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Abstract. This paper is concerned with entire solutions of a class of bistable delayed lattice
differential equations with nonlocal interaction. Here an entire solution is meant by a solution
defined for all (n, t) ∈ Z × R. Assuming that the equation has an increasing traveling wave
front with nonzero wave speed and using a comparison argument, we obtain a two-dimensional

manifold of entire solutions. In particular, it is shown that the traveling wave fronts are on the
boundary of the manifold. Furthermore, uniqueness and stability of such entire solutions are
studied.
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1. Introduction

Lattice differential equations have arisen from different scientific disciplines, such as biology (Bell and
Cosner [2], Keener [28], Weinberger [46]) and material science (Bates and Chmaj [1], Cahn et al. [8],
Taylor et al. [41]), and have attracted attention of many researchers (see Cahn et al. [9], Chow [18]
and the references cited therein). In addition, many lattice differential equations can be viewed as the
discretization of partial differential equations along a lattice, but exhibit much more complicated and
richer dynamics, see Chow and Shen [19] and Mallet-Paret [34].

In population biology, lattice differential equations have been usually used to model population growth
over a patchy environment (Kyrychko et al. [29] and So et al. [39]). Since the influence of maturation
period and the random walk of individuals in space, time delay and global interaction have to be taken
into account (Britton [7], Gourley et al. [24], So et al. [40], Wang et al. [42, 43]). Recently, Weng et al.
[47] derived a lattice delayed differential equation with global interaction for a single species with two age
classes distributed over a patchy environment consisting of all integer nodes of a one-dimensional lattice.
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The lattice equation takes the form

u′n = D [un+1 + un−1 − 2un]− dun +

∞∑

i=−∞

J (i) b (un−i (t− τ)) . (1.1)

Eq. (1.1) is a discrete analog of the delayed reaction-diffusion model

vt = Dvxx − dv +

∫ +∞

−∞

h (x− y) b (v (y, t− τ)) dy, (1.2)

which was proposed by So et al. [40]. Due to its important biological significance, traveling wave solutions
of (1.1) have widely been studied, we refer to Ma and Zou [33] for the bistable case of (1.1), Ma et al.
[31] and Weng et al. [47] for the monostable case of (1.1). See also Cahn et al. [9], Mallet-Paret [34]
for traveling waves of spatially discrete bistable dynamical systems, Chen et al. [11] and Chen and Guo
[12, 13] for traveling waves of spatially discrete monostable dynamical systems, and Wu and Zou [49]
for the existence of traveling waves in mixed functional differential equations. For related results on
two-dimensional spatial lattices, we refer to Cheng et al. [17] for the monostable case and Shi et al. [37]
for the bistable case.

From the dynamical points of view, the long-time behavior of solutions of evolution equations under
consideration is determined by global attractors (or the maximal invariant sets) which are invariant
under the flow governed by the evolution equations. In particular, a global attractor consists of entire
solutions, defined for all time variable t ∈ R. In fact, traveling wave fronts of (1.1) are entire solutions and
consist of two 1-dimensional manifolds, namely, u+n (t; θ) := φ(n+ ct+ θ) and u−n (t; θ) := φ(−n+ ct+ θ),
where θ varies in R (note that the wave speed c is unique in the bistable case). For reaction-diffusion
equations with continuous spatial variables, Chen and Guo [14], Chen et al. [15], Crooks and Tsai [20],
Fukao et al. [23], Guo and Morita [25], Hamel and Nadirashvili [26, 27], Morita and Ninomiya [35] and
Yagisita [50] showed the existence of new types of entire solutions other than the traveling wave type by
using the well-known results of planar traveling wave solutions. As reported by Hamel and Nadirashvili
[27, Theorems 1.7 and 1.8], reaction-diffusion equations usually have more types of entire solutions in
high dimensional spatial spaces, which even includes some other classes of solutions of traveling wave
type other than planar traveling waves. See also Berestycki et al. [5] and Berestycki and Nirenberg [6]
for traveling curved fronts in a straight infinite cylinder, Chen et al. [16] for cylindrically symmetric
traveling waves in n-dimensional spaces (n ≥ 3), and Ninomiya and Taniguchi [36] for traveling curved
fronts in 2-dimensional spaces. For more details, we refer to Berestycki and Hamel [3,4] and the references
therein. Recently, Li et al. [30] and Wang et al. [44] considered entire solutions of nonlocal reaction-
diffusion equations with delayed nonlinearity (which covers (1.2)) for the monostable and bistable cases,
respectively. For equation (1.1), Wang et al. [45] studied the existence and uniqueness of its entire
solutions under the monostable assumption. But for the bistable case, the existence of entire solutions of
lattice differential equations (1.1) other than traveling wave solutions still remains open.

In this paper, we study entire solutions of (1.1) with the bistable nonlinearity other than traveling
wave solutions. More precisely, we construct a 2-dimensional manifold of entire solutions of (1.1) and
show that the two 1-dimensional manifolds of entire solutions of traveling wave type are on the boundary
of the two-dimensional manifold. Here an entire solution of (1.1) is meant by a solution defined for all
(n, t) ∈ Z×R. In section 2, we state the main results of this paper. In section 3, we describe the precise
exponential asymptotic behavior of traveling wave fronts near ±∞. According to the asymptotic behavior
of traveling wave fronts, the conclusions given in section 2 are proved in section 4. Finally, a discussion
is given in section 5.

2. Main Results

In this section we state the main results of the paper. Throughout this paper, assume that J has a
compact support and satisfies J (i) = J (−i) ≥ 0 for any i ∈ Z and

∑+∞
i=−∞ J (i) = 1. For simplicity,
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we always assume that there exists an N0 ∈ N such that J(i) = 0 for any i ∈ Z with |i| > N0. We also
assume that the birth function b ∈ C2 (R) and there exists a constant K > 0 such that

b (0) = dK − b (K) = 0.

Furthermore, make the following assumptions:

(H1) b′ (u) > 0 for u ∈ (0,K) ;
(H2) d > max {b′ (0) , b′ (K)} ;
(H3) u∗ := sup {u ∈ [0,K); du = b (u)} = inf {u ∈ (0,K]; du = b (u)} and b′ (u∗) > d;
(H4) b′(0)u ≤ b(u) ≤ b(K) + b′(K)(u−K) for u ∈ (0,K).

A specific function which has been widely used in the mathematical biology literature is b (u) = pu2e−αu

with p > 0 and α > 0, which satisfies the above conditions when parameters p and α satisfy 2p
αe2

< d < p
αe

,
see Gourley et al. [24] and Ma and Zou [33, Fig. 1].

We now define a new function b∗ : R → R by

b∗ (u) =

{
b (u) u ∈ (−∞,K] ,
b (K) + b′ (K) (u−K) u ∈ (K,+∞).

In the sequel, we replace the function b(·) by b∗(·) and still denote b∗(·) by b(·). We note that this
replacement does not affect the main results of this paper (Theorems 2.4 and 2.5) since the definition of
b(·) on [0,K] does not change. Then, it is obvious that b(·) satisfies

|b′(u)− b′(v)| ≤ max
w∈[0,K]

|b′′(w)| |u− v| for any u, v ∈ [0, 2K] . (2.1)

Now we give two definitions and then, establish an existence and comparison theorem.

Definition 2.1. A sequence of continuous differentiable functions {vn (t)}n∈Z
, t ∈ [−τ, l), l > 0, is called

a supersolution (subsolution) of (1.1) on [0, l) if and only if

v′n (t) ≥ (≤)D [vn+1 (t) + vn−1 (t)− 2vn (t)]− dvn (t) +

∞∑

i=−∞

J (i) b (vn−i (t− τ)) (2.2)

for all t ∈ [0, l).

Definition 2.2. A sequence of continuous differentiable functions {vn (t)}n∈Z
, t ∈ (−∞, 0), is called a

supersolution (subsolution) of (1.1) on (−∞, T̃ ) if and only if for all T ′ < T̃ , {wn (t)}n∈Z
defined by

wn (t) = vn (t+ T ′) for t ∈
[
−τ, T̃ − T ′

)
is a supersolution (subsolution) of (1.1) on [0, T̃ − T ′).

Lemma 2.3. For any ϕ = {ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0, 2K]), (1.1) admits a unique solution

u (t;ϕ) = {un (t;ϕ)}n∈Z
on [0,+∞) satisfying un (s) = ϕn (s) and 0 ≤ un (t) ≤ 2K for s ∈ [−τ, 0],

t ∈ [−τ,+∞) and n ∈ Z. For any pair of supersolution w+
n (t) and subsolution w−

n (t) of (1.1) on [0,+∞)
with 0 ≤ w−

n (t) ≤ 2K, 0 ≤ w+
n (t) ≤ 2K for t ∈ [−τ,+∞), n ∈ Z, and w+

n (s) ≥ w−
n (s) for s ∈ [−τ, 0],

n ∈ Z, we have w+
n (t) ≥ w−

n (t) for t ≥ 0, n ∈ Z, and

w+
n (t)− w−

n (t) ≥ e−(2D+d)(t−t0)
∑

k∈Z

(
w+

k (t0)− w−
k (t0)

)

×
+∞∑

j=0

C
j

2j+|n−k|

[D (t− t0)]
2j+|n−k|

(2j + |n− k|)!
(2.3)

for any n ∈ Z and t ≥ t0 ≥ 0.
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The proof of Lemma 2.3 is completely similar to that of Lemma 4.1 of Ma and Zou [33]. In the
following, a traveling wave front of (1.1) connecting the equilibria 0 and K always refers to a pair (φ, c)
such that φ(n + ct) satisfies (1.1) and the boundary conditions φ(−∞) = 0 and φ(+∞) = K. We call
φ the profile of traveling wave and c the wave speed. From Theorem 1.1 of [33], we know that system
(1.1) has a strictly monotone traveling wave front φ(n + ct) with wave speed c under the assumptions
(H1)-(H3). In particular, the traveling wave front φ(n + ct) is unique (up to a translation) when c 6= 0.
In [33, Theorem 1.2], Ma and Zou showed the occurrence of pinning phenomenon (propagation failure),
that is, the wave speed c = 0. In this case, the traveling wave front is simply an equilibrium and only
the discrete values on the lattice are relevant. Therefore, in this paper we only consider the case c 6= 0.
Now we state our main results in this paper.

Theorem 2.4. Assume that (H1)-(H4) hold and (1.1) admits an increasing traveling wave front φ con-
necting the equilibria 0 and K with speed c > 0. Then for any given constants θ1 ∈ R and θ2 ∈ R there
exists a unique solution Φ (t; θ1, θ2) = {Φn (t; θ1, θ2)}n∈Z

of (1.1) defined for all t ∈ R such that

lim
t→−∞

{
sup
n≥0

|Φn (t; θ1, θ2)− φ (n+ ct+ θ1)|+ sup
n≤0

|Φn (t; θ1, θ2)− φ (−n+ ct+ θ2)|

}
= 0.

Furthermore, we have

(i) For all t ∈ R and n ∈ Z, 0 < Φn (t; θ1, θ2) < K and Φ′
n (t; θ1, θ2) > 0.

(ii) limt→∞ supn∈Z |Φn (t; θ1, θ2)−K| = 0 and limt→−∞ sup|n|≤N ′ |Φn (t; θ1, θ2)| = 0 for any N ′ ∈ N.
(iii) For each a ∈ R, lim|n|→∞ ‖Φn (·; θ1, θ2)−K‖L∞[a,+∞) = 0.

