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Abstract

In this paper, we study the existence of mild periodic solutions of abstract semilinear equations in a setting 
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results to establish the existence of periodic solutions in delayed red-blood cell models, age-structured 
models with periodic harvesting, and the diffusive logistic equation with periodic coefficients.
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1. Introduction

The existence of periodic solutions is a fundamental property in all types of differential equa-
tions. One basic and important result on this topic is Massera Theorem. In 1950, Massera [29]
studied the existence of periodic solutions for the following ordinary differential equation

du

dt
= f (t, u(t)), t ∈ R, (1.1)

where f : R ×R → R is continuous and periodic in t . He proved that the existence of periodic 
solutions of equation (1.1) is equivalent to the existence of a bounded solution on R+ of equa-
tion (1.1). Important facts, results and references on periodic solutions of ordinary differential 
equations can be found in Yoshizawa [44] and Farkas [14].

The problem on the existence of periodic solutions for differential equations in infinite dimen-
sional spaces has been investigated in various directions. One of them is to generalize Massera 
Theorem to infinite dimensional systems. In fact, Massera and Schäffer [30] studied the relation-
ship between the periodic solutions and bounded solutions for the linear equation

du

dt
= A(t)u + f (t), t ≥ 0 (1.2)

in infinite dimensional spaces. Chow [7] and Chow and Hale [8] established the existence of 
periodic solutions under the existence of bounded solutions for the nonhomogeneous linear func-
tional differential equation

du

dt
= L(t, ut ) + f (t), (1.3)

where ut ∈ Cr := C([−r, 0], R), L : (−∞, +∞) × Cr → R is continuous, linear with respect 
to the second argument and T -periodic in t , T ≥ r , and f is continuous and T -periodic. They 
proved that Massera Theorem holds for equation (1.3) by showing that the Poincaré map defined 
by P : ϕ → uT (· , ϕ, f ), where uT (· , ϕ, f ) is the unique mild solution of equation (1.3) initiated 
at ϕ, has a fixed point. Further results on periodic solutions of functional differential equations 
can be found in Hale and Verduyn Lunel [16], Diekmann et al. [10], and Burton [4].

Prüss [36] investigated the following abstract semilinear equation

du

dt
= Au(t) + F(t, u(t)), t ≥ 0 (1.4)

in a Banach space X, under the condition that A generates a C0-semigroup {U(t)}t≥0 of 
type (M, ω), the domain D(A) is closed, bounded and convex, and F is continuous and T -
periodic in t . By constructing a Poincaré map and using Schauder’s fixed point theorem and 
k-set contraction argument, he proved the existence of mild T -periodic solutions of (1.4) when 
U(t) is compact for t > 0 or ω < 0 and F is compact. By applying Horn’s fixed point the-
orem to the Poincaré map, Liu [23] and Ezzinbi and Liu [13] established the existence of 
bounded and ultimate bounded solutions of evolution equations with or without delay, imply-
ing the existence of periodic solutions. Benkhalti and Ezzinbi [3] and Kpoumiè et al. [20]
proved that under some conditions, the existence of a bounded solution for some nondensely 
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defined nonautonomous partial functional differential equations implies the existence of pe-
riodic solutions. The approach was to construct a map on the space of T -periodic functions 
from the corresponding nonhomogeneous linear equation and use a fixed-point theorem con-
cerning set-valued maps to prove the existence of a fixed point for this map. Li et al. [22]
proved several Massera-type criteria for linear periodic evolution equations with delay and 
applied the results to nonlinear evolution equations, functional and partial differential equa-
tions.

For the abstract semilinear evolution equation

du

dt
= A(t)u(t) + F(t, u(t)), t ≥ 0 (1.5)

in a Banach space X, Nguyen and Ngo [32,33] assumed that A(t) is T -periodic, F is T -periodic 
in t and satisfies the ϕ-Lipschitz condition ‖F(t, x1) − F(t, x2)‖ ≤ ϕ(t) ‖x1 − x2‖ for ϕ(t) being 
a real and positive function belonging to an admissible function space. They proved the existence 
of periodic solutions to (1.5) in the case that the family {A(t)}t≥0 generates a strongly contin-
uous, exponentially bounded evolution family. They started with the linear equation (1.2) and 
used the Cesàro limit to prove the existence of periodic solutions. Then they constructed a map 
from periodic solutions of (1.2) and used the admissibility of function spaces combined with the 
Banach fixed point argument to prove the existence of a unique fixed point of the constructed 
map. The existence and uniqueness of a periodic solution of (1.5) follows from the existence and 
uniqueness of the fixed point. Naito et al. [31] developed a decomposition technique to prove the 
existence of periodic solutions to periodic evolution equations in the form of (1.2). Vrabie [40]
studied the existence of periodic mild solutions to nonlinear evolution inclusions that include 
equation (1.4).

In this paper, we study the existence of mild periodic solutions of the abstract semilinear 
equation (1.4) and abstract semilinear evolution equation (1.5) in a setting that includes several 
types of equations such as delay differential equations, first-order hyperbolic partial differential 
equations, and reaction-diffusion equations. We consider the general cases where A is a linear 
operator on X (not necessarily densely defined) satisfying the Hille-Yoshida condition and A(t)

is a T -periodic linear operators on X satisfying the hyperbolic conditions (A1)-(A3) introduced 
by Tanaka [37,38], which will be specified later. In section 2, we recall some preliminary results 
on semigroups generated by a Hille-Yoshida operator, the evolution family and the existence the-
orem of solutions of nonhomogeneous linear equations (2.1) and (2.6). In section 3, we start with 
the linear equations (2.1) and (2.6) to show the existence of mild periodic solutions, whose initial 
value is controlled by the norm of the input function f (t). Using this result and the fixed point 
argument, we prove the existence of mild periodic solutions of (1.4) and (1.5) under some as-
sumptions on F . At the end of section 3, we also discuss the case where the semigroup {U(t)}t≥0

generated by A in (1.4) is compact for t > 0 and give existence theorem of mild periodic solu-
tions of (1.4). The approach is also to start with the linear equation (2.1) to show the existence 
of mild periodic solutions of it and use this result combined with the Schauder’s fixed point the-
orem to prove the existence of mild periodic solutions of (1.4). In section 4 we use the main 
results of this paper to discuss the existence of periodic solutions in three types of biological 
models, delayed periodic red-blood cell models, age-structured models with periodic harvesting, 
and diffusive logistic models with periodic coefficients.
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2. Preliminary results

In this section, we consider the nonhomogeneous linear Cauchy problem

⎧⎨
⎩

du

dt
= Au(t) + f (t), t ≥ 0,

u(0) = x ∈ D(A),
(2.1)

where the linear operator A is densely or non-densely defined in a Banach space X, the function 
f : R+ →R+ is continuous and T -periodic.

First we make the following assumptions.

Assumption 2.1.

(a) A : D(A) ⊂ X → X is a linear operator and there exist real constants M ≥ 1 and ω ∈ R such 
that (ω, ∞) ⊂ ρ(A) and 

∥∥(λI − A)−n
∥∥ ≤ M

(λ−ω)n
for n ≥ 1 and λ > ω;

(b) x ∈ X0 = D(A);
(c) f : [0, ∞) → X is continuous.

A linear operator A : D(A) ⊂ X → X satisfying Assumption 2.1 (a) is called a Hille-Yosida 
operator.

Remark 2.2. Note that the renorming lemma (Lemma 5.1 in Pazy [35]) holds. By exactly the 
same argument as in [35], we see that if 

∥∥(λI − A)−n
∥∥ ≤ M

(λ−ω)n
for n ≥ 1 and λ > ω, then 

there exists a norm |.| on X which is equivalent to the original norm ‖.‖ on X and satisfies 
‖x‖ ≤ |x| ≤ M ‖x‖ for x ∈ X and 

∣∣(λI − A)−n
∣∣ ≤ 1

(λ−ω)n
for n ≥ 1 and λ > ω. That is, without 

loss of generality, M can be chosen to be 1.

Definition 2.3. A continuous function u : [0, ∞) → X is called a mild (or an integrated) solution
to (2.1) if 

∫ t

0 u(s)ds ∈ D(A) and

u(t) = x + A

t∫
0

u(s)ds +
t∫

0

f (s)ds (2.2)

for all t ≥ 0 (see Thieme [39]).

The existence theorem for (2.1) is as follows:

Theorem 2.4 (Da Prato and Sinestrari [9]). Under Assumption 2.1, there exists a unique mild 
solution to (2.1) with value in X0 = D(A). Moreover, u satisfies the estimate

‖u(t)‖ ≤ Meωt ‖x‖ +
t∫

0

Meωt ‖f (s)‖ds (2.3)

for all t ≥ 0.
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If D(A) 
= X; that is, A is nondensely defined, let X0 = D(A). If f (t) = 0, then the family 
of operators {UA(t)}t≥0 with UA(t) : X0 → X0, t ≥ 0, defined by UA(t)x = u(t) for all t ≥ 0
is the C0-semigroup generated by A0, the part of A in X0. For the rest of the article, we denote 
by {UA(t)}t≥0 the semigroup generated by A0. Moreover, if u is a solution of (2.2) we have the 
approximation formula (see Magal and Ruan [26,27])

u(t) = UA(t)x + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1f (s)ds. (2.4)

Kato [19] initiated a study on the evolution family of solutions of the hyperbolic linear evolu-
tion Cauchy problem

{
du

dt
= A(t)u(t), t ≥ s

u(s) = x ∈ X
(2.5)

in a Banach space X. To recall some results about the linear evolution Cauchy problem (2.5), we 
make the following assumptions.

Assumption 2.5.

(A1) D(A(t)) := D is independent of t and not necessarily densely defined;
(A2) The family {A(t)}t≥0 is stable in the sense that there are constants M ≥ 1 and ω ∈ R such 

that (ω, ∞) ⊂ ρ(A(t)) for t ∈ [0, ∞) and∥∥∥∥∥∥
k∏

j=1

(λI − A(tj ))
−1

∥∥∥∥∥∥ ≤ M

(λ − ω)k

for λ > ω and every finite sequence {tj }kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and k = 1, 2, . . .;
(A3) The mapping t → A(t)x is continuously differentiable in X for each x ∈ D.

Note that the linear evolution Cauchy problem (2.5) is called hyperbolic if the linear time-
dependent operator A(t) satisfies the hyperbolic conditions (A1)-(A3) in Assumption 2.5. Now 
we recall some classical results due to Kato [19].

Theorem 2.6 (Kato [19]). Let {A(t), D(A(t))}t≥0 be a family of linear operators on a Banach 
space X satisfying Assumption 2.5 such that D is dense in X. Then the Cauchy problem (2.5) is 
well-posed and the family of operators {A(t)}t≥0 generates an evolution family {U(t, s)}t≥s≥0. 
Moreover, for x ∈ D the map t → U(t, s)x is the unique continuous function which solves the 
Cauchy problem (2.5).

For λ > 0, 0 ≤ s ≤ t and x ∈ D, set

Uλ(t, s)x =
[ t
λ
]∏

i=[ s ]+1

(I − λA(iλ))−1x.
λ
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Theorem 2.7 (Tanaka [38], Kpoumiè et al. [20]). Let {A(t)}t≥0 be a family of linear oper-
ators on a Banach space X satisfying Assumption 2.5. If x ∈ D satisfies the condition that 
A(s)x ∈ D, then there exists an evolution family {U(t, s)}t≥s≥0 defined on D by U(t, s)x =
limλ→0+ Uλ(t, s)x uniformly for x ∈ D and satisfying:

(i) U(t, s)D(s) ⊂ D(t) for all 0 ≤ s ≤ t , where D(t) := {x ∈ D : A(t)x ∈ D};
(ii) for all x ∈ D(s) and t ≥ s, the mapping t �→ U(t, s)x is continuous in D;

(iii) for all x ∈ D(s) and t ≥ s, the mapping t �→ U(t, s)x is continuously differentiable with

∂tU(t, s)x = A(t)U(t, s)x

and

∂+
s U(t, s)x = −U(t, s)A(s)x.

Theorem 2.8 (Oka and Tanaka [34], Tanaka [38], Kpoumiè et al. [20]). Assume that {A(t)}t≥0
satisfies Assumption 2.5. Then the limit

U(t, s)x = lim
λ→0+ Uλ(t, s)x

exists for x ∈ D, 0 ≤ s ≤ t , where the convergence is uniform on � := {(t, s) : 0 ≤ s ≤ t}. More-
over, the family {U(t, s) : (t, s) ∈ �} satisfies the following properties:

(i) For x ∈ D, λ > 0 and 0 ≤ s ≤ r ≤ t , one has

Uλ(t, t)x = x

and

Uλ(t, s)x = Uλ(t, r)Uλ(r, s)x;

(ii) U(t, s) : D → D for (t, s) ∈ �;
(iii) U(t, t)x = x and U(t, s)x = U(t, r)U(r, s)x for x ∈ D and 0 ≤ s ≤ r ≤ t;
(iv) the mapping (t, s) → U(t, s)x is continuous on � for any x ∈ D;
(v) ‖U(t, s)x‖ ≤ Meω(t−s) ‖x‖ for x ∈ D and (t, s) ∈ �.

