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Abstract

In this paper we study the existence of periodic solutions to the partial functional differential equation{
dy(t)
dt

= By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,
y0 = ϕ ∈ CB .

where B : Y → Y is a Hille-Yosida operator on a Banach space Y . For CB := {ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈
D(B)}, yt ∈ CB is defined by yt(θ) = y(t+ θ), θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and
f : R × CB → Y is a continuous map and is T -periodic in the time variable t. Sufficient conditions on
B, L̂ and f(t, yt) are given to ensure the existence of T -periodic solutions. The results then are applied
to establish the existence of periodic solutions in a reaction-diffusion equation with time delay and the
diffusive Nicholson’s blowflies equation.
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1 Introduction

The aim of this paper is to study the existence of periodic solutions for the following partial functional
differential equation (PFDE): {

dy(t)
dt = By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,
y0 = ϕ ∈ CB .

(1.1)

where B : Y → Y is a Hille-Yosida operator on a Banach space Y. Denote CB := {ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈
D(B)}. yt ∈ CB is defined by yt(θ) = y(t + θ), θ ∈ [−r, 0], L̂ : CB → Y is a bounded linear operator, and
f : R× CB → Y is a continuous map and is T -periodic in the time variable t.

The existence of periodic solutions in abstract evolution equations has been widely studied in the lit-
erature. By applying Horn’s fixed point theorem to the Poincaré map, Liu [12] and Ezzinbi and Liu [7]
established the existence of bounded and ultimate bounded solutions of evolution equations with or without
delay, which contains partial functional differential equation, implying the existence of periodic solutions.
Benkhalti and Ezzinbi [2] and Kpoumiè et al. [9] proved that under some conditions, the existence of a
bounded solution for some non-densely defined nonautonomous partial functional differential equations im-
plies the existence of periodic solutions. The approach was to construct a map on the space of T -periodic
functions from the corresponding nonhomogeneous linear equation and use a fixed-point theorem concerning
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set-valued maps. Li [10] used analytic semigroup theory to discuss the existence and stability of periodic
solutions in evolution equations with multiple delays. Li et al. [11] proved several Massera-type criteria
for linear periodic evolution equations with delay and applied the results to nonlinear evolution equations,
functional, and partial differential equations. For fundamental theories on partial functional differential
equations, we refer to the monograph of Wu [17].

In this paper, we study the existence of periodic solutions of the partial functional differential equation
(1.1). In section 2, we recall some preliminary results on existence of mild periodic solutions of abstract
semilinear equations. In section 3, using the existence theorem of mild periodic solutions presented in section
2, we show the existence of periodic mild solutions of partial functional differential equations. In section 4,
we apply the main results of this paper to a reaction-diffusion equation with time delay and the diffusive
Nicholson’s blowflies equation.

2 Preliminary results

In this section, we first recall an existence theorem of classical solutions of partial functional differential
equations. Then we review a theorem obtained in Su and Ruan [16], which will be applied to prove our main
theorem in the next section.

Consider an abstract semilinear functional differential equation on a Banach space X given by{
du(t)
dt = A0u(t) + F (t, ut), ∀t ≥ 0,

u0 = ϕ ∈ CX ,
(2.1)

where A0 : D(A0) ⊆ X → X is a linear Hille-Yosida operator, CX = C([−r, 0], X) denotes the space
of continuous functions from [−r, 0] to X with the uniform convergence topology. ut(θ) = u(t + θ) for
θ ∈ [−r, 0], F is a function from [0,∞)× CX into X, and ϕ ∈ CX is the given initial value.

The following theorem gives the existence of classical solutions of problem (2.1).

Theorem 2.1 (Ezzinbi and Adimy [6, Theorem 13]) Assume that F (t, ϕ) is continuous differentiable
and satisfies the following locally Lipschitz conditions: for each α > 0 there exists a constant C1(α) > 0 such
that

|F (t, ϕ1)− F (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,

|DtF (t, ϕ1)−DtF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖ ,

|DϕF (t, ϕ1)−DϕF (t, ϕ2)| ≤ C1(α) ‖ϕ1 − ϕ2‖

for all t ∈ [0, Tϕ] and ϕ1, ϕ2 ∈ CX with ‖ϕ1‖ , ‖ϕ2‖ ≤ α, where DtF and DϕF denote the derivatives of
F (t, ϕ) with respect to t and ϕ, respectively. For given ϕ ∈ C1

X := C1([−r, 0], X) such that

ϕ(0) ∈ D(A0), ϕ′(0) ∈ D(A0) and ϕ′(0) = A0ϕ(0) + F (0, ϕ),

let u(., ϕ) : [−r, Tϕ) → X be the unique integral solution of equation (2.1). Then, u(., ϕ) is continuously
differentiable on [−r, Tϕ) and satisfies equation (2.1).