(iv) Φn (t; θ1, θ2) converges to (a) φ (n+ ct+ θ1) in the sense of the topology T0 as θ2 → −∞, that is,
for any compact set S ⊂ Z × R, Φn(t; θ1, θ2) converges uniformly in (n, t) ∈ S to φ(n + ct + θ1) as
θ2 → −∞; (b) φ (−n+ ct+ θ2) in the sense of T0 as θ1 → −∞; (c) 0 in the sense of T0 as θ1 → −∞
and θ2 → −∞; (d) K in the sense of T0 as θ1 → +∞ and θ2 → −∞ or as θ1 → −∞ and θ2 → +∞;
and (e) K in the sense of T0 as θ1 → +∞ and θ2 → +∞.

(v) For any t ∈ R and n ∈ Z, Φn (t; θ1, θ2) is increasing with respect to (θ1, θ2) ∈ R
2.

(vi) The entire solution Φ (t; θ1, θ2) depends continuously on (θ1, θ2) ∈ R
2 in the sense of the topology T0.

(vii) For any (θ1, θ2) ∈ R
2 and (θ∗1 , θ

∗
2) ∈ R

2, there are no (n0, t0) ∈ Z× R such that

Φn (t; θ1, θ2) = Φn+n0
(t+ t0; θ

∗
1 , θ

∗
2) for any (n, t) ∈ Z× R,

unless
(θ1 − θ2)− (θ∗1 − θ∗2)

2
∈ Z.

(viii) The entire solution Φ (t; θ1, θ2) is Liapunov stable in the following sense: For any given ǫ > 0,
there exists δ > 0 such that for any ϕ = {ϕn}n∈Z

with ϕn ∈ C([−τ, 0], [0,K]) and supn∈Z

‖ϕn (·)− Φn+n0
(t0 + ·)‖L∞([−τ,0]) < δ, there is

|un (t;ϕ)− Φn+n0
(t+ t0)| < ǫ

for any n ∈ Z and t ≥ 0, where n0 ∈ Z and t0 ∈ R are two real constants.

Theorem 2.5. Assume that (H1)-(H4) hold and (1.1) admits an increasing traveling wave front φ con-
necting the equilibria 0 and K with speed c < 0. Then for any given constants θ1 ∈ R and θ2 ∈ R there
exists a unique solution Φ (t; θ1, θ2) = {Φn (t; θ1, θ2)}n∈Z

of (1.1) defined for all t ∈ R such that

lim
t→−∞

{
sup
n≥0

|Φn (t; θ1, θ2)− φ (−n+ ct+ θ1)|+ sup
n≤0

|Φn (t; θ1, θ2)− φ (n+ ct+ θ2)|

}
= 0.

Moreover, (c)-(e) of (iv) and (v)-(viii) in Theorem 2.4 still hold. Furthermore, we have
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(i)′ For all t ∈ R and n ∈ Z, 0 < Φn (t; θ1, θ2) < K and Φ′
n (t; θ1, θ2) < 0.

(ii)′ limt→∞ supn∈Z |Φn (t; θ1, θ2)| = 0 and limt→−∞ inf |n|≤N ′ |Φn (t; θ1, θ2)| = K for any N ′ ∈ N.
(iii)′ For each a ∈ R, lim|n|→∞ ‖Φn (·; θ1, θ2)‖L∞[a,+∞) = 0.

(iv)′ Φ (t; θ1, θ2) converges to φ (n+ ct+ θ2) in the sense of T0 as θ1 → −∞; Φ (t; θ1, θ2) converges to
φ (−n+ ct+ θ1) in the sense of T0 as θ2 → −∞.

Remark 2.6. Under the assumptions (H1)-(H3), it follows from Ma and Wu [32] and Wang et al.
[43] that (1.2) admits a strictly increasing traveling wave front ϕ (x+ ct) satisfying ϕ (−∞) = 0 and
ϕ (+∞) = K with wave speed c ∈ R. When c 6= 0, we know from [44] that for any (θ1, θ2) ∈ R

2, there
exists a unique entire solution U (x, t) := U (x, t; θ1, θ2) with 0 < U (x, t) < K for all (x, t) ∈ R

2 such that

lim
t→−∞

{
sup
x≥0

|U (x, t)− ϕ (x+ ct+ θ1)|+ sup
x≤0

|U (x, t)− ϕ (−x+ ct+ θ2)|

}
= 0 (2.4)

if c > 0, and

lim
t→−∞

{
sup
x≥0

|U (x, t)− ϕ (−x+ ct+ θ1)|+ sup
x≤0

|U (x, t)− ϕ (x+ ct+ θ2)|

}
= 0 (2.5)

if c < 0. Furthermore, for any (θ1, θ2) ∈ R
2 and (θ∗1 , θ

∗
2) ∈ R

2, there exists (x0, t0) ∈ R
2 such that

U (x, t; θ1, θ2) = U (x+ x0, t+ t0; θ
∗
1 , θ

∗
2) for any (x, t) ∈ R

2, which implies that the entire solution
U (x, t; θ1, θ2) of (1.2) satisfying (2.4) or (2.5) is unique up to spatial-temporal translation. But (vii)
of Theorem 2.4 says that for the lattice equation (1.1), corresponding to the discrete analog of (1.2),
the uniqueness up to spatial-temporal translation is not valid. In general, in contrast to the situation
of reaction-diffusion equations with continuous spatial variables, the propagation failure of lattice dif-
ferential equations occurs on a larger range of parameters, see [9, 18, 34]. It is well-known that if we
assume that h(y) = δ(y), then it is easy to verify that for (1.2), wave speed c = 0 occurs if and only if∫K

0
[−du+ b(u)] du = 0. But for lattice equation (1.1) with

∑
i6=0 J(i) = 0, wave speed c = 0 occurs not

only for
∫K

0
[−du+ b(u)] du = 0 but also for

D ≤
1

2
min

{
max

u∈[0,u∗]

du− b(u)

K − u
, max
u∈[u∗,K]

b(u)− du

u

}
(2.6)

and

d > sup
{
b′(u) : u ∈ [0, u−) ∪ (u+,K]

}
, (2.7)

where

u− = inf {u ∈ (0,K] : 2D(K − u) ≤ du− b(u)} ,

u+ = sup {u ∈ [0,K) : 2Du ≤ b(u)− du} .

For the delayed reaction-diffusion equation (1.2), we [44] established the existence and uniqueness of
entire solutions behaving as two traveling fronts coming from opposite directions and approaching each

other except for
∫K

0
[−du+ b(u)] du = 0. However, the existence of entire solutions of (1.1) is unknown

not only for
∫K

0
[−du+ b(u)] du = 0 but also for D and d satisfying (2.6) and (2.7).

3. A Priori Estimate of Traveling Wave Fronts

In this section, we show a priori decay rate of traveling wave fronts of (1.1) at infinity. Our method is
similar to that of Carr and Chmaj [10] which has been used by Wang et al. [44] (see also Diekmann and
Kaper [21]).
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Define two complex functions ∆0 (λ) and ∆1 (λ) by

∆0 (λ) = D
[
eλ + e−λ − 2

]
− cλ− d+ b′ (0) e−λcτ

+∞∑

i=−∞

J (i) e−λi,

∆1 (λ) = D
[
eλ + e−λ − 2

]
− cλ− d+ b′ (K) e−λcτ

+∞∑

i=−∞

J (i) e−λi,

where λ ∈ C. Note that for λ ∈ R,

∂2

∂λ2
∆0(λ) = D

[
eλ + e−λ

]
+ b′(0)e−λcτ

+∞∑

i=−∞

(i+ cτ)
2
J (i) e−λi > 0,

∂2

∂λ2
∆1(λ) = D

[
eλ + e−λ

]
+ b′(K)e−λcτ

+∞∑

i=−∞

(i+ cτ)
2
J (i) e−λi > 0,

and

∆0(0) = −d+ b′ (0) < 0, ∆1(0) = −d+ b′ (K) < 0,

it is easy to see that the following result holds.

Lemma 3.1. The equation ∆i(λ) = 0 has two real roots λi1 < 0 and λi2 > 0 such that

∆i(λ) =




> 0 for λ < λi1,
< 0 for λ ∈ (λi1, λi2) ,
> 0 for λ > λi2,

i = 1, 2.

In the following, we first provide a technical lemma about the asymptotic behavior of a positive
decreasing function, which can be found in Carr and Chmaj [10, Proposition 2.3].

Lemma 3.2. Let ℓ (λ) =
∫∞

0
u (ξ) e−λξdξ with u (ξ) be a positive decreasing function. Assume that ℓ has

the representation

ℓ (λ) =
E (λ)

(λ+ α)
k+1

,

where k > −1 and E is analytic in the strip −α ≤ Reλ < 0. Then

lim
ξ→+∞

u (ξ)

ξke−αξ
=

E (−α)

Γ (α+ 1)
.

Theorem 3.3. Assume that φ (n+ ct) is an increasing traveling wave solution of (1.1) satisfying
φ(−∞) = 0 and φ(+∞) = K with wave speed c 6= 0. Then

(i) limx→−∞ e−λ02xφ(x) = a0, limx→−∞ e−λ02x (J ∗ φ) (x) = a0e
−λ02cτ

∑∞
i=−∞ J (i) e−λ02i and

limx→−∞ e−λ02xφ′(x) = λ02a0, where a0 > 0 is a constant. Here and in what follows, (J ∗ φ)(x) =∑∞
i=−∞ J(i)φ(x− i− cτ).

(ii) limx→∞ e−λ11x (K − (J ∗ φ) (x)) = a1e
−λ11cτ

∑∞
i=−∞ J (i) e−λ11i, limx→∞ e−λ11x(K − φ(x)) = a1

and limx→∞ e−λ11xφ′(x) = −λ11a1, where a1 > 0 is a constant.
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Proof. Note that φ is increasing and limx→−∞ φ (x) = 0, there exists x0 < 0 such that
maxu∈[0,K] |b

′′ (u)|φ (x+N0 + |c|τ) < 1
2 [d− b′(0)] for all x ≤ x0. By

cφ′ (x)−D [φ (x+ 1) + φ (x− 1)− 2φ (x)]

= −dφ (x) +
∞∑

i=−∞

J (i) b (φ (x− i− cτ))

≤ −dφ (x) + b′ (0)
∞∑

i=−∞

J (i)φ (x− i− cτ) + max
u∈[0,K]

|b′′ (u)|
∞∑

i=−∞

J (i)φ2 (x− i− cτ)

≤ −
1

2
(d− b′ (0))φ (x) +

1

2
(d+ b′ (0))

[
∞∑

i=−∞

J (i)φ (x− i− cτ)− φ (x)

]

−
1

2
(d− b′ (0))

∞∑

i=−∞

J (i)φ (x− i− cτ)

+ max
u∈[0,K]

|b′′ (u)|φ (x+N0 − cτ)

∞∑

i=−∞

J (i)φ (x− i− cτ)

≤ −
1

2
(d− b′ (0))φ (x) +

1

2
(d+ b′ (0))

[
∞∑

i=−∞

J (i)φ (x− i− cτ)− φ (x)

]
,

it follows that

1

2
(d− b′ (0))φ (x) ≤ −cφ′ (x) +D [φ (x+ 1)− φ (x)]

+
1

2
(d+ b′ (0))

[
∞∑

i=−∞

J (i)φ (x− i− cτ)− φ (x)

]
. (3.1)

Note that

∫ x

−∞

[
∞∑

i=−∞

J (i)φ (y − i− cτ)− φ (y)