In the following, we give some results on the existence of solutions for the following non-
densely defined nonhomogeneous linear evolution Cauchy problem

{
du

dt
= A(t)u(t) + f (t), t ∈ [0, a]

u(0) = x,
(2.6)

where f : [0, a] → X is a function. The following theorem gives a generalized variation of con-
stant formula for equation (2.6).



11026 Q. Su, S. Ruan / J. Differential Equations 269 (2020) 11020–11061
Theorem 2.9 (Tanaka [37]). Let x ∈ D and f ∈ L1([0, a], X). Then the limit

u(t) := U(t,0)x + lim
λ→0+

t∫
0

Uλ(t, r)f (r)dr (2.7)

exists uniformly for t ∈ [0, a], and u is a continuous function on [0, a].

As in Tanaka [37,38], for x ∈ D a continuous function u : [0, a] → X is called a mild (or 
an integrated) solution of equation (2.6) if it satisfies (2.7). Furthermore, we have the following 
estimate.

Lemma 2.10 (Kpoumiè et al. [20]). Assume that f ∈ L1([0, a], X). If u is a mild solution of
(2.6), then

‖u(t)‖ ≤ Meωt ‖x‖ +
t∫

0

Meω(t−s) ‖f (s)‖ds. (2.8)

3. Existence of periodic solutions

In this section we will present our main results on the existence of periodic solutions in sys-
tems (1.4) and (1.5) under different conditions.

3.1. Time-independent operators

We first assume that the operator is time-independent and consider the nonhomogeneous linear 
equations

du

dt
= Au(t) + f (t) (3.1)

and the semilinear equation

du

dt
= Au(t) + F(t, u), (3.2)

where A : D(A) ⊂ X → X is a linear operator, f ∈ C([0, ∞), X) and F ∈ C([0, ∞) ×D(A), X)

are both T -periodic in t .

We have the following results for the nonhomogeneous linear equation (3.1).

Theorem 3.1. Assume that A is a Hille-Yosida operator with M ≥ 1 and ω ∈ R, f ∈
C([0, ∞), X) is T-periodic, i.e. f (t + T ) = f (t) for all t ≥ 0. Further, suppose that ω < 0. 
Then the linear equation (3.1) has a unique mild T -periodic solution u0(t). Moreover, we have

‖u0(0)‖ < N sup ‖f (s)‖ , N = T

1 − eωT
.

s∈[0,T ]
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Proof. Since A is a Hille-Yosida operator, the Cauchy problem (2.1) has a unique mild solution 
u(t) : [0, ∞) → D(A) on t ∈ [0, ∞) for each x ∈ D(A) by Theorem 2.4. Now by the variation 
of constant formula, we have

u(t) = UA(t)x + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1f (s)ds, (3.3)

where {UA(t)}t≥0 is the C0-semigroup generated by A on D(A). Let PT : D(A) → D(A) be the 
Poincaré map, i.e.,

PT (x) = u(T ) = UA(T )x + lim
λ→+∞

T∫
0

UA(T − s)λ(λI − A)−1f (s)ds. (3.4)

Since by assumption ω < 0, ‖UA(T )‖ ≤ MeωT . Without loss of generality (W.L.O.G.), assume 
that M = 1. Then ‖UA(T )‖ ≤ eωT < 1. Thus, the operator I −UA(T ) is invertible and PT (x) = x

has a unique solution

x0 = (I − UA(T ))−1 lim
λ→+∞

T∫
0

UA(T − s)λ(λI − A)−1f (s)ds, (3.5)

i.e., x0 is a unique fixed point of PT .
Now let uT (t) = u(t + T ), where u(t) is the unique solution of (2.1) with initial value x0. 

Then

uT (t) = UA(t + T )x0 + lim
λ→+∞

t+T∫
0

UA(t + T − s)λ(λI − A)−1f (s)ds

= UA(t)UA(T )x0 + lim
λ→+∞

T∫
0

UA(t)UA(T − s)λ(λI − A)−1f (s)ds

+ lim
λ→+∞

t+T∫
T

UA(t + T − s)λ(λI − A)−1f (s)ds

= UA(t)u(T ) + lim
λ→+∞

t∫
0

UA(t − θ)λ(λI − A)−1f (θ + T )dθ

= UA(t)uT (0) + lim
λ→+∞

t∫
0

UA(t − θ)λ(λI − A)−1f (θ)dθ.
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Since uT (0) = u(T ) = x0, uT (t) is also a mild solution of (2.1) with initial value x0. By the 
uniqueness of solutions, uT (t) = u(t). Thus, we have u(t + T ) = u(t) for t ∈ [0, ∞).

Moreover, by (3.5), we have

‖x0‖ ≤
∥∥∥limλ→+∞

∫ T

0 UA(T − s)λ(λI − A)−1f (s)ds

∥∥∥
‖I − UA(T )‖

≤ limλ→+∞ λ
‖λI−A‖ sups∈[0,T ] ‖f (s)‖ ∫ T

0 eω(T −s)ds

|1 − ‖UA(T )‖|

≤ T

1 − eωT
sup

s∈[0,T ]
‖f (s)‖ ,

i.e., ‖u0(0)‖ ≤ T
1−eωT sups∈[0,T ] ‖f (s)‖. This completes the proof. �

Now we make the following assumptions.

Assumption 3.2.

(H1) A is a Hille-Yosida operator on X; i.e., there exist M ≥ 1 and ω ∈ R such that (ω, ∞) ⊂
ρ(A) and 

∥∥(λI − A)−n
∥∥

L(X)
≤ M

(λ−ω)n
for λ > ω, n ≥ 1;

(H2) F : [0, ∞) × D(A) → X is continuous and Lipschitz on bounded sets; i.e., for each C > 0
there exists KF (C) ≥ 0 such that ‖F(t, u) − F(t, v)‖ ≤ KF (C) ‖u − v‖ for t ∈ [0, ∞) and 
‖u‖ ≤ C and ‖v‖ ≤ C;

(H3) F : [0, ∞) × D(A) → X is continuous and bounded on bounded sets; i.e., there exists 
LF (T , ρ) ≥ 0 such that ‖F(t, u)‖ ≤ LF (T , ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions, we have the following result for the semilinear equation (3.2).

Theorem 3.3. Let Assumption 3.2 hold with ω < 0, M = 1 and F being T -periodic in t . Suppose 
that there exists ρ > 0 such that (N + T )KF (ρ) < 1 and (N + T )LF (T , ρ) ≤ ρ, where N =

T
1−eωT . Then the semilinear equation (3.2) has a mild T -periodic solution.

Proof. Denote

Bρ = {v ∈ C(R+,D(A)), v(t + T ) = v(t),‖v‖ = sup
s∈[0,T ]

‖v(s)‖ ≤ ρ}.

By Theorem 3.1, for each v ∈ Bρ let f (t) = F(t, v(t)), then (3.1) has a mild T -periodic solution

u(t) = UA(t)u(0) + lim
λ→+∞

t∫
UA(t − l)λ(λI − A)−1F(l, v(l))dl. (3.6)
0
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Define an operator φ on Bρ by φ(v)(t) = u(t). Then

‖φ(v)(t)‖ ≤ Meωt ‖u(0)‖ + lim
λ→+∞

t∫
0

Meω(t−l) Mλ

λ − ω
‖F(l, v(l))‖dl.

Let M = 1. Since ‖u(0)‖ ≤ T
1−eωT sups∈[0,T ] ‖f (s)‖, we have

‖φ(v)(t)‖ ≤ eωtN sup
s∈[0,T ]

‖F(s, v(s))‖ + lim
λ→+∞T

λ

λ − ω
sup

s∈[0,T ]
‖F(s, v(s))‖ ,

sup
s∈[0,T ]

‖φ(v)(t)‖ ≤ (N + T ) sup
s∈[0,T ]

‖F(s, v(s))‖ ≤ (N + T )LF (T ,ρ) ≤ ρ.

So φ maps Bρ to Bρ . Furthermore, let v1, v2 ∈ Bρ . Then

φ(v1)(t) − φ(v2)(t) = u1(t) − u2(t)

= UA(t)(u1(0) − u2(0))

+ lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1(F (s, v1(s)) − F(s, v2(s))),

‖φ(v1(t)) − φ(v2(t))‖ ≤ Meωt ‖u1(0) − u2(0)‖

+ lim
λ→+∞

t∫
0

Meω(t−s) Mλ

λ − ω
‖F(s, v1(s)) − F(s, v2(s))‖ds.

Again let M = 1. Since ‖u1(0) − u2(0)‖ ≤ N sups∈[0,T ] ‖F(s, v1(s)) − F(s, v2(s))‖, by the re-
sult in Theorem 3.1, we have

‖φ(v1)(t) − φ(v2)(t)‖ ≤ eωtN sup
s∈[0,T ]

‖F(s, v1(s)) − F(s, v2(s))‖

+ lim
λ→+∞T

λ

λ − ω
sup

s∈[0,T ]
‖F(s, v1(s)) − F(s, v2(s))‖ ,

sup
s∈[0,T ]

‖φ(v1)(t) − φ(v2)(t)‖ ≤ (N + T )KF (ρ) sup
s∈[0,T ]

‖v1(s) − v2(s)‖ .

So it implies that

‖φ(v1) − φ(v2)‖ ≤ (N + T )KF (ρ) sup
s∈[0,T ]

‖v1(s) − v2(s)‖ .

Since (N + T )KF (ρ) < 1, by Banach Fixed Point Theorem, φ : Bρ → Bρ has a fixed point; i.e., 
there exists u ∈ Bρ such that
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u(t) = UA(t)u(0) + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1F(s,u(s))ds,

which is a T -periodic solution for (3.2). �
Remark 3.4. For the case M 
= 1, it can be transfered to M = 1 by re-norming the Banach space 
X [35].

3.2. Time-dependent operators

Now consider the linear evolution equation

du

dt
= A(t)u(t) + f (t) (3.7)

and the semilinear evolution equation

du

dt
= A(t)u(t) + F(t, u), (3.8)

where A(t) is a T -periodic linear operator on a Banach space X, f :R+ → X is continuous and 
T -periodic, and F : R+ × X → X is continuous and T -periodic in t . We make the following 
assumptions.

Assumption 3.5.

(A1) D(A(t)) := D is independent of t and not necessarily densely defined;
(A2) The family {A(t)}t≥0 is stable in the sense that there are constants M ≥ 1 and ω ∈ R such 

that (ω, ∞) ⊂ ρ(A(t)) for t ∈ [0, ∞) and

∥∥∥∥∥∥
k∏

j=1

(λI − A(tj ))
−1

∥∥∥∥∥∥ ≤ M

(λ − ω)k

for λ > ω and every finite sequence {tj }kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and k = 1, 2, . . .;
(A3) The mapping t → A(t)x is continuously differentiable in X for each x ∈ D.

For λ > 0, 0 ≤ s ≤ t , and x ∈ D. Set

Uλ(t, s)x =
[ t
λ
]∏

i=[ s ]+1

(I − λA(iλ))−1x. (3.9)
λ
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Then the generalized variation of constant formula of (3.7) with initial value u(0) = x is given 
by

u(t) = U(t,0)x + lim
λ→0+

t∫
0

Uλ(t, r)f (r)dr. (3.10)

Now we state and prove the results for the nonhomogeneous linear evolution equation (3.7).

Theorem 3.6. Let Assumption 3.5 hold, MeωT < 1, f ∈ C([0, ∞), X), f (t + T ) = f (t) for 
t ∈ [0, ∞), and ω < 0. Then the linear evolution equation (3.7) has a unique mild T -periodic 
solution u(t). Moreover, ‖u(0)‖ ≤ N sups∈[0,T ] ‖f (s)‖, where N = MT

1−MeωT .

