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a b s t r a c t 

An advection–reaction–diffusion model with free boundary is proposed to investigate the 

invasive process of Aedes aegypti mosquitoes. By analyzing the free boundary problem, we 

show that there are two main scenarios of invasive regime: vanishing regime or spread- 

ing regime, depending on a threshold in terms of model parameters. Once the mortality 

rate of the mosquito becomes large with a small specific rate of maturation, the invasive 

mosquito will go extinct. By introducing the definition of asymptotic spreading speed to 

describe the spreading front, we provide an estimate to show that the boundary moving 

speed cannot be faster than the minimal traveling wave speed. By numerical simulations, 

we consider that the mosquitoes invasive ability and wind driven advection effect on the 

boundary moving speed. The greater the mosquito invasive ability or advection, the larger 

the boundary moving speed. Our results indicate that the mosquitoes asymptotic spreading 

speed can be controlled by modulating the invasive ability of winged mosquitoes. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Invasions by insect vectors such as mosquitoes of human diseases have profound effects on global public health (Lounibos

[1] ). Aedes aegypti mosquito is an invasive domestic species with tropical and subtropical worldwide distribution and is an

insect closely associated with humans and their dwellings. A aegypti mosquito is the primary transmitter of dengue (Carbajo

et al. [2] , Cummings et al. [3] , Gubler [4] , WHO [5,6] ), chikungunya (Fischer and Staples [7] , WHO [8] ), and yellow fever

(Cauchemez et al. [9] , WHO [10] ). Moreover, the epidemics of Zika virus in Latin America and the Caribbeans in 2016 had

raised international public health concerns and it has been reported that A. aegypti mosquitoes transmit the Zika virus

(Cao-Lormeau [11] , Fauci and Morens [12] , Gao et al. [13] , Hayes [14] , Hennessey et al. [15] ). 

It is known that temperature, humidity and rainfall impact adult A. aegypti survival and availability of oviposition sites.

A. aegypti control programs aim to reduce the population density of adult mosquitoes below a critical threshold so that

epidemics of the A. aegypti borne diseases are unlikely to occur. Vector population suppression programs usually involve the

insecticide treatment of larval habitats. During outbreaks of mosquito-borne diseases, spraying insecticides is usually used

as an emergency control measure to reduce the adult A. aegypti population. The influence of dispersal patterns of adult A.

aegypti mosquitoes is critical to the long-term success of vector population suppression. Understanding the dispersal and

invasive behavior of A. aegypti mosquitoes is essential in implementing vector control strategies. 

The population structure and dynamics of A. aegypti mosquitoes are complex and influenced by environmental and geo-

graphical factors. Several interesting experimental and field studies have been performed since the beginning of the twen-
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tieth century in order to study the dispersal of A. aegypti . These studies seem to show different results because the ex-

perimental conditions during the experiments and observational studies influence dramatically the dispersal pattern of the

mosquitoes. In order to study the dispersal dynamics of A. aegypti , Takahashi et al. [16] developed an advection–reaction–

diffusion model that accounts for the effect of wind and predicts the existence of stable traveling waves in several situations.

Although Takahashi et al. gave an estimation of the speed of traveling waves of A. aegypti , it is the asymptotic wave speed

that usually gives an approximation of the progressive spreading speed of A. aegypti , and it does not really show the spread

of A. aegypti in the early stage of spatial expanding to larger areas. To describe the spatial spreading of A. aegypti , it is

necessary to consider a free boundary. At the boundary front of a source, A. aegypti expands and pushes forward to cause

further spreading till it extends to the whole area. 

Free boundary problems have been used to study biological invasions. Du and Lin [17] proposed a biological invasive

model to investigate how one species spreads into a new environment via a free boundary problem. Recently, Lin and Zhu

[18] applied a free boundary problem to model the spatial spreading of West Nile virus in vector mosquitoes and host

birds in North America and showed the spreading or vanishing of the boundary depends on the basic reproduction number.

For a SIS model with spatial heterogeneity of environment, Ge et al. [19] proposed to use the basic reproduction numbers

to dominate the spreading of infectious disease. In some other studies [20–22] , researchers have given conditions for the

spreading front expanding or vanishing in various advection–reaction–diffusion models. Other related mathematical results 

provided theoretical frame work for free boundary problems, see Guo and Wu [23] , Lin [24] , Wang and Zhao [25] and

references therein. 

In this paper, based on the modeling studies of A. aegypti in [16] , we propose and study an advection–reaction–diffusion

model with free boundary to explore the temporal-spatial transmission of the A. aegypti mosquitoes, where the population

of the vector mosquitoes is described by a system for the two life stages: the winged form (mature female mosquitoes)

and an aquatic population (eggs, larvae and pupae), the expanding front is expressed by a free boundary which models

the spatial expanding of the source area. The female mosquitoes are initially located at a habitat, then spread to other

places owing to their dispersal ability. In our model the dispersal ability includes the long distance dispersal as well as the

short distance dispersal. The long distance dispersal of A. aegypti is caused by wind, while the short dispersal thanks to

the random walk of each individual mosquito. From the viewpoint of mathematical modeling, the long distance dispersal is

described by the advection while the short distance dispersal is described the classical Laplacian diffusion. The availability

of such a model enables us to apply the free boundary theory to show the existence and uniqueness of the global solution

to an advection–reaction–diffusion model. Moreover we estimate the boundedness of moving speed of the free boundary. 

The rest of the paper is organized as follows. In Section 2 we present the advection–reaction–diffusion model with free

boundary. The existence and uniqueness of solutions to the free boundary problem is considered in Section 3 . Section 4 ad-

dresses the issue of boundary vanishing and Section 5 deals with the asymptotic spreading speed. Numerical simulations

are presented in Section 6 . The article ends with a brief discussion in Section 7 . 

2. Model derivation 

Takahashi et al. [16] proposed an advection–reaction–diffusion model to describe the spatial dispersal dynamics of A.

aegypti mosquitoes. Since mosquito invasion is an asymptotic process, the habitation of mosquitoes will change with time.

In order to describe the dynamics of habitation, we assume that the habitation has a moving free boundary and formulate

the free boundary problem as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

M t = 

˜ D M xx − ˜ νM x + ˜ γ A (1 − M 

˜ k 1 
) − ˜ μ1 M, t > 0 , 0 < x < 

˜ h (t) , 

M(t, x ) = 0 , t > 0 , x ≥ ˜ h (t) , 

A t = 

˜ r (1 − A 
˜ k 2 

) M − ( ̃  μ2 + ˜ γ ) A, t > 0 , x > 0 , 

M x (t, 0) = 0 , A x (t, 0) = 0 , t > 0 , 

M(t, ̃  h (t)) = 0 , ˜ h 

′ (t) = − ˜ μM x (t, ̃  h (t)) , t > 0 , 

˜ h (0) = 

˜ h 0 , M(0 , x ) = M 0 (x ) , x ∈ [0 , ̃  h 0 ] , 

A (0 , x ) = A 0 (x ) , x ∈ [0 , ∞ ) . 

(2.1) 

Here M ( t, x ) is the spatial density of the winged mosquitoes at time t and space location x . Likewise A ( t, x ) is the density

of the aquatic mosquitoes. The winged mosquitoes are initially limited to a specific part of the domain [0 , ̃  h 0 ] . To be more

specific, we only consider the one-dimensional case. We assume that the aquatic mosquitoes migrate in the habitat [0,

∞ ). The habitat of winged mosquitoes is affected by random diffusion and wind, whose boundary is described by x = ̃

 h (t) .

