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Both uniform persistence and global extinction are established for two species
predator�prey and competition reaction�diffusion systems with delays in terms of
the principal eigenvalues of the scalar elliptic eigenvalue problems by appealing to
the theories of abstract persistence, asymptotically autonomous semiflows, and
monotone dynamical systems. � 1999 Academic Press

1. INTRODUCTION

A fundamental problem in population dynamics is to study uniform
persistence of the ecosystems, that is, to study the long term survival of
interacting species. Abstract persistence theory, started in [BFW, BW], has
been well-developed for both continuous and discrete semi-dynamical
systems (see, e.g., [FRT, HW, FS, HS1, Th2, YR]) and has been applied
to various types of equations including reaction�diffusion equations (see,
e.g., [CC1, CCH, FLG, HS2, LG, Zh1, Zh2, ZH]) and functional differen-
tial equations (see, e.g., [FR]). For more details and references, we refer to
a survey paper [HS2].

In realistic ecosystem models, diffusion and time delay should be taken
into account. As argued in [Br] and pointed out by the referee, since
individuals in the populations are moving, they may not have been at the
same location in space at previous times, and the terms involving delay
must be nonlocal in space. We refer to [GB1, GB2] for two-species com-
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petition or predator�prey models with double convolutions in both time
and space. As shown in [GB1], by choosing the convolution kernels as
delta functions, one can obtain diffusion equations with delay in time only.
Although diffusion systems with time delays and nonlocal effects are more
realistic (see [CC2] and the references therein), here we only consider the
effect of time delays. In fact, recently a great deal of attention has been paid
to reaction�diffusion equations with time delays (see, e.g., [FL, FZ, Ha1,
Hu, KS, Lu, MS1, MS2, Pa, TW, Wu]). Topics include fundamental theory,
comparison, monotonicity, convergence, stability, bifurcations, traveling
waves, etc. We refer to a recent monograph [Wu] for the fundamental theory
and references.

In this paper, we consider two species predator�prey and competition
reaction�diffusion systems with delays. The purpose is first to establish
uniform persistence criteria for these two types of systems. Current results
on this subject (see [FL, Lu]) were obtained by using a comparison argu-
ment. We shall use the abstract persistence theory (see [HW]) and the
infinite-dimensional dissipative system theory (see, e.g., [Ha2]). One of the
main steps is to analyze the semiflow on the boundary and to show that
the boundary equilibria are weakly repelling. Notice that on the boundary
the two species system will reduce to a scalar diffusive logistic equation
with delay. Most recently (see [FZ, Pa]), very useful results on the global
dynamics of diffusive logistic equations with delay were established in
terms of the the principal eigenvalues of the scalar elliptic eigenvalue
problems. Thus, we can combine the results in [FZ, Pa] and the comparison
theorem on reaction�diffusion equations with delays in [MS1, MS2] to estab-
lish the abstract uniform persistence for the solution semiflows generated by
both predator�prey and competition systems. By a general result on the exist-
ence of the stationary coexistence state [Zh1], the abstract uniform
persistence enables us to conclude that the delayed reaction�diffusion
systems admit at least one positive steady state. However, since the solu-
tion semiflow is defined on the positive cone of the Banach space of
continuous functions on a compact set with the usual maximum norm, the
abstract uniform persistence only implies that there is a $>0 such that any
solution u(t, x, ,) with inner initial value , satisfies lim inft � � maxx # 0�

ui (t, x, ,)�$, i=1, 2. It is then natural and practical to expect that there
is a uniform lower bound for all x # 0� . Notice that it is impossible to have
a uniform lower positive constant bound in the case of Dirichlet boundary
condition since for all t�0, the solution is always zero on the boundary of
the spatial domain 0. Therefore we also need to consider the practical
uniform persistence for the delayed reaction�diffusion systems (see the
statement of our Theorem 3.2 for the precise definition). Thanks to the
compactness, invariance, and attractivity of the inner global attractor for
the semiflow and the parabolic maximum principle, we are then able to
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prove that the abstract uniform persistence actually implies the practical
persistence. For some discussions related to practical persistence in reaction�
diffusion systems, we refer to [CC1, CCH, Co, HS2, Zh1, ZH].

We then would like to know more about the dynamics of these systems.
If some or all of the persistence conditions are reversed, we would like to
know whether the semi-trivial or the trivial equilibrium is globally attractive,
that is, whether one or both species go extinct. For instance, for the predator�
prey system, we want to study the global attractivity of the boundary equi-
librium (u1*, 0). To do this, technically we only need to consider a scalar
equation, namely the prey equation. However, even if the limit of u2 is zero,
it still appears in the prey equation. Usually, it is not too much easier to
study a scalar equation involving both components than to study the
original system. Notice that u2 � 0 as t � 0. Taking this limit in the prey
equation, then, the limiting equation will be a scalar equation in u1 only.
By appealing to the asymptotically autonomous semiflow theory due to
Thieme [Th1] and Mischaikow et al. [MST], we then can carry the
properties for the limiting scalar equation in u1 onto the prey equation. For
the competition system, we shall use Martin and Smith's comparison
theorem for delayed reaction�diffusion systems [MS2] and Hirsch's global
attractivity theorem for monotone semiflows [Hi1] to show that the
``competition exclusion principle'' occurs under certain assumptions, that is,
only one species wins the competition. For more detailed results on mono-
tone dynamical systems, we refer to [DH, Hi2, Sm] and the references
cited therein.

We would like to point out that we could consider distributed delay in
the logistic reaction term, since there is no essential difference in our
dynamical system approach, we only consider discrete delay for the sake of
simplicity (see Remark 2.6).

This paper is organized as follows. In Section 2, we summarize some
results in abstract persistence theory [HW], asymptotically autonomous
semiflow theory [Th1; MST], and on the scalar diffusive logistic equations
with delay [FZ; Pa]), which will be used throughout the paper. In Section 3,
we first establish weak repellency of the semi-trivial steady state in general
reaction�diffusion systems with delays, then we derive uniform persistence
criteria for both predator�prey and competition systems. Global extinction
criteria are established in Section 4.

