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ABSTRACT. 1In this paper, we consider the Gierer-
Meinhardt model of morphogenesis. Ii is shown that the ho-
mogeneous equilibrium solution and the homogeneous peri-
odic solution become diffusively unstable if the diffusion coef-
ficients of the two substances are chosen suitably.

1. Introduction. In developmental biclogy, 2 fundamental prob-
lem is to understand morphogenesis, the generation of form and pattern
starting from a comparatively featureless initial state. There are sev-
eral steps of complexity in the course of biological development. At the
lowest level one can find the genetic codes which constitutes the bio-
chemical basis for all further steps. Next is the cell, the small biological
unit, which varies in function and size. The organization, differentiation
and localization of cells are the main subjects of morphogenesis. The
morphogenesis field is a kind of pre-pattern given by concentration gra-
dients of morphogens which trigger cell differentiation and localization.
In his fundamental paper (Turing [1952]), Turing showed that a system
of coupled reaction-diffusion equations can be used to describe differ-
entiation and spatial patterns in biological systems. Turing’s theory
says that diffusion could destabilize an otherwise stable equilibrium of
the reaction-diffusion system and lead to nonuniform spatial patterns,
which could then generate biological patterns by gene activation. This
kind of instability is usually called Turing instability (Levin and Segal
[1985] and Murray [1989]), diffusion-driven instability (Okubo [1980]),
or homogeneity breaking instability (Maginu {1979]).

(Gierer and Meinhardt [1972] developed a detailed model of two
coupled reaction-diffusion equations for the production and diffusion
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of two different kinds of substances, called the activator and inhibitor.
Let a(t,z) and h(t,z) denote the concentration of the activator and
inhibitor at time ¢ and location z, respectively. The so-called Gierer-
Meinhardt model of morphogenesis is:
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—3—{:

1.1

- g}f---D gz—h—!—c"az—vh
gt hogz TP ’

where D, and Dy are the diffusion constants of the activator and
inhibitor, respectively; ppp is the source concentration for the activator
and p' is the one for the inhibitor; p and v are, respectively, the
degradation coefficients of the activator and inhibitor; ¢ and ¢ are
connected with the activator and inhibitor production. System (1.1}
can be interpreted in this way: two molecules of activator are necessary
to activate and one to inhibit the source. Gierer and Meinhardt
solved their equations numerically and produced a number of patterns
relevant to the formation of biclogical structures. Analytical work has
confirmed and extended the conclusions of the simulations of Gierer
and Meinhardt. We refer to Berding and Haken [1982], Granero,
Porati and Zanacca [1977], Haken and Olbrich [1978], Hunding and
Engelhardt {1995, Keener {1978], Mimura and Nishiura [1979], Murray
[1989], Segel {1984] and the references cited therein.

Granero-Porati and Porati [1984] considered the ODE version of the
Gierer-Meinhardt model (1.1). Their analysis indicates that the ODE
Gierer-Meinhardt model undergoes a Hopf bifurcation and a stable
limit cycle exists under certain assumptions. The purpose of this paper
is to discuss the stability of the equilibrium and the limit cycle as spa-
tial homogeneous solutions of the reaction-diffusion Gierer-Meinhardt
model (1.1). It is found that both the homogeneous equilibrium so-
lution and the homogeneous periodic solution become unstable if the
diffusion coefficients are chosen suitably, that is, diffusion-driven insta-
bility occurs.

This paper is organized as follows. The ODE Gierer-Meinhardt
model is analyzed in Section 2. In Section 3 we consider the diffusion-
driven instability of the equilibrium solution. The instability of the
homogeneous periodic solution is studied in Section 4. Finally, a brief
discussion is carried out in Section 5.
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2. Analysis of the ODE model. Suppose that the concentrations
of the activator and inhibitor are only time dependent. The Gierer-
Meinhardt model (1.1} becomes a system of ordinary differential equa-
tions:

da a?