Outside the habitat, there is no winged mosquitoes. M x (t, 0) = A x (t, 0) = 0 indicate that on the left fixed boundary, there is

no flux of winged mosquitoes and aquatic mosquitoes. 

The biological meanings of the parameters are described as follows: ˜ D is the diffusion rate, which is considered as the

result of a random (and local) flying movement. ˜ ν is the advection rate which is caused by the wind blowing the winged

mosquitoes. ˜ γ is the specific rate of maturation of the aquatic form into winged female mosquitoes, and 

˜ k 1 is the carrying

capacity of winged mosquitoes. Likewise ˜ r is the oviposition of winged female mosquitoes, and 

˜ k 2 is the carrying capacity

of aquatic mosquitoes. ˜ μ and ˜ μ are, respectively, the mortality rate of the winged mosquitoes and the aquatic forms. 
1 2 
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In order to describe the moving of the boundary of winged mosquitoes, the free boundary satisfies the Stefan condition
˜ h ′ (t) = − ˜ μM x (t , ̃  h (t )) . ˜ μ is the winged mosquitoes’ invasive ability on the free boundary, which can be introduced by using

the Fickian conservation law. In view of the winged mosquitoes’ random diffusion and the advection, the number of winged

mosquitoes is transported at a flux J = − ˜ D M x + ˜ νM across the boundary x = ̃

 h (t) . From time t to time t + �t, the bound-

ary moves from 

˜ h (t) to ˜ h (t + �t) . We denote a function f by the total number of moving winged mosquitoes across the

boundary. Then during the time interval [ t , t + �t ] , the number of crossing boundary winged mosquitoes is 

J�t = (− ˜ D M x + ˜ νM)�t = f ( ̃ h (t + �t) − ˜ h (t)) . 

From the biological viewpoint, f is increasing because the total population number is increasing with respect to the length

of habitat. Since f (0) = 0 , the Taylor expansion of the function f gives 

f ( ̃ h (t + �t) − ˜ h (t)) = f ′ (0)( ̃ h (t + �t) − ˜ h (t)) + 

f ′′ (0) 

2 

( ̃ h (t + �t) − ˜ h (t)) 2 + · · · . 

Therefore, the flux is 

− ˜ D M x + ˜ νM = f ′ (0) 
˜ h (t + �t) − ˜ h (t) 

�t 
+ 

f ′′ ( 0) 

2 

( ̃ h ( t + �t) − ˜ h (t)) 2 

�t 
+ · · · . 

Letting �t → 0, the flux becomes 

− ˜ D M x + ˜ νM = f ′ (0) ̃ h 

′ (t) . 

Now denoting 

˜ μ = 

˜ D 

f ′ (0) 
and ˜ ρ = 

˜ ν

f ′ (0) 
, 

in view of on the boundary the spatial density of the winged mosquitoes M(t, ̃  h (t)) = 0 , we obtain ˜ ρM(t, ̃  h (t)) = 0 . Hence

we derive the boundary Stefan condition. In order to minimize the number of parameters involved in the model, we intro-

duce the dimensionless variables. Set 

u = 

1 

˜ k 1 
M, v = 

1 

˜ k 2 
A, t̄ = 

˜ r t, x̄ = 

√ 

˜ r 

˜ D 

x. (2.2)

Then the free boundary becomes 

√ 

˜ r 
˜ D 

˜ h ( t̄ 
˜ r 
) . Denote it by h ( ̄t ) ≡

√ 

˜ r 
˜ D 

˜ h ( t̄ 
˜ r 
) . For the sake of simplicity, we omit the caps of t

and x . The problem (2.1) becomes ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u t = u xx − νu x + 

γ
k 

v (1 − u ) − μ1 u, t > 0 , 0 < x < h (t) , 

u (t, x ) = 0 , t > 0 , x ≥ h (t) , 

v t = k (1 − v ) u − (μ2 + γ ) v , t > 0 , x > 0 , 

u x (t, 0) = 0 , v x (t, 0) = 0 , t > 0 , 

u (t, h (t)) = 0 , h 

′ (t) = −μu x (t, h (t)) , t > 0 , 

h (0) = h 0 , u (0 , x ) = u 0 (x ) , x ∈ [0 , h 0 ] , 

v (0 , x ) = v 0 (x ) , x ∈ [0 , ∞ ) , 

(2.3)

where μ1 = 

˜ μ1 
˜ r 

, μ2 = 

˜ μ2 
˜ r 

, γ = 

˜ γ
˜ r 
, ν = 

˜ ν√ 

˜ r ̃ D 
, k = 

˜ k 1 
˜ k 2 

, μ = 

˜ k 1 ̃  μ√ 

˜ r ̃ D 
, h 0 = 

√ 

˜ r 
˜ D 

˜ h 0 , u 0 ( ̄x ) = 

1 
˜ k 1 

M 0 ( 

√ 

˜ D 
˜ r 

x ) , and v 0 ( ̄x ) = 

1 
˜ k 2 

A 0 ( 

√ 

˜ r 
˜ D 

x ) . 

Moreover, the initial conditions u 0 and v 0 are bounded functions with compact support, which describe a restricted

distribution of population. We assume that u 0 and v 0 satisfy 

u 0 ∈ C 2 ([0 , h 0 ]) , || u 0 || L ∞ ([0 ,h 0 ]) ≤ 1 , u 

′ 
0 (0) = u 0 (h 0 ) = 0 , u 0 > 0 , 

v 0 ∈ C 2 ([0 , ∞ )) , || v 0 || L ∞ ([0 , ∞ )) ≤ 1 , v ′ 0 (0) = 0 , v 0 > 0 . (2.4)

In fact, || u 0 || L ∞ ≤ 1 corresponds with the biological meaning. According to the dimensionless transform u = 

1 
˜ k 1 

M, the density

of the winged mosquito is less than the carrying capacity. 

For the free boundary problem (2.3) , as the same method in Guo and Wu [23] , we define lim t→∞ 

h (t) 
t as the asymptotic

spreading speed. The study of asymptotic spreading speed plays an important role in invasive ecology since it can be used

to predict the mean spreading rate of species. For some biological invasive mathematical models, Petrovskii et al. [26] gave

a classification of invasive regime in terms of the invasive population’s spatial distribution. When the invasive population

tends to 0, the biological invasion is an extinct regime. Otherwise, the biological invasion is a geographical spread regime.

Our main aim is to consider both the dynamics of the free boundary and the distribution of the winged mosquito population.

When the winged mosquito population tends to 0 and the free boundary is bounded, the biological invasion is called a

vanishing regime . When the winged mosquitoes exist and the free boundary tends to infinity, the biological invasion is

called a spreading regime . 
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3. Existence and uniqueness 

In this section, we first present the following local existence and uniqueness result by using the contraction mapping

theorem. The proof can be done by modifying the argument of Wang and Zhao [25] . So we omit the details. 