Proof. By assumptions, the variation of constant formula (3.10) holds. Let PT : D → D be the 
Poincaré map

PT (x) = u(T ) = U(T ,0)x + lim
λ→0+

T∫
0

Uλ(T , r)f (r)dr. (3.11)

Since ‖U(T ,0)‖ ≤ MeωT < 1, I − U(T , 0) is invertible. PT has a unique fixed point which is 
given by x = (I − U(T , 0))−1 limλ→0+

∫ t

0 Uλ(t, r)f (r)dr .
Now let u(t) be the unique solution with initial value u(0) = x. Let uT (t) = u(t + T ). Then

uT (t) = U(t + T ,0)x + lim
λ→0+

T +t∫
0

Uλ(T + t, r)f (r)dr

= U(t + T ,T )U(T ,0)x + lim
λ→0+

T∫
0

Uλ(T + t, T )Uλ(T , r)f (r)dr

+ lim
λ→0+

T +t∫
T

Uλ(T + t, r)f (r)dr

= U(t + T ,T )U(T ,0)x + lim
λ→0+ Uλ(T + t, T )

T∫
0

Uλ(T , r)f (r)dr

+ lim
λ→0+

t+T∫
T

Uλ(T + t, r)f (r)dr

= U(t,0)U(T ,0)x + U(T + t, T ) lim
λ→0+

T∫
Uλ(T , r)f (r)dr
0
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+ lim
λ→0+

t+T∫
T

Uλ(T + t, r)f (r)dr

= U(t,0)U(T ,0)x + U(t,0) lim
λ→0+

T∫
0

Uλ(T , r)f (r)dr

+ lim
λ→0+

t+T∫
T

Uλ(T + t, r)f (r)dr

= U(t,0)[U(T ,0)x + lim
λ→0

T∫
0

Uλ(T , r)f (r)dr]

+ lim
λ→0+

t∫
0

Uλ(T + t, T + s)f (T + s)ds

= U(t,0)u(T ) + lim
λ→0+

t∫
0

Uλ(t, s)f (s)ds

= U(t,0)x + lim
λ→0+

t∫
0

Uλ(t, s)f (s)ds.

So uT (t) is a solution of (3.7) with initial value uT (0) = x. By uniqueness, uT (t) = u(t), i.e. 
u(t + T ) = u(t) for t ∈ [0, ∞). Furthermore,

‖x‖ =
∥∥∥(I − U(T ,0))−1

∥∥∥
∥∥∥∥∥∥ lim

λ→0+

T∫
0

Uλ(T , r)f (r)dr

∥∥∥∥∥∥
≤ 1

‖I − U(T ,0)‖ lim
λ→0+

T∫
0

‖Uλ(T , r)‖‖f (r)‖dr

≤ 1

‖I − U(T ,0)‖ lim
λ→0+

T∫
0

∥∥∥∥∥∥∥
[ T

λ
]∏

i=[ r
λ
]+1

(I − λA(iλ))−1

∥∥∥∥∥∥∥‖f (r)‖dr

≤ 1

‖I − U(T ,0)‖ lim
λ→0+

T∫
0

M(
1

1 − λω
)[

T
λ
]−[ r

λ
] ‖f (r)‖dr

≤ 1

‖I − U(T ,0)‖ lim
λ→0+

T∫
M(

1

1 − λω
)

T −r
λ

+1 ‖f (r)‖dr
0
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≤ 1

|1 − ‖U(T ,0)‖| lim
λ→0+

T∫
0

M

1 − λω
e−ω(T −r)

ln(1−λω)
λω ‖f (r)‖dr

≤ MT

1 − MeωT
sup

s∈[0,T ]
‖f (s)‖ .

This completes the proof. �
In order to study the semilinear evolution equation (3.8), we introduce the following defini-

tion.

Definition 3.7. A continuous function u :R+ → X is called a mild (or an integrated) solution of 
equation (3.8) if it satisfies the following

u(t) = U(t,0)u(0) + lim
λ→0+

t∫
0

Uλ(t, σ )F (σ,u(σ ))dσ, t ≥ 0. (3.12)

Next we establish the existence of periodic solutions for the semilinear evolution equation
(3.8).

Theorem 3.8. Let Assumption 3.2 (H2) (H3) and Assumption 3.5 hold, ω < 0, MeωT < 1,
F(t + T , ·) = F(t, ·) for t ≥ 0. Suppose that there exists ρ > 0 such that M(N + T )KF (ρ) < 1
and M(N + T )LF (T , ρ) ≤ ρ, where N = MT

1−MeωT . Then the semilinear evolution equation (3.8)
has a mild T -periodic solution.

Proof. Let Bρ = {v ∈ C(R+, D), v(t + T ) = v(t), ‖v‖ = sups∈[0,T ] ‖v(s)‖ ≤ ρ}. By Theo-
rem 3.6, for each v ∈ Bρ let f (t) = F(t, v(t)), then (3.7) has a unique mild T -periodic solution 
given by

u(t) = U(t,0)u(0) + lim
λ→0+

t∫
0

Uλ(t, r)F (r, v(r))dr, t ≥ 0. (3.13)

Let φ be an operator on Bρ defined by φ(v)(t) = u(t). Then by the argument in Theorem 3.6, 
we have

‖φ(v)(t)‖ ≤ Meωt ‖u(0)‖ +
t∫

0

Meω(t−r) ‖F(r, v(r))‖dr,

sup
t∈[0,T ]

‖φ(v)(t)‖ ≤ MN sup
r∈[0,T ]

‖F(r, v(r))‖ + MT sup
r∈[0,T ]

‖F(r, v(r))‖

≤ M(N + T )LF (T ,ρ)

≤ ρ.
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So φ : Bρ → Bρ . Moreover, let v1, v2 ∈ Bρ , then

φ(v1)(t) − φ(v2)(t) = u1(t) − u2(t)

= U(t,0)(u1(0) − u2(0))

+ lim
λ→0+

t∫
0

Uλ(t, r)[F(r, v1(r)) − F(r, v2(r))]dr,

‖φ(v1)(t) − φ(v2)(t)‖ ≤ Meωt ‖u1(0) − u2(0)‖

+
t∫

0

Meω(t−r) ‖F(r, v1(r)) − F(r, v2(r))‖dr,

sup
t∈[0,T ]

‖φ(v1)(t) − φ(v2)(t)‖ ≤ MN sup
r∈[0,T ]

‖F(r, v1(r)) − F(r, v2(r))‖

+ MT sup
r∈[0,T ]

‖F(r, v1(r)) − F(r, v2(r))‖

≤ M(N + T )KF (ρ) sup
t∈[0,T ]

‖v1(t) − v2(t)‖ .

Thus, we have

‖φ(v1) − φ(v2)‖ ≤ M(N + T )KF (ρ)‖v1 − v2‖ .

Since M(N + T )KF (ρ) < 1, by Banach Fixed Point Theorem, φ has a fixed point u ∈ Bρ ; i.e.,

u(t) = U(t,0)u(0) + lim
λ→0+

t∫
0

Uλ(t, r)F (r, u(r))dr,

which is a mild T -periodic solution for (3.8). �
3.3. Time-independent operators - revisited

Now consider (3.1) and (3.2) again when A is time independent. We will investigate the case 
when A is compact.

Theorem 3.9. Let Assumption 3.2 (H1) hold, f ∈ C([0, ∞), X), f (t + T ) = f (t). Assume that 
UA(T ) is compact on D(A). If there exists x ∈ D(A) such that the Cauchy problem (2.1) has a 
unique bounded mild solution u : [0, ∞) → D(A) for u(0) = x ∈ D(A), then the nonhomoge-
neous linear equation (3.1) has a mild T -periodic solution.

Proof. It suffices to prove that the Poincaré map PT has a fixed point x0, where

PT (x) = UA(T )x + lim
λ→+∞

T∫
UA(t − s)λ(λI − A)−1f (s)ds.
0
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By the same argument as in the proof of Theorem 3.1, let u(t) be the solution such that u(t +T ) =
u(t) for t ≥ 0, which implies that u(t) is a T -periodic solution of (3.1).

Suppose PT has no fixed point, i.e.,

x = UA(T )x + lim
λ→+∞

T∫
0

UA(T − s)λ(λI − A)−1f (s)ds

has no solution in D(A). Let P = UA(T ) : D(A) → D(A) and

x0 = lim
λ→+∞

T∫
0

UA(T − s)λ(λI − A)−1f (s)ds ∈ D(A).

Then x = Px + x0 has no solution in D(A). Since P is assumed to be compact on D(A), 1 is 
an eigenvalue of P , I − P is Fredholm, thus its range R(I − P) is closed in D(A). Then there 
exists x∗ ∈ D(A)

′
such that x∗((I − P)x′) = 0 for each x′ ∈ D(A) and x∗(x0) 
= 0. Let

xn = P n
T (x) = P nx + (P n−1 + ... + I )x0,

where x is chosen such that (3.1) has a unique bounded solution for u(0) = x. Then

x∗(xn) = x∗[P nx + (P n−1 + ... + I )x0]
= x∗(P nx) + x∗[(P n−1 + ... + I )x0]
= (P ′)nx∗(x) + [(P ′)n−1 + ... + I ]x∗(x0).

Note that x∗(x) = x∗(Px), so P ′x∗(x) = x∗(x) for x ∈ D(A). Then we get x∗(xn) = x∗(x) +
nx∗(x0). Let n → ∞, it follows that nx∗(x0) → ∞. Then x∗(x0) → ∞, which contradicts the 
fact that xn is bounded, since (3.1) has a unique bounded solution for x ∈ D(A). Therefore, PT

has a fixed point in D(A) and (3.1) has a mild T-periodic solution. �
Finally we prove an existence theorem of periodic solutions for the semilinear equation (3.2)

when the operator A is compact.

Theorem 3.10. Let Assumption 3.2 (H1)(H3) hold with M = 1 and F(t + T , x) = F(t, x) for 
t ≥ 0, x ∈ D(A). Let UA(t) be compact on D(A) for t > 0. Suppose that there exists ρ > 0 such 
that (N + T )LF (T , ρ) ≤ ρ, where N = T

1−eωT for ω < 0, and (N + T )eωT LF (T , ρ) ≤ ρ, where 

N = T eωT

‖I−UA(T )‖ for ω ≥ 0. If for each T -periodic f ∈ C([0, ∞), X), there exists x ∈ D(A) such 

that the Cauchy problem (2.1) has a unique bounded mild solution for u(0) = x ∈ D(A), then 
the semilinear equation (3.2) has a T -periodic solution.

Proof. Define

Bρ = {v ∈ C(R+,D(A)), v(t + T ) = v(t),‖v‖ = sup ‖v(s)‖ ≤ ρ}.

s∈[0,T ]
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By Theorem 3.9, for each v ∈ Bρ , let f (t) = F(t, v(t)). Then equation (3.1) has a unique mild 
T -periodic solution given by

u(t) = UA(t)u(0) + lim
λ→+∞

t∫
0

UA(t − l)λ(λI − A)−1F(l, v(l))dl. (3.14)

Moreover,

u(0) = (I − UA(T ))−1 lim
λ→+∞

T∫
0

UA(T − s)λ(λI − A)−1F(s, v(s))ds, (3.15)

‖u(0)‖ ≤
{

eωT T
‖I−UA(T )‖ sups∈[0,T ] ‖F(s, v(s))‖ , ω ≥ 0,

T
‖I−UA(T )‖ sups∈[0,T ] ‖F(s, v(s))‖ , ω < 0.

(3.16)

Since T
‖I−UA(T )‖ ≤ T

1−eωT for ω < 0, let

N =
{

T
1−eωT , ω < 0,

eωT T
‖I−UA(T )‖ , ω ≥ 0.

Then we have ‖u(0)‖ ≤ N sups∈[0,T ] ‖F(s, v(s))‖. Define an operator φ on Bρ as follows:

φ(v)(t) = u(t) = UA(t)u(0) + lim
λ→+∞

t∫
0

UA(t − l)λ(λI − A)−1F(l, v(l))dl.

Then

‖φ(v)(t)‖ ≤ Meωt ‖u(0)‖ +
t∫

0

Meω(t−l) ‖F(l, v(l))‖dl

M=1===== eωt ‖u(0)‖ +
t∫

0

eω(t−l) ‖F(l, v(l))‖dl.

It follows that if ω < 0,

sup
t∈[0,T ]

‖φ(v)(t)‖ ≤ ‖u(0)‖ + T sup
t∈[0,T ]

‖F(t, v(t))‖

≤ (N + T )LF (T ,ρ)

≤ ρ.

If ω ≥ 0,
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sup
t∈[0,T ]

‖φ(v)(t)‖ ≤ ‖u(0)‖ + T eωT sup
t∈[0,T ]

‖F(t, v(t))‖

≤ eωT (N + T )LF (T ,ρ)

≤ ρ.

So φ : Bρ → Bρ .
Next, we show that φ is compact. Let t > 0, u ∈ φ(Bρ). Then there exists v ∈ Bρ such that

u(t) = UA(t)u(0) + lim
λ→+∞

t∫
0

UA(t − l)λ(λI − A)−1F(l, v(l))dl.