B = PPy + cp L na
(2.1)

@ — c'p’a2 - vh

ot )

There is a unique interior equilibrium E* = (a*, h*), where

N !
o~ = SP PP +CPV’ B = E’E_(a*)Z_

(2.2) o »

The Jacobian matrix of the linearized system of (2.1) at E* is

ey, g w )2
(2 3) J - CU";’c’p’pO £ CV+C’,0’po g a11 ais
2p{evtc'p'po} —y dg1 Q97
m

The characteristic equation is
(2.4) A2 — Atr J + det J = 0,

where
Zepv

prf = — B
' cv +cp'po

[ = v, detJ = pv > 0.
The characteristic roots can be expressed as

M2 = ap) £ iw(y),

where
afp) = %tr J, w(p) = %\/4detJ - a2,
Assume
A
(2.5) v SLP

C
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It is easy to see that A; » have negative real parts if

P viev+cp'po) &
cv —c'plpy

(2.6) pos  to > 0.

When £ = o, a(po) = 0, wp Sw(ug) = vdet J. Thus, Mo = iwp.
Since the transversality condition

d _ ev=Cppo

Rt 1 A AR bbb
du (k) ymiy 2(cv +¢ppo)

>0

holds, the Hopf bifurcation theorem implies that a family of periodic
solutions bifurcates from the equilibrium E* when u passes through pqg.
By using a formula in Marsden and McCracken [1976] (see Granero-
Porati and Porati [1984]), the bifurcating periodic solutions are stable
if (2.5) holds and p > ug.

The above analysis can be summarized as follows:

THEOREM 2.1. Suppose (2.5) holds.
(1) If (2.6) is satisfied, then E* is asymptotically stable.
(2) A Hopf bifurcation occurs at E* when p = ug.

(3) The bifurcation periodic solutions exist for 1 > po and is orbitally
stable.

REMARK 2.2. Since yg > v, the condition g > o implies u > v,
which is the condition of pattern observed by Gierer and Meinhardt
[1974].

3. Instability of the equilibrium solution. Notice that the
equilibrium E* given by (2.2) is a spatially homogeneous solution of
the reaction-diffusion (zierer-Meinhardt model (1.1). In this section we
will derive conditions for the instability of the equilibrium solution by
using Turing’s technique (see Turing {1952] or Murray [1989}).

The linearized system of (1.1) at £ has the form (where @ = a — a*,
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h=h—h*).

- 8%G _
ga_ Da—g + a1 + azh
ot Oz

(33) oh _ &R ]
— = Dy, + ag1@ + angh,

ot 522

where a;j, 4,j = 1,2, are defined in (2.3). System (3.1) can be solved
by separation of variables and expanding @ and h in spatial Fourier

series. Assume that
o
) = ( 1)003!9:3&"*,
83

(3.2) (%

where o and k are the frequency and wavenumber, respectively. The
eigenvalue equation is

A+ Dok? —agy —a12

a1 A+ Dpk?—ag| =0

(3.3)

Solving for A, we obtain

1. . - a P—
(34) A2= 5[(011 + fg2) & /(@12 + G22)? — 4(B11822 — a12a21)},

where
é11 = ar1 — Dok, G2z = apz — Drk?.

The case when k == 0 corresponds to the neglect of diffusion and by the
assumption, E* is stable. It is required that trJ < 0 and detJ > 0.
If D, = Dy, = D, we can see that the homogeneous solution E* is
stable. This means that diffusion-driven instability occurs only when
Da ?é Dh. )

To have instability, at least one of the following conditions must be
violated by the Routh-Hurwicz criterion

(3.5) 1y 4+ aa < 0,
(3~6) d11892 — aizagy > 0.

Clearly, the first condition (3.5) is not violated when trJ < 0. There-
fore, only the violation of the second condition (3.6) gives rise to
diffusion-driven instability. Reversal of the inequality gives

(3.7) H(k?) = Dy Dpk* — (a11Dp, + 622D )k* + det J < 0.
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Since H'(k*) = 2Dy Dypk? — (a11 Dy + a29D,), the minimum of H(k?)
occurs at k? = k2 | where

. a11Dn + ag2 D,
m 2D, Dy, '

Thus, a sufficient condition for instability is that (see Okubo [1980])

(3.8) a11Dp + 620D > 2(a11092 — 012021)1/2(Daph)1/2-

THEOREM 3.1. Assume that (2.5) and (2.6) hold. The equilibrium
solution E* of the reaction-diffusion system (1.1) is diffusively unstable
if (3.8) is satisfied.