]
dy

= lim
z→−∞

∫ x

z

∞∑

i=−∞

J (i) [φ (y − i− cτ)− φ (y)] dy

= − lim
z→−∞

∞∑

i=−∞

(i+ cτ) J (i)

∫ x

z

∫ 1

0

φ′ (y − θ (i+ cτ)) dθdy

= − lim
z→−∞

∞∑

i=−∞

(i+ cτ) J (i)

∫ 1

0

∫ x

z

φ′ (y − θ (i+ cτ)) dydθ

= − lim
z→−∞

∞∑

i=−∞

(i+ cτ) J (i)

∫ 1

0

[φ (x− θ (i+ cτ))− φ (z − θ (i+ cτ))] dθ

= −
∞∑

i=−∞

(i+ cτ) J (i)

∫ 1

0

φ (x− θ (i+ cτ)) dθ

≤ φ (x+N0 + |c| τ)
∞∑

i=−∞

(|i|+ |c| τ) J (i)
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and
∫ x

−∞

[φ (y + 1)− φ (y)] dy = lim
z→−∞

∫ x

z

[φ (y + 1)− φ (y)] dy

= lim
z→−∞

∫ x

z

∫ 1

0

φ′ (y + t) dtdy = lim
z→−∞

∫ 1

0

[φ (x+ t)− φ (z + t)] dt

≤

∫ 1

0

φ (x+ t) dt = φ (x+ 1) ,

integrating both sides of the inequality (3.1) from −∞ to x with x ≤ x0, we have

1

2
(d− b′ (0))

∫ x

−∞

φ (y) dy

≤ |c|φ (x) +Dφ (x+ 1) +
1

2
(d+ b′ (0))φ (x+N0 + |c| τ)

∞∑

i=−∞

(|i|+ |c| τ) J (i)

≤

[
|c|+D +

1

2
(d+ b′ (0))

∞∑

i=−∞

(|i|+ |c| τ) J (i)

]
φ (x+N0 + |c| τ) .

Thus, for any r > 0 and x ≤ x0, we have

r

2
(d− b′ (0))φ (x− r) ≤

[
|c|+D +

1

2
(d+ b′ (0))

∞∑

i=−∞

(|i|+ |c| τ) J (i)

]
φ (x+N0 + |c| τ) .

Obviously, there exist r0 > 0 sufficiently large and θ0 ∈ (0, 1) such that φ (x− r0) ≤ θ0φ (x+N0 + |c| τ)
for any x ≤ x0, namely, φ (x−N0 − |c| τ − r0) ≤ θ0φ (x) for any x ≤ x0 + N0 + |c| τ . Let ρ (x) =
φ (x) e−γ0x, where γ0 = 1

N0+|c|τ+r0
ln 1

θ0
> 0, then

ρ (x−N0 − |c| τ − r0) = φ (x−N0 − |c| τ − r0) e
−γ0(x−N0−|c|τ−r0)

=
1

θ0
φ (x−N0 − |c| τ − r0) e

−γ0x ≤ φ (x) e−γ0x = ρ (x) .

By virtue of limx→+∞ φ (x) e−γ0x = 0, we have that there exists M0 > 0 such that φ (x) e−γ0x ≤ M0 for
any x ∈ R.

Next we prove that limx→−∞ e−λ02xφ (x) exists. For λ with 0 <Reλ < γ0, define a two-sided Laplace
transform of φ by

L (λ) ≡

∫ ∞

−∞

e−λxφ (x) dx.

Since
∫ ∞

−∞

e−λx

(
∞∑

i=−∞

J (i)φ (x− i− cτ)

)
dx =

∞∑

i=−∞

J (i)

∫ ∞

−∞

e−λxφ (x− i− cτ) dx

=

∞∑

i=−∞

e−λ(i+cτ)J (i)

∫ ∞

−∞

e−λ(x−i−cτ)φ (x− i− cτ) dx = L (λ)

∞∑

i=−∞

e−λ(i+cτ)J (i)

and

−cφ′ (x) +D [φ (x+ 1) + φ (x− 1)− 2φ (x)]− dφ (x) + b′ (0)

∞∑

i=−∞

J (i)φ (x− i− cτ)

= b′ (0)

∞∑

i=−∞

J (i)φ (x− i− cτ)−
∞∑

i=−∞

J (i) b (φ (x− i− cτ)) ,
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we have

∆0 (λ)L (λ) =

∫ ∞

−∞

e−λx

[
b′ (0)

∞∑

i=−∞

J (i)φ (x− i− cτ)−
∞∑

i=−∞

J (i) b (φ (x− i− cτ))

]
dx. (3.2)

In view of
∣∣∣∣∣b

′ (0)
∞∑

i=−∞

J (i)φ (x− i− cτ)−
∞∑

i=−∞

J (i) b (φ (x− i− cτ))

∣∣∣∣∣

≤ max
u∈[0,K]

|b′′ (u)|
∞∑

i=−∞

J (i)φ2 (x− i− cτ)

≤ φ (x+N0 + |c| τ) max
u∈[0,K]

|b′′ (u)|
∞∑

i=−∞

J (i)φ (x− i− cτ) ,

it follows that the right-hand side of equality (3.2) is defined for λ with 0 < Reλ < 2γ0. In particular, it
follows from the assumption (H4) that the right-hand side is negative. Now we use a property of Laplace
transforms (Widder [48, p58]). Since φ (x) > 0, there exists a real number ̺ such that L (λ) is analytic
for 0 < Reλ < ̺ and has a singularity at λ = ̺. Hence, L (λ) is defined for 0 < Reλ < λ02.

We rewrite (3.2) as

∫ 0

−∞

φ (x) e−λxdx = −

∫ +∞

0

φ (x) e−λxdx+
1

∆0 (λ)

∫ ∞

−∞

e−λx

[
b′ (0)

∞∑

i=−∞

J (i)φ (x− i− cτ)

−
∞∑

i=−∞

J (i) b (φ (x− i− cτ))

]
dx.

Note that
∫ +∞

0
φ (x) e−λxdx is analytic for Reλ > 0. Also, the equation ∆0 (λ) = 0 does not have any

zero with Reλ = λ02 other than λ = λ02. In fact, let λ = λ02 + iα, then ∆0 (λ) = 0 implies

b′ (0) e−λ02cτ

[
sinαcτ

∞∑

k=−∞

J (k) e−λ02k sinαk − cosαcτ

∞∑

k=−∞

J (k) e−λ02k cosαk

]

= Deλ02 cosα+De−λ02 cosα− 2D − cλ02 − d (3.3)

and

b′ (0) e−λ02cτ

[
cosαcτ

∞∑

k=−∞

J (k) e−λ02k sinαk + sinαcτ

∞∑

k=−∞

J (k) e−λ02k cosαk

]

= Deλ02 sinα−De−λ02 sinα− cα. (3.4)

By ∆0 (λ02) = 0, (3.3) reduces to

b′ (0) e−λ02cτ

∞∑

k=−∞

J (k) e−λ02k [1− cos (αcτ + αk)] = D
(
eλ02 + e−λ02

)
(cosα− 1) .

Since 1 − cos (αcτ + αk) ≥ 0 and cosα − 1 ≤ 0, there are b′ (0) [1− cos (αcτ + αk)] = 0 and α = 2kπ
(k ∈ Z). If b′ (0) = 0, then α = 0 follows from (3.4). If b′ (0) > 0, then it follows from 1−cos (αcτ + αk) =
0 that cosαcτ = 1, which implies that α = 0 via (3.4), too. Thus, we have shown that the equation
∆0 (λ) = 0 does not have any zero with Reλ = λ02 other than λ = λ02.
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Now let φ̃ (x) = φ (−x). Then limx→∞ φ̃ (x) eλ02x = E(−λ02)
Γ (λ02+1) > 0 due to Lemma 3.2, where

E (−λ02) =
−1

d
dλ
∆0 (λ)

∣∣
λ=λ02

∫ ∞

−∞

e−λ02x

∞∑

i=−∞

J (i) [b′ (0)φ (x− i− cτ)− b (φ (x− i− cτ))] dx.

Hence, limx→−∞ φ (x) e−λ02x = a0 := E(−λ02)
Γ (λ02+1) . From Lebesgue’s dominated convergence theorem, we

know that

lim
x→−∞

e−λ02x (J ∗ φ) (x) = lim
x→−∞

e−λ02cτ

+∞∑

i=−∞

e−λ02iJ (i) e−λ02(x−i−cτ)φ (x− i− cτ)

= a0e
−λ02cτ

+∞∑

i=−∞

e−λ02iJ (i) .

Since as x→ −∞,

∞∑

i=−∞

J (i) b (φ (x− i− cτ)) = b′ (0)
∞∑

i=−∞

J (i)φ (x− i− cτ) +O (1)
∞∑

i=−∞

J (i)φ2 (x− i− cτ) ,

we have

lim
x→−∞

e−λ02x

∞∑

i=−∞

J (i) b (φ (x− i− cτ)) = a0b
′ (0) e−λ02cτ

+∞∑

i=−∞

e−λ02iJ (i) .

Consequently,

lim
x→−∞

e−λ02xφ′ (x) =
1

c
lim

x→−∞

{
e−λ02xD [φ (x+ 1) + φ (x− 1)− 2φ (x)]

}

+
1

c
lim

x→−∞

{
e−λ02x

[
−dφ (x) +

∞∑

i=−∞

J (i) b (φ (x− i− cτ))

]}

=
a0

c

{
D
[
eλ02 + e−λ02 − 2

]
− d+ b′ (0) e−λ02cτ

+∞∑

i=−∞

e−λ02iJ (i)

}
= a0λ02.

We have completed the proof of (i). The conclusions in (ii) can be proved by similar arguments. This
completes the proof. �

4. Existence of Entire Solutions

In this section, we always assume that (1.1) has an increasing traveling wave front φ connecting the
equilibria 0 and K with wave speed c > 0. We note that the proof of the existence of entire solutions is
motivated by Chen and Guo [14] and Guo and Morita [25]. By Theorem 3.3, there are positive constants
m,M,µ and η such that

meλ02x ≤ φ (x) ≤Meλ02x, meλ02x ≤ (J ∗ φ) (x) ≤Meλ02x (x ≤ 0) , (4.1)

ηmeλ02x ≤ ηφ (x) ≤ φ′ (x) , ηmeλ02x ≤ η (J ∗ φ) (x) ≤ φ′ (x) (x ≤ 0) , (4.2)

ηµeλ11x ≤ η (K − φ (x)) ≤ φ′ (x) , ηµeλ11x ≤ η (K − (J ∗ φ) (x)) ≤ φ′ (x) (x ≥ 0) . (4.3)

Let

P ≥ max
u∈[0,K]

|b′′ (u)| ·max

{
2M

η
,
2KM

ηµ
,
M2e2λ02(N0−cτ)

ηm

}
.
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Consider the following ordinary differential equation:

d

dt
p (t) = c+ Peλ02p(t), t ≤ 0, (4.4)

where λ02 is defined in Lemma 3.1. Let

ω = ̺−
1

λ02
ln

{
1 +

P

c
eλ02̺

}
. (4.5)

Throughout the remainder of this paper, set ϑ = − 1
λ02

ln
(
1 + P

c

)
< 0. Obviously, the equality (4.5)

determines an increasing map ω = ω(̺) : (−∞, 0] → (−∞, ϑ]. In particular, the map is invertible and
ω(0) = ϑ. Thus, for any ω ∈ (−∞, ϑ], there exists an unique ̺ = ̺(ω) ∈ (−∞, 0] such that ̺ = ̺(ω) is
increasing and (4.5) holds. Now let p (0) = ̺(ω) ≤ 0, then by solving this equation explicitly, we obtain
the solution as

p (t;ω) = ̺(ω) + ct−
1

λ02
ln

{
1 +

P

c
eλ02̺(ω)