Theorem 3.1. For any given ( u 0 , v 0 ) satisfying (2.4) and any α ∈ (0, 1), there is a T > 0 such that problem (2.3) admits a unique

bounded solution 

(u, v , h ) ∈ C 
1+ α

2 , 1+ α( ̄D T ) × C 
1+ α

2 , 1+ α([0 , T ] × [0 , ∞ )) × C 1+ α2 ([0 , T ]) ;
Moreover, 

‖ u ‖ 

C 
1+ α

2 
, 1+ α( ̄D T ) 

+ || h ‖ 

C 
1+ α

2 ([0 ,T ]) 
≤ C, (3.1) 

where 

D T = { (t, x ) ∈ R 

2 : t ∈ (0 , T ] , x ∈ (0 , h (t)) } . 
Here positive constants C and T depend only on h 0 , α, ‖ u 0 ‖ C 2 ([0 ,h 0 ]) 

, and ‖ v 0 ‖ C 2 ([0 , ∞ )) . 

To show that the local solution obtained in Theorem 3.1 can be extended to all t > 0, we need the following estimate. 

Lemma 3.1. Let ( u, v, h ) be a solution to problem (2.3) defined for t ∈ (0, T ] for some T ∈ (0 , + ∞ ] . Then there exist constants

M 1 and M 2 independent of T such that 

0 < u (t, x ) ≤ M 1 for 0 ≤ t ≤ T , 0 ≤ x ≤ h (t) . 

0 < v (t, x ) ≤ M 2 for 0 ≤ t ≤ T , 0 ≤ x < ∞ . 
(3.2) 

Proof. Since h ( t ) is fixed, we now consider the following fixed parabolic boundary problem: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u t = u xx − νu x + 

γ
k 

v (1 − u ) − μ1 u, 0 < t ≤ T , 0 < x < h (t) , 

u (t, x ) = 0 , 0 < t ≤ T , x ≥ h (t) , 

v t = k (1 − v ) u − (μ2 + γ ) v , 0 < t ≤ T , 0 < x < h (t) , 

u x (t, 0) = 0 , v x (t, 0) = 0 , 0 < t ≤ T , 

u (t, h (t)) = 0 , v (t, h (t)) = v 0 (h 0 ) e 
−(μ2 + γ ) t , 0 < t ≤ T , 

h (0) = h 0 , u (0 , x ) = u 0 (x ) , x ∈ [0 , h 0 ] , 

v (0 , x ) = v 0 (x ) , x ∈ [0 , ∞ ) . 

(3.3) 

Applying the strong maximum principle to (3.3) , we obtain 

( u , v ) > (0 , 0) for (t, x ) ∈ ([0 , T ] × [0 , h (t)] . (3.4) 

We apply the upper and lower solutions theorem of Pao [27] to show the global boundedness of the solution. We use the

same notation of upper and lower solutions as that in [27] and define ( u , v ) as a upper solution of system (3.3) provided

that ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u t = u xx − νu x + 

γ
k 

v (1 − u ) − μ1 u , 0 < t ≤ T , 0 < x < h (t) , 

u (t, x ) ≥ 0 , 0 < t ≤ T , x ≥ h (t) , 

v t = k (1 − v ) u − (μ2 + γ ) v , 0 < t ≤ T , 0 < x < h (t) , 

u x (t, 0) ≤ 0 , v x (t, 0) ≤ 0 , 0 < t ≤ T , 

u (t, h (t)) ≥ 0 , v (t, h (t)) ≥ v 0 (h 0 ) e 
−(μ2 + γ ) t , 0 < t ≤ T , 

u (0 , x ) ≥ u 0 (x ) , x ∈ [0 , h 0 ] , 

v (0 , x ) ≥ v 0 (x ) , x ∈ [0 , ∞ ) . 

(3.5) 

Otherwise, if ( u , v ) satisfies the inverse inequalities of (3.5) , then it is called a lower solution of system (3.3) . 

Next, we seek the upper and lower solutions of system (3.3) by constructing the proper ordinary differential system. Let

( u , v ) be a solution of the following system: ⎧ ⎨ 

⎩ 

u 

′ = 

γ
k 

v (1 − u ) − μ1 u , 0 < t ≤ T , 

v ′ = k (1 − v ) u − (μ2 + γ ) v , 0 < t ≤ T , 

u | t=0 = sup x ∈ [0 ,h 0 ] u 0 (x ) , v | t=0 = sup x ∈ [0 , ∞ ) v 0 (x ) . 

(3.6) 

Then on the boundary of problem (2.3) , we have u (t, h (t)) > u (t, h (t)) = 0 and v (t, h (t)) ≥ v (0) e −(μ2 + γ ) t ≥
v 0 (h 0 ) e 

−(μ2 + γ ) t = v (t , h (t )) for 0 < t ≤ T , and u x (t, 0) = 0 ≥ u x (t, 0) for 0 < t ≤ T . On the other hand, we have

v x (t, 0) = 0 ≥ v x (t, 0) for 0 < t ≤ T . Moreover, for the initial conditions, it is easy to see that u | ≥ u (x ) for 0 < x < h ,
t=0 0 0 
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and v | t=0 ≥ v 0 (x ) for 0 < x < ∞ . Then ( u , v ) is an upper solution to system (3.3) . Applying the upper and lower solutions

theorem (Theorem 2.1 of Pao [27] ), we have 

u ≥ u, v ≥ v for (t, x ) ∈ [0 , T ] × [0 , h (t)] . (3.7)

The solution of the ordinary differential equation (3.6) possesses the upper boundedness: 

u ≤ max { sup 

x ∈ [0 ,h 0 ] 
u 0 (x ) , 1 } for (t, x ) ∈ ([0 , T ] × [0 , h (t)] , 

v ≤ max { sup 

x ∈ [0 ,h 0 ] 
v 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , h (t)] . (3.8)

Combining (3.4), (3.7) and (3.8) , we obtain 

0 ≤ u ≤ max { sup 

x ∈ [0 ,h 0 ] 
u 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , h (t)] , 

0 ≤ v ≤ max { sup 

x ∈ [0 ,h 0 ] 
v 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , h (t)] . (3.9)

For ( t, x ) ∈ (0, T ] × [ h ( t ), ∞ ), problem (2.3) implies that v satisfies 

v t = −(μ2 + γ ) v . (3.10)

Thus v is monotonically decreasing for ( t, x ) ∈ [0, T ] × [ h ( t ), ∞ ). We have 

0 < v ≤ sup 

x ∈ [0 ,h 0 ] 
v 0 (x ) for (t, x ) ∈ (0 , T ] × [ h (t) , ∞ ) . (3.11)

Combining (3.9) and (3.11) , we have 

0 ≤ u ≤ max { sup 

x ∈ [0 ,h 0 ] 
u 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , h (t)] , 

0 ≤ v ≤ max { sup 

x ∈ [0 ,h 0 ] 
v 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , ∞ ) . (3.12)

Using a similar argument, we choose ( u , v ) as a solution of the following system: ⎧ ⎨ 

⎩ 

u 

′ = 

γ
k 

v (1 − u ) − μ1 u , 0 < t ≤ T , 

v ′ = k (1 − v ) u − (μ2 + γ ) v , 0 < t ≤ T , 

u | t=0 = inf x ∈ [0 ,h 0 ] u 0 (x ) , v | t=0 = inf x ∈ [0 , ∞ ) v 0 (x ) . 

