;) — d(a;) = 0,7 =1,2,3;
eb(u) — d(u) < 0 for u € (ay,az); eb(u) — d(u) > 0 for u € (ag,asz), where
e= [y f(s)e 7*ds.
(C2) b(-),d(-) € C*([a1,a3]), V'(-) > 0, eb/(a1) < d'(a1), eb/(az) > d'(a2),
eb/(az) < d'(a3).
Assume that (C1) and (C2) hold. If the wave speed of the traveling wave solution
of (LTT)) is nonzero, then the existence and stability of the entire solutions of (L11)
follow from Theorems [[.T] and If there exists 79 € (0,7) such that f:o f(s)ds =
1, which contains the case f(s) = §(t—7), then the uniqueness of the entire solutions
in Theorems [[.T] and and Remark are valid for (LITJ).

(1.11)

2. PRELIMINARIES

In this section, we state some definitions and establish the comparison theorem
for (III), which is needed in the sequel.

Let X = BUC (R,R) be the Banach space of all bounded and uniformly con-
tinuous functions from R into R with the usual supremum norm. Let XT =
{peX:p(x)>0,2€R}. It is easy to see that X is a closed cone of X and
X is a Banach lattice under the partial ordering induced by X*+. By [10, Theorem
1.5], it then follows that the X —realization dAx of dA generates a strongly con-
tinuous analytic semigroup T (t) on X and T (t) XT C X*,¢ > 0. Moreover, we
have

(2.1) Tt (z) = \/ﬁ/w exp <—%>w(y)d%
z € R t>0, ¢(-) e X.

Let C = C ([-7,0], X) be the Banach space of continuous functions from [—7, 0]
into X with the supremum norm and let Ct = {p e C:¢(s) € XT,s€[-7,0]}.
Then CT is a positive cone of C. As usual, we 1dent1fy an element p € C
as a function from R x [—7,0] into R defined by ¢ (z,s) = ¢ (s) (z). For any
continuous function w : [-7,b) — X,b > 0, we define w; € C,¢t € [0,b), by
we (8) =w(t+s),s € [-7,0]. Then ¢ — w; is a continuous function from [0,d) to
C.Forany p€ Cppy ={p€C:p(z,s) €[0,1],x € R,s € [-7,0]}, define

F(«»)()—g( (,0) // hx—y,—S)S(@(y,s))dyds>.
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By the global Lipschitz continuity of g(-,-) on [0, 1] x [S(0), S(1)] and S(:) on [0, 1],
we can verify that F'(¢) € X and F': Cjp,;) — X is globally Lipschitz continuous.

Definition 2.1. A continuous function v : [—7,b) — X,b > 0, is called a superso-
lution (subsolution) of (II)) on [0,b) if and only if

(2.2) v(t) > ()T (t—s)v(s) + / T(t—r)F (v,)dr

for all 0 < s <t < b. If v is both a supersolution and a subsolution on [0, b), then
it is said to be a mild solution of (ILTl).

Definition 2.2. A function v : (—00,T) — X,T € R, is called a supersolution
(subsolution) of (1)) on (—oo, T) if and only if for any TV < T, w (¢) : [-7,T-T") —
X defined by w (t) = v (t +T") for t € [-7,T —T") is a supersolution (subsolution)

of (1) on [0,T —T").
In [42] [43], we have established the following existence and comparison result.

Theorem 2.3. For any ¢ € Clo 1), (LI) has a unique mild solution u (x,t; @) on
[0,00) which is a classical solution to [Tl for (z,t) € R x (1,00). Furthermore,
for any pair of supersolutions o™ (x,t) and subsolutions ¢~ (x,t) of (LI) on [0,b)
with 0 < @1 (z,t), 9 (z,t) <1 forz € R, t € [-7,b), and T (z,8) > ¢~ (z,s) for
r€R, se[-7,0], 0<b< oo, we have p* (z,t) > ¢~ (z,t) forz e R, 0<t < b
and

z+1
ot (@t — o (2.1) > O (ot —to) / (6" (1:t0) — ¢~ (0, t0)) dy

forany J >0, x and z € R with |x — z| < J, and t > tg > 0, where

12
exp(—lqt—u), J>0,t>0,

0 (J,t) =

1
Vardt 4dt

and Ly = maxy, »)e[0,1]x[S(0),5(1)] |019 (u,v)|. In particular, if there exists xo € R
such that ¢ (xg,0) > ¢~ (20,0), then T (x,t) > ¢~ (x,t) for any x € R and t > 0.

Remark 2.4. For T = 0, that is, for the equation without delay, Theorem 23] still
holds.

3. ASYMPTOTIC BEHAVIOR OF TRAVELING WAVE SOLUTIONS

In this section, we will discuss the asymptotic behavior of traveling wave solutions
of (LI at infinity. Define a function

G (N :/ / h(y,s)e e dyds
0 —00

:/ / h(y,s) (e¥ +e M) e **dyds, A € C,
0 0

where ¢ € R is a constant. Since e~IM* and e~1mAes are bounded, G ()) is well
defined in C. Obviously, G (0) = 1.

Lemma 3.1. For A € R, G ()\) satisfies

2GW:/ / By, 5) [(y — )X — (y+ es)e 0] dyds
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and
52
N2
The lemma can be proved by condition (H3) and Lebesgue’s dominated conver-

gence theorem, so its proof is omitted.
Define two complex functions Ag (M) and A; (A) by

Ag(A) = d\? —eA+d1g(0,5(0)) + D29 (0,5(0)) S"(0)G (A)
Ar(A) = dX = A+ 1g(1,5(1)) + dag (1,5(1)) " (DG (V)
where A € C. Then it is easy to see that the following result holds.

G\ = /0 /0 h(y,s) [(y —es)2eMTe) 4 (y + cs)ze*/\(““)} dyds > 0.

Lemma 3.2. The equation A;(A) = 0 has two real roots Aj1 < 0 and A2 > 0 such
that
>0 fOT’ A< )\ila
Az()\) = <0 fO?" A€ ()\ﬂ,)\ig),
>0 for A> Ao,
where 1 = 0, 1.

In the following, we investigate the asymptotic behavior of traveling wave solu-
tions at infinity. Our method is similar to that of Carr and Chmaj [6] which has
been used by Wang et al. [43] (see also Diekmann and Kaper [I1]). We first provide
a technical lemma about the asymptotic behavior of a positive decreasing function,
which is given by Carr and Chmaj [0, Proposition 2.3] and is important to prove
our results.

Lemma 3.3. Let {(\) = fomu(g) e~ d¢ with u (&) being a positive decreasing
function. Assume that £ has the representation
E ()
) = —=1
A+ «a)
where k > —1 and E is analytic in the strip —a <Re\ < 0. Then
. u(§) E(—a)
1 = .
£— oo ke T'(a+1)

Lemma 3.4. Assun}e further that QNS(t) is an increasing traveling wave solution of
@I satisfying 0 < ¢ (t) <1 and [L2). Then ¢’ (t) > 0 and limy_ 1+, ¢’ (t) = 0.

The proof of Lemma [3.4] follows from Theorem B3] and a similar argument to
Lemma 2.5 of Smith and Zhao [3§].

Theorem 3.5. Assume that ¢ (t) is an increasing traveling wave solution of (L))
satisfying (L2) with wave speed ¢ € R. Then

(i) limy oo €702 (t) = age, limy_, o e 202t (h % @) (1) = agG (\o2) and
lim; o e72028¢/ () = Agaagz, where

T —+oo
(h $)(t) = / / h(y, $)6(t — y — cs)dyds

and age > 0 is a constant.
(i) lims oo e (1 — @() = a1, limg.ooe (1 - (hxe) (1) =
a11G (A1) and lim;_, o e 1@/ (t) = —Aj1a11, where ayy > 0 is a constant.
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Proof. Let U(t) = 1 — ¢(t) and define V (t) = [ [* h(z,7)U (t — cr — 2) dzdr.
Since U (t) satisfies —dU"(t) + cU'(t) = —g (1 = U(¢),(h xS (1 = U)) (¢)), then

; ' e)q(t—s) s)ds Ooe)\g(t—s) s)ds
d(Xa— A1) U_Oo H(U)(s)d +/t H(U)(s)ds|,

where H(U) (t) = —g(1 =U(t),(h*S (1 —=U))(t))+ LU (t), L1 is defined in The-
orem [Z.3] and

Ul(t) =

\ c— V2 +4dLy N c+ V2 +4dLy
1 = Q= 2 =
2d

2d
By virtue of —g (1 — U(¢), (h* S (1 —U)) (t))+L1U (¢t) > 0, for 8 = max{—A1, A2},
d 5
% [U (t)e t]
ePt
T d (A2 — A1)

Bt t 0o
T — [)\1/ M H (U) (s)ds + /\2/ M2 H (U) (s) ds} >0
d (X2 = Ap) —oo ¢

& " I () (s)ds + 8 [T e

— 00

Set
max 0119 (u, v)|, max |02 (u, v) S” (w)| + max |012g (u,v) S" (w)],
L=max{max |02g (u,v) S” (w)|+max |0219 (u, v) S (w)], max |da2g (u, v) S (w)] ¢,
u,w € [0,1],v € [S(0),5(1)]
w1 =019 (1,5(1)) + 29 (1, 5(1)) S"(1) < 0
and
wy =019 (1,5(1)) — D29 (1,5(1)) (1) <0
Since limy 400 U(t) = 0 and lim;_, 4o, V() = 0, there exists ¢ > 0 such that for
any t > t/,
1
- UO+vm > [(1+2G(2B)U? (t) +2U () V (t) + V2 (1)] -
Then by Taylor’s expansion, for any ¢ > t/,
dU" (t) — cU'(t)

= (1= U(), (h+ S (1~ V) (5)
> 019 (1,S())U (1) ~ D9 (1,5(1)) S' )V (1)
— L[(1+2G2B8)U (t) +2U (1) V (t) + V2 (¢)]
= —iwlU(t) + %wQ( t)=U(t) — iwﬂ/( t) — iwl U @)+VI(t)
— L[(1+2G2B)U?(t)+2U (t)V (t) + V2 (1)
(1) 2 gm0+ 5@ (V) U D)~ gV (1),

Now we show that for any ¢ € R, U (¢) is integrable on [t, +00) and there exists p > 0
such that sup,cp U (t) e”* < +00. By Fubini’s theorem and Lebesgue’s dominated
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convergence theorem, we have, as y — 400,
y
[ e -vends
t
Yy pT  pOO
= / / / h(z,r)(U(s—cr—z)—U(s))dzdrds
t 0 —o00
Yy T 0 1
- —/ / / (z—l—cr)h(z,r)/ U' (s =0 (cr+ z)) dodzdrds
t 0 —0o0 0

_ —/OT/_O;(z—l—cr)h(z,r)/ol/tyU'(s—9(cr+z))dsd9dzdr
_ —/OT/_Z(Z—i—cr)h(z,r)/ol[U(y—9(6r+z))—U(t—H(cr—i—z))]dezdr

R /OT/O;(z+cr)h(z,7’)/01U(t—@(cr+z))d0dzdr.