2. PRELIMINARIES

In this section, we recall some results on abstract persistence, asymptoti-
cally autonomous semiflows, and scalar diffusive logistic equations with
delay, which will be used in the following sections.
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2.1. Uniform Persistence

Let (X, d ) be a complete metric space with metric d. Suppose that
T(t): X � X, t�0, is a C0-semiflows on X, that is, T(0)=I, T(t+s)=
T(t) T(s) for t, s�0, and T(t)x is continuous in t and x. T(t) is said to be
point dissipative in X if there is a bounded nonempty set B in X such that
for any x # X, there is a t0=t0(x, B)>0 such that T(t)x # B for t�t0 .

Definition 2.1. Assume that X=X0 _ �X0 and X0 & �X0=< with X0

being open in X. The semiflow T(t): X � X is said to be uniformly persistent
with respect to (X0 , �X0) if there is an '>0 such that for any x # X0 ,
lim inft � � d(T(t)x, �X0)�'.

Let |(x) denote the |-limit set of x # X for semiflow T(t): X � X and let
A� �=�x # �X0

|(x). The set A� � is said to be acyclic if there exists an isolated
covering �k

i=1 Mi of A� � such that no subset of the Mi 's forms a cycle. Then
we have the following theorem on uniform persistence [HW, Theorem 4.1].

Theorem 2.2. Suppose T(t): X � X satisfies T(t): X0 � X0 and T(t):
�X0 � �X0 and we have the following:

(i) there is a t0�0 such that T(t) is compact for t>t0 ;

(ii) T(t) is point dissipative in X ;

(iii) A� � is isolated and has an acyclic covering �k
i=1 M i .

Then T(t) is uniformly persistent with respect to (X0 , �X0) if and only if for
each Mi , 1�i�k,

W s(M i) & X0=<, (2.1)

where W s(Mi)=[x: x # X, |(x){<, |(x)/Mi].

2.2. Asymptotically Autonomous Semiflows

Let 2=[(t, s): 0�s�t<�]. Consider the mapping 8: 2_X � X. 8 is
called a nonautonomous semiflow if it is continuous and satisfies 8(s, s, x)
=x, s�0, and 8(t, s, 8(s, r, x))=8(t, r, x), t�s�r�0, x # X.

Definition 2.3. A nonautonomous semiflow 8 on X is called asymptoti-
cally autonomous��with limit semiflow T(t)��if T(t) is an autonomous
semiflow on X and

8(tj+sj , sj , xj) � T(t)x, j � � (2.2)

for any three sequences tj � t, sj � �, xj � x, j � � with x, xj # X, 0�t,
tj<� and sj�0.
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The following generalized Markus' theorem is due to Thieme [Th1,
Theorem 4.1]. For the chain recurrence and Liapunov functions in asymptoti-
cally autonomous semiflows, we refer to a recent paper by Mischaikow et
al. [MST]. For asymptotically periodic semiflow theory, we refer to [Zh2].

Theorem 2.4. Let 8 be an asymptotically autonomous semiflow on X
and T(t) its limit semiflow. Let e be a locally asymptotically stable equi-
librium of T(t), i.e., T(t)e=e for all t�0, and W s(e) its stable set for T(t).
Then every pre-compact 8-orbit whose |&8-limit set intersects W s(e)
converges to e.

2.3. Diffusive Logistic Equations with Delay
Now we consider a diffusive Logistic equation with time delay:

�u
�t

=d2u+u[a(x)&b(x) u(x, t)+c(x) u(x, t&{)],

t>0, x # 0,

Bu=0, t>0, x # �0, (2.3)

u(x, %)=,(x, %), &{�%�0, x # 0,

where d>0, 0 is a bounded domain in RN with a smooth boundary �0,
2 is the Laplacian operator on 0, Bu=u (Dirichlet boundary condition)
or Bu=(�u��&)+:(x)u (Robin or Neumann boundary condition), :( } ) #
C1(0� , [0, �)) and (���&) denotes differentiation in the direction of the out-
ward normal to �0. We assume that a(x) and b(x) are positive functions,
and either c(x)�0 for all x # 0� , or c(x)�0 for all x # 0� . Let *0=*0(a( } ))
be the principal eigenvalue of the eigenvalue problem

d2w(x)+a(x) w(x)=*w(x), x # 0,
(2.4)

Bw(x)=0, w # �0.

Let X+=C(0� _[&{, 0], R+) in the case of Robin or Neumann boundary
condition and let

X+=C0(0� _[&{, 0], R+)

=[,: , # (0� _[&{, 0], R+), ,(x, %)=0, x # �0, % # [&{, 0]]

in the case of Dirichlet boundary condition. Then we have the following
threshold result on the global dynamics of (2.3), which is essentially a
combination of [FZ, Proposition 3.3] and [Pa, Theorem 5.1].

Theorem 2.5. Assume that b(x)>|c(x)| for all x # 0� . For any , # X+,
let u(x, t, ,) be the unique solution of (2.3).
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(a) If *0(a( } ))�0, then for any , # X+, limt � � u(x, t, ,)=0
uniformly for x # 0� ;

(b) If *0(a( } ))>0, then (2.3) has a unique positive steady state solu-
tion u*(x) and for every , # X+ with ,( } , 0)�0, limt � � u(x, t, ,)=u*(x)
uniformly for x # 0� .

Proof. In the case where c(x)>0, x # 0� , the conclusion is a direct
application of [FZ, Proposition 3.3] for the Robin or Neumann boundary
condition and an argument similar to [FZ, Proposition 3.3] applies for the
Dirichlet boundary condition with X+=C0(0� _[&{, 0], R+). In the case
where c(x)<0, x # 0� , the conclusion is essentially the same as [Pa,
Theorem 5.1]. Indeed, there *(0) is the smallest eigenvalue of the eigen-
value problem

d2w(x)+*a(x) w(x)=0, x # 0,
(2.5)

Bw(x)=0, x # �0.