Now consider the abstract semilinear equation

du

dt
= Au(t) + F (t, u(t)), t ≥ 0 (2.2)

in a Banach space X, where A is a linear operator on X (not necessarily densely defined) satisfying the
Hille-Yoshida condition (see the following) and F : [0,∞)×D(A)→ X is continuous and T -periodic in t.

Assumption 2.2 (H1) There exist M ≥ 1 and ω ∈ R such that (ω,∞) ⊂ ρ(A) and ‖(λI −A)−n‖L(X) ≤
M

(λ−ω)n for λ > ω, n ≥ 1;

(H2) F : [0,∞)×D(A)→ X is continuous and Lipschitz on bounded sets; i.e., for each C > 0 there exists
KF (C) ≥ 0 such that ‖F (t, u)− F (t, v)‖ ≤ KF (C) ‖u− v‖ for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(H3) F : [0,∞) × D(A) → X is continuous and bounded on bounded sets; i.e., there exists LF (T, ρ) ≥ 0
such that ‖F (t, u)‖ ≤ LF (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.
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Definition 2.3 A linear operator A : D(A) ⊂ X → X satisfying Assumption 2.2 (H1) is called a Hille-
Yosida operator.

With these assumptions, we have the following result for equation (2.2).

Theorem 2.4 (Su and Ruan [16, Theorem 3.3]) Let Assumption 2.2 hold with ω < 0, M = 1 and F
being T -periodic in t. Suppose that there exists ρ > 0 such that (N +T )KF (ρ) < 1 and (N +T )LF (T, ρ) ≤ ρ,
where N = T

1−eωT . Then the abstract semilinear equation (2.2) has a mild T -periodic solution.

3 Existence of periodic solutions

In this section, we rewrite the partial functional differential equation as an abstract semilinear equation and
present an existence theorem of periodic solutions.

Let B : D(B) ⊂ Y → Y be a linear operator on a Banach space (Y, ‖·‖Y ). Assume that B is a Hille-Yosida
operator; that is, there exist ωB ∈ R and MB > 0 such that (ωB ,+∞) ⊂ ρ(B) and∥∥(λI −B)−n

∥∥ ≤ MB

(λ− ωB)n
, ∀λ > ωB , n ≥ 1.

Set Y0 := D(B). Consider the part of B in Y0, denoted B0, which is defined by

B0y = By, ∀y ∈ D(B0)

with
D(B0) := {y ∈ D(B) : By ∈ Y0}.

For r ≥ 0, set C := C([−r, 0];Y ) endowed with the supremum norm

‖ϕ‖∞ = sup
θ∈[−r,0]

‖ϕ(θ)‖Y .

Consider the PFDE {
dy(t)
dt = By(t) + L̂(yt) + f(t, yt), ∀t ≥ 0,
y0 = ϕ ∈ CB ,

(3.1)

where CB := {ϕ ∈ C([−r, 0];Y ) : ϕ(0) ∈ D(B)}, yt ∈ CB is defined by yt(θ) = y(t + θ), θ ∈ [−r, 0],
L̂ : CB → Y is a bounded linear operator, and f : R× CB → Y is a continuous map.

Now we rewrite the PFDE (3.1) as an abstract non-densely defined Cauchy problem such that our
theorems can be applied. Firstly, following Ducrot et al. [5] we regard the PFDE (3.1) as a PDE. Define
u ∈ C([0,+∞)× [−r, 0], Y ) by

u(t, θ) = y(t+ θ), ∀t ≥ 0, ∀θ ∈ [−r, 0].

If y ∈ C1([−r,+∞), Y ), then
∂u(t, θ)

∂t
= y′(t+ θ) =

∂u(t, θ)

∂θ
.

Moreover, for θ = 0, we obtain

∂u(t, 0)

∂θ
= y′(t) = By(t) + L̂(yt) + f(t, yt) = Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)), ∀t ≥ 0.