Let 0 < ε < t , then

u(t) = UA(t)u(0) + lim
λ→+∞

t−ε∫
0

UA(t − s)λ(λI − A)−1F(s, v(s))ds

+ lim
λ→+∞

t∫
t−ε

UA(t − s)λ(λI − A)−1F(s, v(s))ds

= UA(t)u(0) + UA(ε) lim
λ→+∞

t−ε∫
0

UA(t − ε − s)λ(λI − A)−1F(s, v(s))ds

+ lim
λ→+∞

t∫
t−ε

UA(t − s)λ(λI − A)−1F(s, v(s))ds.

Since

‖F(s, v(s))‖ ≤ LF (t, ρ) and
∥∥∥λ(λI − A)−1F(s, v(s))

∥∥∥ ≤ λ

λ − ω
LF (t, ρ),

it then follows that

lim
λ→+∞

t−ε∫
0

UA(t − ε − s)λ(λI − A)−1F(s, v(s))ds

is bounded. By the compactness of UA(ε), it follows that

{UA(ε) lim
λ→+∞

t−ε∫
UA(t − ε − s)λ(λI − A)−1F(s, v(s))ds, v ∈ Bρ}
0
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is relatively compact in D(A). Moreover, there exists some b > 0 such that

∥∥∥∥∥∥ lim
λ→+∞

t∫
t−ε

UA(t − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥ ≤ bε

for v ∈ Bρ . Hence, {u(t), v ∈ φ(Bρ)} is relatively compact in D(A) for each t > 0. By the 
periodicity, {u(0) : u ∈ φ(Bρ)} is relatively compact in D(A).

Now we show the equi-continuity of {u(t), v ∈ φ(Bρ)}. For T + ε ≥ t > τ > 0, we have

u(t) − u(τ) = (UA(t) − UA(τ))u(0) + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1F(s, v(s))ds

− lim
λ→+∞

τ∫
0

UA(τ − s)λ(λI − A)−1F(s, v(s))ds

= (UA(t) − UA(τ))u(0) + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1F(s, v(s))ds

− lim
λ→+∞

τ∫
0

UA(t − s)λ(λI − A)−1F(s, v(s))ds

+ lim
λ→+∞

τ∫
0

UA(t − s)λ(λI − A)−1F(s, v(s))ds

− lim
λ→+∞

τ∫
0

UA(τ − s)λ(λI − A)−1F(s, v(s))ds

= (UA(t) − UA(τ))u(0) + lim
λ→+∞

t∫
τ

UA(t − s)λ(λI − A)−1F(s, v(s))ds

+ lim
λ→+∞

τ∫
0

(UA(t − τ) − I )UA(τ − s)λ(λI − A)−1F(s, v(s))ds,

‖u(t) − u(τ)‖ ≤ ‖UA(t) − UA(τ)‖ρ +
∥∥∥∥∥∥ lim

λ→+∞

t∫
τ

UA(t − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥
+

∥∥∥∥∥∥(UA(t − τ) − I ) lim
λ→+∞

τ∫
0

UA(τ − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥ .



Q. Su, S. Ruan / J. Differential Equations 269 (2020) 11020–11061 11039
Since {UA(t)}t>0 is compact on D(A), it is continuous in uniform topology. Then
limt→τ ‖UA(t) − UA(τ)‖ = 0. Since ‖F(s, v(s))‖ ≤ LF (T + ε, ρ) for v ∈ Bρ , 0 < s < T + ε, 
there exists C > 0 such that∥∥∥∥∥∥ lim

λ→+∞

t∫
τ

UA(t − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥ ≤ C(t − τ) for v ∈ Bρ.

Then

lim
t→+τ

∥∥∥∥∥∥ lim
λ→+∞

t∫
τ

UA(t − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥ ≤ lim
t→+τ

C(t − τ) = 0

uniformly for v ∈ Bρ . Since {u(t) : v ∈ φ(Bρ)} is relatively compact in D(A) for each t ≥ 0
as shown above, {u(t) − UA(t)u(0) : v ∈ Bρ} is also relatively compact in D(A) for each t ≥
0, which implies that {limλ→+∞

∫ τ

0 UA(τ − s)λ(λI − A)−1F(s, v(s))ds, v ∈ Bρ} is relatively 
compact in D(A) for each τ > 0. So there exists a compact set K ⊂ D(A) such that

lim
λ→+∞

τ∫
0

UA(τ − s)λ(λI − A)−1F(s, v(s))ds ∈ K

for all v ∈ Bρ .
Since limh→0 supα∈K ‖(UA(h) − I )α‖ = 0 for compact K , it follows that

lim
t→τ

sup
v∈Bρ

∥∥∥∥∥∥(UA(t − τ) − I ) lim
λ→+∞

τ∫
0

UA(τ − s)λ(λI − A)−1F(s, v(s))ds

∥∥∥∥∥∥ = 0.

Summarizing the above analysis, we have

lim
t→τ,t>τ>0

sup
v∈Bρ

‖u(t) − u(τ)‖ = 0.

Similarly,

lim
t→τ,τ>t>0

sup
v∈Bρ

‖u(t) − u(τ)‖ = 0.

By periodicity, u(t) is also equi-continuous at t = 0. Now by Arzelà-Ascoli theorem, φ(Bρ) is 
relatively compact in C = {ϕ|ϕ ∈ C(R+, D(A)), ϕ(t + T ) = ϕ(t)}. So φ has a fixed point in Bρ ; 
i.e., there exists u ∈ Bρ such that

u(t) = UA(t)u(0) + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1F(s,u(s))ds,

which is a mild T-periodic solution for (3.2). �
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Remark 3.11. Note that if F is bounded, i.e., ‖F(t, x)‖ ≤ B for each t ∈ [0, ∞) and x ∈ D(A), 
it is a special case of Theorem 3.10. In this case, we choose ρ ≥ (N + T )B , then ‖φ(v)‖ ≤
(N +T )B ≤ ρ, which implies that φ : Bρ → Bρ . By the argument in Theorem 3.10, φ has a fixed 
point in Bρ , which is a T -periodic solution for (3.2). For the case M 
= 1, it can be transfered to 
M = 1 by re-norming the Banach space X [35].

4. Applications

The results obtained in last section can be applied to study the existence of periodic solu-
tions in several types of equations including delay differential equations, first-order hyperbolic 
partial differential equations, and reaction-diffusion equations, in particular some biological and 
physical models described by these equations. In this section we consider retarded periodic func-
tional differential equations with application to a delayed red-blood cell mode, age-structured 
population models with periodic harvesting, and the diffusive logistic equation with periodic 
coefficients.

4.1. Retarded functional differential equations and delayed red-blood cell models

The existence of periodic solutions in periodic functional differential equations has been stud-
ied by many researchers (see, for example, Chow [7] and Chow and Hale [8]), we refer to the 
monographs of Hale and Verduyn Lunel [16] and Burton [4], and the references cited therein. 
In this subsection, we will apply the results in section 3 to obtain existence of periodic solutions 
in periodic functional differential equations. Namely, we will first consider a general class of re-
tarded periodic functional differential equations, then we will consider a delayed red-blood cell 
model with periodic coefficients.

(i) Retarded periodic functional differential equations. For r ≥ 0, let C = C([−r, 0], Rn)

be the Banach space of continuous functions from [−r, 0] to Rn endowed with the supremum 
norm

‖ϕ‖ = sup
θ∈[−r,0]

|ϕ(θ)|Rn

Consider the retarded functional differential equations (RFDE) of the form

{
dx(t)
dt

= Bx(t) + L̂(xt ) + f (t, xt ),∀t ≥ 0,

x0 = ϕ ∈ C,
(4.1)

where xt ∈ C is defined by xt (θ) = x(t + θ) for θ ∈ [−r, 0], B ∈ Mn(R) is an n × n real matrix, 
L̂ : C → Rn is a bounded linear operator given by

L̂(ϕ) =
0∫

−r

dη(θ)ϕ(θ),

here η : [−r, 0] → Mn(R) is a map of bounded variation, i.e. V (η, [−r, 0]) = sup
∑n

i=1 ‖η(θi+1)

− η(θi)‖ < +∞ in which the supremum is taken over all subdivisions −r = θ1 < θ2 < . . . <

θn < θn+1 = 0, and f :R × C → Rn is a continuous map.
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Now following Liu et al. [24] we rewrite (4.1) as an abstract non-densely defined Cauchy 
problem so that our theorems can be applied. First, we write it as a PDE. Define u ∈ C([0, ∞) ×
[−r, 0], Rn) by

u(t, θ) = x(t + θ), ∀t ≥ 0,∀θ ∈ [−r,0].
If x ∈ C1([−r, +∞), Rn), then

∂u(t, θ)

∂t
= x′(t + θ) = ∂u(t, θ)

∂θ
.

So we have

∂u(t, θ)

∂t
− ∂u(t, θ)

∂θ
= 0,∀t ≥ 0,∀θ ∈ [−r,0].

Moreover, for θ = 0, we have

∂u(t,0)

∂θ
= x′(t) = Bx(t) + L̂(xt ) + f (t, xt )

= Bu(t,0) + L̂(u(t, .)) + f (t, u(t, .)),∀t ≥ 0.

Thus, u satisfies the PDE

⎧⎪⎨
⎪⎩

∂u(t,θ)
∂t

− ∂u(t,θ)
∂θ

= 0,

∂u(t,0)
∂θ

= Bu(t,0) + L̂(u(t, .)) + f (t, u(t, .)),∀t ≥ 0,

u(0, .) = ϕ ∈ C.

(4.2)

To rewrite (4.2) as an abstract non-densely defined Cauchy problem, let X = Rn × C with the 
usual product norm ∥∥∥∥

(
x

ϕ

)∥∥∥∥ = |x|Rn + ‖ϕ‖ .

Define the linear operator A : D(A) ⊂ X → X by

A

(
0Rn

ϕ

)
=

( −ϕ′(0) + Bϕ(0)

ϕ′
)

, ∀
(

0Rn

ϕ

)
∈ D(A), (4.3)

with D(A) = {0Rn} × C1([−r, 0], Rn). Then D(A) = {0Rn} × C 
= X. Define L : D(A) → X by

L

(
0Rn

ϕ

)
=

(
L̂(ϕ)

0C

)

and F :R × D(A) → X by

F

(
t,

(
0Rn

ϕ

))
=

(
f (t, ϕ)

0

)
.

C
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Set

v(t) =
(

0Rn

u(t)

)
.

Then the PDE (4.2) can be written as the following non-densely defined Cauchy problem

dv(t)

dt
= Av(t) + L(v(t)) + F(t, v(t)), t ≥ 0; v(0) =

(
0Rn

ϕ

)
∈ D(A). (4.4)

Now we give an existence theorem of periodic solutions for equation (4.1).

Assumption 4.1.

(B1) f : R × C → Rn is Lipschitz on bounded sets; i.e., for each C > 0 there exists Kf (C) ≥ 0
such that ‖f (t, u) − f (t, v)‖ ≤ Kf (C) ‖u − v‖ for t ∈ [0, ∞) and ‖u‖ ≤ C and ‖v‖ ≤ C;

(B2) f : R × C → Rn is bounded on bounded sets; i.e., there exists Lf (T , ρ) ≥ 0 such that 
‖f (t, u)‖ ≤ Lf (T , ρ) for t ≤ T and ‖u‖ ≤ ρ.

With these assumptions and the notation ω0(B) := supλ∈σ(B) Re(λ), we have the following 
result for equation (4.1).

Theorem 4.2. Let Assumption 4.1 hold with ω0(B) < 0 and f being T-periodic in t . Suppose 
that there exists ρ > 0 such that (N + T )(Kf (ρ) +V (η, [−r, 0])) < 1 and (N + T )(Lf (T , ρ) +
V (η, [−r, 0])) ≤ ρ, where N = T

1−eω0(B)T , then equation (4.1) has a T-periodic solution.

Proof. Since (4.1) can be written as (4.4), denote G(t, v(t)) = L(v(t)) + F(t, v(t)), it suffices 
to prove that

(a) A satisfies Assumption 3.2 (H1) with ω < 0;
(b) G : [0, ∞) × 0Rn × C → Rn × C satisfies Assumption 3.2(H1) (H2);
(c) There exists ρ > 0 such that (N + T )KG(ρ) < 1 and (N + T )LG(T , ρ) ≤ ρ, where N =

T
1−eωT .

Then it follows from Theorem 3.3 that equation (4.4) has a T -periodic mild solution, which im-
plies that equation (4.2) has a T -periodic mild solution with initial u(0, .) = ϕ0 ∈ C. Meanwhile, 
by Theorem 2.1 in [16], equation (4.1) has a unique solution x0(t) ∈ C1([0, ∞), Rn) with initial 
x0(θ) = ϕ0(θ) for θ ∈ [−r, 0]. Therefore, x0(t) is a T -periodic solution for (4.1).