It then easily follows that *0(a( } )) and (1&*(0)) have the same sign (see,
e.g., [He, Chapter II.15, Theorems 16.1 and 16.3 and Remark 16.5]). This
completes the proof. K

Remark 2.6. From the proofs of Proposition 3.3 in [FZ] and Theorems
1.2 and 1.3 in [Hu], the threshold global dynamics still holds for (2.3) with
c(x) u(x, t&{) replaced by c(x) �{

0 u(t&s)(x) m(ds), where m( } ) is a
nonnegative measure with �{

0 m(ds)=1.

3. UNIFORM PERSISTENCE

In this section, we first derive a result on weak repellency of the semi-
trivial steady state in general reaction�diffusion systems with delay. Then
we establish uniform persistence criteria for the predator�prey and competition
systems, respectively.

3.1. Weak Repellor for Delayed Reaction�Diffusion Systems

Let {�0 and m be an integer. Define C{=C([&{, 0], Rm). For any
, # C{ , define &,&=max% # [&{, 0] |,(%)|. Then C{ is a Banach space. Let 7

denote the inclusion Rm � C{ by u � û, û(%)=u, % # [&{, 0]. Given a func-
tion u(x, t): 0� _[&{, _) � Rm (_>0), for each x # 0� , define ut(x) # C{ by
ut(x)(%)=u(x, t+%), % # [&{, 0].
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Consider the nonautonomous reaction�diffusion equation with delay

�ui

�t
=di 2ui+uiF i (t, x, ut(x)), t>0, x # 0, 1�i�m,

(3.1)
Biui =0, t>0, x # �0, i�i�m,

where for each 1�i�m, Fi : R+_0� _C{ � R is continuous and Lipschitzian
on bounded subsets of R+_C{ uniformly in x # 0� , d i>0, and Bi ui=
(�ui ��&)+:i (x)ui , :i ( } ) # C1(0� , R+) or Bi ui=ui .

Let C0(0� , R+) = [,: , # C(0� , R), ,(x) = 0, x # �0] and C0(0� _
[&{, 0], R)=[,: , # C(0� _[&{, 0], R), ,(x, %)=0, x # �0, % # [&{, 0]].
We will distinguish between Robin or Neumann boundary condition
(R.B.C.) and Dirichlet boundary condition (D.B.C.). For each 1�i�m, let
Xi=C([&{, 0], C(0� , R)) and Wi=C(0� _[&{, 0], R) if Bi ui=(�ui ��&)+
:i (x) ui ; and Xi=C([&{, 0], C0(0� , R)) and Wi=C0(0� _[&{, 0], R) if
Bi ui=ui . Let X=>m

i=1 Xi . We will identify X with >m
i=1 Wi when this

does not cause confusion. By a standard formulation of (3.1) (see, e.g.,
[MS1, MS2]), for any , # X, there exists a unique solution u~ (t, ,) on the
maximal interval [0, _~ ,), ,� ,>0, satisfying u~ 0=,. Moreover, if {<_~ , , then
for t>{, u(x, t)=u(t, ,)(x) is a classical solution of (3.1). By [MS2,
Proposition 1.3], the positive cone X+ of X is positively invariant for (3.1),
i.e., for any , # X with ,i (x, %)�0, 1�i�m, u~ i (t, ,)(x)�0, 1�i�m, for
all x # 0 and t # [0, _~ ,).

We also consider the autonomous reaction�diffusion system

�ui

�t
=d2ui+ui F 0

i (x, ut), t>0, x # 0, 1�i�m,
(3.2)

Biu i =0, t>0, x # �0, 1�i�m,

where F 0
i : 0� _C{ � R is continuous and Lipschitzian on bounded sets of

C{ uniformly in x # 0� , i�i�m. For any , # X, let u(t, ,) be the unique
solution of (3.2) satisfying u0=, on the maximal interval [0, _,), _,>0.

For each 1�i�m, let

Y0i=[, i # Xi : , i (x, %)�0, x # 0� , % # [&{, 0], and ,i (x, 0)�0].

Let Y0=>m
i=1 Y0i and �Y0=X+"Y0 , where X+=>m

i=1 X +
i is the

positive cone of X. We further assume that for any , # X+, both u~ (t, ,) and
u(t, ,) exist globally on [0, �). Then we have the following lemma.
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Lemma 3.1. Assume that there exists some 1�i�m such that

(1) limt � � |F i (t, x, ,)&F 0
i (x, ,)|=0 uniformly for x # 0� and , in

bounded subsets of C{ ;

(2) û*(x)=(u1*(x), ..., u*i&1(x), 0, u*i+1(x), ..., un*(x)) is a nonnega-
tive equilibrium of (3.2) and *0=*0(di , F 0

i (x, û*(x)))>0, where *0(di ,
F 0

i (x, û*(x))) is the principal eigenvalue of the eigenvalue problem

di 2w+F 0
i (x, û*(x))w=*w(x), x # 0,

(3.3)
Biwi =0, x # �0.

Then there exists a $>0 such that for any , # Y0 ,

lim sup
t � �

&u~ t(,)&û*&�$.

Proof. Since for any t�0, x # 0� , , # X,

|Fi (t, x, ,( } , x))&F 0
i (x, û*(x))|�|Fi (t, x, ,( } , x))&F 0

i (x, ,( } , x))|

+|F 0
i (x, ,( } , x))&F 0

i (x, û*(x))|,

condition (1) implies that

lim
t � �, , � û*

(Fi (t, x, ,( } , x))&F 0
i (x, û*(x))=0

uniformly for x # 0� . Choose 0<=0<*0 . Then, there exist t0>0 and $0>0
such that

Fi (t, x, ,( } , x))�F 0
i (x, û*(x))&=0 (3.4)

for all t�t0 , x # 0� and &,&û*&<$0 . Suppose that, by contradiction, there
exists some ,0 # Y0 such that

lim sup
t � �

&ut(,0)&û*&<
$0

2
.