(3.13)

Then ( u , v ) is a lower solution to system (3.3) . Applying the upper and lower solutions theorem of Pao [27] one more time,

we have 

0 < u ≤ u, 0 < v ≤ v for (t, x ) ∈ [0 , T ] × [0 , h (t)] . (3.14)

In view of (3.11) and (3.14) , we have 

0 < u ≤ max { sup 

x ∈ [0 ,h 0 ] 
u 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , h (t)] , 

0 < v ≤ max { sup 

x ∈ [0 ,h 0 ] 
v 0 (x ) , 1 } for (t, x ) ∈ [0 , T ] × [0 , ∞ ) . (3.15)

By choosing 

M 1 = max { sup 

x ∈ [0 ,h 0 ] 
u 0 (x ) , 1 } , M 2 = max { sup 

x ∈ [0 , ∞ ) 

v 0 (x ) , 1 } , (3.16)

we can see that (3.2) holds. The proof is complete. �

Lemma 3.2 (Hopf Lemma) . Let ( u, v, h ) be a solution to problem (2.3) defined for t ∈ (0, T ] for some T ∈ (0 , + ∞ ] . Then 

u x (t, h (t)) < 0 for t ∈ (0 , T ] . 

Proof. For any T 0 ∈ (0, T ], we denote Q T 0 
:= { 0 < t ≤ T 0 , 0 < x < h (t) } . We plot a line x = h (T 0 ) − β(T 0 − t) across the

boundary point ( T 0 , h ( T 0 )), where the constant β > 0 is chosen as follows: when h ′ ( T 0 ) ≤ 0, β is an arbitrary posi-

tive constant; when h ′ ( T 0 ) > 0, β = 2 h ′ (T 0 ) . Thus for sufficiently small δ > 0, it is easy to see that the triangular area

�T 0 
= { T 0 − δ

β
≤ t ≤ T 0 , h (T 0 ) − δ ≤ x ≤ h (T 0 ) − β(T 0 − t) } belongs to the interior of Q T 0 

except the boundary point ( T 0 ,

h ( T 0 )). 

In �T 0 
, we consider an auxiliary function w (t, x ) = e −αx − e −α[ h (T 0 ) −β(T 0 −t)] . Using the boundedness of u and v , we have 

u t − u xx + νu x = 

γ

k 
v − ( 

γ

k 
v + μ1 ) u ≥ −( 

γ M 2 

k 
+ μ1 ) u. (3.17)
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Define a linear operator 

Lu := u t − u xx + νu x + 

(
γ M 2 

k 
+ μ1 

)
u. (3.18) 

Substituting the auxiliary function w ( t, x ) into (3.18) , we have 

Lw = αβe −α[ h (T 0 ) −β(T 0 −t)] − (α2 + αν) e −αx 

+ 

(
γ M 2 

k 
+ μ1 

)
(e −αx − e −α[ h (T 0 ) −β(T 0 −t)] ) . (3.19) 

As long as α > max { β, 
γ M 2 + kμ1 

kν
} , we have Lw < 0. Set z(t, x ) = u (t, x ) − u (T 0 , h (T 0 )) − ε w (t, x ) , where ε is a sufficiently

small positive constant such that w (t, h (T 0 ) − δ) satisfies 

ε max 
t∈ [ T 0 −δ

β
,T 0 ] 

| w (t, h (T 0 ) − δ) | < min 

t∈ [ T 0 −δ

β
,T 0 ] 

[ u (t, h (T 0 ) − δ) − u (T 0 , h (T 0 ))] . (3.20) 

In fact, in view of u ( t, x ) > 0, the right hand of (3.20) has a positive lower bound. Thus there exists a positive ε such that

on the boundary of �T 0 
, it follows from (3.20) that: 

z| x = h (T 0 ) −β(T 0 −t) = u (t, h (T 0 ) − β(T 0 − t)) − u (T 0 , h (T 0 )) > 0 , 

z| x = h (T 0 ) −δ = u (t, h (T 0 ) − δ) − u (T 0 , h (T 0 )) − εw (t, h (T 0 ) − δ) > 0 , 

z(T 0 , h (T 0 )) = 0 . 

(3.21) 

In the interior of �T 0 
, since 

Lz ≥ −εLw > 0 , 

we have 

z| x = h (T 0 ) −β(T 0 −t) = u (t, h (T 0 ) − β(T 0 − t)) − u (T 0 , h (T 0 )) > 0 , 

z| x = h (T 0 ) −δ = u (t, h (T 0 ) − δ) − u (T 0 , h (T 0 )) − εw (t, h (T 0 ) − δ) > 0 , 

z(T 0 , h (T 0 )) = 0 . 

(3.22) 

then z ( t, x ) attains its minimum nonnegative value on �T 0 
at ( T 0 , h ( T 0 )). Therefore, 

0 ≤ ∂z(T 0 , h (T 0 )) 

∂x 
= 

∂u (T 0 , h (T 0 )) 

∂x 
− ε 

∂w (T 0 , h (T 0 )) 

∂x 
. 

Hence, 

∂u (T 0 , h (T 0 )) 

∂x 
≥ ε 

∂w (T 0 , h (T 0 )) 

∂x 
= −εαe −αh (T 0 ) < 0 . (3.23) 

By the arbitrariness of T 0 , we have u x ( t, h ( t )) < 0 for all t ∈ (0, T ]. The proof is complete. �

The next lemma shows that the free boundary for problem (2.3) is strictly monotone increasing. 

Lemma 3.3. Let ( u, v, h ) be a solution to problem (2.3) defined for t ∈ (0, T ] for some T ∈ (0 , + ∞ ] . Then there exists a constant

M 3 independent of T such that 

0 < h 

′ (t) ≤ M 3 for t ∈ (0 , T ] . 

Proof. Using the Hopf Lemma ( Lemma 3.2 ), we have h ′ ( t ) > 0 for t ∈ (0, T ]. Next we show that h ′ ( t ) ≤ M 3 for all t ∈ (0, T ]

and some M 3 independent of T . As in Lin [24] , we define 

� =: { (t, x ) : 0 < t ≤ T , h (t) − 1 

M 

< x < h (t) } , 
and construct an auxiliary function 

w (t, x ) := M 1 [2 M(h (t) − x ) − M 

2 (h (t) − x ) 2 ] . 

We will choose M so that w ( t, x ) ≥ u ( t, x ) holds over �. 

By the boundedness of solutions ( Lemma 3.1 ), for ( t, x ) ∈ � we have 

w t = 2 M 1 Mh 

′ (t)(1 − M(h (t) − x )) ≥ 0 , 

w x = 2 M 1 M 

2 (h (t) − x ) − 2 M 1 M > −2 M 1 M, 

− w xx = 2 M 1 M 

2 , 

γ
v (1 − u ) − μ1 u ≤ γ

M 2 (1 + M 1 ) + μ1 M 1 . 

k k 
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Thus, 

w t − w xx + νw x ≥ 2 M 1 M(M − ν) ≥ γ

k 
M 2 (1 + M 1 ) + μ1 M 1 for (t, x ) ∈ �, (3.24)

if 

M ≥ ν + 

√ 

1 

2 M 1 

( 
γ

k 
M 2 (1 + M 1 ) + μ1 M 1 ) . (3.25)

On the other hand, we have 

w 

(
t , h (t ) − 1 

M 

)
= M 1 ≥ u (t , h (t ) − 1 

M 

) for t ∈ (0 , T ) , 

w (t, h (t)) = 0 = u (t, h (t)) for t ∈ (0 , T ) . (3.26)

Hence, if we can choose M such that 

u 0 (x ) ≤ w (0 , x ) for x ∈ [ h 0 − 1 

M 

, h 0 ] , (3.27)

in view of (3.24), (3.26) , and (3.27) , we can apply the maximum principle to w − u over � to deduce that u ( t, x ) ≤ w ( t, x )

for ( t, x ) ∈ �. Then u x (t, h (t)) ≥ w x (t, h (t)) = −2 MM 1 . It would then follow that 

h 

′ (t) = −μu x (t , h (t )) ≤ 2 MM 1 μ := M 3 . (3.28)

To complete the proof, we only have to find some M independent of T such that (3.27) holds. We have 

w x (0 , x ) = −2 M 1 M(1 − M(h 0 − x )) ≤ −M 1 M for x ∈ 

[ 
h 0 − 1 

2 M 

, h 0 

] 
. 