(
1− ecλ02t

)}
. (4.6)

Furthermore, for any ω̂ ∈ (−∞, ϑ] we set

ˆ̺(ω, ω̂) = ω̂ +
1

λ02
ln

{
1 +

P

c
eλ02̺(ω)

}

and

p̂ (t;ω, ω̂) = ˆ̺(ω, ω̂) + ct−
1

λ02
ln

{
1 +

P

c
eλ02̺(ω)

(
1− ecλ02t

)}
. (4.7)

It is easy to see that p (t;ω) and p̂ (t;ω, ω̂) are increasing on t ∈ (−∞, 0], and for every t ∈ (−∞, 0],
p (t;ω) and p̂ (t;ω, ω̂) are increasing on ω ∈ (−∞, ϑ] and ω̂ ∈ (−∞, ϑ]. From the identity

p (t;ω)− ct− ω = p̂ (t;ω, ω̂)− ct− ω̂ = −
1

λ02
ln

{
1−

recλ02t

(1 + r)

}
, r =

P

c
eλ02̺(ω),

it follows that 0 < p (t;ω)− ct− ω = p̂ (t;ω, ω̂)− ct− ω̂ ≤ R0e
cλ02t(t ≤ 0) for some positive constant R0

independent of ω ∈ (−∞, ϑ] and ω̂ ∈ (−∞, ϑ].
Obviously, if ω̂ ≤ ω, then ˆ̺(ω, ω̂) ≤ ̺ (ω) and hence, p̂ (t;ω, ω̂) ≤ p (t;ω). Now given any ω1, ω2 ∈

(−∞, ϑ). If ω1 ≤ ω2, let p2(t;ω1, ω2) = p (t;ω) and p1(t;ω1, ω2) = p̂ (t;ω, ω̂) with ω = ω2 and ω̂ = ω1. If
ω2 ≤ ω1, let p1(t;ω1, ω2) = p (t;ω) and p2(t;ω1, ω2) = p̂ (t;ω, ω̂) with ω = ω1 and ω̂ = ω2. For the sake
of convenience, we denote pi(t;ω1, ω2) by pi(t) in the following, where i = 1, 2.

Lemma 4.1. There exists T < 0, independent of ω1 and ω2, such that {un (t)}n∈Z
defined by un (t) =

φ (n+ p1 (t)) + φ (−n+ p2 (t)) is a supersolution of (1.1) on (−∞, T ).

Proof. Without loss of generality, assume that ω1 ≤ ω2 < ϑ and hence, p1 (t) ≤ p2 (t) for all t ≤ 0. For
(n, t) ∈ Z× (−∞, 0), we have

N [un] (t) : = u′n (t)−D [un+1 (t) + un−1 (t)− 2un (t)] + dun (t)−
+∞∑

i=−∞

J (i) b (un−i (t− τ))

= [(p′1 (t)− c)φ′ (n+ p1 (t)) + (p′2 (t)− c)φ′ (−n+ p2 (t))]

+
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t)− cτ)) +
+∞∑

i=−∞

J (i) b (φ (− (n− i) + p2 (t)− cτ))

−
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t− τ)) + φ (− (n− i) + p2 (t− τ)))

= [φ′ (n+ p1 (t)) + φ′ (−n+ p2 (t))]Pe
λ02p2(t) −R (n, t) ,
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where

R (n, t) =
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t− τ)) + φ (− (n− i) + p2 (t− τ)))

−
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t)− cτ))−
+∞∑

i=−∞

J (i) b (φ (− (n− i) + p2 (t)− cτ)) .

In view of

pi (t− τ) = pi (t)− cτ +
1

λ02
ln

{
1 + P

c
eλ02̺(ω2)

(
1− ecλ02t

)

1 + P
c
eλ02̺(ω2) (1− ecλ02t) + P

c
eλ02̺(ω2)ecλ02t (1− e−cλ02τ )

}

≤ pi (t)− cτ

and (2.1), it follows that

R (n, t)

≤
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t)− cτ) + φ (− (n− i) + p2 (t)− cτ))

−
+∞∑

i=−∞

J (i) b (φ ((n− i) + p1 (t)− cτ))−
+∞∑

i=−∞

J (i) b (φ (− (n− i) + p2 (t)− cτ))

=
+∞∑

i=−∞

J (i)

∫ 1

0

b′ (φ ((n− i) + p1 (t)− cτ) + θφ (− (n− i) + p2 (t)− cτ))

× φ (− (n− i) + p2 (t)− cτ) dθ

−
+∞∑

i=−∞

J (i)

∫ 1

0

b′ (θφ (− (n− i) + p2 (t)− cτ))φ (− (n− i) + p2 (t)− cτ) dθ

≤ max
u∈[0,K]

|b′′ (u)|
+∞∑

i=−∞

J (i)φ ((n− i) + p1 (t)− cτ)φ (− (n− i) + p2 (t)− cτ)

≤ max
u∈[0,K]

|b′′ (u)|φ (n+ p1 (t))

+∞∑

i=0

J (i)φ (− (n− i) + p2 (t)− cτ)

+ max
u∈[0,K]

|b′′ (u)|φ (−n+ p2 (t))

0∑

i=−∞

J (i)φ ((n− i) + p1 (t)− cτ)

≤ max
u∈[0,K]

|b′′ (u)|

[
φ (n+ p1 (t)) (J ∗ φ) (−n+ p2 (t))

+φ (−n+ p2 (t)) (J ∗ φ) (n+ p1 (t))

]
,

see Theorem 3.3 for the notation J ∗φ. Note that pi (t) < 0 for all t ≤ 0. For (n, t) ∈ Z× (−∞, 0), define

I (n, t) =
R (n, t)

φ′ (n+ p1 (t)) + φ′ (−n+ p2 (t))
.

Now we estimate I (n, t) .

Case I: λ02 ≥ −λ11. We divide Z into 3 parts.
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(i) p2(t) ≤ n ≤ −p1(t). By (4.1) and (4.2), for n ∈ Z with 0 ≤ n ≤ −p1(t), we have

I (n, t) ≤
2maxu∈[0,K] |b

′′ (u)|M
(
eλ02(−n+p2(t))

)

η
≤

2maxu∈[0,K] |b
′′ (u)|M

η
eλ02p2(t), (4.8)

and for n ∈ Z with p2(t) ≤ n ≤ 0, we have

I (n, t) ≤
2maxu∈[0,K] |b

′′ (u)|M
(
eλ02(n+p1(t))

)

η
≤

2maxu∈[0,K] |b
′′ (u)|M

η
eλ02p2(t). (4.9)

(ii) n ≤ p2(t). It follows from (4.3) that

I (n, t) ≤
maxu∈[0,K] |b

′′ (u)|K (φ (n+ p1 (t)) + (J ∗ φ) (n+ p1 (t)))

φ′ (−n+ p2 (t))

≤
2maxu∈[0,K] |b

′′ (u)|KMeλ02(n+p1(t))

ηµeλ11(−n+p2(t))
≤

2maxu∈[0,K] |b
′′ (u)|KMeλ02p2(t)

ηµe(−λ11−λ02)neλ11p2(t)

≤
2maxu∈[0,K] |b

′′ (u)|KM

ηµ
eλ02p2(t). (4.10)

(iii) n ≥ −p1(t). By a similar argument as in (ii), we have

I (n, t) ≤
2maxu∈[0,K] |b

′′ (u)|KM

ηµ
eλ02p2(t). (4.11)

Thus, combining (4.8)-(4.11) yields N [un] (t) ≥ 0.

Case II: 0 < λ02 < −λ11. Note that λ02 and λ11 satisfy

D
[
eλ02 + e−λ02 − 2

]
− cλ02 − d+ b′ (0) e−λ02cτ

+∞∑

i=−∞

J (i) e−λ02i = 0,

D
[
eλ11 + e−λ11 − 2

]
− cλ11 − d+ b′ (K) e−λ11cτ

+∞∑

i=−∞

J (i) e−λ11i = 0.

Since eλ11 + e−λ11 > eλ02 + e−λ02 and

e−λ11cτ

+∞∑

i=−∞

J (i) e−λ11i > e−λ02cτ

+∞∑

i=−∞

J (i) e−λ02i,

we have

b′ (0) e−λ02cτ

+∞∑

i=−∞

J (i) e−λ02i > b′ (K) e−λ02cτ

+∞∑

i=−∞

J (i) e−λ02i,

which implies b′ (0) > b′ (K) ≥ 0.

Since b′ (u) is continuous on [0, 2K], there exists δ1 ∈ (0,K) such that for any u ∈ (K − δ1,K + δ1],
b′ (u) ∈ [0, b′ (0)]. We translate φ (x) along the x−axis so that for any x ≥ −N0− cτ , φ (x) ∈ (K− δ1,K].
Take T1 < 0, which is independent of p2(t), so that φ (2p2 (t) +N0 − cτ) ≤ δ1 and p2 (t) +N0 − cτ < 0
for any t ≤ T1. Thus, for t ≤ T1, n ≥ −p1 (t) and |i| ≤ N0, there is

b′ (φ (n+ p1 (t)− i− cτ) + θφ (−n+ p2 (t) + i− cτ)) ∈ [0, b′ (0)] .
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where θ ∈ [0, 1]. Consequently, for any t ≤ T1 and n ≥ −p1 (t) , we have

R (n, t)

≤
+∞∑

i=−∞

[
J (i)

∫ 1

0

b′ (φ ((n− i) + p1 (t)− cτ) + θφ (− (n− i) + p2 (t)− cτ)) dθ

× φ (− (n− i) + p2 (t)− cτ)

]

−
+∞∑

i=−∞

J (i)

∫ 1

0

b′ (θφ (− (n− i) + p2 (t)− cτ))φ (− (n− i) + p2 (t)− cτ) dθ

≤
+∞∑

i=−∞

J (i) b′ (0)φ (− (n− i) + p2 (t)− cτ)

−
+∞∑

i=−∞

J (i)φ (− (n− i) + p2 (t)− cτ)

∫ 1

0

b′ (θφ (− (n− i) + p2 (t)− cτ)) dθ

≤ max
u∈[0,K]

|b′′ (u)|
+∞∑

i=−∞

J (i)φ2 (− (n− i) + p2 (t)− cτ)

≤ max
u∈[0,K]

|b′′ (u)|φ (−n+N0 + p2 (t)− cτ)

+∞∑

i=−∞

J (i)φ (− (n− i) + p2 (t)− cτ) . (4.12)

Similarly, for any t ≤ T1 and n ≤ p2 (t) , we have

R (n, t) ≤ max
u∈[0,K]

|b′′ (u)|φ (n+N0 + p1 (t)− cτ)

+∞∑

i=−∞

J (i)φ ((n− i) + p1 (t)− cτ) . (4.13)

As in the proof of Case I, we divide Z into three parts [p2 (t) ,−p1 (t)] ∩ Z, (−∞, p2 (t)] ∩ Z and
[−p1 (t) ,∞) ∩ Z. Assume t ≤ T1. In the part [p2 (t) ,−p1 (t)] ∩ Z, we obtain the same estimate as (4.8)
for I (n, t). For n > −p1 (t) > 0, by (4.12), we have

I (n, t) ≤
maxu∈[0,K] |b

′′ (u)|φ (−n+N0 + p2 (t)− cτ)

φ′ (−n+ p2 (t))

×
+∞∑

i=−∞

J (i)φ (− (n− i) + p2 (t)− cτ)

≤ max
u∈[0,K]

|b′′ (u)|
M2e2λ02(−n+N0+p2(t)−cτ)

ηmeλ02(−n+p2(t))

≤ max
u∈[0,K]

|b′′ (u)|
M2e2λ02(N0−cτ)

ηm
eλ02p2(t).