Then there exists t1�t0 such that

&ut(,0)&û*&<$0 for all t�t1 . (3.5)

Therefore, by (3.4),

Fi (t, x, ut(,0)(x))�F 0
i (x, û*(x))&=0 , t�t1 , x # 0�
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and hence ui (x, t)=ui (t, ,)(x) satisfies

�ui

�t
�di 2u i+ui[F 0

i (x, û*(x))&=0], t�t1 , x # 0� ,
(3.6)

Biui =0, t�t1 , x # �0.

Let ,i (x))>>0 in C(0� ) when Biui=(�ui ��&)+:iui or in C 1
0(0� ) when

Bi ui=ui , be the principal eigenvalue corresponding to *0 , that is, , i

satisfies (3.3). Since ui (t1)>>0 in C(0� ) or C 1
0(0� ), depending on the R.B.C.

or D.B.C., respectively, there exists a k>0 such that

ui (x, t1)�k,i (x), x # 0� . (3.7)

It then easily follows that vi (x, t)=ke(*0&=0 )(t&t1 ) ,i (x) satisfies

�vi

�t
=di 2vi+vi[F 0

i (x, û*(x))&=0], t�t1 , x # 0,
(3.8)

Bivi =0, t�t1 , x # �0.

Since (3.7) implies ui (x, t1)�v i (x, t1) for x # 0� , by (3.6), (3.8) and the
standard comparison theorem,

ui (x, t)�vi (x, t)=ke(*0&=0 )(t&t1 ) ,i (x), t�t1 , x # 0� , (3.9)

which contradicts (3.5) when we let t � �. Therefore the lemma holds for
$=$0�2. This completes the proof. K

3.2. The Predator�Prey System

Consider the predator�prey reaction�diffusion system with delays:

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)

&a12(x) u2(x, t&{12)], t>0, x # 0,

�u2

�t
=d2 2u2+u2[b2(x)+a21(x) u1(x, t&{21)&a22(x) u2(x, t) (3.10)

+a� 22(x) u2(x, t&{22)], t>0, x # 0,

B1u1=B2u2=0, t>0, x # �0,

where for every 1�i, j�2, di is a positive constant, {ij�0, bi (x) and aij (x)
are positive continuous functions on 0� , a� ii ( } ) # C(0� , R), and Bi ui=
(�ui ��&)+:i (x) ui , :i # C(0� , R+), or Biui=ui . We will further impose the
following condition on a� ii ( } ), 1�i�2.
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(H) For each 1�i�2, aii (x)>|a� ii (x)|, x # 0� , and either a� ii (x)�0,
x # 0� , or a� ii (x)�0, x # 0� .

Notice that we assume that the delays are nonnegative. This includes the
special case when the delay involved in the predator term in the prey equa-
tion is zero. Moreover, the delay involved in the prey term in the predator
equation could be positive. For example, if the prey is regarded as the
nutrient in the chemostat, the species (predator) may have a time delay in
digesting the nutrient (see, e.g., [SW]). Biologically, for the single popula-
tion growth in the absence of the other population, a� ii (x)�0, x # 0� implies
that the positive feedback is bi (x)+a� ii (x) ui (x, t&{ii) while the negative
feedback (i.e., the self-limitation effect) is aii (x) ui (x, t); and a� ii (x)�0, x # 0�
implies that the negative feedback is aii (x) ui (x, t)&a� ii (x) ui (x, t&{ ii).
Moreover, aii (x)>|a� ii (x)|, x # 0� implies that the instantaneous self-limita-
tion effect dominates the corresponding delayed effect.

In what follows, we let *0(di , m( } )) denote the principal eigenvalue of the
eigenvalue problem

di 2w+m(x)w=*w, x # 0,
(3.11)

Biw=0, x # �0

and u1*(x) be the unique positive steady state of the diffusive Logistic
equation

�u1

�t
=d1 2u1+u1[b1(x)+(a� 11(x))&a11(x) u1], t>0, x # 0,

(3.12)
B1u1=0, t>0, x # �0.

We then have the following result on the uniform persistence of u1 and u2 .

Theorem 3.2. Let (H ) hold. Assume that

(A1) *0 ( d2 , b2 ( } ) ) � 0, *0 ( d1 , b1 ( } ) ) > 0 and *0 ( d2 , b2 ( } ) +
a21( } ) u1*( } ))>0.

Then system (3.10) admits at least one positive steady state and is uniformly
persistent. More precisely, there exists a ;0>0 such that for any , # Y0 (with
{=max1�i, j�2[{ij] and m=2), there exists a t0=t0(,) such that u(t, ,)(x)
=(u1(t, ,)(x), u2(t, ,)(x)) satisfies

ui (t, ,)(x)�;0 ei (x) for all t�t0 , x # 0� , i=1, 2,

where

ei (x)={
e(x),

1,

if Biui=ui

if Biui=
�ui

�&
+:i (x) ui ,
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in which e # C2(0� ) is given such that for x # 0, e(x)>0 and for x # �0,
e(x)=0 and (�e��&)<&#<0.