Since lim;_ 1o, U’ (t) = 0 by Lemma B4 integrating (3]) from ¢ to 400, we have
that for any ¢t > t' |

1 T o9} 1
—dU’ (t) + cU (t) — 52 / / (z+cr)h (z,r)/ U(t—0(cr+z))dodzdr
0 —oo 0
1 +oo 1 +o0o
> ——w U(s)ds — —m V (s)ds,
4 ¢ 4 ¢
which implies that U (t) and V (¢) are integrable on [t, 4+00).
Now we define a function W (t) = ;roo U (s) ds, which is decreasing and satisfies

limy 0o W (t) = 0 and W (¢) < W (0) —t for t < 0. Obviously,

+oo —+oo T (')
/ Vi(s)ds = / / / h(z,m)U (s — cr — z) dzdrds
t t 0 —o0
Yy pT OO
= lim / / / h(z,m)U (s — cr — z) dzdrds
y=to )y Jo Jooo

T poo Yy
lim / / h(z,r) / U(s—cr—z)dsdzdr
y—=+oo Jo —00 t

T o0 +oo
= / / h(z,1) U(s—cr—z)dsdzdr
0 —oo t

_ /OT/O;h(z,r)W(t—cr—z)dzdr.

Integrating (B1)) from ¢ to +oo with ¢ > t/, we get
—dU’ (t) + cU (¢)

> —iwﬂ/V(t)—i—%wz [/OT/_(:h(z,r)W(t—cr—z)dzdr—W(t)

(3.2) —%wl /O /_0; h(2r) W (t— cr — 2) dzdr.
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Note that

/y//oo h(2,7) [W (s — er — 2) — W (s)] dedrds

/// (cr + 2) zr/W’sf (er + 2)) dfdzdrds
- [ ”)/[ (y = 0er +2) = W (=0 (cr +2))] dodzdr

- /O /Oo(cr—l—z)h(z,r)/o W (t — 6 (cr + 2)) dfdzdr as y — +oo.

Then, for any ¢t > ¢/, (82) implies that

dU()-i—cW()——wg// (ecr+2)h zr/Wt—H(cr—i—z))dezdr

+oo +oo
(3.3) > ——w1 W (s)ds — —w1 / / / (s — cr — z) dzdrds,

which means that W (¢) and [ [ h(z,7) W (t — cr — z) dzdr are integrable on
[t, 4+00).
Since W (t) is decreasing, then for any ¢t € R, we have

(z4cr)h(z,r)W(t—(z24cr)) > (z—l—cr)h(z,r)/o W(t—60(z+cr))dd.

Again, for z 4+ cr > 0,

W(t—(z—l—cr)):W(t)+/t

t
U (s)ds < W (£) + / U (t) =2 ds
—(z+cr) t—(z+cr)

1
<W (1) + Beﬁ(””)U (t).
Consequently, by B3], we have

au (t) + cW (t) — %ng(t) /T /:)O (cr+z)h(z,7)dzdr

_1 T B(z+er)

25wQU )/0 /_CT (ecr+2)e h(z,r)dzdr
>dU(t)+cW(t)—1w2/T/oo (cr + 2) b (5 7) W (£ — (cr + 2)) dedr
h 2 0 —cr

T 0 1
>dU (t) + W (t) — %W2/0 [ (cr+2)h (z,r)/o W (t — 6 (cr + z)) dfdzdr
1 oo
> _Zwl W (s)ds.

t

Thus, there exists a sufficiently large K > 0 such that for any ¢ > ¢’ and any p > 0,

1 oo P
K[U(t>+w<t>]z—1w1/t U () + W ()] ds > Loy [U (t4p) + W (1 + 7).
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Choosing pg > 0 sufficiently large, then there exists 6y € (0,1) such that for any
t>t, 0|U @)+ W ()] >U(t+po)+W(t+po). Let e(t) = [U (t) + W (t)] e,
where p = pio In % > 0. Then e(t+po) = [U(t+po) + W (t+ po)]erttro) <
O [U (t) + W ()] ert+Po) = e (t). In view of limy_ o [U () + W (t)] et = 0, then
sup;egr {[U (t) + W (t)] €'} < oo, which implies that sup,cg {U (¢) e”'} < oc.

Next we prove that lim;_, ., e MU (t) exists. For A with —p <Re) < 0, we
define a two-sided Laplace transform of U by

o0

‘(N = / e MU (t) dt.
Note that for t <0, h(y,r)U (t — cr —y) e BM < b (y,7) e ReM and for t > 0,
hy,r)U (t —cr—y)e BN = h(y,r)U(t—cr—vy) eP(t=er=y) gper opy o(—p—Red)t

Mh (y,7) ePeT P p(—P—ReA)t

IN

where M = sup,cgp {U (t)e?'}; then h(y,7)U (t — cr — y) e RN is integrable on
(r,y,t) €[0, 7] xRxR. Since e~ ™ is bounded and hence h (y,7) U (t — cr — y) e~
is integrable on (r,y,t) € [0,7] X R x R, by Fubini’s Theorem, we have

/ e MV (t) dt = / —”/ / U (t —cr —y) dydrdt
/ / h(y,r) e Merty) / e M= (t — er — y) dtdydr
=L(\ / / (y,7) *’\(”er)dydr

Since
dU"” (t) —cU' (t) + O1g (1, S(1)) U (¢)
+029(1,5(1)) S"(HV ()
=019 (1,S(1)) U (t) + 029 (1, S(1)) S"(LV (t)
+029(1,5(1)) S"(HV (2)
+9(1=U@®),(hxSA-0))(1),
we have

BEM) = [ M09S U 0 + 00 (1SS WY ()

(3.4) +_g (1-=U(),(h=S(1-=0))(t))]dt.
By lim; 400 U (t) = 0 and lim;_, ;o V () = 0, we have
019 (1, S(1)) U (1) + 029 (1, S(1)) S'(MV () + g (1 = U (), (h = S1 = U)) (1))
=0 (U (t)+ V3 (1)

as t — +oo. Hence, the right-hand side of equality (84) is defined for A with —2p <
ReA < 0. Now we use a property of Laplace transforms (Widder [44], p. 58]). Since
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U (t) > 0, there exists a real number ¢ such that ¢ ()) is analytic for ¥ < ReA <0
and £ () has a singularity at A = 9. Hence, £ ()) is defined for ReA > Aq;.
We rewrite (3.4) as

+oo 0 oo
U(t)e Mdt = —/_ U (t)e Mdt + A ()\)/_ e Mo (1,5(1)) U (t)
+029 (1, 8(1) S"(V (£) + g (1 = U (), (hx S(1 = U)) (t))] dt.

0

Note that fi)oo U (t) e~ *dt is analytic for ReX < 0. Also, the equation A; (\) =0
does not have any zero with ReA = A1; other than A = Ay;. In fact, let A = A1 +i;
then A (A) = 0 implies

— 029 (1,8(1)) S'(1) / / h(y, ) e~ 211 W+en) [cos yer cos yy —sin yer sin yy| dydr
0 o]
(3.5)
=d\}, —dy* — ey + 019 (1, 8(1))
and
2dy — ¢y — Dag (1,5(1)) S'(1)
X / / R (y, ) e~ 211 W+en) [sin yer cos yy + cos yer sin yy] dydr = 0.
0 —00

By using Ay (A\11) = 0, then (B3] can be rewritten as

—dy? = a9 (1,5(1)) S'(1 / / h(y,r) e Mlyer) [2 (sm %) +2 (sin %)2

2
—4 (sin %) (sin %) + sin yer sin vy] dydr.

Since

2 2 2 2
2 (sin ﬂ) +2 (sin E) -4 (sin ﬂ) (sin ﬂ) + sin yer sinyy
2 2 2 2
AN A VTN (YN L :
=2 (sm 7) (cos 7) + 2 (cos T) (sm 7) + sin yer sinyy
sin % cos % sin % CcoS % + sin yer sin vy

= |sinyer sin yy| 4 sinyer sinyy > 0,

>4

we have —dy? > 0, which implies v = 0.