For n < p2 (t) < 0, by (4.13), we have

I (n, t) ≤ max
u∈[0,K]

|b′′ (u)|
M2e2λ02(N0−cτ)

ηm
eλ02p2(t).

Hence, for any t < T1, N [un] (t) ≥ 0.
Now let T = 0 when λ02 ≥ −λ11 and T = T1 when λ02 < −λ11. For any t < T , we always have

N [un] (t) ≥ 0. By Definition 2.1, we can show that for every T ′ < T, vn (t) = un(t + T ′), where
(n, t) ∈ Z× [−τ, T − T ′) is a supersolution of (1.1) on Z× [0, T − T ′). The proof is complete. �
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Lemma 4.2. {un (t)}n∈Z
defined by un (t) = max {φ (n+ ct+ ω1) , φ (−n+ ct+ ω2)} is a subsolution of

(1.1) on (−∞, 0).

Proof. When n ≥ (ω2 − ω1)/ 2, that is, n + ω1 ≥ −n + ω2, un (t) = φ (n+ ct+ ω1), otherwise, un (t) =
φ (−n+ ct+ ω2). Hence, un (t) ∈ C1(−∞, 0). Then for n ≥ (ω2 − ω1)/ 2,

N [un] (t) = u′n (t)−D
[
un+1 (t) + un−1 (t)− 2un (t)

]
+ dun (t)−

+∞∑

i=−∞

J (i) b
(
un−i (t− τ)

)

= cφ′ (n+ ct+ ω1)−D
[
φ (n+ 1 + ct+ ω1) + un−1 (t)− 2φ (n+ ct+ ω1)

]

+dφ (n+ ct+ ω1)−
+∞∑

i=−∞

J (i) b
(
un−i (t− τ)

)

= D
[
φ (n− 1 + ct+ ω1)− un−1 (t)

]

+

+∞∑

i=−∞

J (i) b (φ (n− i+ ct− cτ + ω1))−
+∞∑

i=−∞

J (i) b
(
un−i (t− τ)

)

≤ 0.

Similarly, we can prove that for n < (ω2 − ω1)/ 2, N [un] (t) ≤ 0.
Obviously, for every T ′ < 0, {vn(t)}n∈Z

defined by vn(t) = un (t+ T ′) is a subsolution of (1.1) on
[0,−T ′). This completes the proof. �

Proposition 4.3. Suppose that u (t;ϕ) = {un (t;ϕ)}n∈Z
is a solution of (1.1) with initial value ϕ =

{ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0,K]), then there exists a positive constant M0 > 0 such that for any

ϕ = {ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0,K]) and t > τ , |u′n (t;ϕ)| ≤M0, and |u′′n (t;ϕ)| ≤M0.

The proof is easy and we omit it, see also [45, Lemma 5.1].

Theorem 4.4. There exists an entire solution Φ (t) = {Φn(t)}n∈Z
:= Φ(t;ω1, ω2) = {Φn(t;ω1, ω2)}n∈Z

of (1.1) such that
un(t) ≤ Φn(t) ≤ un(t), (n, t) ∈ Z× (−∞, T ], (4.14)

where {un(t)}n∈Z
and {un(t)}n∈Z

are given in Lemmas 4.1 and 4.2, respectively. Moreover,

(i) For any n ∈ Z, 0 < Φn(t) < K and Φ′
n (t) > 0 on R;

(ii) limt→∞ supn∈Z |Φn (t)−K| = 0 and for any N ′ ∈ N, limt→−∞ sup|n|≤N ′ |Φn (t)| = 0;
(iii) For each a ∈ R, lim|n|→∞ ‖Φn (·)−K‖L∞[a,+∞) = 0;

(iv) limt→−∞

{
supn≥0 |Φn (t)− φ (n+ ct+ ω1)|+ supn≤0 |Φn (t)− φ (−n+ ct+ ω2)|

}
= 0;

(v) The function Φ(t;ω1, ω2) is increrasing in (ω1, ω2) ∈ (−∞, ϑ)
2
;

(vi) Φ (t;ω1, ω2) converges to φ (n+ ct+ ω1) in the sense of T0 as ω2 → −∞; Φ (t;ω1, ω2) converges to
φ (−n+ ct+ ω2) in the sense of T0 as ω1 → −∞; and Φ (t;ω1, ω2) converges to 0 in the sense of T0 as
ω1 → −∞ and ω2 → −∞.

Proof. Denote a solution of (1.1) with initial data ϕ = {ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0,K]) by u (t;ϕ) =

{un (t;ϕ)}n∈Z
. Define uk (t) =

{
ukn (t)

}
n∈Z

with ukn (t) := un
(
t− T + k;ϕk

)
for any (n, t) ∈ Z × [−τ +

T − k,+∞) and k ∈ N, where ϕk =
{
ϕk
n (s)

}
n∈Z

and ϕk
n (s) = un (T − k + s) for any (n, s) ∈ Z× [−τ, 0].

Note that uk+1
n (t) ≥ ukn (t) for (n, t) ∈ Z × [−τ + T − k,+∞) and un (t) ≤ ukn (t) ≤ un (t) for any

(n, t) ∈ Z × [−τ + T − k, T ]. From Proposition 4.3 and by a diagonal extraction process, there exists a

subsequence
{
uki (t) =

{
uki
n (t)

}
n∈Z

: i ∈ N

}
such that uki (t) converges to a function Φ (t) = {Φn (t)}n∈Z

which is defined in t ∈ R in the sense of the topology T1, that is, for any compact set S ⊂ Z×R, uki
n (t) and

d
dt
uki
n (t) converges uniformly in (n, t) ∈ S to Φn (t) and d

dt
Φn (t). Since uki (t) =

{
uki
n (t)

}
n∈Z

satisfies
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the equation (1.1), the limit function Φ (t) = {Φn (t)}n∈Z
is an entire solution of (1.1). In particular,

un (t) ≤ Φn (t) ≤ un (t) for any (n, t) ∈ Z× (−∞, T ). By comparison, we further have

Φn(t) ≥ max {φ(n+ ct+ ω1), φ(−n+ ct+ ω2)} ∀(n, t) ∈ Z× R.

In view of

max{φ(n+ ct+ ω∗
1), φ(−n+ ct+ ω∗

2)} ≥ max{φ(n+ ct+ ω1), φ(−n+ ct+ ω2)}

for any (ω1, ω2) ∈ (−∞, ϑ)2 and (ω∗
1 , ω

∗
2) ∈ (−∞, ϑ)2 with ω∗

1 ≥ ω1 and ω∗
2 ≥ ω2, it is not difficult to

show that the property (v) holds.
For n ∈ Z, it is easy to see that 0 < Φn(t) < K on t ∈ R by using (2.3). Now we show that d

dt
Φn (t) > 0

on R for every n ∈ Z. Since {un (t)}n∈Z
is a subsolution of (1.1), then ukn (t) = un

(
t− T + k;ϕk

)
≥ un (t)

for all (n, t) ∈ Z × [−τ + T − k, 0). Again since for any ǫ > 0, un (·+ ǫ) ≥ un (·) on R, it follows that
ukn (T − k + s+ ǫ) = un

(
s+ ǫ;ϕk

)
≥ ϕk

n (s) for all (n, s) ∈ Z×[−τ, 0]. By comparison and the uniqueness
of solutions, we have ukn (t+ ǫ) = un

(
t− T + k;uk (T − k + ·+ ǫ)

)
≥ un

(
t− T + k;ϕk

)
= ukn (t) for any

(n, t) ∈ Z× [−τ + T − k,+∞). Thus, it follows from the arbitrariness of ǫ that ukn (t) is increasing on t.
Therefore, Φ′

n (t) ≥ 0 on R for every n ∈ Z. Since Φ′
n (t) satisfies

Φ′′
n (t) = D

[
Φ′
n+1 (t) + Φ′

n−1 (t)− 2Φ′
n (t)

]
− dΦ′

n (t) +

+∞∑

i=−∞

J (i) b′ (Φn−i (t− τ))Φ′
n−i (t− τ) , (4.15)

then Φ′
n (t) satisfies

Φ′
n (t) = Φ′

n (s) e
−(2D+d)(t−s) +

∫ t

s

e−(2D+d)(t−r)Hn (Φ) (r) dr ≥ Φ′
n (s) e

−(2D+d)(t−s) for any s < t,

where

Hn (Φ) (t) = D
[
Φ′
n+1 (t) + Φ′

n−1 (t)
]
+

+∞∑

i=−∞

J (i) b′ (Φn−i (t− τ))Φ′
n−i (t− τ) ≥ 0.

Obviously, for each n ∈ Z, if there exists t0 ∈ R such that Φ′
n (t0) > 0, then Φ′

n (t) > 0 for any t > t0.
Thus, if for some n ∈ Z, there is t1 such that Φ′

n (t1) = 0, then Φ′
n (t) = 0 for any t ≤ t1. We claim that it

is impossible. We argue by contradiction. Assume that for some n1 ∈ Z, there is t1 such that Φ′
n1

(t) = 0
for any t ≤ t1. Since Φ

′′
n1

(t) = 0 for any t < t1, it follows from (4.15) that

D
[
Φ′
n1+1 (t) + Φ′

n1−1 (t)
]
+

+∞∑

i=−∞

J (i) b′ (Φn1−i (t− τ))Φ′
n1−i (t− τ) = 0

for any t < t1, which implies that Φ′
n1+1 (t) = Φ′

n1−1 (t) = 0 for any t ≤ t1 due to b′ (u) ≥ 0 in u ∈ [0,K]
and Φ′

n (t) ≥ 0 for any (n, t) ∈ Z × R. By induction, Φ′
n (t) = 0 for any (n, t) ∈ Z × (−∞, t1], which

contradicts (4.14).
We now prove that (vi) holds. Let

{
ωk
2

}
k∈N

satisfy ωk+1
2 < ωk

2 < ω1 for any k ∈ N and ωk
2 → −∞ as

k → ∞. Then there exist entire solutions Φk(t;ω1, ω
k
2 ) = {Φk

n(t;ω1, ω
k
2 )}n∈Z of equation (1.1) such that

for any t ≤ T ,

φ (n+ ct+ ω1) ≤ max
{
φ (n+ ct+ ω1) , φ

(
−n+ ct+ ωk

2

)}
≤ Φk

n

(
t;ω1, ω

k
2

)

≤ φ
(
n+ p1

(
t;ω1, ω

k
2

))
+ φ

(
−n+ p2

(
t;ω1, ω

k
2

))
(4.16)

for all n ∈ Z and k ∈ N. By Proposition 4.3, there exists Φ∗ (t) := Φ∗ (t;ω1,−∞) = {Φ∗
n (t;ω1,−∞)}n∈Z

such that Φk
(
t;ω1, ω

k
2

)
converges to Φ∗ (t) as k → ∞ (up to extraction of some subsequence) in the sense

of the topology T1. Thus, Φ∗ (t;ω1,−∞) = {Φ∗
n (t;ω1,−∞)}n∈Z

is an entire solution of (1.1). By virtue
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of the monotonicity of Φk
(
t;ω1, ω

k
2

)
about ωk

2 , Φ
k
(
t;ω1, ω

k
2

)
converges to Φ∗ (t;ω1,−∞) in the sense of

the topology T0. Obviously, Φ∗ (t;ω1,−∞) is independent of k ∈ N. Thus, by (4.16), we have

φ (n+ ct+ ω1) ≤ Φ∗
n (t;ω1,−∞) ≤ φ

(
n+ p1

(
t;ω1, ω

k
2

))
= φ (n+ p (t;ω1)) (4.17)

for all n ∈ Z and t ≤ T . From Ma and Zou [33, Lemma 4.3], we know that there exist three positive

numbers β0 ( which is independent of φ), σ and δ such that for any δ ∈ (0, δ] and every ξ̂ ∈ R, the
function w+ (t) = {w+

n (t)}n∈Z defined by

w+
n (t) := φ

(
n+ ct+ ξ̂ + σδ

(
eβ0τ − e−β0t

))
+ δe−β0t

is a supersolution of (1.1) on [0,+∞). Given any t2 < T . Let

η = sup
n∈Z

‖Φ∗
n (t2 + ·;ω1,−∞)− φ (n+ c (t2 + ·) + ω1)‖L∞[−τ,0] .