From Lemma 7.1 in [28], we know that A as defined in (4.3) is a Hille-Yoshida operator with 
ω = ω0(B) < 0 and M = 1, which proves (a).

For ϕ1, ϕ2 ∈ C such that ‖ϕ1‖ ≤ C and ‖ϕ2‖ ≤ C, we have

(
0Rn

ϕ

)
,

(
0Rn

ϕ

)
∈ 0Rn × C = D(A)
1 2
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and ∥∥∥∥
(

0Rn

ϕ1

)∥∥∥∥ = ‖ϕ1‖ ≤ C,

∥∥∥∥
(

0Rn

ϕ2

)∥∥∥∥ = ‖ϕ2‖ ≤ C.

Then ∥∥∥∥G(t,

(
0Rn

ϕ1

)
) − G(t,

(
0Rn

ϕ2

)
)

∥∥∥∥
=

∥∥∥∥L(

(
0Rn

ϕ1

)
) − L(

(
0Rn

ϕ2

)
) + F(t,

(
0Rn

ϕ1

)
) − F(t,

(
0Rn

ϕ2

)
)

∥∥∥∥
≤

∥∥∥∥L(

(
0Rn

ϕ1

)
) − L(

(
0Rn

ϕ2

)
)

∥∥∥∥ +
∥∥∥∥F(t,

(
0Rn

ϕ1

)
) − F(t,

(
0Rn

ϕ2

)
)

∥∥∥∥
=

∥∥∥∥
( ∫ 0

−r
dη(θ)(ϕ1(θ) − ϕ2(θ))

0C

)∥∥∥∥ +
∥∥∥∥
(

f (t, ϕ1) − f (t, ϕ2)

0C

)∥∥∥∥
=

∣∣∣∣∣∣
0∫

−r

dη(θ)(ϕ1(θ) − ϕ2(θ))

∣∣∣∣∣∣
Rn

+ |f (t, ϕ1) − f (t, ϕ2)|Rn

≤ Kf (C)‖ϕ1 − ϕ2‖ + V (η, [−r,0])‖ϕ1 − ϕ2‖
= (Kf (C) + V (η, [−r,0]))‖ϕ1 − ϕ2‖

= (Kf (C) + V (η, [−r,0]))
∥∥∥∥
(

0Rn

ϕ1

)
−

(
0Rn

ϕ2

)∥∥∥∥ .

So there exists KG(C) = Kf (C) + V (η, [−r, 0]) such that

∥∥∥∥G(t,

(
0Rn

ϕ1

)
) − G(t,

(
0Rn

ϕ2

)
)

∥∥∥∥ ≤ KG(C)

∥∥∥∥
(

0Rn

ϕ1

)
−

(
0Rn

ϕ2

)∥∥∥∥ .

Furthermore, for t ≤ T and 

∥∥∥∥
(

0Rn

ϕ

)∥∥∥∥ ≤ ρ, we have

∥∥∥∥G(t,

(
0R+n

ϕ

)
)

∥∥∥∥ =
∥∥∥∥L

(
0Rn

ϕ

)
+ F(t,

(
0Rn

ϕ

)
)

∥∥∥∥
≤

∥∥∥∥L

(
0Rn

ϕ

)∥∥∥∥ +
∥∥∥∥F(t,

(
0Rn

ϕ

)
)

∥∥∥∥
=

∥∥∥∥
( ∫ 0

−r
dη(θ)ϕ(θ)

0C

)∥∥∥∥ +
∥∥∥∥
(

f (t, ϕ)

0C

)∥∥∥∥
=

∣∣∣∣∣∣
0∫

−r

dη(θ)ϕ(θ)

∣∣∣∣∣∣
Rn

+ |f (t, ϕ)|Rn

≤ V (η, [−r,0])ρ + Lf (T ,ρ).
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So there exists LG(T , ρ) = V (η, [−r, 0])ρ +Lf (T , ρ) such that 

∥∥∥∥G(t,

(
0R+n

ϕ

)
)

∥∥∥∥ ≤ LG(T , ρ), 

which completes the proof of (b).
With KG(C) and LG(T , ρ) given as above, (c) follows directly from the assumptions. �
(ii) A delayed periodic red-blood cell model. Now as an example, we consider a delayed red-

blood cell model with periodic coefficients which is a modification of the model of Wazewska-
Czyzewska and Lasota [41] (see also Arino and Kimmel [2], Gopalsamy [15], Kuang [21], called 
Lasota-Wazewska model in the literature):

N ′(t) = −μN(t) + p(t)e−γ (t)N(t−r), (4.5)

where N(t) denotes the number of red-blood cells at time t , μ ∈ (0, ∞) is the probability of 
death of a red-blood cell, p(t) and γ (t) are positive and T -periodic continuous functions related 
to the production of red-blood cells per unit time and r is the time required to produce a red-blood 
cell.

Proposition 4.3. Assume that

(i) p ∈ C([0, ∞), R+), p(t + T ) = p(t) for t ≥ 0 and p(t) ≤ p+ for t ≥ 0;
(ii) γ ∈ C([0, ∞), R+), γ (t + T ) = γ (t) for t ≥ 0 and γ (t) ≤ γ+ for t ≥ 0;

(iii) There exists ρ > 0 such that ( T
1−e−μT + T )p+γ+eγ+ρ < 1 and ( T

1−e−μT + T )p+eγ+ρ ≤ ρ.

Then equation (4.5) has a T -periodic solution.

Proof. Equation (4.5) can be written as equation (4.1), where B = −μ, L̂ = 0 and f (t, ϕ) =
p(t)e−γ (t)ϕ(−r). Then it suffices to check assumptions of Theorem 4.2. First note that ω0(B) =
−μ < 0. Since L̂ = 0, V (η, [−r, 0]) = 0. For ϕ1, ϕ2 ∈ C([−r, 0], R) and ‖ϕ1‖ ≤ ρ, ‖ϕ2‖ ≤ ρ, 
we have

|f (t, ϕ1) − f (t, ϕ2)| =
∣∣∣p(t)(e−γ (t)ϕ(−r) − e−γ (t)ϕ2(−r))

∣∣∣
≤ p(t)γ (t)eγ (t)ρ ‖ϕ1 − ϕ2‖
≤ p+γ+eγ+ρ ‖ϕ1 − ϕ2‖ .

So we can pick Kf (ρ) = p+γ+eγ+ρ . Moreover, for ϕ ∈ C([−r, 0], R), ‖ϕ‖ ≤ ρ and 0 ≤ t ≤ T ,

|f (t, ϕ)| =
∣∣∣p(t)e−γ (t)ϕ(−r)

∣∣∣ ≤ p+eγ+ρ.

So we get Lf (T , ρ) = p+eγ+ρ . Then Assumption (iii) implies (N +T )(Kf (ρ) +V (η, [−r, 0])) <
1 and (N +T )(Lf (T , ρ) +V (η, [−r, 0])) ≤ ρ in the assumption of Theorem 4.2. The conclusion 
follows from Theorem 4.2. �

Now we choose parameters for equation (4.5) such that assumptions in Proposition 4.3 are 
satisfied and perform numerical simulations to show the existence of a T -periodic solution. Let 
T = 1, r = 1, μ = 10, p(t) = 0.3 + 0.2 sin(2πt) and γ (t) = 0.15 + 0.05 cos(2πt). It can be 



Q. Su, S. Ruan / J. Differential Equations 269 (2020) 11020–11061 11045
Fig. 1. A T -periodic solution of the delayed periodic red-blood cell model (4.5) with r = 1 starting at ϕ(θ) = 0.2, θ ∈
[−1, 0], where p(t) = 0.3 + 0.2 sin(2πt), T = 1 and γ (t) = 0.15 + 0.05 cos(2πt).

easily checked we have all the assumptions in Proposition 4.3, then there exists a 1-periodic 
solution, which can be seen from Fig. 1.

Now we change the parameters so that assumptions in Proposition 4.3 are not satisfied. Let 
T = 1, r = 1, μ = 10, p(t) = 3 +2 sin(2πt) and γ (t) = 10 +5 cos(2πt). Fig. 2 shows a solution 
in this scenario.

Remark 4.4. Similar techniques can be used to discuss the existence of periodic solutions in 
other delayed biological models such as the delayed periodic logistic equation (Chen [5]) and 
delayed periodic Nicholson’s blowflies equation (Chen [6]).

Remark 4.5. Following the settings in Wu [43] and Ducrot et al. [12], we can also use the results 
in section 3 to study the existence of periodic solutions in abstract evolution equations with 
delay (Liu [23], Ezzinbi and Liu [13], Benkhalti and Ezzinbi [3], Kpoumiè et al. [20]) and partial 
functional differential equations with periodicity (Li et al. [22]).

4.2. Age-structured population models with periodic harvesting

Consider the following age-structured population model with periodic harvesting and global 
population dependent boundary condition (Anita et al. [1]):

⎧⎪⎨
⎪⎩

∂tu(t, a) + ∂au(t, a) + μ(a)u(t, a) = f (t, a) − v(t, a)u(t, a), (a, t) ∈ [0, a+] ×R+,

u(t,0) = ∫ a+
0 γ (t, a)u(t, a)da,

u(t, a) = u(t + T ,a),

(4.6)
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Fig. 2. An irregular solution of the delayed periodic red-blood cell model (4.5) with r = 1 starting at ϕ(θ) = 0.2, θ ∈
[−1, 0], where p(t) = 3 + 2 sin(2πt), T = 1 and γ (t) = 10 + 5 cos(2πt).

where t is the time variable, a is the age variable, and u(t, a) is the density of the population 
at time t with age a. This is a linear model for an age-structured population (see for instance 
Iannelli [18] and Webb [42]), where μ(a) is the age-specific death rate. Moreover, the population 
is subject to a T -periodic external flow f (t, a) and a T -periodic age-specific harvesting effort 
v(t, a) (see for instance Anita et al. [1]).

We have the following results.

Proposition 4.6. Assume that

(i) f ∈ C([0, ∞), L1[0, a+)), f (t, a) = f (t + T , a) for t ≥ 0, a ∈ [0, a+) and

supt∈[0,T ]
∫ a+

0 |f (t, a)|da ≤ f+(T );
(ii) μ(a) ∈ L1[0, a+) and there exists μ− > 0 such that μ(a) ≥ μ− for a ∈ [0, a+);

(iii) γ (t, a) ∈ C([0, ∞), L1[0, a+)), γ (t, a) = γ (t + T , a) and there exists γ+ > 0 such that 
0 ≤ γ (t, a) ≤ γ+ for t ≥ 0, a ∈ [0, a+);

(iv) v(t, a) ∈ C1([0, ∞), L1[0, a+)) and v(t, a) = v(t + T , a) for t ≥ 0, a ∈ [0, a+);
(v) ( T

1−e−(μ−+v−)T + T )γ+ < 1 and the inequality ( T

1−e−(μ−+v−)T + T )(γ+ρ + f+(T )) ≤ ρ has 
solution.

Then problem (4.6) has a mild T -periodic solution u(t, a) ∈ C([0, ∞), L1[0, a+)).

Proof. Consider the space X := R × L1(0, a+) endowed with the product norm

∥∥∥∥
(

α

ϕ

)∥∥∥∥ = |α| + ‖ϕ‖L1
(
0,a+) .
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Define the time-dependent linear operator A(t) : D(A(t)) ⊂ X → X by

A

(
0
ϕ

)
=

( −ϕ(0)

−ϕ′ − μϕ − v(t)ϕ

)

with D(A(t)) = D = {0} × W 1,1(0, a+) and D(A(t)) = D = {0} × L1(0, a+) 
= X. Define F :
R+ × D → X by

F

(
t,

(
0
φ

))
=

( ∫ a+
0 γ (t, a)φ(a)da

f (t, a)

)
.

Then the partial differential equation (4.6) can be written as the evolution equation (3.8). For 
some t ∈ R+, let

(λI − A(t))

(
0
φ

)
=

(
θ

ϕ

)
,

(λI − A(t))−1
(

θ

ϕ

)
=

(
0
φ

)
.

Since

(λI − A(t))

(
0
φ

)
=

(
φ(0)

φ′ + (λ + μ + v(t))φ

)
,

we have

φ(0) = θ,

φ′(a) + (λ + μ(a) + v(t, a))φ(a) = ϕ(a).

Then

φ(a) = θe− ∫ a
0 (λ+μ(s)+v(t,s))ds + e− ∫ a

0 (λ+μ(s)+v(t,s))ds

a∫
0

e
∫ s

0 (λ+μ(τ)+v(t,τ ))dτ ϕ(s)ds

= θe−λa−∫ a
0 μ(s)ds−∫ a

0 v(t,s)ds +
a∫

0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds.