Since U(t) is decreasing, then Lemma 3.3 implies that lim; .., e *11¢(1 —¢(t)) =
lim; o e~ 1U(#) exists. Take lim;_.o, e *114(1 — ¢(¢)) = a1;. We now prove that
lim; oo e’*“t(b’(t) = —Aj1a11. From Lebesgue’s dominated convergence theorem,
we know that

hm e MY (1)

/ / —Aunlzter) | iy e Anlt—z—cr)py (t—z—cr)|dzdr

t—o0

= a1 / / h(z,r) e MGt dadr = a1 G (M1) -
0 —00
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Since as t — 400,
g1 =U@),(hxS51-0))(1))
= =019 (1,S(1)) U () = 929 (1,8(1)) 'V (£) + O (U* () + V* (1)) ,
then
Tim e g (1= U (1), (h# S(1- U)) (1)
= —ai1 [819 (1, S(].)) + 829 (1, S(].)) Sl(].)G ()\11)] .
Using lim;_.o, U'(t) = 0 and integrating the two sides of the equality dU" (t) =
cU (#)+9g(1=U(#),(hxS(1-=0U))(t) from t to 400 , we have

dU" () = cU (t) — /tooga —U(s), (h* S —U))(s))dt.

Thus,
Jim e Mitgl(t) = — Jim e Mty (t)
1 o0
= Sy lim e [ (- U ) (e SO 0)) (5)
— 00 t

e limge e Mitg(1—U (t),(h*S(1—-U))(t))

N d dA11

__ancdn —dig(1,5(1)) — 929 (1, 5(1)) S’ ()G (A1)

dA11
= —anA.

We have completed the proof of the first conclusion. The remainder can be proved
by similar arguments. The proof is complete. O

4. EXISTENCE OF ENTIRE SOLUTIONS

We study the following ordinary differential equation:

(4.1) (t) =c+ Ne*® <0,

Ep

where N, ¢ and « are positive constants. Solving this equation explicitly, we have
1 N :
(4.2) p(t) =p(0)+ct — —ln{l—i——eo‘p(o) (1—6‘“)}.
o c
It is clear that the solution p () is monotone increasing. Let
1 N
(4.3) w=7p(0)— —ln{l—l——eo‘p(o)}.
e c
Then from the identity p (t)—ct—w = —L2 In {1 — rec®* /(1 +7)} and r= Ne“?(© / ¢,
it follows that for some positive constant R,
0<p(t)—ct—w< Rpe®, Vvt <0.

We note that the above argument about p(t) was first given by Guo and Morita
[20] (see also Fukao et al. [16]). In the sequel of this section, we always assume
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that (II)) has an increasing traveling wave solution ¢ with wave speed ¢ > 0. By
Theorem B.5] there are positive constants k, K, u, n such that

(4.4
(45)  mke <ng () < ¢ (1), nke™t < y(hxd) () < ¢ (1) (E<0),
(4.6)

nuett <n(l—o (1) < ¢ (), nue™t <n(l—(hx¢) (1) < ¢ (1) (t=0).

Lemma 4.1. There exists T < 0 such that @ (z,t) defined by

) kero2t < (1) < Kero2t) kero2t < (hx¢) (1) < KeMo2t (< 0),

(x,t) = min{¢(z+p(t) + ¢ (-2 +p(t)),1}

is a supersolution of (LI) on (—oo,T). p(t) is defined by @I with o = Aoz,
p(0) <0 and

1 T (OO 2
N > max 2LK274LK74(L—|—§+fO 22 b (y, ) e2Pvdydr) K
nk- g "

)

where L and 3 are defined in Theorem [3.0l
Proof. Define
Af = {(@ ) eR:p@+p®t) +¢(—x+p(t) > 1},
A7 = {@)eR:p(a+pt) +o(—z+p(t) <1}.
If (z,t) € AT, then 1 (z,t) = 1 and

%_dm_ (@ (2,t), (h* S (@) (x,1) = —g (1, (h * S () (1))

—g(1,5(1)) = 0.

| \/

Now we consider the case (z,t) € A7 . In this case, T(x,t) = ¢(x+p(t)) +
¢ (—x +p(t)). Consequently,

ou 7
E—dAuf g@(x,t), (h*S @) (z,1))

= P ) (@+p) +¢ (—x+p)]—d[d" (= +p)+¢" (—2+Dp)]
—g(¢(x+p)+o(—x+p),(h*S @) (x1))

= [P'@t)—dd (x+p)+¢' (—z+p)]|+g(b(x+p),(h*S(d)) (x+p))

+9 (¢ (=2 +p), (h*S5(¢)) (= +p))
(¢p(x+p)+¢(—z+p),(h*S @) (x1))

(z

= [¢'(x+p)+ ¢ (—x+Dp) Neloep — R (z,t),

where

z,t))

R(z,t) =g(¢(x+p)+¢(—z+p),(hxS ()
—9(@ (=2 +p),(h*5(9)) (-x+p)).

—9(@(@+p),(h+S(0)) (x+p))
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Since for r > 0,
p(t—r)

1 N Ao2p(0) cAoz(t—T)
p(0)+c(t—r) o In {1 + e <1 e )

p(t)—cr

1 1+ Merozp(0) (1 — gerast)
)\0 In {1+ e,\02p(0)(1ecA02t)+J;fe,\ozp(o)emmt(lec/\mr)}
< p(t)—er

it follows that

£(y,r)—ﬂ(fv—yt—7") ¢(x+p(t)—y—cr)
pl@—y+pt—r)+o(—z+y+plt—r))—d@+p(t)—y—cr)
px—y+pt)—cr)+o(—z+y+pt)—cr)—g(z+p(t)—y—cr)
d(—z+y+p(t)—cr).

Consequently,

R (z,t)

9(@(@+p)+é(—z+p), (hxS@)(x,t) —g(d(x+p),(hxS(d))(x+p)

o(serm, [ [ hon (et an)

- / 019 (6 (x +p) + 06 (—z +p) . C (2,1) & (—z + p)

0
+029 (¢ (x +p) + 06 (=2 +p),((2,1))

//OO h(y.r) S (6 (e +p—y— cr) + 06 3, r))f(w)dydr} a6

—/0 [alg <9¢ ot [ [ nwn e, r))dydr)¢(x+p>
4029 <9¢) —z+p) ,/O [mh y,1) S (0¢ y,r))dydr)

X/T/OO h(y,r) S (0 (v, 7)) € (v, r)dydr} d

Lip(x+p)¢(—x+p)+¢(—x+p)(h*e)(x+p)

+¢ w+p// ) dydr
+ (hx o) x+p// yrdydr}

Li¢(x+p)o(—x+p)+¢(—x+p)(h*o)(x+p)
+¢ (x+p)(h*¢) (—x+p)+ (h*¢)(z+p)(h*¢)(—z+p)],

IN

IN

IN

where ((z,t) fo fioo ;1) S (¢ (x+p(t) —y—cr)+ 0E(y,r)) dydr.
Note that p(t) < 0 for all t <0. Let U (z, t) 7 (3:+p(t)1):i—$-:fpt2 Ty Now we

estimate U (z,t).
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Case I: A\g2 > —A11. We divide R into 3 regions.
(i) p(t) < < —p(t). By [@4), we have the estimate R (z,t) < 4LK?2e? 2P,
Also, by ([4.3]), we have

¢ (z+p)+¢' (—z+p) 20 (z+p)+¢(—z +p)]
> nk ero2(z+p) + e/\oz(*erP)] =k (6)\021 + e*)\ozﬂi) eNozP > 277]{6/\02@

Hence, we have

2LK?
nk

e>\o2p.

(4.7) U(z,t) <

(ii) = < p(t). It follows from (ZG)) that

2L (¢(x+p)+ (h*¢) (x+p)) _ ALK =P
¢ (—z+p(t)) = nuern(—atp)
4LKerozp 4LK
< e 0217.
nlue(_All_A(ﬂ)meAllp - ’r],u

U(x,t) <

(4.8) -

(iii) > —p(t). By the symmetry U (—z,t) = U (z,t) and ([@8]), we obtain

4LK
nH

e>\02P.

(4.9) U (z,t) <

Thus, combining ([@7)-(@9) yields %? —dAu — g (u(x,t),(h*S @) (z,t)) > 0.
Case IT: 0 < Ag2 < —A11. In this case, since Ap2 and Ap; satisfy

dA\3y — Aoz + 019 (0,5 (0)) + 029 (0,5(0)) S (0) G (Ao2) = 0,
A\, — eh1 + 019 (1,5 (1)) + 029 (1,8 (1)) S (1) G (A1) = 0,
and G()\Qg) < G()\u), then
919 (0,5 (0)) + 929 (0,5(0)) S"(0) G (Ao2)
> 019 (1,5 (1)) + 929 (1,5 (1)) §" (1) G (No2) -
Set
k= 019(0,5(0)) 4 929 (0,5(0)) S" (0) G (No2)
—01g(1,5(1)) + 029 (1,5(1)) " (1) G (No2) -
Then there exists § > 0 with § < .5 (1) — S (0) such that

19 (u,v) + Dag (u,v) wew < D1g (0, S (0)) + Bag (0,5 (0)) S’ (0) G (Mo2) — g

foranyue (1 —46,1),ve(S(1) —0,5(1)), we (0,5 (1) + ) and w e (0, G (Ag2 H+ 9).
Take B > c7 such that

+<>o
[/ / (y,r dydr—i—/ / h(y,r) e’V dydr| max S (u) < éG()\Og)

u€[0,1] 2
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where 8 = max {—A1, A2} is defined in Theorem As in the proof of Theorem
B.5] we can show that ¢ (t) et is decreasing. Thus, we have

(4.10)

/T/B+/T/ooh(yv7’)5/(¢(x+p(t)—y—cr)+9£(yw))£(w‘)dydr

/ / / / —otp(t)ty —cr) dydr] Jmax. S’ (u)

v T Bly—er) _
/0 [m h(y,r)dyerr/O /B h(y,r)e’¥ dydr}urg[%ﬁ]S( Yo (—z+p(t))

Since S’ (u) is continuous on [0, 1], then there exists p; € (0,d) such that for u €
(1 —=p1,1], S"(u) €]0,5 (1) + &/ 2]. Noting that

lim /T/_o:oh(y,r)S(qS(z—y—cr))dydr:S(l) and lim ¢(z) =

zZ—00 0 Z—00

we can translate ¢ (z) along the z—axis so that for any z > —B —c7, ¢ (2) €
(1 = p1,1] and for any z > 0,

/OT/OO hy.r) S (6 (= —y— cr))dydr > 5(1) -

Hence, ¢ (x +p (t) —y —cr)+0& (y,7) € (1 —py, 1] for any z > —p (t), y € [ B, B]
and r € [0,7]. Then, for any x > —p (t), y € [-B, B] and r € [0, 7],

(4.11) S (p(x+p—y—cr)+06&(y,r) €10,5 1)+ /2],

(4.12) /OT/OO h(y,r)S(p(x+p—y—cr)+0&(y,r))dydr € (S(1)—0,5(1)).