Therefore, we deduce that u satisfy a PDE
∂u(t,θ)
∂t − ∂u(t,θ)

∂θ = 0,
∂u(t,0)
∂θ = Bu(t, 0) + L̂(u(t, .)) + f(t, u(t, .)), ∀t ≥ 0,

u(0, .) = ϕ ∈ CB .
(3.2)

In order to write the PDE (3.2) as an abstract non-densely defined Cauchy problem, we extend the state
space to take into account the boundary conditions. Let X = Y × C with the usual product norm∥∥∥∥( y

ϕ

)∥∥∥∥ = ‖y‖Y + ‖ϕ‖∞ .
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Define the linear operator A : D(A) ⊂ X → X by

A

(
0Y
ϕ

)
=

(
−ϕ′(0) +Bϕ(0)

ϕ′

)
, ∀
(

0Y
ϕ

)
∈ D(A) (3.3)

with
D(A) = {0Y } × {ϕ ∈ C1([−r, 0], Y ), ϕ(0) ∈ D(B)}.

Note that A is non-densely defined because

X0 := D(A) = 0Y × CB 6= X.

Now define L : X0 → X by

L

(
0Y
ϕ

)
:=

(
L̂(ϕ)
0C

)
and F : R×X0 → X by

F (t,

(
0Y
ϕ

)
) :=

(
f(t, ϕ)

0C

)
.

Let

v(t) :=

(
0Y
u(t)

)
.

Then we can rewrite the PDE (3.2) as the following non-densely defined Cauchy problem

dv(t)

dt
= Av(t) + L(v(t)) + F (t, v(t)), t ≥ 0; v(0) =

(
0Y
ϕ

)
∈ X0. (3.4)

To state an existence theorem of periodic solutions for equation (3.1), we make the following assumptions.

Assumption 3.1 (C1) f : R × CB → Y is Lipschitz on bounded sets; i.e., for each C > 0 there exists
Kf (C) ≥ 0 such that ‖f(t, u)− f(t, v)‖ ≤ Kf (C) ‖u− v‖ for t ∈ [0,∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(C2) f : R × CB → Y is bounded on bounded sets; i.e., there exists Lf (T, ρ) ≥ 0 such that ‖f(t, u)‖ ≤
Lf (T, ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions, we have the following result for equation (3.1).

Theorem 3.2 Let Assumption 3.1 hold with ωB < 0, MB = 1 and f being T-periodic in t. Suppose that

there exists ρ > 0 such that (N + T )(Kf (ρ) +
∥∥∥L̂∥∥∥

ρ
) < 1 and (N + T )(Lf (T, ρ) +

∥∥∥L̂∥∥∥
ρ
ρ) ≤ ρ, where

N = T
1−eωBT , then equation (3.1) has a T-periodic mild solution.

Proof. Since (3.1) can be written as (3.4), denote G(t, v(t)) = L(v(t)) + F (t, v(t)), it suffices to prove that

(a) A satisfies Assumption 2.2 (H1) with ω = ωB < 0 and M = 1;

(b) G : [0,∞)× {0Y } × CB → Y × C satisfies Assumption 2.2 (H1) (H2);

(c) There exists ρ > 0 such that (N+T )KG(ρ) < 1 and (N+T )LG(T, ρ) ≤ ρ, where N = T
1−eωT = T

1−eωBT .

It follows from Theorem 2.4 that equation (3.4) has a T -periodic mild solution, which implies that equation
(3.1) has a T -periodic mild solution with initial value u(0, .) = ϕ ∈ CB .

From Lemma 3.6 and its proof in Ducrot et al. [5], we know that A as defined in (3.3) is a Hille-Yoshida
operator with ω = ωB < 0 and M = MB = 1, which proves (a).