Proof. Let {=max1�i, j�2[{ij] and let X+, Y0 and �Y0 be defined as
before with m=2. For any , # X+, let u(t, ,)(x) be the unique solution of
(3.10), satisfying u0(,)=,, on the maximal interval of existence [0, _,).
Then for any , # X+, as claimed before, u(t, ,)(x)=(u1(t, ,)(x), u2(t, ,)(x))
satisfies ui (t, ,)(x)�0, x # 0� , t # [0, _,), i=1, 2. Then in the case where
a� 11(x)�0, x # 0� , u1(t, ,)(x) satisfies

�u1

�t
�d1 2u1+u1[b1(x)&a11u1(x, t)+a� 11(x) u1(x, t&{11)]

for x # 0 and t # [0, _,). By a comparison theorem for the quasimonotone
reaction�diffusion system with delays [MS2, Theorem 2.2],

u1(t, ,)(x)�u� 1(x, t), x # 0� , t # [0, _,),

where u� 1(x, t) is the unique solution of diffusive logistic equation with
delay

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)],

t>0, x # 0,

B1u1=0, t>0, x # �0

satisfying u� 1(x, %)=,(x, %), x # 0� , % # [&{, 0]. In the case where
a� 11(x)�0, x # 0� , u1(t, ,)(x) satisfies

�u1

�t
�d1 2u1+u1[b1(x)&a11(x) u1(x, t)], x # 0, t # [0, _,).

Then by the standard comparison theorem,

u1(t, ,)(x)�v1(x, t), x # 0� , t # [0, _,),

where v1(x, t) is the unique solution of diffusive logistic equation

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1(x, t)], t>0, x # 0,

(3.13)
B1u1=0, t>0, x # �0

satisfying v1(x, 0)=,(x, 0), x # 0� . By Theorem 2.5, it then follows that
there exists a M1>0 such that

0�u1(t, ,)(x)�M1 , x # 0� , t # [0, _,).
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Therefore, u2(t, ,)(x) satisfies

�u2

�t
�d2 2u2+u2[b2(x)+a21(x) M1&a22(x) u2(x, t)+a� 22(x) u2(x, t&{22)]

for x # 0 and t # [0, _,). By a similar argument, it follows that there is an
M2>0 such that

0�u2(t, ,)�M2 , x # 0� , t # [0, _,).

Therefore, for any , # X+, _,=+�. Define the semiflow S(t): X+ � X+

by S(t),=ut(,), t�0. Clearly, X+=Y0 _ �Y0 , S(t): Y0 � Y0 and S(t):
�Y0 � �Y0 . From our previous argument, it easily follows that S(t): X+ �
X+ is point dissipative. By [MS2, Proposition 1.2], S(t): X+ � X+ is
compact for each t>{.

We first prove the abstract uniform persistence of the semiflow S(t) with
respect to (Y0 , �Y0). By the first two conditions in (A1) and Theorem 2.5,
it follows that A� �=�, # �Y0

|(,)=[(0� , 0� ), (û1*(x), 0� )]. Let M1=(0� , 0� ),
M2=(û1*(x), 0� ). Then A� �=M1 _ M2 , and M1 and M2 are disjoint, com-
pact and isolated invariant sets for S�(t)=S(t)|�Y0

. Since *0(d1 , b1( } ))>0
and *0(d2 , b2( } )+a21( } ) u1*( } ))>0, Lemma 3.1 (with F i (t, x, ,)#F 0

i (x, ,),
i=1, 2) implies that each Mi (i=1, 2) is isolated for S(t) in Y0 and hence,
isolated for S(t) in X+ since Mi is isolated for S�(t) in �Y0 and S(t):
Y0 � Y0 and S�(t): �Y0 � �Y0 . Again by Theorem 2.5, M1 and M2 are
acyclic in �Y0 . Thus, M1 _ M2 is an isolated and acyclic covering of A� � in
�Y0 . Since Lemma 3.1 also implies W s(Mi) & Y0=<, i=1, 2, by Theorem
2.2, S(t) is uniformly persistent with respect to (Y0 , �Y0). Therefore, by
[HW, Theorem 3.2], there is a global attractor A0 in Y0 relatively to
strongly bounded sets in Y0 . In particular, let T(t) be the semiflow
generated by the reaction�diffusion system (3.10) with all {ij=0, 1�i, j�2.
Thus, T(t): X+ � X+ is point dissipative, compact for each t>0 and
uniformly persistent with respect to (Y0 , �Y0). Then by [Zh1, Theorem 2.4],
T(t) has an equilibrium u*(x) in Y0 , i.e., T(t) u*( } )=u*( } ) for all t�0.
Clearly, u*(x) is also a steady state of system (3.10).

It remains to prove practical uniform persistence for system (3.10). Let
e( } )=(e1( } ), e2( } )) and Zi=C(0� , R) if Biui=(�ui ��&)+:iui and Zi=
C1

0(0� , R)=C1(0� , R) & C0(0� , R) if Biui=u i , 1�i�2, and let Z=Z1_Z2

and Z+=Z+
1 _Z+

2 . Clearly, ê # int(C+([&{, 0], Z)). By the abstract
integral formulation of (3.10) and the smooth property of the analytic
semigroup generated by the Laplacian operator, it then follows that S(2{+1):
X+ � C([&{, 0], Z) is continuous, and hence, A0=S(2{+1) A0 is also
compact in C([&{, 0], Z). Moreover, by the global attractivity of A0 in
Y0 , for any , # Y0 , S(t+2{+1),=S(2{+1)(S(t),) � S(2{+1)(A0)=A0

in C([&{, 0], Z) as t � �, that is, A0 attracts points in Y0 with respect to
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the topology of C([&{, 0], Z). It then suffices to prove that there exists an
:>0 such that for any ,=(,1 , ,2) # A0 , ,�:ê in C([&{, 0), Z), that is,
,i (x, %)�:ei (x), x # 0� and % # [&{, 0], i=1, 2. We first claim that
S(2{+1) Y0/int(C +([&{, 0], Z)). Indeed, for every � # Y0 , let u(x, t, �)
=(u1(x, t, �), u2(x, t, �)). Then, by the form of (3.10), for each i=1, 2,
ui (x, t, �) can be regarded as a solution of a parabolic equation of the form