In view of
o J25h(y,r) 6 (2 +y — er) dydr (h+¢)(2)
lim < lim —F— =G (Ap2),
Pt b (2) o ¢(2) (Ao2)
we can take 77 < 0 so that for any t < T3 and x > —p (t),
4 13
/ / By, ) 6 (—a+p () +y - er)dydr < (G (Aoa) +8) 6 (—z +p (1)),

(azg (0,5(0)) 8" (0)G (A2) = 5 ) & (=2 + p (1))

(4.14) < 029 (0,5 (0))S"(0) /OT /_00 hy,r)o(—x+p(t) +y — cr) dydr.



SOLUTIONS IN R-D EQUATIONS WITH NONLOCAL NONLINEARITY 2065
Thus, by (@I0)-I4), for any t < Tj and x > —p(t), we have

/O 009 (6 (2 + p (1)) + 06 (—2 1 p(£)) . C (,0)) & (—z + p (1))
1009 (6 (x40 (1) + 06 (—z +p (1)) .C (,1))
// (6 (x+p () —y — cr) + 06 (y,r)) € (y, ) dydr| db

[919.(0.5 (0)) + 929 (0.5 (0)) 5" (0) G (Aag) = 5] & (= +p ()

< 019(0,5(0) ¢ (= +p (1)) + D2g (0,5 (0) S (0) (hx ) (—x +p(£)) .
Consequently, for any ¢ < Ty and = > —p (t), we have

(4.15)

R(2,t) < 019(0,5(0)) ¢ (—2 + p) + 029 (0,5 (0)) S (0) (h * 6) (—z + p (£))

- / (019 (06 (—z + p) . (h * S (06)) (~ + p)) & (— + p)

+ 029 (09 (=2 +p), (h* 5(09)) (—x + p))

/ / r) S (0¢ (— x+p+y—cr))qﬁ(—x—i—p—ky—cr)dydr}d9

IN

A

<L (6% (~a+p) +20 (—2+p) (b 6) (=z+ )+ (hx )’ (~a+p)]

where L' = L+ 1 + [ [ h(y,r) e**dydr.

As in the proof of Case I, we divide R into three intervals [p, —p], (—o0, p] and
[—p,00). In the interval [p, —p], we obtain the same estimate as (&1 for U (z,t).
For z > —p > 0, by (@I3), we obtain

L [(b (—iIJ +p) + (h‘ * ¢) (—!E +p)]2 < 4L/K6)\02(7w+p) < ﬁe)\mp.
¢' (=2 +p) T o
The estimate for a: < p can be derived as the case for x > —p by the symmetry of
U (z,t). Hence, 2 St — dAu — g (U (z,t), (h* S (w)) (x,t)) > 0.
In order to show that there exists 7' < 0 so that u (z,t) is a supersolution of
(@I in R x (—o0,T), we first show the following claim.

Ul(z,t) <

Claim. There exists T' < 0 so that for every ¢t < T, there are only a finite number
of points in € R so that ¢ (x +p(t)) + ¢ (—z +p(t)) = 1.
In fact, if Aga > —Aq11, then for sufficiently large © > —p (t),

dx+p) +o(—x+p(t) <1—per@rr®) 4 geroal=atpt) o
and for sufficiently large |z| with x < p (¢),
p(x+pt)+o(—z+pt) <1—pernCotr®) 4 gelo(@tr®) o
Similarly, we can show that for sufficiently large |x| > |p (¢)],
pe+p®)+o(-z+p)>1

if Ag2 < —A11. If g2 = —Aq11, we can take a To < 0 so that for ¢ < Ts, ,ue_A"?p(t) —
Ke*o2P() > (. Then for sufficiently large = > —p (t), t < Ty,

plx+p@®)+o(—z+p) < 1—prn@FP®) 4 feloa(-atp®)
— 1 — e P02 (,ue—/\ozp(t) _ Kekozp(t)) <1.



2066 ZHI-CHENG WANG, WAN-TONG LI, AND SHIGUI RUAN

By the symmetry, for sufficiently large |z| with x < p(t), t < Ts, ¢ (z+p(t)) +
(,25(71' er(t)) < 1. Now choose T' = 0 if A\gy > 7)\11, T =T if Ag2 < —A11 and
T =1T5 if Ag2 = —A11. Then the claim follows.

So far, for T' < 0 defined in the above claim, we have proved for any x € R and
t € (—o0,T) with (x t)e AT UAT,

(4.16) Frie dAT — g (u(x,t), (hx S (m) (x,t)) >0,

and for every t < T, there are only a finite number of points in x € R such
that ¢ (z+p () + ¢ (—x+p(t)) = 1. In the following, we show that @ (x,t)
is a supersolution of (L) in R x (—o0,T). Assume that x (ty) € R satisfies
qS( (to) +p(to)) + ¢ (—x (o) +p(to)) = 1 for to < T. It is easy to see that
am u(x (tg) — 0,t0) > a%ﬂ(x (to) +0,%p). By using the inequality (£I6) and a sim-
ilar argument as in [42] and [43] for the function

e?mf?nu (y,T' +7)dy, 0<r<t<T-T,

\/m/

we can show that for every TV < T, w(z,t) = u(z,t + T’), where (z,t) € R x
[—7,T —T"), is a supersolution of (I.T]) on Rx [0, T—T"). The proof is complete. [

Lemma 4.2. u(z,t) = max{¢(x +ct +w),d(—z+ct +w)} is a subsolution of
([CI) on R x (—00,0), where w is defined by ([&3).
Proof. When x > 0, v (x,t) = ¢ (x + ¢t + w), hence,

Ou

B ddu g (), (h S (W) (7,1)

= ¢ (z+ct+w)—do' (r+ct+w)—g(p(xz+ct+w),(h*S(w)(zt))
g (x+ct+w), (hxS(d)) (z+ct+w))
—g(p(z+ct+w),(h*S(w)(zt)) <O0.

Similarly, we can prove that for z < 0, %—% —dAu—g(u(z,t),(h*Sw)(z,t)) <O0.
Note that for every ¢t < 0,

0 o , 0
%Q(O+O,t) =¢ (ct+w)>—¢' (ct+w)= %Q(O—O,t).
Using a similar argument as in [42] and [43] for the function

/ ejld?;ﬂu (y, T" +7)dy, 0<r<t<-T,

\/47rd t—r)

we can show that for every 77 < 0, w(z,t) = u(z,t + 1) defined on (z,t) €
R x [—7,—T") is a subsolution of (II]) on R x [0, —T"). The proof is complete. [

Proposition 4.3. Suppose that u(z,t) is a solution of (LIl) with initial value
¢ € Clo,1)- Then there exists a positive constant M > 0 such that for any ¢ € Cg 11,

x€R andt > 2(r+ 1), (3375)’<M|82c xt)‘<Mand‘dzu:ct)‘<M

and for any ¢ € Cioq), * € R and t > 3(7 + 1),
M, u(x,t)‘g]\/f, u(x,t)‘gMand‘Wu x,t)‘gM,

dt2u(a: t)‘ <M,

dtax u(z, t)‘ =

Bzat 812815
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Proof. First, by comparison, there is 0 < u(x,t) < 1 for any (z,t) € R x [—7,00).
Note that for s > 7 and t > s,

(z—y)2

e Wy (y,s) dy

1
ulet) = [oo VArd (t — s)

(4.17) .
+/ / ;67%}7@ ) dydr
s Jooo JATd(t—7) " '
Consequently,
0 /°° —2(z—y) _@=w?
—u(x,t) = e -9y (y,s)d
Ox (@) oo4d t—s) drd (t — s) (v, 5)dy
—2(z — o2
. _ —

ThenforsZTanth[s+1,s+5],wehave

o0 2 .2
‘ﬁu(x,t)‘ < / 1y] e~ Tati=5) dy
Ox 0o 4d (t — s) \/Amd (t — s)

2|yl L
e 4d(t—r) dydr sup F (v
/ /oo4d t—r)\/Ard (t —r) veor | IF (v)| x

1 2yt —s
= + sup ||F (v
Vrd(t—s) vrd  veCp 1E @l
1 4
< =+ = sup [F)lyx =M.

vrd  V7d veCip
Obviously, s > 7 is arbitrary, which implies that |a_81“ (x,t)| < M, for any x € R
and any ¢t > 7 + 1. Moreover,

o0 9 (z — oy
3u (z,t) = / (z—y) e 0 g (y,s)dy
Oz oo 4d (t — 8) \/Amd (t — s)

C
T ad(t—-r)

F (u,.) dydr.