For ϕ1, ϕ2 ∈ CB such that ‖ϕ1‖ ≤ C and ‖ϕ2‖ ≤ C, we have(
0Y
ϕ1

)
,

(
0Y
ϕ2

)
∈ 0Y × CB = D(A)

and ∥∥∥∥( 0Y
ϕ1

)∥∥∥∥ = ‖ϕ1‖ ≤ C,
∥∥∥∥( 0Y

ϕ2

)∥∥∥∥ = ‖ϕ2‖ ≤ C.
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Then ∥∥∥∥G(t,

(
0Y
ϕ1

)
)−G(t,

(
0Y
ϕ2

)
)

∥∥∥∥
=

∥∥∥∥L(

(
0Y
ϕ1

)
)− L(

(
0Y
ϕ2

)
) + F (t,

(
0Y
ϕ1

)
)− F (t,

(
0Y
ϕ2

)
)

∥∥∥∥
≤
∥∥∥∥L(

(
0Y
ϕ1

)
)− L(

(
0Y
ϕ2

)
)

∥∥∥∥+

∥∥∥∥F (t,

(
0Y
ϕ1

)
)− F (t,

(
0Y
ϕ2

)
)

∥∥∥∥
=

∥∥∥∥( L̂(ϕ1 − ϕ2)
0C

)∥∥∥∥+

∥∥∥∥( f(t, ϕ1)− f(t, ϕ2)
0C

)∥∥∥∥
=
∥∥∥L̂(ϕ1 − ϕ2)

∥∥∥
Y

+ ‖f(t, ϕ1)− f(t, ϕ2)‖Y

≤ Kf (C) ‖ϕ1 − ϕ2‖+
∥∥∥L̂∥∥∥

C
‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥

C
) ‖ϕ1 − ϕ2‖

= (Kf (C) +
∥∥∥L̂∥∥∥

C
)

∥∥∥∥( 0Y
ϕ1

)
−
(

0Y
ϕ2

)∥∥∥∥ .
So there exists KG(C) = Kf (C) +

∥∥∥L̂∥∥∥
C

such that∥∥∥∥G(t,

(
0Y
ϕ1

)
)−G(t,

(
0Y
ϕ2

)
)

∥∥∥∥ ≤ KG(C)

∥∥∥∥( 0Y
ϕ1

)
−
(

0Y
ϕ2

)∥∥∥∥ .
Furthermore, for t ≤ T and

∥∥∥∥( 0Y
ϕ

)∥∥∥∥ ≤ ρ, we have

∥∥∥∥G(t,

(
0Y
ϕ

)
)

∥∥∥∥ =

∥∥∥∥L( 0Y
ϕ

)
+ F (t,

(
0Y
ϕ

)
)

∥∥∥∥
≤
∥∥∥∥L( 0Y

ϕ

)∥∥∥∥+

∥∥∥∥F (t,

(
0Y
ϕ

)
)

∥∥∥∥
=

∥∥∥∥( L̂(ϕ)
0C

)∥∥∥∥+

∥∥∥∥( f(t, ϕ)
0C

)∥∥∥∥
=
∥∥∥L̂(ϕ)

∥∥∥
Y

+ ‖f(t, ϕ)‖Y

≤
∥∥∥L̂∥∥∥

ρ
ρ+ Lf (T, ρ).

So there exists LG(T, ρ) =
∥∥∥L̂∥∥∥

ρ
ρ + Lf (T, ρ) such that

∥∥∥∥G(t,

(
0Y
ϕ

)
)

∥∥∥∥ ≤ LG(T, ρ), which completes the

proof of (b).
With KG(C) and LG(T, ρ) given as above, (c) follows directly from the assumptions.

4 Applications

In this section, we apply the results in last section to a reaction-diffusion equation with time delay and the
diffusive Nicholson’s blowflies equation.

4.1 A reaction-diffusion equation with time delay

Let us consider the following periodic reaction-diffusion equation with time delay:
∂u(t,x)
∂t = ∂2u(t,x)

∂x2 − au(x, t)− b(t)u(x, t− r), 0 ≤ x ≤ 1, t ≥ 0
u(0, t) = u(1, t) = k, t ≥ 0
u(x, t) = φ(t)(x), 0 ≤ x ≤ 1, −r ≤ t ≤ 0,

(4.1)

5



where k is a constant and a ≥ 0, b ∈ C([0,∞),R+) is T -periodic. We will study the existence of T -periodic
solution of problem (4.1).

Let v(x, t) = u(x, t)− k, then we have the following equation:
∂v(t,x)
∂t = ∂2v(t,x)

∂x2 − av(x, t)− b(t)v(x, t− r)− ka− kb(t), 0 ≤ x ≤ 1, t ≥ 0
v(0, t) = v(1, t) = 0, t ≥ 0
v(x, t) = φ(t)(x)− k, 0 ≤ x ≤ 1, −r ≤ t ≤ 0.

(4.2)

We know that the existence of T -periodic solutions of equation (4.2) is equivalent to the existence of T -
periodic solutions of equation (4.1).