In view of (3.25) , choosing 

M := max 

{ 

ν + 

√ 

1 

2 M 1 

( 
γ

k 
M 2 (1 + M 1 ) + μ1 M 1 ) , 

4 ‖ u 0 ‖ C 1 ([0 ,h 0 ]) 

3 M 1 

} 

, (3.29)

we have 

w x (0 , x ) ≤ −MM 1 ≤ −4 

3 

|| u 0 || C 1 ([0 , h 0 ]) ≤ u 

′ 
0 (x ) for r ∈ [ h 0 − (2 M) −1 , h 0 ] . 

Since w (0 , h 0 ) = u 0 (h 0 ) = 0 , the above inequality implies that 

w (0 , x ) ≥ u 0 (x ) for x ∈ [ h 0 − 1 

2 M 

, h 0 ] . 

Moreover, for x ∈ [ h 0 − 1 
M 

, h 0 − 1 
2 M 

] , we have 

w (0 , x ) ≥ 3 

4 

M 1 , u 0 (x ) ≤ 1 

M 

‖ u 0 ‖ C 1 ([0 ,h 0 ]) ≤
3 

4 

M 1 . 

Therefore u 0 ( x ) ≤ w (0, x ) for x ∈ [ h 0 − 1 
M 

, h 0 ] . This completes the proof. �

Theorem 3.2. The solution of problem (2.3) exists and is unique for all t ∈ (0, ∞ ) . 

Proof. It follows from the uniqueness of solutions ( Theorem 3.1 ) that there is a number T max such that [0, T max ) is the

maximal time interval in which the solution exists. Now we prove that T max = ∞ by a contradiction argument. Assume that

T max < ∞ . Then it follows from Lemmas 3.1 that there exist M 1 , M 2 and M 3 independent of T max such that for t ∈ [0, T max )

and x ∈ [0, h ( t )], 

0 < u (t, x ) ≤ M 1 for 0 ≤ t ≤ T , 0 ≤ x ≤ h (t) . 

0 < v (t, x ) ≤ M 2 for 0 ≤ t ≤ T , 0 ≤ x < ∞ . 

h 0 ≤ h (t) ≤ h 0 + M 3 t, 0 ≤ h 

′ (t) ≤ M 3 for t ∈ [0 , T max ) . 

By the standard L p estimates and the Sobolev embedding theorem, we can find a constant C > 0 depending only on M i (i =
1 , 2) such that 

‖ u (t, ·) ‖ 

C 
1+ α

2 ([0 ,h (t)]) 
≤ C 

and v is continuous for ( t, x ) ∈ [0, T max ) × [0, ∞ ). It then follows from the proof of Theorem 3.1 that there exists a τ >

0 depending only on C and M i (i = 1 , 2) such that the solution of problem (2.3) with initial time T max − τ
2 can be extended

τ
uniquely to the time T max − 2 + τ . But this contradicts the assumption and hence the proof is complete. �
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4. Vanishing regime 

We next study whether the transmission of mosquito is geographical spreading or vanishing depends on a threshold in

terms of model parameters 

R 0 := 

γ

μ1 (μ2 + γ ) 
, (4.1) 

which is derived following a standard technique used by van den Driessche and Watmough [28] in calculating the basic

reproduction number. 

It follows from Lemma 3.3 that x = h (t) is monotonically increasing and, therefore, there exists h ∞ 

∈ (0 , + ∞ ] such that

lim t→ + ∞ 

h (t) = h ∞ 

. When h ∞ 

= ∞ , the free boundary will spread to the whole space, we call this case as boundary spread-

ing . Otherwise, when h ∞ 

< ∞ , the free boundary will limit to a region, we call this case as boundary vanishing . 

Theorem 4.1. If R 0 < 1 and γ = 0 , then lim t→ + ∞ 

|| u (·, t) || C([0 ,h (t)]) = 0 and h ∞ 

< ∞ . Moreover, lim t→ + ∞ 

v (t, x ) = 0 uniformly

in any bounded subset of [0, ∞ ) . 

Proof. After using a similar argument as in Lemma 3.1 , we have 

0 < u ≤ u for (t, x ) ∈ [0 , ∞ ) × [0 , h (t)] , 

0 < v ≤ v for (t, x ) ∈ [0 , ∞ ) × [0 , ∞ ) , 
(4.2) 

where ( u , v ) is the solution of the following system: ⎧ ⎨ 

⎩ 

u 

′ = 

γ
k 

v (1 − u ) − μ1 u , 

v ′ = k (1 − v ) u − (μ2 + γ ) v , 
u | t=0 = sup x ∈ [0 ,h 0 ] u 0 (x ) , v | t=0 = sup x ∈ [0 , ∞ ) v 0 (x ) . 

(4.3) 

Now, we consider the global stability of ( u , v ) to system (4.3) . We define the following Lyapunov function: 

V (t) = 

k 

2 γ
u 

2 + 

1 

2 k 
v 2 , (4.4) 

where ( u , v ) is an arbitrary positive solution of system (4.3) . It is easy to see that V ( t ) is positive definite. We calculate the

time derivative of V ( t ) along the solutions of (4.3) : 

dV (t) 

dt 
= −kμ1 

γ
u 

2 + 2 u v − μ2 + γ

k 
v 2 − v u 

2 − u v 2 

≤ −kμ1 

γ
u 

2 + 2 u v − μ2 + γ

k 
v 2 . 

(4.5) 

Hence, for any t > 0, R 0 < 1 ensures that dV (t) 
dt 

≤ 0 for all u , v ≥ 0 . Notice that dV (t) 
dt 

= 0 if and only if ( u , v ) = (0 , 0) . Thus,

(0, 0) is globally asymptotically stable to system (4.3) ; that is, 

lim 

t→∞ 

u = lim 

t→∞ 

v = 0 . (4.6) 

In view of (4.2) , we have lim t→ + ∞ 

|| u (·, t) || C([0 ,h (t)]) = 0 . Moreover, lim t→ + ∞ 

v (t, x ) = 0 uniformly in any bounded subset of

[0, ∞ ). 