+//OOW

Hence,

it m 1dt=s) " Hd(t—s)

// 2 oy) e 0
oo 4d (t — 1) \/Ard (t — ) 9y

Thus, for s > 27+ 1and t € [s+ 1,5+ 5],

2

0? ’ 1 /°° 4(z—y)
—u $7t S —  + 4d(t—s) (
dx? (=:1) 2d(t —s) [4d (t — $)]° \/A7d (t — 5) Y
y2
+M2M4/ / 2 |y| e~ = dydr
oo 4d ( dmd (t — 1)
< - MM, Y 1+4MQM4 = M,

d(t— 5) Vrd T d ' Vrd
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where My = max {|01g (u,v)| + 029 (u,v) S’ (w) : u,v € [0,1],w € [S(0),S (1)]}.
By the arbitrariness of s > 27 4+ 1, we have ‘aa (x,t) ‘ < Mj for any z € R
and any t > 2(7 4+ 1). Since u (z,t) satisfies

0 0?

gt (@t =5 sul@t) +g(ulz,t),(h*5()(2,), z€R, t>,

it follows that for any « € R and any ¢t > 2(7 + 1),

’—u x,t) ‘ < Ms+ max |g(u,S))| = M.
u,ve(0,1]

Constants My, M, and M; are independent of z € R, t > 2(T+1) and ¢ € Cg 1.

Now we estimate % (x,t) and a3u(x t). Notice that |2 u (z,t)| < Ms for all
z € Rand t > 7+ 1. By (@I7), we have, for t > 27 + 1, that

2

u 0
e #E-27-D) at (x —y,21+1)dy
T

2

0 > 1
—u(x,t) = /
Oz oo ATd(t— 27 — 1)

+/t /Oo ;e—ﬁﬁp(u)(% ) dydr
2741 J—co \/ATd (t — 1) Ox " Y ever

which implies that %u (z,t) is a solution on ¢ > 27 + 1 of the following equation:

%v (z,t) = dAv(z,t)+01g(u(z,t),(h*S(w)(x,t))v(x,t)
+02g (u (2, 1), (h S (u)) (2,1)) (h* (S (u)v)) (x,1)

with initial value v (z,27+14s) = %u (,214+143s), s € [-7,0]. Applying
a similar argument as in the previous part and combining the continuous second
derivatives of ¢ (u,v) and S (u), we can find a positive constant Ms, which is in-

3
geatt (T ,t)‘ < M5 and %u(x,t)‘ <
My for any « € R and ¢t > 3(r + 1). Similarly, we can find a positive con-
a2
%U(.ﬁ,t)‘ S Mﬁa

dependent of z, t and ¢ € C|g y), such that ’

stant Mg, independent of z, t and ¢ € (), such that

%{;xu(aj,t)‘ < Mg and ‘%u(m,t)} < Mg for any z € R and ¢ > 3(7 + 1).
Let M = max{Mj, Ma, M3, M5, Mg}. The proof is complete. O

Theorem 4.4. There exists an entire solution ®(x,t) of (LI) such that
u(z,t) < O(z,t) <u(z,t), (x,t) €Rx(—o0,T],

where w(x,t) and u(z,t) are given in Lemma &I and Lemma B2l respectively.
Moreover,

(i) 2@ (z,t) >0 on R%

(ii) @ (z,t) = @ (—a,t) on R%;

(iii) limyoo | () = 1| e () = 0 and for any a > 0,
=0;

—a,al)

Jim ([ (1)) e
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(iv) For each a € R, limy|_o [|® (2, ) — 1“L°°[a,+oo) =0;
(v)
lim {sup |P (x,t) — ¢ (x + ct + w)|

t——00 | x>0

+sup|q)(x,t)—¢(—x+ct+w)|} =0.
<0

Proof. We denote a solution of (L)) with initial data ¢ € Cjo 1) by u (2,t; ). Define
(4.18)

Un (wat) - u(xvt;san)’ Pn ($78) :Q(l’vT*n‘i’S)a (xas) €eRx [77—’0] ,n €N
Then u, (z,8) = u(z,T—n+s) = u(x,T—(n+1)+s+1) < upy1(z,1+s),
from which u, (z,n+s) < ups1(z,n+ 1+ s) follows. On the other hand, we
see u(x,T+3) < up(z,n+s) < w(x,T+s). Thus, by Proposition 3], there
exists a function p* € Cpg 1] to which uy, (z,n + s) converges uniformly. Therefore,
O (z,t) :==u(x,t — T;¢*) is defined for all t > T — 7.

To prove the continuation of a solution backward in time from ¢*, we show that
given T" > 0, there is a function ¢ € Clo,1] such that ©* (z,5) = u (x, T+ s; @T/).
Fix an integer n; > T” + 7. For n > ny, put

Wy (2,8) =up (x,n =T +5)=u(z,n—T + s;0,),
where ¢, is defined by (£I8). Then w, (z,n + s) = u(x,T’ + s;w,) and

Wpy1 (,8) = Upi1 (T,n+1 =T +8) > uy (x,n =T +5) = wy, (z,s).

Thus, there is a goT/ € Cfg 11 such that lim,, . ||w, — cpT/ = 0. Here
(0.1 Lo (Bx[~,0])
we note that it is easy to prove that for any ¢1,¢2 € Cjg 13,
Hu(a t+ @1) - U«('a t+ - @2)”[/00(]1@)([,770]) < €(L1+L2)t H‘Pl - (pQHL"C(RX[fT,O]) )
where
L= 0 ,
1= et o sy 129 V)l
and

Ly = max S'(u) max
u€l0,1] u€(0,1],v€[5(0),5(1)]

Fa9(u, v).

il

Lo (Rx[—7,0])
0, and we see that ¢* (x,s) = u (x,T' + s; in,) . Hence, ® (z,t) is defined for all
teR.

Now we show that %CI) (z,t) > 0 on R2. Since u (x,t) is a subsolution of (L)),
then w, (z,t) = u (z,t;0,) > u(x, T —n+t) for all R X [-7, =T 4+ n]. Again since
for any € > 0, u(-,- +¢€) > u(-,-) on R?, it follows that u (z, e + 8;¢,) > @, (z,5)
for all (z,s) € R x [—7,0]. By comparison and the uniqueness of solutions, we have
Up (X, t+€) = u(z, t;u( e+ 50n)) > uy (x,t) for any (x,t) € R x (0,400). It
follows from the arbitrariness of € that u, (x,t) is increasing in ¢. Consequently, it
is easy to obtain %CI) (z,t) > 0 on R2. Since %CI) (z,t) is a solution of the equation

It follows that w, (x,n+s) = u(x, T + s;wy,), lim, Hwn -

(x,t) = dAv(x,t)+ g (u(z,t),(h*S (W) (zt))v(x,t)
+02g (u(x,8), (b S (u) (,)) (hx S (u)v) (2,t)

&’U
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combining dag (u (v,t), (h* S (u)) (z,t)) > 0 and S’ (u (x —y,t — 7)) > 0, then the
strong maximum principle (Protter and Weinberger [33]) gives 2@ (2,¢) > 0 on
R2. The proofs of (ii), (iii), (iv) and (v) are straightforward. This completes the
proof. ([

Remark 4.5. In fact, the existence of the entire solution ® can be proved as in
Hamel and Nadirashvili [2I] by applying Proposition 3]

5. UNIQUENESS AND STABILITY OF ENTIRE SOLUTIONS

In this section we show the uniqueness and stability of the entire solution ®
found in Theorem [£.4] under condition (U™). In this section we always assume that
®(x,t) is an entire solution of (I and satisfies (UT) and 0 < ®(z,t) < 1. We will
use the method of Chen and Guo [§] to show that ® is only a translation of ®.

Lemma 5.1. Let By be as in (L9). Then there exists Ty € R such that

(5.1) M(@t)= _inf  ®(z,t+s)<fo, Vit <Ty.

z€R,s€[—7,0]
Proof. Let 8* < [ be a constant such that g (u S (u)) > 0inwu € [#*,1). Denote by
£ () the solution of ¢ (t) = g (5 fo f_ y,8) S (E(t—s)) dyds) with initial
value £ (s) = 0%, s € [-7,0]. Then by Smith [37, Corollary 2.2, p82], ¢’ (-) > 0 in
(0,00), and hence, & (00) = 1.

We argue by contradiction. Assuming that the assertion were not true, there
would exist a sequence {t; } _, such that lim; . t; = —oo and M (t;) > 3* for
all j. By comparison, M (¢ ) > infygi_r 0§ (t —tj + 5) for all t > t;. Fixing t and
letting j — oo gives M (t) > lim; o infyej_7 0 & (t —ti+s)=¢ (oo) = 1, which is
a contradiction. This completes the proof. (I

From (LJ)) and (&.1)), the following functions are well-defined for all ¢t < Ty =
min {To, Tl} :

i(t)zmin{x:@ x t—l—s)z,@o,se[—T,O]},

{ O (z,t+s) 60,36[77,0}},
1

Lemma 5.2. lim;_, . ¢ (t) = oo.

Proof. Assuming that the assertion of the lemma were not true, then there exists an
L’ > 0 and a sequence {tj}jil such that lim;_, o t; = —coand 0 < 7 (¢;)—1(¢;) < L’
for each integer j > 0. Define

¢(Ly,s)
0 when (y,s) € [-L',L'] x [-7,0],
Bo when (y,s) € ((—oo0, — (L' + 1)]U[L' +1,00)) x [-7,0]
—(y+L)Bo when (y,s) € [~ (L' +1),-L'] x [-7,0],
(y—L") Bo when (y,s) € [L/, L' +1] x [-7,0]
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Denote by u(x,t;¢) the solution of () with initial ¢. Since ¢ > 0, by the
following Lemma [5.3] there exists a constant 7' (L’) such that 5y < u(z,t;¢) <

1 for any t > T(L'). Comparing ¢ (L';-,s) with ® (m (t;) +-.t; +s), we have
oL 8) < ® (m(t;) +-,t; +s) for s € [-7,0]. Thus, by comparison, we have
& (m (t;) + - t; +1) > u(-t; ) for all t > 0. This implies that M (; + T (L)) > fo
for all integer j > 0, which contradicts (5.1J). The proof is complete. O

Let

ap =min{ulg (u,S (u)) =0,u € (0,1)},
81 = max{u|g (u,S (u)) =0,ue€ (0,1)}

and

201D i (—o0,—a) x [-7,0],

Cloq = {‘P € Cpo, ’ v <
@ > P in [0,00) X [—T,O]}.