Let X = C(0, 1) and B : X → X be defined by

Bφ = φ′′ − aφ

with
D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}.

Let CB := {φ ∈ C([−r, 0], X) : φ(0) ∈ D(B)} and define f : [0,∞)× CB → X by

f(t, φ) = −b(t)φ(−r)− ka− kb(t).

Then equation (4.2) can be written as{
dy(t)
dt = By(t) + f(t, yt), ∀t = 0
y0 = ϕ ∈ CB

(4.3)

Proposition 4.1 Assume that

(i) a > 0, 0 ≤ b(t) ≤ b+ and b(t+ T ) = b(t) for t ≥ 0;

(ii) ( T
1−e−aT + T )b+ < 1;

(iii) There exists ρ > 0 such that ( T
1−e−aT + T )(ka+ kb+ + b+ρ) ≤ ρ.

Then equation (4.2) thus (4.1) has a T -periodic solution.

Proof. Since equation (4.2) can be written as (4.3), it suffices to check the assumptions of Theorem 3.2. Let
ψ ∈ X and let λ > −a. Then

(λI −B)ϕ = ψ ⇔ (λ+ a)ϕ− ϕ′′ = ψ.

Set ϕ̂ = ϕ′. Then

(λI −B)ϕ = ψ ⇔
{
ϕ′ = ϕ̂
ϕ̂′ = (λ+ a)ϕ− ψ

⇔
{ √

λ+ aϕ′ + ϕ̂′ =
√
λ+ a(

√
λ+ aϕ+ ϕ̂)− ψ√

λ+ aϕ′ − ϕ̂′ = −
√
λ+ a(

√
λ+ aϕ− ϕ̂) + ψ.

Define
w = (

√
λ+ aϕ+ ϕ̂),

ŵ = (
√
λ+ aϕ− ϕ̂).

Then we have

(λI −B)ϕ = ψ ⇔
{
w′ =

√
λ+ aw − ψ,

ŵ′ = −
√
λ+ aŵ + ψ.

(4.4)

The first equation of (4.4) is equivalent to

e−
√
λ+axw(x) = e−

√
λ+ayw(y)−

∫ x

y

e−
√
λ+alψ(l)dl, ∀x ≥ y. (4.5)

In (4.5) let y = 0, then we obtain

w(x) = e
√
λ+axw(0)− e

√
λ+ax

∫ x

0

e−
√
λ+alψ(l)dl, (4.6)
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where w(0) =
√
λ+ aϕ(0) + ϕ̂(0) = ϕ̂(0). In (4.5) let x = 1, we have

w(y) = e
√
λ+ay−

√
λ+aw(1) + e

√
λ+ay

∫ 1

y

e−
√
λ+alψ(l)dl, (4.7)

where w(1) =
√
λ+ aϕ(1) + ϕ̂(1) = ϕ̂(1).

The second equation of (4.4) is equivalent to

e
√
λ+axŵ(x) = e

√
λ+ayŵ(y) +

∫ x

y

e
√
λ+alψ(l)dl, ∀x ≥ y. (4.8)

In (4.8) let y = 0, then we have

ŵ(x) = e−
√
λ+axŵ(0) + e−

√
λ+ax

∫ x

0

e
√
λ+alψ(l)dl, (4.9)

where ŵ(0) =
√
λ+ aϕ(0)− ϕ̂(0) = −ϕ̂(0). In (4.8) let x = 1, we have

ŵ(y) = e
√
λ+a−

√
λ+ayŵ(1)− e−

√
λ+ay

∫ 1

y

e
√
λ+alψ(l)dl, (4.10)

where ŵ(1) =
√
λ+ aϕ(1)− ϕ̂(1) = −ϕ̂(1).