Next we show that h ∞ 

< + ∞ . Some direct calculation yields 

d 

d t 

∫ h (t) 

0 

u (t, x ) d x = 

∫ h (t) 

0 

u t (t, x ) d x + h 

′ (t ) u (t , h (t )) 

= 

∫ h (t) 

0 

(u xx − νu x ) d x + 

∫ h (t) 

0 

( 
γ

k 
v (1 − u ) − μ1 u ) d x, 

(4.7) 

and 

d 

d t 

∫ h (t) 

0 

v (t, x ) d x = 

∫ h (t) 

0 

v t (t, x ) d x + h 

′ (t ) v (t , h (t )) 

= 

∫ h (t) 

0 

k (1 − v ) u − (μ2 + γ ) v d x. 

(4.8) 

Choosing m = 

μ1 
k 

and using the fact that R 0 < 1, we have 
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d 

d t 

∫ h (t) 

0 

(u (t, x ) + m v (t, x )) d x = 

∫ h (t) 

0 

(u xx − νu x ) d x 

+ 

∫ h (t) 

0 

(
γ

k 
v − γ

k 
u v − μ1 u + mku − mku v − m (μ2 + γ ) v 

)
d x 

≤
∫ h (t) 

0 

(u xx − νu x ) d x + 

∫ h (t) 

0 

γ

k 
v (1 − 1 

R 0 

) d x 

≤
∫ h (t) 

0 

(u xx − νu x ) d x, 

= u x (t, h (t)) − u x (t, 0) − νu (t, h (t)) + νu (t, 0) , 

= −h 

′ (t) 

μ
+ νu (t, 0) . (4.9)

Integrating (4.9) from 0 to t gives ∫ h (t) 

0 

(u (t, x ) + m v (t, x )) d x ≤
∫ h (0) 

0 

(u 0 + m v 0 ) d x + 

h (0) 

μ
− h (t) 

μ
+ ν

∫ t 

0 

u (s, 0) d s. (4.10)

It is followed from (4.10) that 

h (t) 

μ
≤

∫ h (0) 

0 

(u 0 + m v 0 ) d x + 

h (0) 

μ
+ ν

∫ t 

0 

u (s, 0) d s. (4.11)

Since that ν = 0 , by letting t → ∞ , we have h ∞ 

< ∞ . The proof is complete. �

In order to study the asymptotic behavior of solutions for problem (2.3) , we give an estimate for boundary movement. 

Theorem 4.2. Let ( u, v, h ) be any solution of (2.3) . If R 0 < 1 and ν = 0 , then there exists a constant K > 0 such that 

‖ u (t, ·) ‖ C 1 ([0 ,h (t)]) < K, ∀ t ≥ 1 . (4.12)

Moreover, 

lim 

t→∞ 

h 

′ (t) = 0 . (4.13)

Proof. Since R 0 < 1 and ν = 0 , we have h ∞ 

< ∞ . We now straighten the free boundary. Consider a new transformation 

(t, x ) → (t, y ) with x = h (t) y. 

The above transformation changes the free boundary x = h (t) to the line y = 1 . Now if we set 

w (t, y ) = u (t , h (t ) y ) , z(t , y ) = v (t , h (t ) y ) , 

then w satisfies the following fixed boundary problem: ⎧ ⎨ 

⎩ 

w t = 

1 
h (t) 2 

w yy − ν
h (t) 

w y + 

γ
k 

z(1 − w ) − μ1 w, t > 0 , 0 < y < 1 , 

w y (t, 0) = 0 , w (t, 1) = 0 , t > 0 , 

w (0 , y ) = u 0 (h 0 y ) , y ∈ [0 , 1] . 

(4.14)

By using the Schauder estimates, we obtain that there exists a positive constant K 0 such that 

‖ w ‖ 

C 
1+ α

2 
, 1+ α([1 , ∞ ) ×[0 , 1]) 

< K 0 . (4.15)

Since u x (t, x ) = 

1 
h (t) 

w y (t, y ) , there exists a constant K such that (4.12) holds. 

It remains to prove (4.13) . Note u x (t, h (t)) = 

1 
h (t) 

w y (t, 1) and h ′ (t) = −μu x (t, h (t)) , by virtue of 0 < h ′ ( t ) < M 3 and

‖ w y (·, y ) ‖ 
C 

α
2 ([1 , ∞ )) 

< K 0 , we obtain 

‖ h 

′ ‖ 

C 
α
2 ([1 , ∞ )) 

< L, (4.16)

where L depends on K 0 and M 3 . It follows from h ′ ( t ) > 0, h ∞ 

< ∞ and (4.16) that (4.13) holds. The proof is complete. �

Remark 4.1. From Theorems 4.1 and 4.2 , we can see that when R 0 < 1, the invasive mosquitoes will evolve to an immediate

state in which the habitat extends to h ∞ 

while the terminal state of invasive mosquitoes is extinct. Here the conclusion that
the terminal state is extinct coincides with the result in Takahashi et al. [16] . 



212 C. Tian, S. Ruan / Applied Mathematical Modelling 46 (2017) 203–217 

 

 

 

 

 

 

 

 

 

 

 

5. Spreading regime 

From a biological point of view, we first establish the existence of a coexistent equilibrium. Consider the following Cauchy

problem corresponding to (2.3) : { 

u t = u xx − νu x + 

γ
k 

v (1 − u ) − μ1 u, t > 0 , −∞ < x < ∞ , 

v t = k (1 − v ) u − (μ2 + γ ) v , t > 0 , −∞ < x < ∞ , 

u (0 , x ) = u 0 (x ) , v (0 , x ) = v 0 (x ) , −∞ < x < ∞ . 

(5.1) 

It is noted that the Cauchy problem (5.1) has a steady state. Moreover, after some directly computations, we have the

following lemma: 

Lemma 5.1. If R 0 > 1, then problem (2.3) has a unique coexistent steady state E ∗ = (u ∗, v ∗) , where 

u 

∗ = 

γ − μ1 (μ2 + γ ) 

μ1 k + γ
, v ∗ = 

k (γ − μ1 μ2 − μ1 γ ) 

γ (k + μ2 + γ ) 
. (5.2) 

In order to study the case that the threshold R 0 > 1, and for later applications, we need a comparison principle, which

can be used to estimate u ( t, x ), v ( t, x ) and the free boundary x = h (t) . As in Du and Lin [17] , the following comparison

lemma can be obtained analogously. 

Lemma 5.2. Suppose that T ∈ (0, ∞ ), h ∈ C 1 ([0 , T ]) , v ∈ C([0 , T ] × [0 , ∞ )) ∩ C 1 , 2 ((0 , T ] × (0 , ∞ )) ≤ 1 , u ∈ C( D 

∗
T ) ∩ C 1 , 2 (D 

∗
T ) ≤ 1

with D 

∗
T 

= { (t, x ) ∈ R 

2 : 0 < t ≤ T , 0 < x < h (t) } , and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

u t ≥ u xx − νu x + 

γ
k 

v (1 − u ) − μ1 u , 0 < t ≤ T , 0 < x < h (t) , 

u (t, x ) = 0 , 0 < t ≤ T , x = h (t) , 

v t ≥ k (1 − v ) u − (μ2 + γ ) v , 0 < t ≤ T , x > 0 , 

u x (t, 0) ≤ 0 , v x (t, 0) ≤ 0 , 0 < x < h (t) , 

h 

′ 
(t) ≥ −μu x (t , h (t )) , 0 < t ≤ T , 

h (0) ≥ h 0 , u (0 , x ) ≥ u 0 (x ) , x ∈ [0 , h 0 ] , 

v (0 , x ) ≥ v 0 (x ) , x ∈ [0 , ∞ ) . 