Obviously, ag < a3 < 1 < fy. The following lemma was proved by Wang et al.
[42]; see also Chen [7, Theorem 3.1 | and Smith and Zhao [38, Theorem 3.3]. We
note that though Theorem 3.1 in Chen [7] and Theorem 3.3 in Smith and Zhao [3§]
require that the quasimonotone condition holds on a larger domain than [0, 1] x
[S(0),S(1)] and [0, 1], respectively (see [7, (D3), p. 152] and [38, (H1), p. 515]),
their results still hold under (F1) if supersolutions and subsolutions are chosen as
in Wang et al. [42]. That is, take the smaller between 1 and the supersolution in
Chen [7] and Smith and Zhao [38] (or the larger between 0 and the subsolution) as
a new supersolution (a new subsolution).

Lemma 5.3. There exists a positive constant v such that for any ¢ € Co 1) with

liminf min ¢ (z,8) > f; and limsup max ¢ (z,s) < ai,
T—00 s€[—T,0] r——00 SE[—T,0

the solution of (ILTl) with initial value @ satisfies
lu(z,t;0) —d(x+ct+&)| < Ke' VaeR, t>0,
for some K = K () > 0 and some £ =& (p) € R.

Now we consider ¢ € Cfg ;;. Carefully observe the proof of Theorem 3.1 in [,

the proof of Theorem 3.3 in [38] and the proof of Theorem 4.5 in [42]. We can
find two constants K’ > 0 and & > 0 such that for all ¢ € Cfg, };, K(p) < K’ and

1€(p)| < &o. Let Ko = max{&, K'}.

Lemma 5.4. There exist positive constants v and Kq such that for any ¢ € C[% 1]
the solution of (ILT)) with initial value @ satisfies

lu (2, t;0) — ¢ (x+ct+ &) < Koe”' VzeR, t>0

for some £ = & () € R satisfying €] < Kp.
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From (L), I () <1(t) <7 (t) <r(t). Hence, for all t < —1,

Qg if |z| < q(t) —a.

® (m () +x,t + s)

>
d(m(t)+at+s) <

Since ¢ (t) — oo as t — —oo, there exists T3 < T, such that for any ¢ < Tj,
m(t) € min{l(t) +a,r(t) —a},max{l (t) + a,r (t) —a}].
Assume r < T3. Define

d(z+m(r),r+s) ifx>—q(r)+a,

5(—q(r)+a+m(r),r+s)

6?7](/?531)) |:COS ( w (x+q(r)— a)) - 1] if 2 < —q(r)+a,

ey sin (AL @+ g (1) — o)

where s € [—7,0], 7 = min {a1 — Q, Mihge[_r ] S (—q(r)+a+m(r),r+ s)}, M
is defined in Proposition 3] and
2

, WQ(O):%E)(erm(T),T)

m (s)= %CT) (z+m(r),r+s)

e=—q(r)+a e=—q(r)+a

Lemma 5.5. Assume that h(z,t) = J(x)dé(t — 7); then for every e and H > 0,
there exists ro (e, H) < 0 such that for any r < rg,

(5.2) u(x,t;¢)—&>(x+m(r),r+t)] <e  Vte[o,H], zel0,o00).

Proof. Now let u (z, t; 1) be the solution of (II]) with initial value ¢ (z, s). By Pazy
[30, Theorem 3.1], v (t) = ng(t — 8) F (us) ds is Holder continuous on [0, +00).
Also, since 9 (z,0) € D (dAx), then T (t) ¢ (0) is Lipschitz continuous on [0, +00).
Thus, u (z, t;v) is Holder continuous on [0, +00). In view of the Lipschitz continuity
of ¢ on [—7,0], it follows that f (t) = F (u:) is Hélder continuous on [0, +00). Fol-
lowing Pazy [30, Corollary 3.3], u (x,t;1)) is a classical solution of (L] in (0, +00).

Let v (z,t) = u(z,t;¢) — ® (z +m(r),r +t). Then v(z,s) = 0 for all (z,s) €
(—q(r) + a,4+00) x [-7,0] and

0 1) — Aol 1) = g (u (2, 8), (h 5 S () (2,1))
-9 (&)(x—i—m(r),r—i—t) , (h*S (Cf)) (x—l—m(r),r—i—t)) .
Take v~ (x,t) = max {—v (z,t),0} and v* (z,t) = max {v (x,t),0}. Then

oo

%’U (x,t) — dAv(z,t) < Liv (x,t) + Lg/ J(y)vt(x -y, t —7)dy
if v(z,t) > 0 and
%v (x,t) —dAv > Lyv (x,t) — Lg/ Jyv (z —y,t —T1)dy

if v (z,t) <0, where Ly and Ly are defined in Theorem A4
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Given € > 0 and H > 0, there exists m € N such that m — 1 = [£]. Define

v;f (z,t) = vT (x,t+ (j — 1) 7) for any (x,t) € R x [-7,00) and j € {1,---,m}.
Let w (x, t; v;f (z, O)) be a solution of the following linear equation:
(5.3)

%w(x,t)—dAw(x,t):Llw(x,t)—i—Lg/ J(y)v;r (x—y,t—7)dy, t>0,

with initial value v;-r (x,0). It is easy to see that v;' (z,t) is a subsolution of (B3]
on (z,t) € R x [0,00). Then for (z,t) € R x [0, 7],

< 1 (=2
v (z,t) < w(z,t;vf (2,0 :eth/ e~ 2t vl (y,0)d
J ( ) — ( J ( )) oo 4d7Tt 7 (y ) y
t [e’s}
Jr/ eLl(tfs)/ 1
0 —o0 \/4dﬂ' (t— S)
(e—y)? o
xe_4d<t—S>L2/ J(2) vj»' (y — 2,5 — 7) dzdyds

IN

e“T/OO LTt 4, 0) dy
—00 4dﬂ-t J ’

t
+L26L17—/ /00 -
0 —00 \/4dﬂ-(t75)
2 oo

R / J(2) vt (y — 2,5 — 7) dzdyds.

— 00

Claim. For given €; > 0 and Y; < 0, there exists Y;_; with Y;_; < Y} which is
only dependent on ¢; and Y}, such that if

”;'r_1 (z,t) <ej_y1:= min{gj/ (5eL17) . (5L2T6L1T)}

for any (z,t) € [Yj_1,+00) x [0,7], there are v;' (x,t) < g; for any (z,t) €
[Y;,4+00) x [0,7].

We now prove the Claim. Take Z; > 0 such that

—Z; +oo
LQTeLIT/ +/ J(y)dy < ¢;/5.
— 00 Zj

Furthermore, take A;; > 0 and Ay; > 0 such that ftf e’y2dy < ggfi and
vadr
%, e’y2dy < % Let Y;_1 = min{Y; — Ay;,Y; — Z; — Ay;}. Notice that

Vadr

v;-r (x,t—7) = vjtl (x,t). If vjtl (x,t) < egj_yq for any (z,t) € [Y;_1,+00) x [0,7],
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then for any (z,t) € [Y;,+00) x [0, 7], we have

| amy)?
eL”/ e vf (y,0)dy < ¢;/5,

Yi-r (z=y)? Foo 1
eL”/ e~ 4t vf (y,0)dy < el17 ¢ im dy
—00 4d7Tt xr— J 1 4d71’

e ~ dy = e_yzdy

/+oo 1 el +oo
= Y:—-Y,i_
v;-Y;0 Vadnt VT S i

eLlT +oo o, eLl‘r +o0 o,
— < eV dy < e;/5,
\/7_-‘- Yi-Y,;_q \/7_1- Ayj

Vadr Vadr

(z—y)2
— ¢ T 4d(t—s)

L// m

/_JJF/_ J(Z)“;r(y—%S—T)dz} dyds
< Lyteln / / 2)dz < /5,

_ (z—y)?
e 4d(t—s)

L eL”/ / _—
’ 0 JY; 142, \/4d7r(t—s)

Zj
x/ J(z)v;r(y—z,s—r)dzdydsgEj/5
s

and

Lo t rYj1t+Z; 1 @-p? [ J(2) vt ( ) dzdyd
0 Jooo ddm (t — s) —Z; ’

2
[ —
e~ =% dyds

t [e%e] 1
< L2€L17/ / ——
0 Je—(v;_142;) \/4dm (t —s)

Lorelnm [ 2 Lorelam o 2
<2 e ¥ dygzi eV dy <¢e;/5,
N PR N
Vadr VadT

which implies that for any (z,t) € [Y;,400) x [0, 7], v (:U t) < e;. Obviously, ;1
and Y;_; are only dependent on €; and Y;. Thus, we have shown the Claim.
Let €,, = € and Y;;, = 0. According to the Clalm we can choose {(g;,Y;):j =1,
,m} such that when v | (z,t) < ;1 <¢; for any (x,t) € [ijl,—l-oo) [0, 7],

there are ’UJ (z, t) <egj for any (z,t) € [Yj,+00)x[0,7]. Inviewof Y;_; < Yj,e; <¢
andvj (z,t) = v (z,t+ (- 1)7) =0t (2, t+ (j — 1) 7), then if v} (z,t) <e; <¢
for any (z,t) € [Y1,+00) x [0, 7], there is v (z,t) < € for any (z,t) € [0, +00) X
[0,m7]. By virtue of H € [(m — 1) 7,m7], for any (z,t) € [0,+00) x [0, H], there is
vt (z,t) < eif vy (z,t) < ey < e for any (x,t) € [Y1, +00) x [0,7]. To complete the
proof of the lemma, we only need to show that there exists 71 (¢, H) < 0 such that
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for any r < 71, v] (x,t) = vt (2,t) < &; for any (z,t) € [V, +00) x [0,7]. Define
vy (z,t) = vt (z,t — ) for (x,t) € R x [0,7]. Then by a similar argument, we can
choose g9 < €1 and Yy < Y such that when vy (z,t) < g for (z,t) € [Yp, 00) x [0, 7],
there are v} (z,t) = vt (x,t) < & for any (x,t) € [Y1,+00) x [0,7]. Note that &g
and Y are only dependent on ¢ and H. It is sufficient to set 71 (¢, H) < T3 such
that for any r <71, —¢(r) + a < Yj.