From (4.6) and (4.9), we have

e2
√
λ+axŵ(x) + w(x) =

∫ x

0

e
√
λ+ax(e

√
λ+al − e−

√
λ+al)ψ(l)dl, (4.11)

where x ∈ [0, 1]. Combining (4.7) and (4.10), we obtain

e2
√
λ+a(1−x)w(x) + ŵ(x) =

∫ 1

x

e−
√
λ+ax(e2

√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl. (4.12)

Since ŵ =
√
λ+ aϕ− ϕ̂ and w =

√
λ+ aϕ+ ϕ̂, (4.11) and (4.12) can be written as

√
λ+ a(e2

√
λ+ax + 1)ϕ+ (1− e2

√
λ+ax)ϕ̂ =

∫ x

0

e
√
λ+ax(e

√
λ+al − e−

√
λ+al)ψ(l)dl (4.13)

and

(e2
√
λ+a(1−x) + 1)

√
λ+ aϕ+ (e2

√
λ+a(1−x) − 1)ϕ̂ =

∫ 1

x

e−
√
λ+ax(e2

√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl. (4.14)

Combining (4.13) and (4.14), we have the following

ϕ(x) =
(e2
√
λ+a−

√
λ+ax − e

√
λ+ax)

∫ x
0

(e
√
λ+al − e−

√
λ+al)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

−
(e−
√
λ+ax − e

√
λ+ax)

∫ 1

x
(e2
√
λ+a−

√
λ+al − e

√
λ+al)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

=

∫ x
0

(e2
√
λ+a−

√
λ+a(x−l) − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a(x−l))ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

−
∫ 1

x
(e2
√
λ+a−

√
λ+a(x+l) − e

√
λ+a(l−x) − e2

√
λ+a−

√
λ+a(l−x) + e

√
λ+a(x+l))ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

=

∫ x
0

(e2
√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

+

∫ 1

x
(e2
√
λ+a−

√
λ+a|l−x| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|l−x|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

7



=

∫ 1

0
(e2
√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

.

Since ϕ ∈ D(A), it follows that

‖ϕ‖ = sup
x∈[0,1]

|ϕ(x)|

= sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0
(e2
√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l|)ψ(l)dl

2
√
λ+ a(e2

√
λ+a − 1)

∣∣∣∣∣ .
Since e2

√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l| ≥ 0 for x ∈ [0, 1] and l ∈ [0, 1], we

have

‖ϕ‖ ≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1

0

∣∣∣e2√λ+a−√λ+a|x−l| − e2√λ+a−√λ+a(x+l) − e√λ+a(x+l) + e
√
λ+a|x−l|

∣∣∣ dl
2
√
λ+ a(e2

√
λ+a − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1

0
(e2
√
λ+a−

√
λ+a|x−l| − e2

√
λ+a−

√
λ+a(x+l) − e

√
λ+a(x+l) + e

√
λ+a|x−l|)dl

2
√
λ+ a(e2

√
λ+a − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

e2
√
λ+a( 2√

λ+a
− 1√

λ+a
e
√
λ+a(x−1) − 1√

λ+a
e−
√
λ+ax + 1√

λ+a
e−
√
λ+a(x+1) − 1√

λ+a
e−
√
λ+ax)

2
√
λ+ a(e2

√
λ+a − 1)

+
− 2√

λ+a
+ 1√

λ+a
e−
√
λ+a(x−1) + 1√

λ+a
e
√
λ+ax − 1√

λ+a
e
√
λ+a(x+1) + 1√

λ+a
e
√
λ+ax

2
√
λ+ a(e2

√
λ+a − 1)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√
λ+a − 1)( 2√

λ+a
− 1√

λ+a
e
√
λ+a(x−1) − 1√

λ+a
e−
√
λ+ax + 1√

λ+a
e−
√
λ+a(x+1) − 1√

λ+a
e−
√
λ+ax)

2
√
λ+ a(e2

√
λ+a − 1)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√
λ+a − 1) 2√

λ+a

2
√
λ+ a(e2

√
λ+a − 1)

=
1

λ+ a
sup
x∈[0,1]

|ψ(x)|

=
1

λ+ a
‖ψ‖ .

Now we have
∥∥(λI −B)−1ψ

∥∥ ≤ 1
λ+a ‖ψ‖, which implies that

∥∥(λI −B)−1
∥∥ ≤ 1

λ+a . So B is a Hille-Yoshida
operator with M = 1 and ωB = −a < 0. We conclude that∥∥(λI −B)−1

∥∥ ≤ 1

λ+ a
, ∀λ > −a,

For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ C, ‖ϕ2‖ ≤ C, we have

‖f(t, ϕ1)− f(t, ϕ2)‖ = ‖−b(t)ϕ1(−r)− ka− kb(t) + b(t)ϕ2(−r) + ka+ kb(t)‖
= ‖b(t)(ϕ1(−r)− ϕ2(−r))‖
≤ ‖b(t)‖ ‖ϕ1(−r)− ϕ2(−r))‖
≤ b+ ‖ϕ1 − ϕ2‖ .