4. Instability of the periodic solution. Suppose (2.5) and 1 > 1
hold. By Theorem 2.1, the ODE Gierer-Meinhardt model (2.1) has a
stable bifurcating periodic solution, denoted by ¢(t) = (¢1(t), p2(t)),
which has a minimum period, say T'; i.e., we have

(1) S0 = Flp)),  #(t) = 6(t+T)

where

ren=(ReR) = ()

Consider the following perturbed ordinary differential equation
ow
(4.2) I+ 8D)_(‘§; = F(w),

where [ is a 2x 2 identity matrix, € is a real parameter, D = diag (d, dz)
and w = (a, h)T. By (4.1), we know that (4.2) has a periodic solution
w = ¢(t) in the case of &€ = 0. Since this periodic solution is orbitally
stable, & = 0 is not a bifurcation point of the parameter . Thus, if |e|
is sufficiently small, equation (4.2) has a periodic solution, denoted by
P(t,€) = (Y1(t,€),¥a(t,£)), with minimum period L(e). This periodic
solution #(¢,£) depends on ¢ smoothly and approaches w = ¢(t) as
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¢ ~+ 0 and L(0) = T. In order to fix the phase of the periodic solution,
we assume that

'giwl (0: 5') = 0.

The function (¢, &) satisfies the following

(I +eD) 2 plte) = Fp(6 ),

Blte) = Bit + L(e)re),
B0 =9(t), LO)=T.

Firstly, consider the linearized system of the ODE system (2.1) at
#(t). Let w(t) be a solution of (2.1} and denote Z(t) = w(t) — ¢(t).
Then

(43) 2 2t = 8050,

where (OF/0w)(4(¢)) is the 2 x 2 Jacobian matrix of F(:) at ¢(t). Let
®(t) denote the fundamental matrix solution of (4.3). Then a solution
z(t) of (4.3) with initial value 2(0) is 2(t) = ®(¢)2(0). Let A; and Z(0),
i = 1,2, denote the eigenvalues and eigenvectors of the matrix ®(T)
respectively, that is,

(4.4) X7(0) = B(T)5(0) = 2(T), i=1,2,

where ); are called the Floquet multipliers of the periodic solution ¢(t).
Since (de¢/dt)(0) = (d¢/dt)(T), without loss of generality we assume
that

(4.5) 71 () = %%(t), =1

Since ¢(t) is assumed to be stable, we have |Az| < 1.

Next, we consider the linearized system of the reaction diffusion
system (1.1) at ¢(t). Let w(t,z) be a solution of (1.1) and denote
z(t,z) = w(t, z) — ¢(t). We have

9z 8%  OF((1))
(4.6) 5 Pt Tew
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Suppose a solution of (4.6) has the form
(4.7) z(t,z) = b(t) e*=,

where k > 0 is the spatial frequency. Then b(t) satisfies the ordinary
differential equation

9 2y, OF(8()
(4,8) “é}:b(t) = | ~ k“D + -"““5;“"] b(t)

Let ¥(t, k%) denote the 2 x 2 fundamental matrix solution of (4.8)
and o;(k?) and b;(0, k?) denote the eigenvalues and the eigenvectors of
the matrix (T, k?) respectively, that is,

(4.9) o (K*)b:(0, k%) = (T, k%)b; (0, k%) = by(T, k%), i=1,2.

Since ¥(¢,0) = ®(t), without loss of generality we assume that
d
(4.10) bi(t,0) = 2 (t) = Equ(t)’ o1(0) = A\ = L.

Since ¥(T,k?) depends smoothly on the parameter k2 and )\; = 1 is
a simple eigenvalue of ®(T"), we may assume that o4 (k?) and b; (¢, k?)
are continuously differentiable functions of k2 if k is sufficiently small.