Because p (t;ω1)− ct− ω1 → 0 as t→ −∞, for any δ > 0 there exists t3 < t2 − τ such that

φ (n+ c (t3 + s) + ω1) ≤ Φ∗
n (t3 + s;ω1,−∞)

≤ φ
(
n+ c (t3 + s) + ω1 + σδ

(
eβ0τ − e−β0s

))
+ δe−β0s

for any s ∈ [−τ, 0] and n ∈ Z. Let t0 = t2 − t3 > τ . By comparison, we have

φ (n+ c (t2 + s) + ω1) ≤ Φ∗
n (t2 + s;ω1,−∞)

≤ φ
(
n+ c (t2 + s) + ω1 + σδ

(
eβ0τ − e−β0(t0+s)

))
+ δe−β0(t0+s)

for any s ∈ [−τ, 0] and n ∈ Z. Hence,

sup
n∈Z

‖Φ∗
n (t2 + ·;ω1,−∞)− φ (n+ c (t2 + ·) + ω1)‖L∞[−τ,0] ≤ δ + σδeβ0τ max

x∈R

φ′ (x) .

Due to the arbitrariness of δ, we have η = 0. Consequently, we have Φ∗
n (t;ω1,−∞) = φ (n+ ct+ ω1) for

any t < T and n ∈ Z. Therefore, Φ∗
n (t;ω1,−∞) = φ (n+ ct+ ω1) for any t ∈ R and n ∈ Z. Similarly, we

can prove the remaining assertions of (vi).
The proofs of (ii)-(iv) are trivial. This completes the proof. �

Lemma 4.5. There exist constants δ0 > 0, ρ0 > 0 and σ0 > 0 such that for any r ∈ R, δ ∈ (0, δ0] and
σ ≥ σ0, the functions W+ (t) = {W+

n (t)}n∈Z
and W− (t) = {W−

n (t)}n∈Z
defined by

W±
n (t) = Φn

(
r + t± σδ

[
1− e−ρ0t

])
± δe−ρ0t

are a pair of supersolution and subsolution of (1.1) on [0,+∞).

Proof. We only prove that W+ (t) = {W+
n (t)}n∈Z

is a supersolution of (1.1) on [0,+∞), since a similar
argument can be used for W−(t).

Since
lim

(ρ,̟)→(0,b′(0))
[−ρ+ d−̟eρτ ] = d− b′ (0) > 0

and
lim

(ρ,̟)→(0,b′(K))
[−ρ+ d−̟eρτ ] = d− b′ (K) > 0,

we can fix ρ0 > 0 and δ∗ > 0 such that

−ρ0 + d−̟eρ0τ > 0 for any ̟ ∈ [b′ (0)− δ∗, b′ (0) + δ∗] (4.18)
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and

−ρ0 + d−̟eρ0τ > 0 for any ̟ ∈ [b′ (K)− δ∗, b′ (K) + δ∗] . (4.19)

Let δ0 ∈ (0, δ∗) satisfy

δ0e
ρ0τ

[
1 + max

u∈[0,2K]
|b′ (u)|+ max

u∈[0,K]
|b′′ (u)|

]
≤
δ∗

4
. (4.20)

Since

lim
t→+∞

sup
n∈Z

∣∣∣∣∣

∞∑

i=−∞

J (i) b′ (Φn−i (t))− b′ (K)

∣∣∣∣∣ = 0,

there exists T2 > 0 such that for any t ∈ (T2,∞) and n ∈ Z,

∞∑

i=−∞

J (i) b′ (Φn−i (t)) ∈

[
b′ (K)−

δ∗

2
, b′ (K) +

δ∗

2

]
. (4.21)

Since limx→−∞ φ (x+N0) = 0, limx→−∞

∑∞
i=−∞ J (i) b′ (φ (x− i− cτ)) = b′ (0) and

limx→∞

∑∞
i=−∞ J (i) b′ (φ (x− i− cτ)) = b′ (K) , there exists X1 > 0 such that

max
u∈[0,K]

|b′′ (u)|φ (x+N0) <
δ∗

8
for any x ≤ −X1, (4.22)

∞∑

i=−∞

J (i) b′ (φ (x− i− cτ)) ∈

[
b′ (0)−

δ∗

2
, b′ (0) +

δ∗

2

]
for any x ≤ −X1 (4.23)

and
∞∑

i=−∞

J (i) b′ (φ (x− i− cτ)) ∈

[
b′ (K)−

δ∗

2
, b′ (K) +

δ∗

2

]
for any x ≥ X1. (4.24)

Since pi (t)− ct−ωi → 0 as t→ −∞, there exists T3 ≤ T , where T is defined in Lemma 4.1, such that
for t ≤ T3,

[pi (t)− ct− ωi] max
u∈[0,K]

|b′′ (u)| ·max
x∈R

φ′ (x) ∈

(
0,
δ∗

16

)
, i = 1, 2. (4.25)

Let κ1 = minx∈[−X1,X1] φ
′ (x) > 0, then there exists a large σ1 > 0 such that

1

2
cσ1ρ0κ1 − ρ0 + d− max

u∈[0,2K]
b′ (u) eρ0τ ≥ 0. (4.26)

Let Ψ (t) := {Ψn (t)}n∈Z
with Ψn (t) = φ (n+ ct+ ω1) + φ (−n+ ct+ ω2). It is easy to prove that

lim
t→−∞

sup
n∈Z

‖Φn − Ψn‖C0((−∞,t],R) = 0.

By equation (1.1), we have limt→−∞ supn∈Z ‖Φn − Ψn‖C1((−∞,t]) = 0. Thus, there exists T4 ≤ T3 such
that for any t ≤ T4,

sup
n∈Z

‖Φn − Ψn‖C1((−∞,t]) ≤
1

2
cκ1. (4.27)

Since

lim
|n|→∞

max
t∈[T4,T2]

∣∣∣∣∣

∞∑

i=−∞

J (i) b′ (Φn−i (t))− b′ (K)

∣∣∣∣∣ = 0,

there exists a large positive integer N2 such that for any |n| > N2 and t ∈ [T4, T2], (4.24) holds.
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Let κ2 = min|n|≤N2,t∈[T4,T2]
∂Φn(t)

∂t
> 0. Take σ2 > 0 such that

σ2ρ0κ2 − ρ0 + d− max
u∈[0,2K]

b′ (u) eρ0τ ≥ 0. (4.28)

Now let ξ (t) = r + t+ σδ [1− e−̺0t] and hence, W+
n (t) = Φn (ξ (t)) + δe−̺0t. Then

N
[
W+

n

]
(t) : = Φ′

n (ξ (t)) + Φ′
n (ξ (t))σδρ0e

−ρ0t − δρ0e
−ρ0t

−D [Φn+1 (ξ (t)) + Φn−1 (ξ (t))− 2Φn (ξ (t))] + dΦn (ξ (t))

+dδe−ρ0t −
∞∑

i=−∞

J (i) b
(
Φn−i (ξ (t− τ)) + δe−ρ0(t−τ)

)

= Φ′
n (ξ (t))σδρ0e

−ρ0t − δρ0e
−ρ0t + dδe−ρ0t

−
∞∑

i=−∞

J (i) b
(
Φn−i (ξ (t− τ)) + δe−ρ0(t−τ)

)
+

∞∑

i=−∞

J (i) b (Φn−i (ξ (t)− τ))

≥ Φ′
n (ξ (t))σδρ0e

−ρ0t − δρ0e
−ρ0t + dδe−ρ0t

−
∞∑

i=−∞

J (i) b
(
Φn−i (ξ (t)− τ) + δe−ρ0(t−τ)

)
+

∞∑

i=−∞

J (i) b (Φn−i (ξ (t)− τ))

= δe−ρ0t

[
Φ′
n (ξ (t))σρ0 − ρ0 + d− eρ0τ

∞∑

i=−∞

J (i) b′
(
Φn−i (ξ (t)− τ) + θn−iδe

−ρ0(t−τ)
)]

,

where θn−i ∈ [0, 1]. Let σ0 = max {σ1, σ2}. Now we consider eight cases.
Case (i). n ∈ Z, ξ (t) > T2. By (4.19), (4.20) and (4.21), we have N [W+

n ] (t) ≥ 0.
Case (ii). ξ (t) ≤ T4, n+ cξ (t) + ω1 ≥ X1. In this case, there is −n < −X1. Since

Φn−i (ξ (t)− τ) ≥ φ (n− i+ cξ (t)− cτ + ω1)

and Φn−i (ξ (t)− τ) ≤ φ (n− i+ p1 (ξ (t)− τ)) + φ (−n+ i+ p2 (ξ (t)− τ)) , we have

b′ (Φn−i (ξ (t)− τ))

≤ b′ (φ (n− i+ cξ (t)− cτ + ω1)) + φ (−n+ i+ cξ (t)− cτ + ω2) max
u∈[0,K]

|b′′ (u)|

+ [(p1 (ξ (t))− cξ (t)− ω1) + (p2 (ξ (t))− cξ (t)− ω2)] max
u∈[0,K]

|b′′ (u)| ·max
x∈R

φ′ (x) .

Now by (4.19), (4.20), (4.22), (4.24) and (4.25), we have N [W+
n ] (t) ≥ 0.

Case (iii). ξ (t) ≤ T4, −n+ cξ (t) + ω2 ≥ X1. Similar to (ii), we have N [W+
n ] (t) ≥ 0.

Case (iv). ξ (t) ≤ T4, n + cξ (t) + ω1 ≤ −X1 and −n + cξ (t) + ω2 ≤ −X1. Following (4.18), (4.20),
(4.22), (4.23) and (4.25), we have N [W+

n ] (t) ≥ 0.
Case (v). ξ (t) ≤ T4, n+ cξ (t) + ω1 ≤ X1, −n+ cξ (t) + ω2 ≤ X1 and n+ cξ (t) + ω1 ≥ −X1. From

(4.26) and (4.27), it follows that N [W+
n ] (t) ≥ 0.