So Kf (ρ) = b+ for ∀ρ > 0. Moreover, for ϕ ∈ CB with ‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ = ‖−b(t)ϕ(−r)− ka− kb(t)‖
≤ b+ ‖ϕ‖+ ka+ kb+

≤ b+ρ+ ka+ kb+.

So we have Lf (T, ρ) = b+ρ+ka+kb+. Therefore, assumptions (ii) and (iii) imply (N+T )(Kf (ρ)+
∥∥∥L̂∥∥∥) < 1

and (N + T )(Lf (T, ρ) +
∥∥∥L̂∥∥∥ ρ) ≤ ρ in Theorem 3.2, respectively. The conclusion follows from Theorem 3.2.
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Now we choose parameters for equation (4.2) such that assumptions in Proposition 4.1 are satisfied. We
will perform some numerical simulations to demonstrate the existence of T -periodic solutions.

Let T = 1, k = 0.5, r = 1, a = 1 and b(t) = 0.15 + 0.15 sin(2πt). We can verify that conditions in
Proposition 4.1 are satisfied, so there exists a T -periodic solution, which can be seen from Figure 1.

Figure 1: A T -periodic solution of the delayed reaction-diffusion equation (4.2) with initial condition ϕ(x, t) =
0.5 for t ∈ [−1, 0], x ∈ [0, 1], where b(t) = 0.15 + 0.15 sin(2πt), T = 1, r = 1, k = 0.5 and a = 1.

Now we change the parameters so that the conditions in Proposition 4.1 do not hold. Let T = 1, a = 1,
k = 0.5, r = 1 and b(t) = 1.5 + 10 sin(2πt). Figure 2 gives a solution in this scenario.

Figure 2: A solution of the delayed reaction-diffusion equation (4.2) with initial condition ϕ(x, t) = 0.5 for
t ∈ [−1, 0], x ∈ [0, 1], where b(t) = 1.5 + 10 sin(2πt), T = 1, k = 0.5, r = 1 and a = 1.

4.2 The diffusive Nicholson’s blowflies equation

We consider the diffusive Nicholson’s blowflies equation (So and Yang [15], Yang and So [18], So et al. [14]){
∂u(t,x)
∂t = ∂2u(t,x)

∂x2 − τu(t, x) + β(t)τu(t− 1, x)eu(t−1,x), t ≥ 0, x ∈ [0, 1]
u(t, 0) = u(t, 1) = k, t ≥ 0,

(4.15)
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where k is a constant and β(t) is T -periodic. To study existence of T -periodic solutions of equation (4.15),
let v(t, x) = u(t, x)− k. Then we have

∂v(t,x)
∂t = ∂2v(t,x)

∂x2 − τv(t, x) + β(t)τv(t− 1, x)e−[v(t−1,x)+k]

+kβ(t)τe−[v(t−1,x)+k] − kτ
v(t, 0) = v(t, 1) = 0.

(4.16)

We know that existence of T -periodic solutions of equation (4.16) is equivalent to the existence of T -periodic
solutions of equation (4.15).

Let X = C[0, 1] and let B : X → X be defined by

Bφ = φ′′ − τφ

with D(B) = {φ ∈ C2([0, 1],R), φ(0) = φ(1) = 0}. Let CB := {φ ∈ C([−1, 0], X) : φ(0) ∈ D(B)} and define
f : [0,∞)× CB → X by

f(t, φ) = β(t)τφ(−1)e−[φ(−1)+k] + kβ(t)τe−[φ(−1)+k] − kτ.

Then equation (4.16) can be written as

dy(t)

dt
= By(t) + f(t, yt), ∀t = 0 (4.17)

Proposition 4.2 Assume that

(i) τ > 0, 0 ≤ β(t) ≤ β+ and β(t) = β(t+ T ) for ∀t ≥ 0;

(ii) There exists ρ > 0 such that ( T
1−e−τT + T )β+τe

−k(ρ+ k+ 1)eρ < 1 and ( T
1−e−τT + T )τ(k+ β+ρe

ρ−k +

kβ+e
ρ−k) ≤ ρ.

Then equation (4.16) thus (4.15) has a T -periodic solution.