If there exists a number ky 3 0 such that the second eigenvalue of
®(T, k) satisfies |oo(k2)| > 1, then |b(nT, k2)| becomes large as the
integer n increases; thus z(¢,z) with the spatial frequency kg becomes
large as the time increases. Therefore, by (4.10), ¢(t) becomes unstable
if 01(0) > 0.

Notice that by (¢, k%) also satisfies equation (4.8), that is,

(4.11) E‘%b’* (t,kg) = [‘* k2D -+ Wr’ b1 (t, k2)n

Since bi(t,k?) is continuously differentiable in k? if k is sufficiently
small, we can define byza(f, k%) = (8/6k®)b1(t,k%) at k2 = 0 for
t € [0,T]. From (4.11) and (4.10), we have

(4.12) g’iblka(t, 0) = — %(t) + -q{?-é(%@lblkz(t, 0)
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and

0% ).

(4.13) byga (T 0) = byga (G 0) + O”( )dt

Finally, for the function ¥(¢,¢), similarly we can define ¢.(t,e) =
(8/8e)(t,e) at € = 0 for t € [0,T]. In fact, ¥.(¢,0) also satisfies
equation (4.12) and

(4.14) $e(T,0) = 4:(0,0) = L'(0) 2 (0).
This implies that 1 (¢, 0) is a particular solution of (4.12). Thus,

(4.15) bixa(t, 0) = e (£, 0) + [ByD1 (t) + B2 () 2(2)],

where f3; is a constant and [ is a constant as a function of .
Substituting (4.15) into (4.13) yields

Ye(T,0) + [B191(T) + Bo(T)2(T)]
= $.(0,0)+ [B1.0) + B2(0)Z(0)] + 04 ()22 0).

By (4.4), (4.5) and (4.14), we have

[3(0) %L'(U)] (0) [A282(T) — B2(0)]52(0).

Since ({d¢/dt)(0), w2 (0)) are linearly independent eigenvectors of &(T'),
we obtain that

(4.16) o1(0) + L'(0) = 0.
Hence, o4 (0) > 0 only if L'(0) < 0.
Rewrite (2.1) as follows:

a?

b1= = 610p0 + pg ~ 0 pa

= p'a® — ,vh,

(4.17)
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where
91-“‘-1/0, 92-——-1/6’,

By the Hopf bifurcation theorem (see Marsden and McKracken [1976)),
the period of the periodic solution ¢(¢) is

(4.18) L(61,02) = 27 fwy,

where
Bav + 610" po
v — 819000

wy = /ol = v
If the period L(#61, 6,) satisfies

Ll

(419) —

L(6y +eDy, 8, + EDh)

£=0

0 a
= Da“é‘éIL(ala b2) + Dh"gé;L(gl:92) <0,

then L'(0) < 0. We thus have our main result in this section.

THEOREM 4.1. Suppose that (2.5) and u > po (> v) hold so that
the ODE Gierer-Meinhardt model (2.1) has an orbitally stable periodic
solution ¢(t). If Dy and Dy satisfy (4.19), then @(t) is diffusively
unstable as a homogeneous periodic solution of the reaction-diffusion
Gierer-Meinhardt model (1.1).

5. Discussion. For the ODE Gierer-Meinhardt model (2.1), it
is known that under the condition (2.5), if 4 < po, where pg is a
(critical) value defined in (2.6), then the positive equilibrium E* is
asymptotically stable. When p passes through the critical value pg, a
Hopf bifurcation occurs and a periodic solution ¢(t) exists for x> pg
and is orbitally stable.

"The positive equilibrium E* and the periodic solution ¢(t) are spa-
tially homogeneous solutions of the reaction-diffusion Gierer-Meinhardt
model (1.1). For the homogeneous equilibrium solution E*, by using
Turing’s technique it was shown that diffusion-driven instability occurs.
Thus, if an appropriate small perturbation is added to the equilibrium
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solution E*, there will appear spatial inhomogeneity with certain pe-
riodic spatial structure in the solution of system (1.1). For the ho-
mogeneous periodic solution ¢(¢), we also found that diffusion-driven
instability could occur if the diffusion constants are chosen suitably.
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