�ui

�t
=di 2ui+ci (x, t)ui , t>0, x # 0,

Biui =0, t>0, x # �0

with ci (x, t) being smooth for t>{. Then, by the standard maximum
principle for parabolic equations, for all t>{ we have u i ( } , t, �)>>0 in Zi ,
that is, ui ( } , t, �) # int(Zi), i=1, 2. In particular, for all % # [&{, 0], ui ( } ,
2{+1+%, �)>>0 in Zi , i=1, 2, and hence S(2{+1)� # int(C+([&{, 0], Z)).
Thus, we have A0=S(2{+1) A0/S(2{+1) Y0/int(C+([&{, 0], Z)). It
then follows that for any , # A0 , there exists a ;(,)>0 such that ,>>
;(,) ê in C([&{, 0], Z). Therefore, the compactness of A0 with respect to
the topology of C([&{, 0], Z) implies that there exists a ;=;(A0)>0
such that for any , # A0 , we have ,>>;ê in C([&{, 0], Z). This completes
the proof. K

3.3. The Competition System
We then consider the following two species competition-diffusion system

with delays:

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)

&a12(x) u2(x, t&{12)], t>0, x # 0,

�u2

�t
=d2 2u2+u2[b2(x)&a21(x) u1(x, t&{21)&a22(x)u2(x, t) (3.14)

+a� 22(x) u2(x, t&{22)], t>0, x # 0,

B1u1=B2u2=0, t>0, x # �0,

here all parameters and B1 and B2 are as in (3.10). Let ui*(x), i=1, 2, be
the unique positive steady state of the diffusive logistic equation

�ui

�t
=di 2ui+ui[bi (x)&(aii (x)&a� ii (x)) ui (x, t)], t>0, x # 0,

(3.15)
Biui =0, t>0, x # �0, i=1, 2.

We have the following result for competition model (3.14).
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Theorem 3.3. Let (H) hold. Assume that

(B1) *0(d1 , b1( } ))>0, *0(d2 , b2( } )&a21( } ) u1*( } ))>0, *0(d2 , b2( } ))
>0, and *0(d1 , b1( } )&a12( } ) u2*( } ))>0.

Then system (3.14) admits at least one positive steady state and is uniformly
persistent in the sense of Theorem 3.2.

Proof. We use the same abstract formulation and notations as in
Theorem 3.2. Let S(t): X+ � X+ be the semiflow generated by (3.14). By
comparison theorems, it easily follows that S(t): X+ � X+ is point dis-
sipative. By condition (B1), Theorem 2.5 implies that A� �=�, # �Y0

|(,)=
[(0� , 0� ), (û1*(x), 0� ), (0� , û2*(x))]. Let M1=(0� , 0� ), M2=(û1*(x), 0� ) and M3=
(0� , û2*(x)). Then Theorem 2.5 and Lemma 3.1 (with F=F 0) imply that
�3

i=1 Mi is an isolated and acyclic covering. Now the conclusion follows
from Theorem 2.2 and a similar argument in the proof of Theorem 3.2. K

4. GLOBAL EXTINCTION

In this section, we discuss the global extinction of systems (3.10) and
(3.14), that is, we study the global attractivity of the boundary equilibria.

4.1. The Predator�Prey System

We first have the following result on the predator�prey system (3.10).

Theorem 4.1. Let (H) hold with a11(x)�0, x # 0. Assume that

(A2) *0(d2 , b2( } ))�0, *0(d1 , b1( } ))>0 and *0(d2 , b2( } )+a21( } )
u1*( } ))<0, where u1*(x) is the unique positive steady state of equation (3.12).

Then for any ,=(,1 , ,2) # X+ with ,1(x, 0)�0, the unique solution u(t, ,)
of system (3.10) satisfies

lim
t � �

u(t, ,)(x)=(u1*(x), 0)

uniformly for x # 0� .

Proof. By the proof of Theorem 3.2, it follows that the semiflow S(t): X+

� X+, t�0, generated by (3.10), is point dissipative. For any , # X+,
u(t, ,)(x)=(u1(x, t), u2(x, t)) satisfies ui (x, t)�0, t�0, x # 0, i=1, 2.
Since

lim
= � 0

*0(d2 , b2( } )+a21( } )(u1*( } )+=))=*0(d2 , b2( } )+a21( } ) u1*( } ))<0,
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we can choose some =0>0 such that *0(d2 , b2( } )+a21( } )(u1*( } )+=0))<0.
Then u1(x, t) satisfies

�u1

�t
�d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)]

for t>0 and x # 0. Since a� 11(x)�0, x # 0, by the comparison theorem for
quasimonotone reaction�diffusion systems with delays [MS2, Theorem 2.2],
we have

u1(x, t)�u� 1(x, t), t�0, x # 0� , (4.1)

where u� 1(x, t) is the unique solution of the logistic diffusion equation with
delay

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)],

t>0, x # 0,

B1u1=0, t>0, x # �0

satisfying u� 1(x, %)=,1(x, %), x # 0, % # [&{11 , 0]. Since *0(d1 , b1( } ))>0,
Theorem 2.5 implies that there exists t0>0 such that

u1(x, t)�u1*(x)+=0 for x # 0 and t�t0 .

Then U2(x, t)=u2(x, t+t0), t�0, satisfies

�U2

�t
�d2 2U2+U2(x, t)[b2(x)+a21(x)(u1*(x)+=0)&a22(x) U2(x, t)

+a� 22(x) U2(x, t&{22)], t>0, x # 0. (4.2)

We first consider the case where a� 22(x)�0, x # 0� . Using the comparison
theorem [MS2, Theorem 2.2] one more time, we have

U2(x, t)�U� 2(x, t), t�0, x # 0,

where U2(x, t) is the unique solution of the following diffusive logistic
equation with delay

�U2

�t
=d2 2U2+U2(x, t)[b2(x)+a21(x)(u1*(x)+=0)&a22(x) U2(x, t)

+a� 22(x) U2(x, t&{22)], t>0, x # 0, (4.3)

B2U2=0, t>0, x # �0
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satisfying U� 2(x, %)=U2(x, %), x # 0� , % # [&{22 , 0]. By the choice of =0 ,
*0(d2 , b2( } )+a21( } )(u1*( } )+=0))<0. Hence, Theorem 2.5 implies that
limt � � U� 2(x, t)=0 uniformly in x # 0� . Therefore, limt � � U2(x, t)=0 and
hence limt � � u2(x, t)=0 uniformly in x # 0� .