Proof. Since equation (4.16) can be written as (4.17), it suffices to check assumptions of Theorem 3.2. Let
ψ ∈ X and let λ > −τ . Then

(λI −B)ϕ = ψ ⇔ (λ+ τ)ϕ− ϕ′′ = ψ.

By following exactly the same way as in the proof of Proposition 4.1, we obtain that∥∥(λI −B)−1
∥∥ ≤ 1

λ+ τ
, ∀λ > −τ,

which implies that ωB = −τ < 0. For ϕ1, ϕ2 ∈ CB and ‖ϕ1‖ ≤ ρ, ‖ϕ2‖ ≤ ρ, we have

f(t, ϕ1)− f(t, ϕ2) = β(t)τϕ1(−1)e−[ϕ1(−1)+k] + kβ(t)τe−[ϕ1(−1)+k] − kτ
− β(t)τϕ2(−1)e−[ϕ2(−1)+k] − kβ(t)τe−[ϕ2(−1)+k] + kτ

and

‖f(t, ϕ1)− f(t, ϕ2)‖ ≤
∥∥∥β(t)τϕ1(−1)e−[ϕ1(−1)+k] − β(t)τϕ2(−1)e−[ϕ2(−1)+k]

∥∥∥
+
∥∥∥kβ(t)τe−[ϕ1(−1)+k] − kβ(t)τe−[ϕ2(−1)+k]

∥∥∥
≤
∥∥∥β(t)τe−k(ϕ1(−1)e−ϕ1(−1) − ϕ1(−1)e−ϕ2(−1))

∥∥∥
+
∥∥∥β(t)τe−k(ϕ1(−1)e−ϕ2(−1) − ϕ2(−1)e−ϕ2(−1))

∥∥∥
+
∥∥∥kβ(t)τe−k(e−ϕ1(−1) − e−ϕ2(−1))

∥∥∥
≤ β+τe−k(ρ+ 1)eρ ‖ϕ1 − ϕ2‖+ kβ+τe

−keρ ‖ϕ1 − ϕ2‖
= β+τe

−k(ρ+ k + 1)eρ ‖ϕ1 − ϕ2‖ .
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So we have Kf (ρ) = β+τe
−k(ρ+ k + 1)eρ for ρ > 0. Moreover, for ϕ ∈ CB with ‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

‖f(t, ϕ)‖ =
∥∥∥β(t)τϕ(−1)e−[ϕ(−1)+k] + kβ(t)τe−[ϕ(−1)+k] − kτ

∥∥∥
≤ β+τe−k

∥∥∥ϕ(−1)e−ϕ(−1)
∥∥∥+ kβ+τe

−k
∥∥∥e−ϕ(−1)∥∥∥+ kτ

≤ τ(k + β+ρe
ρ−k + kβ+e

ρ−k).

Hence, we have Lf (T, ρ) = τ(k+ β+ρe
ρ−k + kβ+e

ρ−k). Therefore, assumption (ii) implies (N + T )(Kf (ρ) +∥∥∥L̂∥∥∥) < 1 and (N + T )(Lf (T, ρ) +
∥∥∥L̂∥∥∥ ρ) ≤ ρ in Theorem 3.2. The conclusion follows from Theorem 3.2.

Now we choose parameters for equation (4.15) such that assumptions in Proposition 4.2 are satisfied.
Let T = 1, τ = 1, k = 0.1 and β(t) = 0.025 + 0.015 cos 2πt in equation (4.15), then it is easy to check that
assumptions of Proposition 4.2 are satisfied. So there exists a T -periodic solution, which can be seen from
Figure 3.

Figure 3: A T -periodic solution of the diffusive Nicholson’s blowflies equation (4.15) with initial condition
ϕ(x, t) = 0.1 for t ∈ [−1, 0], x ∈ [0, 1], where β(t) = 0.025 + 0.015 cos(2πt), T = 1, k = 0.1 and τ = 1.

Remark 4.3 When u(t) does not depend on the spatial variable x in equations (4.1) and (4.15), the conclu-
sions in Propositions 4.1 and 4.2 still hold. We then obtain conditions for the existence of periodic solutions
in delayed periodic logistic equation (Chen [3]) and delayed periodic Nicholson’s blowflies equation (Chen
[4]), respectively.

Remark 4.4 The techniques and arguments used in this paper can be modified to study the existence of
periodic solutions in partial functional differential equations with infinite delay (Benkhalti et al. [1]).
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