(5.3) 

Then ( u , v , h ) is called an upper solution of (2.3) . Moreover, the solution ( u, v, h ) of the free boundary problem (2.3) satisfies 

v (t, x ) ≤ v (t , x ) , h (t ) ≤ h (t) for t ∈ (0 , T ] , x ∈ (0 , ∞ ) , 

u (t, x ) ≤ u (t, x ) for t ∈ (0 , T ] , x ∈ (0 , h (t)) . (5.4) 

In order to estimate the asymptotic spreading speed of the boundary, we consider traveling wave solutions of problem

(2.3) . A traveling wave solution of system (2.3) is a solution of the special form U(z) = u (x − ct) , V (z) = v (x − ct) , where

c > 0 is the wave speed. Substituting this special solution into problem (2.3) , we then obtain the corresponding wave

equations: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

U 

′′ (z) + (c − ν) U 

′ (z) + 

γ
k 
(1 − U(z)) V (z) − μ1 U(z) = 0 , 

V 

′ (z) + 

k 
c 
(1 − V (z)) U(z) − μ2 + γ

c 
V (z) = 0 , 

U(−∞ ) = u 

∗, V (−∞ ) = v ∗, U(∞ ) = 0 , V (∞ ) = 0 

U 

′ (z) < 0 , V 

′ (z) < 0 . 

(5.5) 

As for (5.5) , it is shown in Takahashi et al. [16] that when R 0 > 1 there exists a traveling wave connecting the extinct

equilibrium and the coexistent equilibrium. 

Lemma 5.3. Suppose that R 0 > 1, then there exists a traveling wave connecting the extinct equilibrium and the coexistent equi-

librium for (5.5) . Moreover, the smallest travelling wave speed c min is defined by the equation P 0 (λ, c min ) = 0 , where 

λ = 

1 

3 

( 

μ2 + γ

c 
+ ν − c −

√ (
μ2 + γ

c 
+ ν − c 

)2 

+ 3 

(
μ1 − (ν − c)(μ2 + γ ) 

c 

)) 

, 

P 0 (λ, c) = −λ3 + 

(
μ2 + γ

c 
+ ν − c 

)
λ2 + 

(
μ1 − (ν − c)(μ2 + γ ) 

c 

)
λ − μ1 (μ2 + γ ) − γ

c 
. 

Lemma 5.4 (Fluctuation Lemma [29] ) . Let f : [ b , ∞ ) → R be bounded and differentiable. Then there exist sequences { s k } and

{ t k } such that when k → ∞ , 

f (s k ) → f ∞ 

≡ lim sup 

t→∞ 

f (t) , f ′ (s k ) → 0 , 
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f (t k ) → f ∞ ≡ lim inf 
t→∞ 

f (t) , f ′ (t k ) → 0 . 

Theorem 5.1. Assume that R 0 > 1 . Let ( u, v, h ) be a solution of (2.3) with h ∞ 

= ∞ . Then the asymptotic spreading speed of

spreading front satisfies 

lim sup 

t→∞ 

h (t) 

t 
≤ c min . (5.6)

Proof. We are going to construct a suitable upper solution to (2.3) and then apply Lemma 5.2 . Using a similar argument of

Guo and Wu [23] , we choose sufficiently large M such that MU(z) > || u 0 || L ∞ ([0 ,h 0 ]) 
and MV (z) > || v 0 || L ∞ ([0 , ∞ )) for all z ∈ [0,

h 0 ]. Next, fix σ 0 > h 0 depending on M and μ such that 

U(σ0 ) < min 

x ∈ [0 ,h 0 ] 
(U(x ) − u 0 (x ) 

M 

) , V (σ0 ) < min 

x ∈ [0 ,h 0 ] 
(V (x ) − v 0 (x ) 

M 

) , (5.7)

U(σ0 ) ≤ 1 − 1 

M 

, V (σ0 ) ≤ 1 − 1 

M 

. (5.8)

According to Lemma 5.3 , U ( z ) and V ( z ) are bounded differentiable decreasing functions. By the Fluctuation Lemma

( Lemma 5.4 ), there exist a sequence { z k } such that U 

′ ( z k ) → 0 as z k → ∞ . When M is fixed, we can seek sufficiently large

σ 0 such that 

−μMU 

′ (σ0 ) < c min , −μMV 

′ (σ0 ) < c min . (5.9)

Here when we choose sufficiently large σ 0 , the inequalities (5.7) and (5.8) are still satisfied because U ( z ) and V ( z ) are

decreasing with respect to z . 

Now, set σ (t) = σ0 + c min t and define 

u (t, x ) = MU(x − c min t) − MU(σ0 ) , v (t, x ) = MV (x − c min t) − MV (σ0 ) . 

It is obvious that 

u (t, σ (t)) = v (t, σ (t)) = 0 for t ∈ (0 , ∞ ) . (5.10)

Since that U 

′ ( z ) < 0 and V 

′ ( z ) < 0, we have 

u x (t, 0) < 0 , v x (t, 0) < 0 for t ∈ (0 , ∞ ) . (5.11)

It is deduced from (5.7) that 

u (t, x ) > u 0 (x ) , v (t, x ) > v 0 (x ) for x ∈ [0 , h 0 ] . (5.12)

By using (5.5) and (5.8) , we have 

u t − u xx + νu x − γ

k 
v (1 − u ) + μ1 u ≥ 0 for (t, x ) ∈ (0 , ∞ ) × (0 , σ (t)) , 

v t − k (1 − v ) u + (μ2 + γ ) v ≥ 0 for (t, x ) ∈ (0 , ∞ ) × (0 , ∞ ) . (5.13)

Because of (5.9) , we have 

σ ′ (t) = c min > −μMU 

′ (σ0 ) = −μu x (t , σ (t )) . (5.14)

It follows from (5.10) –(5.14) that ( u (t, x ) , v (t, x ) , σ (t)) is an upper solution of (2.3) . In view of Lemma 5.2 , σ ( t ) ≥ h ( t ).

Therefore 

lim sup 

t→∞ 

h (t) 

t 
≤ lim 

t→∞ 

σ (t) 

t 
= c min . 

The proof is complete. �

6. Numerical simulations 

In this section, we provide numerical computations of problem (2.3) by means of a finite difference scheme (Razvan and

Gabriel [30] ), using a Crank–Nicholson for time integration, and Adams–Bashforth scheme for the nonlinear operator. 

In Takahashi et al. [16] , the following parameter values of model (2.3) were given: 

γ = 0 . 25 , k = 6 . 66 × 10 

−3 , μ1 = 1 . 33 × 10 

−3 , μ2 = 3 . 33 × 10 

−4 . (6.1)

The values for the dimensional parameters are D = 1 . 25 × 10 −2 , ˜ γ = 0 . 2 , ˜ k 1 = 25 , ˜ μ1 = 4 × 10 −2 , ˜ r = 30 , ˜ k 2 = 100 , ˜ μ2 =
1 × 10 −2 . Here the time unit is day and the space unit is km. We can compute the unique endemic steady state and the

basic reproduction number as follows: 

(u 

∗, v ∗) = (0 . 9991 , 0 . 0259) and R 0 = 750 . 8795 . (6.2)
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Fig. 1. A comparison densities of winged female mosquitoes between (a) large invasive ability and (b) small invasive ability. Here ν = 8 . 164 × 10 −2 , and 

other parameters are given in (6.1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we present details for numerical simulations of the terminal state of winged Aedes aegypti mosquitoes.