In the case where a� 22(x)�0, x # 0� , by (4.2), U2(x, t) satisfies

�U2

�t
�d2 2U2+U2(x, t)[b2(x)+a21(x)(u1*(x)+=0)&a22(x) U2(x, t)]

for t>0 and x # 0. By the standard parabolic comparison theorem, we
have

U2(x, t)�V2(x, t), t�0, x # 0� ,

where V2(x, t) is the unique solution of the diffusive logistic equation

�V2

�t
=d2 2V2+V2[b2(x)+a21(x)(u1*(x)+=0)&a22(x) V2],

t>0, x # 0, (4.4)

B2 V2=0, t>0, x # �0

satisfying V2(x, 0)=U2(x, 0). Since *0(d2 , b2( } )+a21(x)(u1*(x)+=0))<0,
Theorem 2.5 with c(x)#0 implies that limt � � V2(x, t)=0 uniformly for
x # 0� . Therefore, limt � � U2(x, t)=0 and hence limt � � u2(x, t)=0
uniformly for x # 0� .

For any given ,0=(,0
1 , ,0

2) # X+ with ,0
1(x, 0)�0, let u(t, ,0)(x)=

(u1(x, t), u2(x, t)), t�0. Then we can regard u2(x, t) as a fixed function on
R+_0� . Therefore, u1(x, t) satisfies the following nonautonomous diffusive
equation with delays:

�u1

�t
=d1 2u1+u1(x, t)[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)

&a12(x) u2(x, t&{12)], t>0, x # 0, (4.5)

B1u1=0, t>0, x # �0.

Since we have proved that limt � � u2(x, t)=0 uniformly for x # 0� , (4.5) is
asymptotic to the following autonomous diffusive equation with delay

�u1

�t
=d1 2u1+u1[b1(x)&a11(x) u1+a� 11(x) u1(x, t&{11)],

t>0, x # 0, (4.6)

B1u1=0, t>0, x # �0.

86 RUAN AND ZHAO



For any ,1 # X +
1 and s�0, let u~ 1(t, s, ,1)(x), t�s, be the unique solution

of (4.5) satisfying u~ 1(t, s, ,1)(x)=,1(x, t&s), t # [s&{11 , s], x # 0. Define
8: 2_X +

1 � X +
1 by 8(t, s, ,1)=u~ 1t( } , s, ,1). Then 8 is a nonautonomous

semiflow. Let u1(t, ,1)(x), t�0, be the unique solution of (4.6) satisfying
u1(t, ,1)(x)=,1(x, t), t # [&{11 , 0], x # 0� . Define the autonomous semi-
flow T(t): X+

1 � X +
1 , t�0, by T(t) ,1=u1t(,1). It then easily follows that

8(t, s, ,1) is asymptotically autonomous with limit semiflow T(t) (see, e.g.,
[MST] for ordinary differential equations with bounded delay). Let |~ (,1)
be the omega 8-limit set, i.e.,

|~ (,1)=[�1 # X +
1 ; there exists t j � � such that lim

t � �
8(tj , 0, ,1)=�1].

Since ,1 # Y 0
1=[,1 # X +

1 : ,1(x, 0)�0] and *0(d1 , b1( } ))>0, Theorem 2.5
implies that for the semiflow T(t): X +

1 � X +
1 , t�0, W s(û1*( } ))=Y 0

1 ; and
Lemma 3.1 with m=1 (by taking u*(x)#0) implies that |~ (,0

1) & Y 0
1 {<.

Then by Theorem 2.4, limt � � 8(t, 0, ,0
1)=û1*( } ) and hence limt � � u1(x, t)

=u*(x) uniformly for x # 0� . Therefore, for any ,0=(,0
1 , ,0

2) # X + with
,1(x, 0)�0, limt � � u(t, ,)(x)=(u1*(x), 0) uniformly for x # 0� . This com-
pletes the proof. K

Theorem 4.2. Let (H) hold. Assume that

(A3) *0(d1 , b1( } ))�0 and *0(d2 , b2( } ))�0.
Then for any , # X+, the unique solution u(t, ,) of system (3.10) satisfies

lim
t � �

u(t, ,)(x)=(0, 0)

uniformly for x # 0� .

Proof. For any , # X+, let u(t, ,)(x)=(u1(x, t), u2(x, t)), t�0. Then
u1(x, t) satisfies

�u1

�t
�d1 2u1+u1[b1(x)&a11(x) u1(x, t)+a� 11(x) u1(x, t&{11)],

t>0, x # 0.

In the case where a� 11(x)�0, x # 0� , by the comparison theorem [MS2,
Theorem 2.2] and Theorem 2.5, it follows that limt � � u1(x, t)=0 uniformly
for x # 0� . In the case where a� 11(x)�0, x # 0, then u1(x, t) also satisfies

�u1

�t
�d1 2u1+u1[b1(x)&a11(x) u1(x, t)], t>0, x # 0.

By standard parabolic comparison theorem and Theorem 2.5 (with c(x)#0),
it follows that limt � � u1(x, t)=0 uniformly for x # 0. We regard u2(x, t)
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as a solution of the following nonautonomous diffusive equation with
delay:

�u2

�t
=d2 2u2+u2[b2(x)+a21(x) u1(x, t&{21)&a22(x) u2(x, t)

+a� 22(x) u2(x, t&{22)], t>0, x # 0, (4.7)

B2u2=0, t>0, x # �0.

Since limt � � u1(x, t)=0 uniformly for x # 0� , (4.7) is asymptotic to the
following autonomous diffusive equation with delay

�u2

�t
=d2 2u2+u2[b2(x)&a22(x) u2(x, t)+a� 22(x) u2(x, t&{22)],

t>0, x # 0,

B2u2=0, t>0, x # �0.