Case (vi). ξ (t) ≤ T4, n+ cξ (t) + ω1 ≤ X1, −n+ cξ (t) + ω2 ≤ X1 and −n+ cξ (t) + ω2 ≥ −X1. By
(4.26) and (4.27), we have N [W+

n ] (t) ≥ 0.
Case (vii). T4 ≤ ξ (t) ≤ T2, |n| > N2. By (4.19), (4.20) and (4.24), there is N [W+

n ] (t) ≥ 0.
Case (viii). T4 ≤ ξ (t) ≤ T2, |n| ≤ N2. It follows from (4.28) that N [W+

n ] (t) ≥ 0.
Combining the above eight cases, we have proved that for (n, t) ∈ Z× [0,+∞), N [W+

n ] (t) ≥ 0, which
implies that W+ (t) = {W+

n (t)}n∈Z
is a supersolution of (1.1) on [0,+∞). The proof is complete. �

Theorem 4.6. Assume that Φ (t) = {Φn (t)}n∈Z
is the entire solution of (1.1) given in Theorem 4.4.

Suppose that Φ̃ (t) =
{
Φ̃n (t)

}
n∈Z

is an entire solution of (1.1) satisfying

lim
t→−∞

{
sup
n≥0

∣∣∣Φ̃n+n0
(t+ t0)− φ (n+ ct+ ω1)

∣∣∣+ sup
n≤0

∣∣∣Φ̃n+n0
(t+ t0)− φ (−n+ ct+ ω2)

∣∣∣
}

= 0
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for some n0 ∈ Z and t0 ∈ R. Then Φn (t) = Φ̃n+n0
(t+ t0) for any (n, t) ∈ Z× R.

Proof. Set Φn(t) = Φ̃n+n0
(t+ t0) for any (n, t) ∈ Z×R. Then we only need to prove that Φn(t) = Φn(t)

holds for any (n, t) ∈ Z× R. Fix an arbitrary t1 < 0. Define

β := sup
n∈Z

∥∥Φn (t1 + ·)− Φn (t1 + ·)
∥∥
L∞[−τ,0]

.

Fix any small δ ∈ (0, δ0], where δ0 is determined by Lemma 4.5. By the condition, there exists t2 <
t1 − τ < −τ such that

sup
n∈Z

∥∥Φn (t1 + t2 + ·)− Φn (t1 + t2 + ·)
∥∥
L∞[−τ,0]

≤ δ.

That is, for any n ∈ Z and s ∈ [−τ, 0], there is

Φn (t1 + t2 + s)− δ ≤ Φn (t1 + t2 + s) ≤ Φn (t1 + t2 + s) + δ .

Furthermore, for any n ∈ Z and s ∈ [−τ, 0],

Φn

(
t1 + t2 + s+ σ0δ [1− eρ0τ ]− σ0δ

[
1− e−ρ0s

])
− δe−ρ0s

≤ Φn (t1 + t2 + s) ≤ Φn

(
t1 + t2 + s− σ0δ [1− eρ0τ ] + σ0δ

[
1− e−ρ0s

])
+ δe−ρ0s.

By comparison, for all n ∈ Z and t ≥ 0,

Φn

(
t1 + t2 + t+ σ0δ [1− eρ0τ ]− σ0δ

[
1− e−ρ0t

])
− δe−ρ0t

≤ Φn (t1 + t2 + t) ≤ Φn

(
t1 + t2 + t− σ0δ [1− eρ0τ ] + σ0δ

[
1− e−ρ0t

])
+ δe−ρ0t.

Setting t ∈ [−t2 − τ,−t2] and r′ = t1 + t2 + t+ σ0δ [1− eρ0τ ]− σ0δ [1− e−ρ0t], we then have
∣∣Φn (t1 + t2 + t)− Φn (t1 + t2 + t)

∣∣ ≤ 2δ +
∣∣Φn

(
r′ + 2

(
eρ0τ − e−ρ0t

)
σ0δ
)
− Φn (r

′)
∣∣

≤ 2

(
1 + eρ0τσ0 sup

n∈Z

∥∥∥∥
∂Φn

∂t

∥∥∥∥
∞

)
δ,

which implies

sup
n∈Z

∥∥Φn (t1 + ·)− Φn (t1 + ·)
∥∥
L∞([−τ,0])

≤ 2

(
1 + eρ0τσ0 sup

n∈Z

∥∥∥∥
∂Φn

∂t

∥∥∥∥
∞

)
δ,

that is

β ≤ 2

(
1 + eρ0τσ0 sup

n∈Z

∥∥∥∥
∂Φn

∂t

∥∥∥∥
∞

)
δ.

Since δ is arbitrary, β = 0. Consequently, Φ̃n (t) = Φn (t) for all n ∈ Z and t ∈ R. This completes the
proof. �

Theorem 4.7. The entire solution Φ(t) = Φ(t;ω1, ω2) given in Theorem 4.4 is continuously dependent
on (ω1, ω2) ∈ (−∞, ϑ)

2
in the sense of T0.

Proof. Given
(
ω0
1 , ω

0
2

)
∈ (−∞, ϑ)

2
. Let

{(
ωk
+,1, ω

k
+,2

)}
k∈N

⊂ (−∞, ϑ)
2
and

{(
ωk
−,1, ω

k
−,2

)}
k∈N

⊂ (−∞, ϑ)
2

satisfy ωk
−,i < ωk+1

−,i < ωk+1
+,i < ωk

+,i < 0 for any k ∈ N and i ∈ {1, 2},
(
ωk
−,1, ω

k
−,2

)
→
(
ω0
1 , ω

0
2

)
and(

ωk
+,1, ω

k
+,2

)
→
(
ω0
1 , ω

0
2

)
as k → ∞. By Theorem 4.4, (1.1) has entire solutions

Φk
+ (t) = Φk

+

(
t;ωk

+,1, ω
k
+,2

)
=
{
Φk
+,n

(
t;ωk

+,1, ω
k
+,2

)}
n∈Z
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and
Φk
− (t) = Φk

−

(
t;ωk

−,1, ω
k
−,2

)
=
{
Φk
−,n

(
t;ωk

−,1, ω
k
−,2

)}
n∈Z

.

Following Proposition 4.3, there exist Φ∗
+ (t) =

{
Φ∗
+,n (t)

}
n∈Z

and Φ∗
− (t) =

{
Φ∗
−,n (t)

}
n∈Z

such that

Φk
+ (t) and Φk

− (t) converge to Φ∗
+ (t) and Φ∗

− (t) in the sense of T1 as k → ∞ (up to extraction of some
subsequence), respectively. In particular, the functions Φ∗

+ (t) and Φ∗
− (t) are entire solutions of (1.1).

Now we show that Φ∗
+ (t) ≡ Φ0 (t) := Φ0

(
t;ω0

1 , ω
0
2

)
for any t ∈ R. In view of (v) in Theorem 4.4,

Φk
−,n (t) ≤ Φk+1

−,n (t) ≤ Φ∗
−,n (t) ≤ Φ0

n (t) ≤ Φ∗
+,n (t) ≤ Φk+1

+,n (t) ≤ Φk
+,n (t)

for all t ∈ R, n ∈ Z and k ∈ N. For any t ≤ T , there is

max
{
φ
(
n+ ct+ ωk

−,1

)
, φ
(
−n+ ct+ ωk

−,2

)}

≤ max
{
φ
(
n+ ct+ ωk+1

−,1

)
, φ
(
−n+ ct+ ωk+1

−,2

)}

≤ max
{
φ
(
n+ ct+ ω0

1

)
, φ
(
−n+ ct+ ω0

2

)}

≤ φ
(
n+ p1

(
t;ω0

1 , ω
0
2

))
+ φ

(
−n+ p2

(
t;ω0

1 , ω
0
2

))

≤ φ
(
n+ p1

(
t;ωk+1

+,1 , ω
k+1
+,2

))
+ φ

(
−n+ p2

(
t;ωk+1

+,1 , ω
k+1
+,2

))

≤ φ
(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))
+ φ

(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))

and

max
{
φ
(
n+ ct+ ωk

−,1

)
, φ
(
−n+ ct+ ωk

−,2

)}

≤ Φ∗
+,n (t) ≤ φ

(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))
+ φ

(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))

for any k ∈ N. Recall that T is independent of k. Following this, we have

sup
n≥0

∣∣Φ∗
+,n (t)− φ

(
n+ ct+ ω0

1

)∣∣+ sup
n<0

∣∣Φ∗
+,n (t)− φ

(
−n+ ct+ ω0

2

)∣∣

≤ sup
n≥0

∣∣φ
(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))
− φ

(
n+ ct+ ωk

−,1

)∣∣

+sup
n<0

∣∣φ
(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))
− φ

(
−n+ ct+ ωk

−,2

)∣∣

+sup
n≥0

φ
(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))
+ sup

n<0
φ
(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))

≤ sup
n≥0

∣∣φ
(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))
− φ

(
n+ ct+ ωk

+,1

)∣∣

+sup
n<0

∣∣φ
(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))
− φ

(
−n+ ct+ ωk

+,2

)∣∣

+sup
n≥0

φ
(
−n+ p2

(
t;ωk

+,1, ω
k
+,2

))
+ sup

n<0
φ
(
n+ p1

(
t;ωk

+,1, ω
k
+,2

))

+sup
n≥0

∣∣φ
(
n+ ct+ ωk

+,1

)
− φ

(
n+ ct+ ωk

−,1

)∣∣

+sup
n<0

∣∣φ
(
−n+ ct+ ωk

+,2

)
− φ

(
−n+ ct+ ωk

−,2

)∣∣

By the arbitrariness of k ∈ N, we obtain

sup
n≥0

∣∣Φ∗
+,n (t)− φ

(
n+ ct+ ω0

1

)∣∣+ sup
n<0

∣∣Φ∗
+,n (t)− φ

(
−n+ ct+ ω0

2

)∣∣

≤ 2R0e
cλ02t max

x∈R

φ′ (x) + 2φ (ct) → 0 as t→ −∞.

By Theorem 4.6, we have Φ∗
+ (·) = Φ0 (·) on R. Similarly, we have Φ∗

− (·) = Φ0 (·) on R. Due to the
monotonicity of Φk

+ (t) and Φk
− (t) about k ∈ N, Φk

+ (t) and Φk
− (t) converge to Φ0 (t) in the sense of T0 as
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k → ∞. Now consider (ω1, ω2) →
(
ω0
1 , ω

0
2

)
, it is easy to prove that Φ (t;ω1, ω2) converges to Φ

0
(
t;ω0

1 , ω
0
2

)

in the sense of T0 as k → ∞. This completes the proof. �

Theorem 4.8. Assume that

Φ (t;ω1, ω2) = {Φn (t;ω1, ω2)}n∈Z
and Φ (t;ω∗

1 , ω
∗
2) = {Φn (t;ω

∗
1 , ω

∗
2)}n∈Z

are entire solutions of (1.1) given in Theorem 4.4 with (ω1, ω2) ∈ (−∞, ϑ)
2
and (ω∗

1 , ω
∗
2) ∈ (−∞, ϑ)

2
,

respectively. Then there is no (n0, t0) ∈ Z× R such that

Φn (t;ω1, ω2) = Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2) for any (n, t) ∈ Z× R,

unless
(ω1 − ω2)− (ω∗

1 − ω∗
2)

2
∈ Z.