Theorem 5.1 implies that the terminal state has a maximal asymptotic spreading speed regardless of the initial data. In other

words, the initial data can only affect the immediate state, not the terminal state. Consider an initial data as follows: 

u 0 (x ) = 

{
0 . 08 cos π∗x 

2 h 0 
, x ∈ [0 , h 0 ] , 

0 , x > h 0 , 
and v 0 (x ) = 

{
0 . 0259 cos π∗x 

2 h 0 
, x ∈ [0 , h 0 ] , 

0 , x > h 0 . 
(6.3) 

It is easy to check that R 0 > 1. In a fixed region the advection–reaction–diffusion model means that the winged female

mosquitoes will disperse to the whole space. However, in our free boundary model, the winged female mosquitoes do not

necessarily disperse to the whole space; that is, h ∞ 

will be less than ∞ or equal to ∞ . In the following, we will illustrate

that the spreading of winged female mosquitoes depends on the invasive ability and the advection. 

6.1. Invasive ability of female mosquitoes driven boundary spreading 

Firstly we simulate how the value of the boundary movement pressure μ affects the boundary spread. From Theorem 5.1 ,

the minimal speed of traveling wave does not depend on μ. In this case we set ν = 8 . 164 × 10 −2 , which corresponds to

the dimensional parameter ˜ ν = 5 × 10 −2 km day −1 . The non-dimensional minimal speed of traveling waves is c min = 2 . 57 .

In order to for the mosquitoes to expand, we set a large invasive ability μ = 1 . 7 , which corresponds to the dimensional

parameter ˜ μ = 4 . 16 × 10 −2 . From Fig. 1 (a), we can see that the habitat of female mosquitoes prevails from the initial area [0,

100] to [0, 200] after t = 8 . Meanwhile, the density of female mosquitoes will increase. Moreover, the density will tends to a

steady state u ∗ confined in some finite domain. Hence, we illustrate the case of population expansion. When we set a small

invasive ability μ = 0 . 5 , which corresponds to the dimensional parameter ˜ μ = 1 . 12 × 10 −2 , the habitat of female mosquitoes

almost does not increase ( Fig. 1 (b)). In this case the population does not expand. For this two cases, we illustrate the orbits

of boundary in Fig. 2 . For a large invasive ability, the length of boundary maintains a steady growth ( Fig. 2 (a)). For a small

invasive ability, the length of boundary admits a finite upper bound ( Fig. 2 (b)). Moreover, when the mosquito population

expands, we estimate that the speed of boundary is about 0.625, which is less than the minimal speed of traveling waves. 

6.2. Advection driven boundary spreading 

Secondly we simulate how boundary spreading depends on the advection. When we set a small μ = 0 . 5 and a small

ν = 8 . 164 × 10 −2 , the disease does not spread ( Fig. 3 (a)). Once again in order to for the mosquitoes to expand, we set a

large advection ν = 1 . 2 , which corresponds to the dimensional parameter ˜ ν = 2 . 94 × 10 −2 . Theorem 5.1 indicates that when

μ = 0 . 5 , the non-dimensional minimal speed of traveling waves is c min = 4 . 05 . From Fig. 3 (b), we can see that the habitat

of female mosquitoes prevails from a short initial area to a long final area after t = 8 . Meanwhile, the density of female

mosquitoes increases. Moreover, the density tends to a steady state u ∗ confined in some finite domain. We also illustrate

the orbits of boundary in Fig. 4 . For a small advection, the length of boundary admits a finite upper bound ( Fig. 4 (a)). For

a large advection, the length of boundary maintains a steady growth ( Fig. 4 (b)). Moreover, when the mosquito population

expands, we estimate that the speed of boundary is about 0.535, which is also less than the minimal speed of traveling

waves. 
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Fig. 2. A comparison of free boundary movement between (a) large invasive ability and (b) small invasive ability. Here ν = 8 . 164 × 10 −2 , and other param- 

eters are given in (6.1) . 

Fig. 3. A comparison of densities of winged female mosquitoes between (a) small advection and (b) large advection. Here μ = 0 . 5 , and other parameters 

are given in (6.1) . 

Fig. 4. A comparison of free boundary movement between (a) small advection and (b) large advection. Here μ = 0 . 5 , and other parameters are given in 

(6.1) . 
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7. Discussion 

In this paper, we have constructed an advection–reaction–diffusion model with free boundary to study the spatial disper-

sal dynamics of two A. aegypti mosquitoes sub-populations, where the free boundary describes the asymptotic behavior of

spreading fronts. Our main attempt was to estimate the asymptotic spreading speed of the boundary, by which we can pre-

cisely predict the spatio-temporal domain of A. aegypti mosquitoes. It is worth mentioning that the spreading speed of the

same advection–reaction–diffusion model described the A. aegypti mosquitoes has been estimated via traveling wave solu-

tions (Takahashi et al. [16] ). Comparing the methods of traveling wave solutions and free boundary, the asymptotic spreading

speed of the free boundary cannot be faster than the minimal traveling speed provided that R 0 > 1 and spreading successes

( Theorem 5.1 ). In the case of R 0 < 1, vanishing always happens and A. aegypti mosquitoes die out ( Theorem 4.1 ). Moreover,

in the case of R 0 > 1, the asymptotic spreading speed of the free boundary depends on the invasive ability of A. aegypti

mosquitoes. We illustrated that strong invasive ability of A. aegypti mosquitoes and advection may induce the spreading of

the boundary ( Figs. 1 and 3 ). The biological meanings are as follows: when the rate of maturation is small and the mortality

rates of winged and aquatic A. aegypti mosquitoes are large, the mosquitoes become extinct and the invasive boundary van-

ishes; when the rate of maturation is large and the mortality rates of winged and aquatic A. aegypti mosquitoes are small,

the invasive boundary may spread under strong invasive ability of A. aegypti mosquitoes and large advection. 

Dengue, chikungunya and Zika viruses are transmitted by A. aegypti mosquitoes, which are inhabiting in hot and humid

climate regions (Cummings et al. [3] ). Minimizing the mosquito population is an effective method to control these mosquito-

borne viral diseases. In fact the Pan American Health Organization had carried out a programe for the eradication of A.

aegypti in Americas. But with the growth of population and lack of public health services, A. aegypti mosquitoes have re-

infested in some Latin American countries (Vasconcelos et al. [31] ). Hence it is very important to understand the A. aegypti

mosquito spreading dynamics for controlling mosquito-borne viral diseases. The results of our free boundary model conclude

that when the rate of maturation is large and the mortality rates of winged and aquatic A. aegypti mosquitoes are small,

the region is under a high risk of dengue, chikungunya and Zika epidemics. Recently as human transportation increases

dramatically, the Aedes aegypti mosquitoes have the capability of the long distance movement (Oteroa et al. [32] ). Aedes

aegypti mosquito invasion has become a widely monitored scenario (Powell [33] ). It has been reported that Aedes aegypti

mosquitoes have increased their distributions in California (Gloria-Soria et al. [34] ) and breed year-round in Washington D.C.

(Lima et al. [35] ). Our numerical simulations illustrate that the advection may contribute the mosquito population expansion.
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