So

(λI −A(t))−1
(

θ

ϕ

)
=

(
0

θe−λa−∫ a
0 μ(s)ds−∫ a

0 v(t,s)ds + ∫ a

0 e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds

)

and
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∥∥∥∥(λI − A(t))−1
(

θ

ϕ

)∥∥∥∥
L1

=
∥∥∥∥∥∥ θe−λa−∫ a

0 μ(s)ds−∫ a
0 v(t,s)ds +

a∫
0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds

∥∥∥∥∥∥
L1

≤ |θ |
∥∥∥e−λa−∫ a

0 μ(τ)dτ−∫ a
0 v(t,τ )dτ

∥∥∥
L1

+
∥∥∥∥∥∥

a∫
0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds

∥∥∥∥∥∥
L1

.

W.L.O.G. assume ϕ(a) ≡ 0 for a > a+ and extend ϕ(a) to the whole R+. Since μ(a) ≥ μ− and 
v(t, a) ≥ v−, we have

∥∥∥∥∥∥
a∫

0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds

∥∥∥∥∥∥
L1

=
a+∫
0

∣∣∣∣∣∣
a∫

0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ ϕ(s)ds

∣∣∣∣∣∣da

≤
a+∫
0

a∫
0

e−λ(a−s)−∫ a
s μ(τ)dτ−∫ a

s v(t,τ )dτ |ϕ(s)|dsda

≤
a+∫
0

a∫
0

e−λ(a−s)−μ−(a−s)−v−(a−s) |ϕ(s)|dsda

≤
∞∫

0

a∫
0

e−λ(a−s)−μ−(a−s)−v−(a−s) |ϕ(s)|dsda

=
∞∫

0

∞∫
s

e−λ(a−s)−μ−(a−s)−v−(a−s) |ϕ(s)|dads

=
∞∫

0

(

∞∫
s

e−(λ+μ−+v−)ada)e(λ+μ−+v−)s |ϕ(s)|ds

= 1

λ + μ− + v−

∞∫
|ϕ(s)|ds
0
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= 1

λ + μ− + v−

a+∫
0

|ϕ(s)|ds

= 1

λ + μ− + v−
‖ϕ‖L1 .

Moreover, ∥∥∥e−λa−∫ a
0 μ(τ)dτ−∫ a

0 v(t,τ )dτ
∥∥∥

L1

=
a+∫
0

e−λa−∫ a
0 μ(τ)dτ−∫ a

0 v(t,τ )dτ da

≤
a+∫
0

e−(λ+μ−+v−)ada

≤
∞∫

0

e−(λ+μ−+v−)ada

= 1

λ + μ− + v−
.

So we obtain ∥∥∥∥(λI − A(t))−1
(

θ

ϕ

)∥∥∥∥
L1

≤ 1

λ + μ− + v−
(|θ | + ‖ϕ‖L1)

for all t ∈ R+ and λ > −(μ− + v−). It then follows that

∥∥∥(λI − A(t))−1
∥∥∥ ≤ 1

λ + μ− + v−

for all t ∈ R+ and λ > −(μ− + v−) so that

∥∥∥∥∥∥
k∏

j=1

(λI − A(tj ))
−1

∥∥∥∥∥∥ ≤ 1

(λ + μ− + v−)k

for λ > −(μ− + v−) and every finite sequence {tj }kj=1 with 0 ≤ t1 ≤ t2 ≤ ... ≤ tk and k =
1, 2, . . . . Hence, Assumption 3.5 holds for {A(t)}t≥0.

Moreover, we have

F

(
t,

(
0
φ

))
=

( ∫ a+
0 γ (t, a)φ(a)da

f (t, a)

)
,
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F

(
t,

(
0
φ1

))
− F

(
t,

(
0
φ2

))
=

( ∫ a+
0 γ (t, a)φ1(a)da

f (t, a)

)
−

( ∫ a+
0 γ (t, a)φ2(a)da

f (t, a)

)

=
( ∫ a+

0 γ (t, a)(φ1(a) − φ2(a))da

0

)
.

From the discussion of the case v(t, a) ≡ 0, we obtain

∥∥∥∥F

(
t,

(
0
φ1

))
− F

(
t,

(
0
φ2

))∥∥∥∥ ≤ γ+
∥∥∥∥
(

0
φ1

)
−

(
0
φ2

)∥∥∥∥ ,

where γ (t, a) ≤ γ+. So KF (ρ) = γ+. Assume supt∈[0,T ]
∫ a+

0 |f (t, a)| ≤ f+(T ), then from the 
discussion in the case v(t, a) ≡ 0, for ‖φ‖L1 ≤ ρ,

∥∥∥∥F

(
t,

(
0
φ

))∥∥∥∥ ≤ γ+ρ + f+(T ).

Thus, we have LF (T , ρ) = γ+ρ + f+(T ). So we have checked Assumption 3.2 (H2)(H3) and 
Assumption 3.5 (A1)(A2), and (iv) implies Assumption 3.5 (A3). Moreover, we have

M(N + T )KF (ρ) = (
T

1 − e−(μ−+v−)T
+ T )γ+ < 1

and there exists ρ > 0 such that

M(N + T )LF (T ,ρ) = (
T

1 − e−(μ−+v−)T
+ T )(γ+ρ + f+(T )) ≤ ρ.

So all assumptions in Theorem 3.8 are satisfied which ensures that there is a mild T -periodic 
solution. �

As an example, now we choose some specific functions and coefficients for problem (4.6) such 
that they satisfy conditions in Proposition 4.6. Let T = 1, v(t, a) = 0.5 + 0.4a(1 − a) sin(2πt)

and μ(a) = e−4a

1.0−a
, then ω = −μ− − v− = −0.299 < 0 and N = MT

1−MeωT = 1
1−e−0.299 ≈ 3.87. 

Let a+ = 1, f (t, a) = 1 + 2 sin(2πt) and γ (t, a) = 0.2a2(1 − a)(1 + sin(2πt)). Then KF (ρ) ≈
0.059, (N + T )KF (ρ) ≈ 4.87 × 0.059 ≈ 0.28733 < 1 for all ρ > 0. In addition, LF (T , ρ) =
0.059ρ + 3, then (N + T )LF (T , ρ) ≤ ρ ⇔ 4.87 × (0.059ρ + 3) ≤ ρ ⇔ 0.28733ρ + 14.61 ≤ ρ, 
which means that ρ ≥ 20.5. Then equation (4.6) has a mild 1-periodic solution by Proposi-
tion 4.6. A solution of equation (4.6) is shown in Fig. 3.

Again, we change the parameters a little bit such that the assumptions of Proposition 4.6 are 
NOT satisfied. Let γ (t, a) = 4a2(1 − a)(1 + sin(2πt)), then γ+ = 1.18 and (N + T )KF (ρ) =
4.87 × 1.18 ≈ 5.7466 > 1. Then assumptions of Proposition 4.6 are not satisfied. The graph 
below shows a solution with the same initial value as the previous one, which is not periodic (see 
Fig. 4).
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Fig. 3. A T -periodic solution of (4.6) starting at u(0, a) = 1 and with global boundary condition u(t, 0) =∫ 1
0 γ (t, a)u(t, a)da, where μ(a) = e−4a

1.0−a
, T = 1, v(t, a) = 0.5 + 0.4a(1 − a) sin(2πt), γ (t, a) = 0.2a2(1 − a)(1 +

sin(2πt)) and f (t, a) = 1 + 2 sin(2πt).

Fig. 4. A solution of (4.6) starting at u(0, a) = 1 and with boundary condition u(t, 0) = ∫ 1
0 γ (t, a)u(t, a)da, where 

μ(a) = e−4a

1.0−a
, T = 1, v(t, a) = 0.5 + 0.4a(1 − a) sin(2πt), γ (t, a) = 4a2(1 − a)(1 + sin(2πt)) and f (t, a) = 1 +

2 sin(2πt).

4.3. The diffusive logistic model with periodic coefficients

This subsection is concerned with a diffusive logistic model in T -periodic environment. Con-
sider the following problem (Hess [17])
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⎧⎨
⎩

∂tu(t, x) = ∂2
xu(t, x) + r(t)u(t, x)[1 − u(t,x)

K(t)
], t ∈ R+, x ∈ [0,1],

u(t,0) = u(t,1) = 1,

u(t, x) = u(t + T ,x),

(4.7)

where t is the time variable, x is the space variable, and u(t, x) is the density of a population at 
time t and location x. In the logistic term, we have a T -periodic intrinsic growth rate r(t) and 
a T -periodic carrying capacity K(t). Moreover, we give constant boundary values. We assume 
that the population reaches certain steady state on the boundary. Without loss of generality, it is 
assumed that u(t, 0) = u(t, 1) = 1.

To study the existence of periodic solutions around the steady state u∗ = 1, let v(t, a) =
u(t, a) − 1, then

⎧⎨
⎩

∂tv(t, x) = ∂2
x v(t, x) + r(t)[v(t, x) + 1][1 − v(t,x)+1

K(t)
], t ∈ R+, x ∈ [0,1],

v(t,0) = v(t,1) = 0,

v(t, x) = v(t + T ,x),

(4.8)

where r(t) and K(t) are T -periodic. The existence of solutions for (4.7) and that for (4.8) are 
equivalent. From now on, we consider (4.8).

Let X = C[0, 1]. Define

Au = u′′.

Then D(A) = {u ∈ C2[0, 1] : u(0) = u(1) = 0}, D(A) = C0[0, 1] = {u ∈ C[0, 1] : u(0) = u(1) =
0} 
= C[0, 1] = X. D(A0) = {u ∈ D(A) : Au ∈ D(A)} = {u ∈ C2[0, 1] : u(0) = u(1) = u′′(0) =
u′′(1) = 0}, where A0 is the part of A in D(A). It follows that A0 generates a semigroup 
{UA(t)}t≥0 on D(A) given by

UA(t)f (x) =
∞∑

n=1

(2

1∫
0

f (ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)2t .

Define F : R+ × D(A) → X by

F(t, ϕ) = r(t)(ϕ + 1)(1 − ϕ + 1

K(t)
).

Then as before, we can rewrite (4.8) as abstract Cauchy problem (3.2).

Proposition 4.7. Assume that

(i) r(t) ∈ C[0, ∞), there exists r+ > 0 such that 0 ≤ r(t) ≤ r+ for t ≥ 0, r(t) = r(t + T );
(ii) K(t) ∈ C[0, ∞), there exists k− > 0 such that K(t) ≥ k− for t ≥ 0, K(t) = K(t + T );

(iii) There exists ρ > 0 such that ( T
‖I−UA(T )‖ + T )r+(ρ + 1)(1 + 1+ρ

k− ) ≤ ρ.

Then problem (4.7) has a mild T -periodic solution.

Proof. It suffices to prove the following
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(a) A is Hille-Yoshida operator with M = 1 and ω = 0;
(b) There exists LF (T , ρ) ≥ 0 such that ‖F(t, u)‖ ≤ LF (T , ρ) for t ≤ T and ‖u‖ ≤ ρ;
(c) UA(t) is compact on D(A) for t > 0;
(d) There exists ρ > 0 such that ( T

‖I−UA(T )‖ + T )r+(ρ + 1)(1 + 1+ρ
k− ) ≤ ρ;

(e) The Cauchy problem (2.1) has a unique mild solution for each x ∈ D(A) and f ∈
C([0, ∞), X), f (t + T ) = f (t). Moreover there exits x ∈ D(A) such that the solution u(t)

with u(0) = x is bounded.

Note that if we rewrite (4.8) as abstract Cauchy problem (3.2), (a)-(e) cover all assumptions in 
Theorem 3.10. Then the existence of a mild T -periodic solution to problem (4.8) is guaranteed 
by Theorem 3.10. Thus, we get existence of a mild T -periodic solution to problem (4.7).

Now we prove (a)-(e).
(a) Let ψ ∈ X. Let λ > 0. Then

(λI − A)ϕ = ψ ⇔ λϕ − ϕ′′ = ψ.

Set ϕ̂ = ϕ′. Then

(λI − A)ϕ = ψ ⇔
{

ϕ′ = ϕ̂

ϕ̂′ = λϕ − ψ

⇔
{ √

λϕ′ + ϕ̂′ = √
λ(

√
λϕ + ϕ̂) − ψ√

λϕ′ − ϕ̂′ = −√
λ(

√
λϕ − ϕ̂) + ψ.

Define

w = (
√

λϕ + ϕ̂),

ŵ = (
√

λϕ − ϕ̂).

Then we have

(λI − A)ϕ = ψ ⇔
{

w′ = √
λw − ψ,

ŵ′ = −√
λŵ + ψ.