Proof. Given (ω1, ω2) ∈ (−∞, ϑ)
2
and (ω∗

1 , ω
∗
2) ∈ (−∞, ϑ)

2
. Suppose that there exists (n0, t0) ∈ Z × R

such that Φn (t;ω1, ω2) = Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2) for any (n0, t0) ∈ Z× R. By Theorem 4.4, we have

lim
t→−∞

sup
n≥0

|Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2)− φ (n+ ct+ ω1)|

= lim
t→−∞

sup
n≥0

|Φn (t;ω1, ω2)− φ (n+ ct+ ω1)| = 0,

lim
t→−∞

sup
n≤0

|Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2)− φ (−n+ ct+ ω2)|

= lim
t→−∞

sup
n≤0

|Φn (t;ω1, ω2)− φ (−n+ ct+ ω2)| = 0,

lim
t→−∞

sup
n≥−n0

|Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2)− φ ((n+ n0) + c (t+ t0) + ω∗

1)|

= lim
t→−∞

sup
n≥0

|Φn (t;ω
∗
1 , ω

∗
2)− φ (n+ ct+ ω∗

1)| = 0,

lim
t→−∞

sup
n≤−n0

|Φn+n0
(t+ t0;ω

∗
1 , ω

∗
2)− φ (− (n+ n0) + c (t+ t0) + ω∗

2)|

= lim
t→−∞

sup
n≤0

|Φn (t;ω
∗
1 , ω

∗
2)− φ (−n+ ct+ ω∗

2)| = 0.

It follows that

lim
t→−∞

sup
n≥max{0,−n0}

|φ ((n+ n0) + c (t+ t0) + ω∗
1)− φ (n+ ct+ ω1)| = 0 (4.29)

and
lim

t→−∞
sup

n≤min{0,−n0}

|φ (− (n+ n0) + c (t+ t0) + ω∗
2)− φ (−n+ ct+ ω2)| = 0. (4.30)

Let {tn}n∈N
satisfy n+ ctn = 0 for all n ∈ N, then (4.29) yields

ω1 = n0 + ct0 + ω∗
1 (4.31)

as n→ +∞ (that is, tn → −∞). Similarly, by (4.30) we have

ω2 = −n0 + ct0 + ω∗
2 . (4.32)

Solving the coupled equations (4.31) and (4.32), we have

t0 =
(ω1 + ω2)− (ω∗

1 + ω∗
2)

2c
and n0 =

(ω1 − ω2)− (ω∗
1 − ω∗

2)

2
,

which implies
(ω1−ω2)−(ω∗

1
−ω∗

2
)

2 ∈ Z. This completes the proof. �
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Theorem 4.9. The entire solution Φ of (1.1) given in Theorem 4.4 is Liapunov stable in the following
sense: For any given ǫ > 0, there exists δ > 0 such that for any ϕ = {ϕn}n∈Z

with ϕn ∈ C ([−τ, 0] , [0,K])
and supn∈Z ‖ϕn (·)− Φn+n0

(t0 + ·)‖L∞([−τ,0]) < δ, there is |un (t;ϕ)− Φn+n0
(t+ t0)| < ǫ for any n ∈ Z

and t ≥ 0, where n0 ∈ Z and t0 ∈ R are two real constants.

Proof. Given any ǫ > 0. For any ϕ = {ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0,K]) and

supn∈Z ‖ϕn (·)− Φn+n0
(t0 + ·)‖L∞([−τ,0]) < δ ≤ δ0, where n0 ∈ Z is an integer and t0 ∈ R is a con-

stant, we have

Φn+n0

(
s+ t0 + σ0δ (1− eρ0τ )− σ0δ

(
1− e−ρ0s

))
− δe−ρ0s

≤ ϕn (s) ≤ Φn+n0

(
s+ t0 − σ0δ (1− eρ0τ ) + σ0δ

(
1− e−ρ0s

))
+ δe−ρ0s

for all n ∈ Z and s ∈ [−τ, 0], where ρ0, σ0 and δ0 are as in Lemma 4.5. By Lemma 4.5, it follows that

Φn+n0

(
t+ t0 + σ0δ (1− eρ0τ )− σ0δ

(
1− e−ρ0t

))
− δe−ρ0t

≤ un (t;ϕ) ≤ Φn+n0

(
t+ t0 − σ0δ (1− eρ0τ ) + σ0δ

(
1− e−ρ0t

))
+ δe−ρ0t

for all n ∈ Z and t > 0. Choosing δ1 (ǫ) > 0 such that

sup
n∈Z

‖Φn (·)− Φn (·+ z)‖L∞(R) <
ǫ

2
for any |z| ≤ δ1 and t ∈ R.

Furthermore, let δ∗ = min
{
ǫ /2 , δ1e

−ρ0τ

σ0

, δ0

}
. Then for any δ < δ∗,

∣∣σ0δ (1− eρ0τ )− σ0δ
(
1− e−ρ0t

)∣∣ ≤
∣∣σ0δ

(
eρ0τ − e−ρ0t

)∣∣ ≤ σ0δe
ρ0τ ≤ δ1.

It follows that

Φn+n0
(t+ t0)− ǫ ≤ un (t;ϕ) ≤ Φn+n0

(t+ t0) + ǫ for all n ∈ Z and t ≥ 0.

That is, for any ϕ = {ϕn}n∈Z
with ϕn ∈ C ([−τ, 0] , [0,K]) and

sup
n∈Z

‖ϕn (·)− Φn+n0
(t0 + ·)‖L∞([−τ,0]) < δ∗,

we have |un (t;ϕ)− Φn+n0
(t+ t0)| ≤ ǫ for all n ∈ Z and t ≥ 0, which implies that Φ = {Φn}n∈Z

is
Liapunov stable. This completes the proof. �

Remark 4.10. From (4.5), (ω1, ω2) ∈ (−∞, ϑ)
2
can be arbitrary. Then for any given constants θ1 ∈ R

and θ2 ∈ R, there exists T ∗ < 0 such that θ1 + cT ∗ ≤ ϑ and θ2 + cT ∗ ≤ ϑ. Let θ1 + cT ∗ = ω̄1 and
θ2+ cT

∗ = ω̄2, it follows from Theorem 4.4 that there exists an entire solution Φ (t; ω̄1, ω̄2) of (1.1), which
satisfies the conclusions of Theorem 4.4. Now let Φ (t; θ1, θ2) := Φ (t− T ∗; ω̄1, ω̄2), then we can complete
the proof of Theorem 2.4. In fact, we only need to prove the last two conclusions of (iv) in Theorem 2.4.
Recall that

Φ (t; θ1, θ2) := Φ (t− T ∗; ω̄1, ω̄2)

≥ max {φ (n+ c (t− T ∗) + ω̄1) , φ (−n+ c (t− T ∗) + ω̄2)}

= max {φ (n+ ct+ θ1) , φ (−n+ ct+ θ2)} ,

it is easy to see that the last two conclusions of (iv) in Theorem 2.4 hold.

Remark 4.11. Consider the case c < 0. Assume that φ (n+ ct) is an increasing traveling wave front
up to translation of (1.1) satisfying φ (−∞) = 0 and φ (+∞) = K. Let ψ (n− ct) = φ (− (n− ct)) . Then
ψ (−∞) = K and ψ (+∞) = 0. Let c′ = −c > 0 and χ (n+ c′t) = K−ψ (n+ c′t) = K−ψ (n− ct). Thus,
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χ (−∞) = 0 and χ (∞) = K. We conclude that χ (n+ c′t) is a traveling wave solution of the following
equation

u′n = D [un+1 + un−1 − 2un] + d (K − un)−
∞∑

i=−∞

J (i) b (K − un−i (t− τ)) . (4.33)

Take b∗ (u) = dK − b (K − u) . Obviously, b∗ satisfies the conditions (H1)-(H3). Then equation (4.33)
reduces to

u′n = D [un+1 + un−1 − 2un]− dun +

∞∑

i=−∞

J (i) b∗ (un−i (t− τ)) . (4.34)

Applying Theorem 2.4 to (4.34), we can prove Theorem 2.5.

5. Discussion

In this paper we have established a 2-dimensional manifold of entire solutions for (1.1) by using its
traveling wave fronts with nonzero wave speed, and showed that the two 1-dimensional manifolds of
entire solutions of traveling wave type are on the boundary of the two-dimensional manifold. We have
further studied the uniqueness and stability of the entire solutions. In fact, the main results and methods
of this paper are valid for the general lattice differential equations with bistable nonlinearity

d

dt
un (t) = D [un+1 (t) + un−1 (t)− 2un (t)] + f (un (t)) , n ∈ Z. (5.1)

In contrast to the continuous version of (5.1) in the following form

∂

∂t
u (x, t) = D△u (x, t) + f (u (x, t)) , x ∈ R, (5.2)

the differences stated in Remark 2.6 still exist. A typical example is the cubic nonlinearity f (u) =
u (u− a) (1− u), a ∈ (0, 1). It is well known that (5.2) has a standing wave connecting the equilibria 0
and 1 with wave speed c = 0 (propagation failure) if and only if a = 1

2 . But for the lattice equations (5.1),
the situation is very different [9,18,19,28,34]. In fact, there exists a nontrivial interval

∣∣a− 1
2

∣∣ ≤ γ, with
1
2 > γ > 0, in which the wave speed c = 0 must hold for any traveling wave solution of (5.1) connecting
the equilibria 0 and 1. In [15, 22, 50], the entire solutions of (5.2) behaving as two approaching traveling
fronts were established by using an invariant manifold for the case c = 0, that is, a = 1

2 . However, for
the lattice equation (5.1), not only for a = 1

2 but also for all a ∈ ( 12 − γ, 12 + γ), the existence of entire
solutions behaving as two approaching traveling fronts is unknown. Obviously, considering the existence
of entire solutions of (1.1) and (5.1) other than traveling wave fronts is a very interesting work when
the pinning phenomenon occurs. We also note that only 1-dimensional lattice has been considered in
this paper. We conjecture that there exist more classes of entire solutions in high-dimensional lattice
differential equations (such as the model proposed by Chen et al. [17] and the ODE system studied by
Cahn et al. [9]) as that for reacton-diffusion equations in high-dimensional spaces. We leave this for
future consideration.

Finally, we note that it is assumed that the kernel J has a compact support and satisfies J (i) =
J (−i) ≥ 0 for any i ∈ Z and

∑+∞
i=−∞ J (i) = 1 in this paper. We emphasize that the assumption that

J has a compact support is only to ensure Theorem 3.3, that is, the traveling wave fronts φ(·) decay
exponentially at the equilibria 0 and K. But for a more general kernel J whose support is not compact,
it seems difficult to prove Theorem 3.3. Nevertheless, if Theorem 3.3 can be proved for general kernels,
then Theorems 2.4 and 2.5 can be easily extended. The assumption that J is symmetric ensures the
existence of traveling wave fronts φ(n + ct) of (1.1) with wave speed c connecting the equilibria 0 and
K, which is required by Ma and Zou [33]. In this case, φ(−n+ ct) is also a traveling wave front of (1.1).
Observing the proofs of [33, Theorem 1.1] and by some slight modifications, we can obtain that when J
is not symmetric, (1.1) admits two traveling wave solutions φ+ (n+ c+t) and φ− (−n+ c−t) with wave
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speeds c+ and c− connecting the equilibria 0 and K, respectively. In general, the traveling wave profiles
φ+ and φ− and the wave speeds c+ and c− may be different. When c+ > 0 and c− > 0, we can define
p1(t) and p2(t) as (3.57) in [25] (see also (3.2) in [30]) and obtain similar results as Theorems 2.4 and 2.5.
Furthermore, we can treat the case c+ < 0 and c− < 0 as in Remark 4.11. But for the case c+c− < 0 (if
it occurs), a new supersolution will be needed and we will consider it in another paper.
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