Similarly, we can choose 7o (¢, H) < T3 such that for any r < 7o, there is
v~ (x,t) < e for any = € [0,00) and ¢ € [0,H]. Let ro(e,H) = min{F1,T2}.
This completes the proof. ([

Lemma 5.6. Assume that h(z,t) = J(x)é(t — 7); then

lim  inf H@(z+~,t+~)—@(~,r+~)H =0.
t——00 z€R,rER Loo (Rx [—7,0])

Proof. Let ¢ > 0 be arbitrarily small. Set H such that Koe “7e’” = ¢. Choose
r1 < —1 such that ¢ (—q (r) + cH + 2Ky) < € for r < ry. Fix any r < min {ro,r}.
By Lemma [5.5]

u(:mH—l—s;w)—<T>(x+m(r),r+H+s)} <e Vx>0, se[-1,0].
On the other hand, for some ¢ € [— Ky, Ko,

lu(x, H + 8;9) — ¢ (x — q(r) + cH + cs — £)] < Kge " HT9) < ¢
VazeR,se[-10],

since ¥ (z,5) < 04 for all # < ¢(r) —a and s € [-7,0], ¥ (2,5) > [y for all
x> q(r)and s € [-7,0]. Thus, for all x > 0 and s € [—7,0],

‘&)(erm(T),r%»HJrs)f¢($fq(r)+cH+csff)‘ < 2e.
Similarly, for all x < 0 and s € [—7, 0], there exists some n € [— Ky, K] such that
‘&’(x—l-m(?“),T%-H—i-s)—¢(—x—q(r)—|—cH—|—cs—77)‘ < 2e.

Since

¢p(r—q(r)+cH+cs—&) =¢((x—(E—n)/2)—q(r)+cH+cs— (£+n)/2),
¢(—z—q(r)+cH+es—n) =¢(—(x—(E—-n)/2) —q(r)+cH +cs—(£+n)/2),

then for z > — (¢ —1)/2 and s € [~7,0],

[ (@ (€= m)/2+m () ,r+ H+5) = 6 (0= q(r) + cH + s — (€+1)/2)| < 2,
and for « < — (¢ —1)/2 and s € [~7,0]

B @+ (€=m)/ 2+ m(r),r+H +5) = 6 (~0 — g (r)+cH + cs — (€ +n)/ | <2,
It — (€ —1)/2 >0, then for z € [0, — (€ — )/ 2] C [0, Ko] and s € [~7,0],

0z —q(r)+cH +es = (E+n)/2) —d (- —q(r) +cH +es = (E+n)/2)[ <e.
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Thus, for x > 0 and s € [—7,0],

S(xz+(E—n)/24mr),r+H+s)—¢(x—q(r)+cH+cs— (E+1m)/2)] <3

and
®(z+ (E—n)/2+m(r),r+H+s)
—[p@—q(r)+cH+cs— (E+m)/2) +¢(—z —q(r)
+cH +cs— (E+1)/2)] | < 4e.
Obviously, for x <0 and s € [—7,0],
S(z+E—n)/24+m@r),r+H+s)—¢(—z—q(r)+cH+cs— (E+1)/2)|<3e

and

Sx+ (E—n)/2+m(r),r+H+s)
—[p(@—q(r)+cH+es— (E+n)/2)+ (-2 —q(r)
+cH +cs— (E+1)/2)] | < 4e.

For the case — (£ — 1)/ 2 < 0, we can obtain the same estimates. Define 6 = 6(r, s)
with p(6 +s) = —q(r) + cH + ¢s — (£ + 1)/ 2, where p is defined in Section 4.
It is obvious that § — —oo is uniform for s € [-7,0] as r — —oco. Again since
0<p(t)—ct—w — 0ast — —oo, there exists ro < min {rg,r1} such that for
r<ryand s € [—7,0], 0 < T and

16 (2 — q (r) + cH + cs — (€ +1)/2) — 6 (£ + cf + c5 +w)|
= |p(a+p(0+5) — 6 (tr+ch+es+w)| <e,

which implies that
(& (2 + (€= m/2+m(),r+H+s)
—max{p(r+cd+es+w),dp(—x+ch+ecs+w)} <4e

and
‘&)(x—i- E&—n)/24+m(r),r+H+s)
~ b +pO+5)+é(-a+pO+s)]| <=
Therefore, for any r < r9 and s € [—, 0],
‘(5(:5—# (§—n)/2+m(r),r+H+s)—<I>(x79+s)‘ < 5Be.
Consequently, for any ¢t < ro + H, we have

inf H%(z+.,t+.)—q>(-,9+-)H < 5.
2€R,0<0 Loe (Rx[—7,0])

Hence,

< B,

sup  inf 0H<T>(z+~,t+~)f<1>(~,9+~)H

t<rar H 2EROS Lo (Rx [0

which implies that the assertion of the lemma holds. The proof is complete. O
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Lemma 5.7. There exist constants 69 > 0, gg > 0 and o¢ > 0 such that for any
reR, e (0,0 and o > oy,

Wt (z,t) = min{® (z,r+t+06[L—e ®"])+ e 1},
W= (2,t) = max{® (z,r+t—06[l—e ®']) - e " 0}
are a pair of supersolutions and subsolutions of (II)) on R x [0, 4+00).

Proof. We only prove that W (x,t) is a supersolution of (ILT)) on R x (0, +c0),
since a similar argument can be used for W~ (x, t).

Since
li 0 ,v) + we?T o ,8) +
(u,v,r,s,w,g)—>(0+,15n(10),0+,5(0),3’(0),0) [ 19 (U U) we 29 (T S) Q]
= 019(0,5(0)) + 5" (0) 929 (0, 5(0)) < 0
and

li 0 7.
(u,v,r,s,w,g)ﬁ(lf,{gn(ll),17,5'(1),3’(1),0) (019 (u,v) + weDog (1, 5) + o]

=019(1,5(1)) + 5" (1) D29 (1,5(1)) < 0
we can fix gg > 0 and d; > 0 such that
(5.4) g (u,v) + e a9 (r,8) < —00
for any
(u,v,7m,8,@) € [0,81] x [S(0),S(0)+ 1] x [0, 1]
x [S(0),8(0) + 1] x [S'(0) — 61, 5(0) + 4]
and
(u,v,r,8,20) € [L—0d1,1] x [S(1) —d1,S(1)] x [1 —d1,1]
X [S(1) — 81, 8(1)] x [S'(1) — 61, 5"(1) + 4] .
Let §p € (0,67) satisfy

(5.5) 50e®” |1+ max |S’ (u)] + max_|S” (u)|| < 81/ 4.
u€[0,1] u€[0,1]

Since limy—oo [|[® (-, t) = 1| oo ) = 0, My [[(R# S (@) (1) = S (D[ ey = 0
and limy oo [[(h * S" (@) (-, ) = 8" (1) oo (ry = O, there exists Ty > 0 such that for
(xvt) eRx (T4a OO),

(5.6) O (z,t) € [1—01,1], (h*S(P)) (z,t) € [S(1) —d1,5(1)],
(5.7) (hxS"(®)) (z,t) € [S'(1) — 61/2,5'(1) + 61/ 2].

Since limg, o (hx¢)(§) = 0, lime_(hxS(9) () = S(0),
lime .o (b5 (0)(€) = §(0), lime o (hS(@)() = S(1) and
lime 4o (b S"(¢)) (§) = 5" (1), t here exists X7 > 0 such that for £ > X7,

(5-8) ¢ ell—d,1], (hxS5()(E)€[S)—-6b1,5(1)],
(5.9) (hxS5"(¢)) (&) =[S'(1) — 61/2,5'(1) + &,/ 2],
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and for £ < —Xq,

(5.10) ¢(&) €0,61/4],  (hx5(9))(§) €[5(0),5(0) + 61/2],
(5.11) (hx5"(¢)) (§) = [5(0) = 61/2,5°(0) + 61/ 2],
(5.12) (h+ ) (€) nax, 5" (u)] € (0, 61/8).

Since p (t) — ct —w — 0 as t — —oo, there exists Ts < T, where T is defined in
Lemma [£.1] such that for ¢ < T,

(5.13) 2[p (1) — et —w] max |5 (u)] - max ¢ (u) € (0,01/8).

Let k1 = mingep—x, x,] @' (§) > 0; then there exists a large o1 > 0 such that

1
5.14 — — 00— 2 ,v)| > 0.
( ) 2CJ1QOH1 90 ue[o,u,g?é((o),su)] g (u,v)| >

Let ¥ (z,t) =¢(x+ct +w)+ ¢ (—z + ct +w). It is easy to prove that
Lm {12 = Ulco gy (— oo,y = 0-

By interpolation [|-[|c: < 24/||“[[co [|*[lc2; We have limy— oo [® — W[ o1 g (—00,y) =
0. Thus, there exists Tg < Ty such that for any ¢t < Tg,

1
(5.15) 1® = ¥lles ooy < 581

Since for each t € [T, Ty, lim || 4o @ (,1) = 1, lim|y| oo (h* S (D)) (2,1) =
S'(1) and lim|g| 400 (h* S (®)) (2,t) = S' (1), then there exists a large positive

number X5 such that for any |z| > X5 and t € [T, Ty], (B6) and (&7) hold.