(4.9)

The first equation of (4.9) is equivalent to

e−√
λxw(x) = e−√

λyw(y) −
x∫

y

e−√
λlψ(l)dl, ∀x ≥ y. (4.10)

In (4.10) let y = 0, then we obtain

w(x) = e
√

λxw(0) − e
√

λx

x∫
0

e−√
λlψ(l)dl, (4.11)

where w(0) = √
λϕ(0) + ϕ̂(0) = ϕ̂(0). In (4.10) let x = 1, we have
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w(y) = e
√

λy−√
λw(1) + e

√
λy

1∫
y

e−√
λlψ(l)dl, (4.12)

where w(1) = √
λϕ(1) + ϕ̂(1) = ϕ̂(1).

The second equation of (4.9) is equivalent to

e
√

λxŵ(x) = e
√

λyŵ(y) +
x∫

y

e
√

λlψ(l)dl, ∀x ≥ y. (4.13)

In (4.13) let y = 0, then we have

ŵ(x) = e−√
λxŵ(0) + e−√

λx

x∫
0

e
√

λlψ(l)dl, (4.14)

where ŵ(0) = √
λϕ(0) − ϕ̂(0) = −ϕ̂(0). In (4.13) let x = 1, we have

ŵ(y) = e
√

λ−√
λyŵ(1) − e−√

λy

1∫
y

e
√

λlψ(l)dl, (4.15)

where ŵ(1) = √
λϕ(1) − ϕ̂(1) = −ϕ̂(1).

From (4.11) and (4.14), we have

e2
√

λxŵ(x) + w(x) =
x∫

0

e
√

λx(e
√

λl − e−√
λl)ψ(l)dl, (4.16)

where x ∈ [0, 1]. Combining (4.12) and (4.15), we obtain

e2
√

λ(1−x)w(x) + ŵ(x) =
1∫

x

e−√
λx(e2

√
λ−√

λl − e
√

λl)ψ(l)dl. (4.17)

Since ŵ = √
λϕ − ϕ̂ and w = √

λϕ + ϕ̂, (4.16) and (4.17) can be written as

√
λ(e2

√
λx + 1)ϕ + (1 − e2

√
λx)ϕ̂ =

x∫
0

e
√

λx(e
√

λl − e−√
λl)ψ(l)dl (4.18)

and

(e2
√

λ(1−x) + 1)
√

λϕ + (e2
√

λ(1−x) − 1)ϕ̂ =
1∫
e−√

λx(e2
√

λ−√
λl − e

√
λl)ψ(l)dl. (4.19)
x
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Combining (4.18) and (4.19), we have the following

ϕ(x)

= (e2
√

λ−√
λx−e

√
λx)

∫ x

0 (e
√

λl−e−√
λl)ψ(l)dl−(e−√

λx − e
√

λx)
∫ 1
x
(e2

√
λ−√

λl − e
√

λl)ψ(l)dl

2
√

λ(e2
√

λ − 1)

=
∫ x

0 (e2
√

λ−√
λ(x−l) − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ(x−l))ψ(l)dl

2
√

λ(e2
√

λ − 1)

−
∫ 1
x
(e2

√
λ−√

λ(x+l) − e
√

λ(l−x) − e2
√

λ−√
λ(l−x) + e

√
λ(x+l))ψ(l)dl

2
√

λ(e2
√

λ − 1)

=
∫ x

0 (e2
√

λ−√
λ|x−l| − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ|x−l|)ψ(l)dl

2
√

λ(e2
√

λ − 1)

+
∫ 1
x
(e2

√
λ−√

λ|l−x| − e2
√

λ−√
λ(x+l) − e

√
λ(x+l) + e

√
λ|l−x|)ψ(l)dl

2
√

λ(e2
√

λ − 1)

=
∫ 1

0 (e2
√

λ−√
λ|x−l| − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ|x−l|)ψ(l)dl

2
√

λ(e2
√

λ − 1)
.

Since ϕ ∈ D(A), it follows that

‖ϕ‖ = sup
x∈[0,1]

|ϕ(x)|

= sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0 (e2
√

λ−√
λ|x−l| − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ|x−l|)ψ(l)dl

2
√

λ(e2
√

λ − 1)

∣∣∣∣∣ .

Since e2
√

λ−√
λ|x−l| − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ|x−l| ≥ 0 for x ∈ [0, 1] and l ∈ [0, 1], we 
have

‖ϕ‖ ≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1
0

∣∣∣e2
√

λ−√
λ|x−l| − e2

√
λ−√

λ(x+l) − e
√

λ(x+l) + e
√

λ|x−l|
∣∣∣dl

2
√

λ(e2
√

λ − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

∫ 1
0 (e2

√
λ−√

λ|x−l| − e2
√

λ−√
λ(x+l) − e

√
λ(x+l) + e

√
λ|x−l|)dl

2
√

λ(e2
√

λ − 1)

= sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

e2
√

λ( 2√
λ

− 1√
λ
e
√

λ(x−1) − 1√
λ
e−√

λx + 1√
λ
e−√

λ(x+1) − 1√
λ
e−√

λx)

2
√

λ(e2
√

λ − 1)

+
− 2√

λ
+ 1√

λ
e−√

λ(x−1) + 1√
λ
e
√

λx − 1√
λ
e
√

λ(x+1) + 1√
λ
e
√

λx

√
2
√

λ
2 λ(e − 1)
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≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√

λ−1)( 2√
λ
− 1√

λ
e
√

λ(x−1)− 1√
λ
e−√

λx + 1√
λ
e−√

λ(x+1)− 1√
λ
e−√

λx)

2
√

λ(e2
√

λ − 1)

≤ sup
x∈[0,1]

|ψ(x)| sup
x∈[0,1]

(e2
√

λ − 1) 2√
λ

2
√

λ(e2
√

λ − 1)

= 1

λ
sup

x∈[0,1]
|ψ(x)|

= 1

λ
‖ψ‖ .

Now we have 
∥∥(λI − A)−1ψ

∥∥ ≤ 1
λ

‖ψ‖, which implies that 
∥∥(λI − A)−1

∥∥ ≤ 1
λ

. So A is Hille-
Yoshida with M = 1 and ω = 0, which completes the proof of (a).

(b) For ‖ϕ‖ ≤ ρ and t ∈ [0, 1],∥∥∥∥r(t)(ϕ + 1)(1 − 1 + ϕ

K(t)
)

∥∥∥∥ ≤ r+(ρ + 1)(1 + 1 + ρ

k−
).

So we have LF (1, ρ) = r+(ρ + 1)(1 + 1+ρ
k− ), which implies (b).

(c) It is well known and its proof can be found in previous studies like [13].
(d) It follows directly from assumption (iii).
(e) Claim (a) together with Theorem 2.4 implies that the Cauchy problem (2.1) has a unique 

mild solution for each x ∈ D(A) and f ∈ C([0, ∞), X) with f (t) = f (t + T ), which is the first 
part of (e).

Now we check that there is a bounded solution. From the variation of constant formula

u(t) = UA(t)u0 + lim
λ→+∞

t∫
0

UA(t − s)λ(λI − A)−1f (s)ds,

we first consider the first part

UA(t)u0(x) =
∞∑

n=1

(2

1∫
0

u0(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)2t .

Then we have

|UA(t)u0(x)| ≤ sup
x∈[0,1]

∞∑
n=1

∣∣∣∣∣∣(2
1∫

0

u0(ξ) sin(nπξ)dξ)

∣∣∣∣∣∣ |sin(nπx)| e−(nπ)2t

≤ 2
∞∑

n=1

sup
ξ∈[0,1]

|u0(ξ)| 2

π
e−(nπ)2t

= sup
ξ∈[0,1]

|u0(ξ)| (
∞∑ 4

π
e−(nπ)2t ).
n=1
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It follows that

lim
t→+∞ sup

x∈[0,1]
|UA(t)u0(x)| = 0.

So there exists an M > 0 such that |UA(t)u0(x)| ≤ M for t ∈ [0, ∞) and x ∈ [0, 1].
Now we consider the second part limλ→+∞

∫ t

0 UA(t − s)λ(λI − A)−1f (s)ds and have

∣∣∣UA(t − s)λ(λI − A)−1f (s)

∣∣∣
=

∣∣∣∣∣∣
∞∑

n=1

(2

1∫
0

λ(λI − A)−1f (s)(ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)2(t−s)

∣∣∣∣∣∣
≤ 2

∞∑
n=1

1∫
0

∥∥∥λ(λI − A)−1
∥∥∥ |f (s)(ξ)| |sin(nπξ)|dξ(e−(nπ)2(t−s))

≤ 2
∞∑

n=1

sup
ξ∈[0,1],s∈[0,1]

|f (s)(ξ)| 2

π
e−(nπ)2(t−s).

It follows that

∣∣∣∣∣∣
t∫

0

UA(t − s)λ(λI − A)−1f (s)ds

∣∣∣∣∣∣
≤ 2 sup

ξ∈[0,1],τ∈[0,1]
|f (τ)(ξ)|

t∫
0

∞∑
n=1

2

π
e−(nπ)2(t−s)ds

= 2 sup
ξ∈[0,1],τ∈[0,1]

|f (τ)(ξ)|
∞∑

n=1

2

π
e−(nπ)2t

t∫
0

e(nπ)2sds

= 2 sup
ξ∈[0,1],τ∈[0,1]

|f (τ)(ξ)|
∞∑

n=1

2

π

1

(nπ)2 (1 − e−(nπ)2t )

< 2 sup
ξ∈[0,1],τ∈[0,1]

|f (τ)(ξ)|
∞∑

n=1

2

π

1

(nπ)2

≤ 4

π3 sup
ξ∈[0,1],τ∈[0,1]

|f (τ)(ξ)| × 2

= 8

π3 sup
ξ∈[0,1],τ∈[0,1]

|f (τ)(ξ)| .
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Hence, there exists an M0 > 0 such that

lim
λ→+∞

∣∣∣∣∣∣
t∫

0

UA(t − s)λ(λI − A)−1f (s)ds

∣∣∣∣∣∣ ≤ M0, ∀t ≥ 0.

Combining the above two parts, we have for each u0 ∈ D(A), the solution to the Cauchy problem
(2.1) is bounded for all t ≥ 0, which completes the proof of the second part of (e). �

Now we choose specific functions and parameters. Let T = 1, r(t) = 0.15 + 0.1 cos(2πt)

and K(t) = 15 + sin(2πt), then F(t, ϕ) = (0.15 + 0.1 cos(2πt))(ϕ + 1)(1 − 1+ϕ
15+sin(2πt)

). N =
1

‖I−UA(1)‖ , where

UA(t)[f (x)] =
∞∑

n=1

(2

1∫
0

f (ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)2t ,

sup
x∈[0,1]

|UA(1)[f (x)]| = sup
x∈[0,1]

∣∣∣∣∣∣
∞∑

n=1

(2

1∫
0

f (ξ) sin(nπξ)dξ) sin(nπx)e−(nπ)2

∣∣∣∣∣∣
≤ sup

ξ∈[0,1]
|f (ξ)|

∞∑
n=1

2 × 2

π
e−(nπ)2

,

in which

e−(nπ)2 = 1

e(nπ)2

= 1

1 + (nπ)2 + (nπ)4

2 + ...

≤ 2

(nπ)4 .

Thus,

∞∑
n=1

2 × 2

π
e−(nπ)2 ≤ 4

π
× 2

(nπ)4 = 8

π5

∞∑
n=1

1

n4 <
4

3
× 8

π5
= 32

3π5
<

6

π3 .

So we derive

sup
x∈[0,1]

|UA(1)[f (x)]| < sup
ξ∈[0,1]

|f (ξ)| × 6

π3 ,

i.e.,

‖UA(1)‖ <
6

.

π3
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Fig. 5. A T -periodic solution of the diffusive logistic equation (4.7) starting at u(0, a) = 1 and with boundary condition 
u(t, 0) = u(t, 1) = 1, where r(t) = 0.15 + 0.1 cos(2πt), T = 1 and K(t) = 15 + sin(2πt).

Then

N = 1

‖I − UA(1)‖ <
1

1 − 6
π3

≈ 1.24.

For ‖ϕ‖ ≤ ρ and t ∈ [0, 1]
∥∥∥∥r(t)(ϕ + 1)(1 − 1 + ϕ

K(t)
)

∥∥∥∥ ≤ 0.25(ρ + 1)(1 + 1 + ρ

14
).

So r+ = 0.25.
Then from ( T

‖I−UA(T )‖ + T )r+(ρ + 1)(1 + 1+ρ
k− ) ≤ ρ, we get 2.24 × 0.25(ρ + 1)(1 + 1+ρ

14 ) ≤
ρ, i.e. (ρ + 1)(ρ + 15) ≤ 25ρ, which is also equivalent to ρ2 − 9ρ + 15 ≤ 0, where we get 
9−√

21
2 ≤ ρ ≤ 9+√

21
2 , such ρ exists.