Since *0(d2 , b2( } ))�0, by Theorem 2.5 and the asymptotically autonomous
semiflow theory, it follows that limt � � u2(x, t)=0 uniformly for x # 0.
Therefore, limt � � u(t, ,)=(0, 0) uniformly for x # 0� . This completes the
proof. K

4.2. The Competition System

Now we turn to the competition model (3.14). We first seek conditions
on extinction of one of the competitors, that is, we would like to see when
the competition exclusion principle occurs.

Theorem 4.3. Let (H) hold with a� ii (x)�0, x # 0� , i=1, 2. Assume that

(B2) *0(d1 , b1( } ))>0, *0(d2 , b2( } ))>0, *0(d1 , b1( } )&a12( } ) u2*( } ))
>0 and (3.14) admits no positive steady state.

Then for any ,=(,1 , ,2) # X+ with ,1(x, 0)�0, the unique solution
u(t, ,)(x) of (3.14) satisfies

lim
t � �

u(t, ,)(x)=(u1*(x), 0)

uniformly for x # 0� , where ui*(x) (i=1, 2) are as in Theorem 3.3.

Proof. Let S(t): X+ � X+, t�0, be the semiflow generated by (3.14). It
then follows that S(t) is point dissipative and is compact for every t>{.
Let W0=[(,1 , ,2) # X+ : ,1(x, 0)�0] and �W0=X +"W0=[(,1 , ,2)
# X+ ; ,1(x, 0)#0]. Then X+=W0 _ �W0 , S(t): W0 � W0 and S(t): �W0

� �W0 , t�0. By Theorem 2.5, �, # �W0
|(,)=[(0� , 0� ), (0� , û2*(x))]. Denote
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M1=(0� , 0� ) and M2=(0� , û2*(x)). As argued in Section 3, Theorem 2.5 and
Lemma 3.1 (with F#F 0) imply that M1 _ M2 is an isolated and acyclic
covering of �, # �W0

|(,). It thus follows from Theorem 2.2 that S(t): X +

� X+ is uniformly persistent with respect to (W0 , �W0). Therefore, by
[HW, Theorem 3.2], there exists a global attractor A0 in W0 relative to
strongly bounded sets in W0 . Clearly, (û1*(x), 0� ) # A0 .

Let P=X +
1 _(&X +

2 ). By a change of variables u1=v1 and u2=&v2 ,
[MS2, Proposition 1.4] and the assumption that a� ii (x)�0 (i=1, 2) for
x # 0� , the comparison theorem [MS2, Theorem 2.2] implies that
S(t): X+ � X+ is a monotone semiflow with respect to the order generated
by P, i.e., for any ,, � # X+ with ,�� in (X, P), S(t),�S(t)� in (X, P),
t�0. By [Hi1, Theorem 3.1] and condition (B2) on the nonexistence of
positive steady state of (3.14), the global attractor A0 contains only one
equilibrium (û1*(x), 0� ). Thus, by [Hi1, Theorem 3.3], (û1*(x), 0� ) attracts
any point , # W0 . Consequently, limt � � u(t, ,)(x)=(u1*(x), 0) uniformly
for x # 0� . This completes the proof. K

Using a similar argument as in Theorem 4.1, we can also prove the
following result.

Theorem 4.4. Let (H) hold. Assume that

(B3) *0(d1 , b1( } ))>0 and *0(d2 , b2( } ))�0.

Then for any ,=(,1 , ,2) # X+ with ,1(x, 0)�0, the unique solution
u(t, ,)(x) of (3.14) satisfies

lim
t � �

u(t, ,)(x)=(u1*(x), 0)

uniformly for x # 0� .

Remark 4.5. There are of course symmetric results on the global attrac-
tivity of (0, u2*(x)). Moreover, by Theorem 3.3, it follows that condition
(B2) implies that *0(d2 , b2( } )&a21( } ) u1*( } ))�0.

Similarly argued as in Theorem 4.2, we can prove the following result on
extinction of both species.

Theorem 4.6. Let (H) hold. Assume that

(B4) *0(d1 , b1( } ))�0 and *0(d2 , b2( } ))�0.

Then for any ,=(,1 , ,2) # X+, the unique solution u(t, ,)(x) of (3.14)
satisfies

lim
t � �

u(t, ,)(x)=(0, 0)

uniformly for x # 0� .
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Remark 4.7. From the proofs of the theorems in Sections 3 and 4, it
follows that if we replace a21(x) u1(x, t&{21) and a12(x) u2(x, t&{12) in
systems (3.10) and (3.14) by g1(x, u1t) and g2(x, u2t), respectively, where
gi (x, ,i) # C(0� _C{ , R) with gi (x, 0� )#0 and gi (x, ,i) is increasing with
respect to ,i # C{ , i=1, 2, and replace a21(x) u1*(x) and a12(x) u2*(x) in
(A1)�(A2) and (B1)�(B2) by g1(x, û1*(x)) and g2(x, û2*(x)), respectively,
then all theorems in Sections 3 and 4 are still valid.

Remark 4.8. Finally, we would like to remark that the above ideas and
techniques can be used to study multiple species reaction�diffusion systems
with delay. Also, taking the nonlocal effect into consideration as pointed
out by the referee, the interaction term u2(t, x) a21u1(x, t&{21) in the
predator�prey model can be replaced by

u2(t, x) |
0

&{21

�0 G(s, x, y) u1(t&s, y) dy
�0 G(s, x, y) dy

m(ds),

where G is the Green's function of �t&d22 with appropriate boundary
condition (see, e.g., [GM]), m is a nonnegative measure, and G(s, x, y)�
�0 G(s, x, y) dy is the density describing the probability that a predator
which is at location x at time t has been at location y at time t&s. This
leads to a very interesting nonlocal reaction�diffusion system with delays
which we leave for future consideration. For related nonlocal reaction�
diffusion models without time delay, we refer to a recent paper [CC2].
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