Let ko = min < x, te[Ts, 1] aq)éf’t). Take o9 > 0 such that

5.16 — 00— 2 > 0.

(5.16) 020082 =00 =2 . MAX lg (u,v)| >

Now define

A7 = {(@,t):®(z,r+t+00[1—e ) +6e 2" >1,(x,t) eRx[0,400)},
Ay = {(@,t):®(z,r+t+00[1—e ) +de 2 <1,(x,t) €ERx[0,400)}.

If (z,t) € A, then

ow+
N W] s= S —dAW =g (W (2,0), (hx 5 (W) (2,1)) = —9 (1,5 (1)) =0.
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If (z,t) € Ay, let £(t) =r+t+ o[l — e 2; we have WT (z,t) = ® (z,£(t)) +
de~9?% Then
N [WT] = bem2" [0go®h (2,£ (1) — 00) — 9 (W (z,t), (hx S (WT)) (z,1))
+9(®(2,£(t), (h=S(P)) (z,£(2)))
1
= 6e 2" [goo®) (2, & (1)) — 00] — /0 [819 (P (z,£ (1) + 05e ", ( (z,t)) be 2
+ Oag (® (z,€ (1) + 05e™2" ( (2, 1))

<[ [ h s @@ s -9+ 00wy <y,s>dyds}d9

> 507 [o0o®) (0, €0) ~ ol — [ 010 (0 € 0) + 057 (0,0) e~
+ 029 (® (z,£ (1)) + e, (,1))
X /0 [m h(y,s)S (®(x—y,&(t) —s)+0n(y,s)) de 2 eQOTdyds] do

1
> ge—oot {goa@g (2,6 (8)) — 00— / [alg (B (2. € (1)) + 600" ¢ (1)
+ €27 dhg (<I> (z,&(t)) + 05e™ " ( (, t))

(e (@) (o 0) 4 06 mas 157 ()] ) o}

u€[0,1]

where

&) (z,t) = g@(az t), ¢ (z,t)

// @ (@~ 5, £ () — 5) + O (3, ) dyds
and
Ny s)=W"(z—yt—s)—®(x—yE(t)—s)
SO (z—y,&(t—s)) +de 20— @ ( -y £(t) — )
<O (z—y,&(t)— s+ ode” @ 1 —e®®]) + be 0= _ P (x —y, £ (t) — s)
< Jem0(9) < §emeoteloT < §eloT

Let 09 = max {o1,02}. Now we consider six cases.

Case (i). = € R, £ () > Ty. By (4), (55), (5:6) and (57), we have N [WT] >0
Case (ii). € (t) < T, |z|+ € (t) + w > X;. Since for x > 0,

Q(2,§(t) > +cf(t)+w), P—y{t)—s)>d@@—y+cl(t)—cs+w),
P(x—ylt)—s)<d(@—y+pEt)—s)+o(—z+y+p(E1)—3)),
then

SN(@(z—y,§(t) —s))
< SPpr—y+E@t)—s+w)+é(—z+y+cf(t) —cs+w) max |S” (u)]

u€(0,1]
+2[p (€ (1) — 6 (1) — ] max 5" (w)] - max e (v).
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Now by B.4), @3), B.8), 6.9, BI2) and B.I3), for £(t) < Ts, > 0 with

x4+ € (t) + w > X1, we have N [IW] > 0. By the symmetry, we have N'[W*] >0
for £ (t) < T, and x < 0 with —x + € (t) + w > X;.

Case (iii). £(t) < Tp, |2| + £ () + w < —X;. From (&4), &3, EI0), GI10),
(EI12) and (BI3), it follows that N [WT] > 0.

Case (iv). € (t) < Tg, — X1 < |z|+ € () +w < X;. By (614) and (BI5), we have
N [WT] >o0.

Case (v). Ts < &(t) < Ty, || > Xo. By (&4), EH), (56) and (E1), there is
N [WT] > 0.

Case (vi). Tg < &(t) < Ty, |z] < Xo. It is easy to see that (BI6]) implies
N [WT] >o0.

Combining the above six cases, we have proved that for (z,t) € A, , N [WT*] > 0.
Thus, as in Lemma Tl we can prove that W (z,t) is a supersolution of (LI]) on
R x [0, +00). O

Theorem 5.8. Assume that h(x,t) = J(x)3(t — 7); then for some (xo,to) € R?,
B (2,t) =D (x +x0,t +to) for any (x,t) € R,
Proof. Fix an arbitrary tg € R. Define

N T TR |
" zEﬁ%I,lTE]R ( Tt ) ( tztt ) L= (Rx[-T,0])

Fix any small ¢ € (0, dg]. By Lemma [5:6, there exist t; < tg, 2 € R and r € R such
that

H(I)("T—’_ )@ att .)HLOC(RX[*TO]) =0

That is, ® (x,7r +5) — 0 < u(z+x,t1 +s) < & (z,r+s) + 6 for any z € R and
s € [-7,0]. Furthermore,

max {® (z,7r + 00 [l — e®7] + s — b [1 — e 2°]) — de~2°,0}
<O(z+a,t+5) <min{® (z,r — 6 [1 — 2]
+5+ 00 [1 — e_g"s]) + de~90%, 1} .
By comparison, for all ¢ > 0,
max {® (z,r + 06 [1l —e®T]+t— 00 [1 — e 2']) — de~ 2", 0}
<O (z+a,t +1) <min{® (z,7 — g6 [1 — 7]
+t+ 06 [1 — e ') + de 2" 1},
Set t =tg—ty and 7’ =7+ 06 [1 — e27] — 0§ [1 — e~ 2°!]. We then have

& (2 +2t0) = @ (2,)| < 24 [0 (@0 + (1427 00) = @ (2,1)]

o
< (24 (1+e*)o oo J.
ot ||
Thus, n < (2+ (14 €e27) o H%—‘f“oo) 8. Since 4 is arbitrary, n = 0. Consequently, ®
is a translation of ®. This completes the proof. O

Remark 5.9. We note that the assumption h(x,t) = J(z)d(t — 7) is only used to
ensure that (2)) holds. Obviously, if h(z,t) satisfies that there exists 79 € (0, 7)
such that [7 [*° h(z,t)dedt = 1, that is, [[° [7 h(z,t)dzdt = 0, we can show

that (5.2)) holds via a similar argument to that of Lemma[B5.35l Thus, the conclusions
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of Lemma and Theorem [B.§ are still valid if h(x,t) satisfies that there exists
70 € (0,7) such that f:o J75 h(z,t)dzdt = 1. However, it seems difficult to show
that (B2) holds for a general kernel h(z,t). We also note that the assertions of
Lemmas 5. IH5.4] and 5.7 hold for a general kernel h(z,t) satisfying (H1)-(H3).

Theorem 5.10. The entire solution ® of (LT)) founded in Theoremd4 is Liapunov
stable.

Proof. Given any e > 0, for any ¢ € Co 1) with [l — ® (2o + -, to + ) || o R [— 7,0
< § < dg, where g € R and tg € R are arbitrary constants, we have

max {fb (x + g, 8+ to + 000 (1 — €2°7) — gpd (1 — 6_‘908)) — e 9%, 0}
< ¢ (x,8) <min {<I> (x + g, 8+ to — 0d (1 — €2°7) + 0¢d (1 - 6_905)) + de 9%, 1}
for all x € R and s € [—7, 0], where gg, 09 and g are as in Lemma 57 By Lemma
B it follows that
max {<I> (x + xo,t +to+ 000 (1 — €2°7) — gpd (1 — e_got)) — e~ 00t 0}
< wu(ztye) <min{® (x + xo,t +tg — 0pd (1 — e?°7)
+00d (1 — efgot)) + de 00t 1}
for all z € R and ¢ > 0. Choose 3 (€) > 0 such that ||® (-,¢) = @ (-, + 2)[| poo (r) <
€/2 for any |z| < d2 and t € R. Furthermore, let 6* = min {6/2 ) %,50}.
Then for any & < 6%,
1008 (1 — ¢207) — 006 (1 — =) | < |ood (27 — e=2")| < 08e®®” < .
It follows that
D (z+x,t+1t9) —e<u(z,t;0) <P(x+xo,t+t))+e VzeR, ¢>0.
That is, for any ¢ € Co,1) with [|¢ — @ (- 4+ 20, + t0)|| o R [—r,0p) < 675 We have
|u(x,t; @) — D (z+ o, t +10)] <€
for all z € R and ¢ > 0, which implies that ® (z,t) is Liapunov stable. O

Remark 5.11. To prove Theorem [[L1] we only need to let

O(z,t) =P (x+ (01 — 62)/2,t+ (61 + 02 — 2w)/ (2¢))
and still denote ®(z,t) by ® (z, t).

Remark 5.12. Consider the case ¢ < 0. Assume that ¢ (z + ct) is an increas-
ing traveling wave solution up to translation of ([l) satisfying ¢ (—oo) = 0 and
¢(+o0) =1. Let ¢ (x —ct) = ¢p(— (x —ct)). Then ¢ (—o0) = 1 and 9 (+o00) = 0.
Let ¢ = —¢>0and x (x 4+ 't) = 1= (z + 't) = 1—¢ (x — c¢t). Thus, x (—o0) =0
and x (c0) = 1. We conclude that x (z + ¢'t) is a traveling wave solution of the
following equation:

(5.17) %:dAu—g(l—u(x,t),(h*S(l—u))(x,t)).
Take ¢* (u,v) = —¢g (1 —u,—v) and S* (u) = —5 (1 —u). Obviously, g* and S*
satisfy the conditions (F1) and (F2). Then equation (EI7) reduces to

(5.18) % =dAu+ g* (u, (h % S* (v)) (z,1)) .

Applying Theorem [Tl to (5I])), we can prove Theorem
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