Now all the assumptions in Proposition 4.7 are satisfied, we conclude that (4.8) has a mild 
1-periodic solution, i.e., (4.7) has a mild 1-periodic solution. The graph in Fig. 5 shows the mild 
1-periodic solution to the first equation and second boundary condition in (4.7) with initial value 
u ≡ 1, which confirms our result.

Remark 4.8. The results and techniques developed in this paper can be used to study the exis-
tence of periodic solutions in other structured population models in time-periodic environments, 
such as age-structured periodic models in Aniţa et al. [1], phenotype-structured periodic mod-
els in Lorenzi et al. [25], as well as periodic reaction-diffusion competition models in Zhao and 
Ruan [45,46] and Du et al. [11].
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[1] S. Aniţa, M. Iannelli, M.-Y. Kim, E.-J. Park, Optimal harvesting for periodic age-dependent population dynamics, 
SIAM J. Appl. Math. 58 (5) (1998) 1648–1666.

[2] O. Arino, M. Kimmel, Stability analysis of models of cell production systems, Math. Model. 7 (1986) 1269–1300.
[3] R. Benkhalti, K. Ezzinbi, Periodic solutions for some partial functional differential equations, J. Appl. Math. Stoch. 

Anal. 1 (2004) 9–18.
[4] T.A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, 

New York, 1983.
[5] Y. Chen, Periodic solutions of a delayed periodic logistic equation, Appl. Math. Lett. 16 (2003) 1047–1051.
[6] Y. Chen, Periodic solutions of delayed periodic Nicholson’s blowflies model, Can. Appl. Math. Q. 11 (2003) 23–28.
[7] S.-N. Chow, Remarks on one-dimensional delay differential equations, J. Math. Anal. Appl. 41 (1973) 426–429.
[8] S.-N. Chow, J.K. Hale, Strongly limit-compact maps, Funkc. Ekvacioj 17 (1974) 31–38.
[9] G. Da Prato, E. Sinestrari, Differential operators with non-dense domain, Ann. Sc. Norm. Pisa Cl. Sci. 14 (1987) 

285–344.
[10] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-, Complex-, and 

Nonlinear Analysis, Applied Mathematical Sciences, vol. 110, Springer-Verlag, New York, 1995.
[11] L.-J. Du, W.-T. Li, J.-B. Wang, Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable 

competition-diffusion system, J. Differ. Equ. 265 (2018) 6210–6250.
[12] A. Ducrot, P. Magal, S. Ruan, Projectors on the generalized eigenspaces for partial differential equations with time 

delay, in: J. Mallet-Paret, J. Wu, Y. Yi, H. Zhu (Eds.), Infinite Dimensional Dynamical Systems, in: Fields Institute 
Commun., vol. 64, 2013, pp. 353–390.

[13] K. Ezzinbi, J. Liu, Periodic solutions of non-densely defined delay evolution equations, J. Appl. Math. Stoch. Anal. 
15 (2) (2002) 105–114.

[14] M. Farkas, Periodic Motions, Applied Mathematical Science, vol. 104, Springer, New York, 1994.
[15] K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer, Dor-

drecht, 1992.
[16] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 

vol. 99, Springer-Verlag, New York, 1993.
[17] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, 

1991.
[18] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, 

Giardini editori e stampatori, Pisa, 1995.
[19] T. Kato, Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo 17 (1970) 241–258.
[20] M.E. Kpoumiè, K. Ezzinbi, D. Békollè, Periodic solutions for some nondensely nonautonomous partial functional 

differential equations in fading memory spaces, Differ. Equ. Dyn. Syst. 26 (1–3) (2018) 177–197.
[21] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 

1993.
[22] Y. Li, F. Cong, Z. Lin, W. Liu, Periodic solutions for evolution equations, Nonlinear Anal. 36 (1999) 275–293.
[23] J.H. Liu, Bounded and periodic solutions of finite delay evolution equations, Nonlinear Anal. 34 (1998) 101–111.
[24] Z. Liu, P. Magal, S. Ruan, Projectors on the generalized eigenspaces for functional differential equations using 

integrated semigroups, J. Differ. Equ. 244 (2008) 1784–1809.
[25] T. Lorenzi, R.H. Chisholm, L. Desvillettes, B.D. Hughes, Dissecting the dynamics of epigenetic changes in 

phenotype-structured populations exposed to fluctuating environments, J. Theor. Biol. 386 (2015) 166–176.
[26] P. Magal, S. Ruan, On integrated semigroups and age structured models in Lp spaces, Differ. Integral Equ. 20 (2) 

(2007) 197–239.
[27] P. Magal, S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differ. Equ. 14 (11/12) (2009) 

1041–1084.

http://refhub.elsevier.com/S0022-0396(20)30408-3/bib604D4B08479921A02DE36C3D7DBF9DEDs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib604D4B08479921A02DE36C3D7DBF9DEDs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibD67A333DEFC7E8DB435C8819B5F6D4D2s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibBC088859CCE594E9FDE5CBD91A89D3CAs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibBC088859CCE594E9FDE5CBD91A89D3CAs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibB0B970063F956E90A3179B782126FE36s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibB0B970063F956E90A3179B782126FE36s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib118D21820EBB4E3732EBBD6885ED88FFs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib84C564667983454FAA3C491ECE392BFAs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2A4EB4919D73B8FBB9EC8877AB8ABE08s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibF81D7515156B3ACD3AC6362071EF5198s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibD926098F106EC9B3B7171BD90B961BC4s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibD926098F106EC9B3B7171BD90B961BC4s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib01010B0E346747CB8D68ED5895525345s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib01010B0E346747CB8D68ED5895525345s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib52A127F5ED556CDF029DB5AA0D0445BBs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib52A127F5ED556CDF029DB5AA0D0445BBs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibFEE568391808871423BA19E36A513FE6s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibFEE568391808871423BA19E36A513FE6s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibFEE568391808871423BA19E36A513FE6s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib026AE54DDDBB038EE0E4A811407CD48Fs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib026AE54DDDBB038EE0E4A811407CD48Fs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib35AE6406A3F66DEA11F648D58CCB3AEEs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib4FBCBC5CDDE34C42CB925DC2642DD5AEs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib4FBCBC5CDDE34C42CB925DC2642DD5AEs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibEAC8C10714881AA1FE751BAB0D454B9Bs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibEAC8C10714881AA1FE751BAB0D454B9Bs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib5A0AEA2BB554411076A21F3FCDE97D80s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib5A0AEA2BB554411076A21F3FCDE97D80s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib7E4AB33853A52D1FF3562A6AD0229F0Es1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib7E4AB33853A52D1FF3562A6AD0229F0Es1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib1A395D478254D5EDC2780B13493A656Bs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2AB1DCE7C7481005979466B6DF3B80C5s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2AB1DCE7C7481005979466B6DF3B80C5s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAF9598BC4B10195D6865DD9EF349AD04s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAF9598BC4B10195D6865DD9EF349AD04s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib001C635CF8C37781DDA4E590B90B10F4s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibB1EA39CEB72A1844A9DEBFD3E0513BC5s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib1761D7441905E30E044E136AD41A7B76s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib1761D7441905E30E044E136AD41A7B76s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib4056818D594E9CE9BF531988CCE16165s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib4056818D594E9CE9BF531988CCE16165s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0585BDAFC4DF76339593BA6C6EA89ACDs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0585BDAFC4DF76339593BA6C6EA89ACDs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibFD997327117F520636D541F845AAABE5s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibFD997327117F520636D541F845AAABE5s1


Q. Su, S. Ruan / J. Differential Equations 269 (2020) 11020–11061 11061
[28] P. Magal, S. Ruan, Theory and Applications of Abstract Semilinear Cauchy Problems, Applied Mathematics Sci-
ences, vol. 201, Springer, New York, 2018.

[29] J.L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J. 17 (1950) 
457–475.

[30] J.L. Massera, J.J. Schäffer, Linear differential equations and functional analysis. II. Equations with periodic coeffi-
cients, Ann. Math. 69 (1959) 88–104.

[31] T. Naito, V.M. Nguyen, R. Miyazaki, J.S. Shin, A decomposition theorem for bounded solutions and the existence 
of periodic solutions of periodic differential equations, J. Differ. Equ. 160 (2000) 263–282.

[32] T.H. Nguyen, Q.D. Ngo, Periodic solutions to evolution equations: existence, conditional stability and admissibility 
of function spaces, Ann. Pol. Math. 116 (2016) 173–195.

[33] T.H. Nguyen, Q.D. Ngo, Existence, uniqueness and conditional stability of periodic solutions to evolution equations, 
J. Math. Anal. Appl. 433 (2016) 1190–1203.

[34] H. Oka, N. Tanaka, Evolution operators generated by nondensely defined operators, Math. Nachr. 278 (11) (2005) 
1285–1296.

[35] A. Pazy, Semigroups of Linear Operator and Applications to Partial Differential Equations, Applied Mathematical 
Science, vol. 44, Springer, New York, 1983.

[36] J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979) 601–612.
[37] N. Tanaka, Semilinear equations in hyperbolic case, Nonlinear Anal. 24 (5) (1995) 773–788.
[38] N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Differ. Integral Equ. 5 (1996) 

1067–1106.
[39] H.R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral 

Equ. 3 (6) (1990) 1035–1066.
[40] I.I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Am. Math. Soc. 109 (1990) 

653–661.
[41] M. Wazewska-Czyzewska, A. Lasota, Mathematical problems of the dynamics of the red-blood cells system, Ann. 

Pol. Math. Soc. III Appl. Math. 6 (1976) 23–40.
[42] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
[43] J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 

vol. 119, Springer-Verlag, New York, 1996.
[44] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Applied 

Mathematical Sciences, vol. 14, Springer-Verlag, New York, 1975.
[45] G. Zhao, S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic 

Lotka-Volterra competition system with diffusion, J. Math. Pures Appl. 95 (2011) 627–671.
[46] G. Zhao, S. Ruan, Time periodic traveling wave solutions for periodic advection-reaction-diffusion systems, J. 

Differ. Equ. 257 (2014) 1078–1147.

http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0D24E17B2FD9505120DAB919AC6B3D99s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0D24E17B2FD9505120DAB919AC6B3D99s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAA40273F77689A3DB161A53A3AC1735As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAA40273F77689A3DB161A53A3AC1735As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib31F16B02E9A034018B44075A23655FDCs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib31F16B02E9A034018B44075A23655FDCs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib33ED122942AB332BABD545CB7EC9555As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib33ED122942AB332BABD545CB7EC9555As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib89561DE6DFBEA3DDCA27E86A41FE3E15s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib89561DE6DFBEA3DDCA27E86A41FE3E15s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0CCE960DB3295120E74DA97C84346513s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib0CCE960DB3295120E74DA97C84346513s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibB56E92A97E6795C42652FC507A952798s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibB56E92A97E6795C42652FC507A952798s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2E7022AB2894654FA94F6A606936275As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2E7022AB2894654FA94F6A606936275As1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib459C25EF495EB810C682478D86F0FF36s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib5CD7C7755281F72CFD33FD2BF70A5690s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2506B582E5A1513F92C94DCC6F945E4Cs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib2506B582E5A1513F92C94DCC6F945E4Cs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibECFB63BC601DA6BC6CE5AC51D27EFCDCs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibECFB63BC601DA6BC6CE5AC51D27EFCDCs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibC7BBD84A2331D1F009C10B2FEC7D1702s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibC7BBD84A2331D1F009C10B2FEC7D1702s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib396A4926E32A95B8ABE805F6254DC935s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib396A4926E32A95B8ABE805F6254DC935s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib15B408EE55106BEA0462FEF2129BA00Bs1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibE69D5823C69013B7495E2559C7710F90s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibE69D5823C69013B7495E2559C7710F90s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAFB5ADEE0982A98CD6B5BE447D356F17s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibAFB5ADEE0982A98CD6B5BE447D356F17s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib6B9B6828F09E66EB282C649E85C723B3s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bib6B9B6828F09E66EB282C649E85C723B3s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibCA103114B10E8BAA9BCA6E9AF9EAAFF2s1
http://refhub.elsevier.com/S0022-0396(20)30408-3/bibCA103114B10E8BAA9BCA6E9AF9EAAFF2s1

	Existence of periodic solutions in abstract semilinear equations and applications to biological models
	1 Introduction
	2 Preliminary results
	3 Existence of periodic solutions
	3.1 Time-independent operators
	3.2 Time-dependent operators
	3.3 Time-independent operators - revisited

	4 Applications
	4.1 Retarded functional differential equations and delayed red-blood cell models
	4.2 Age-structured population models with periodic harvesting
	4.3 The diffusive logistic model with periodic coefficients

	Acknowledgments
	References


