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and Transverse Homoclinic Orbits in Partial
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In this paper we investigate the transversality of homoclinic orbits in partial
functional differential equations. We first discuss the exponential dichotomies
for linear operator equations. Then we show that the Fredholm Alternative
holds if the homogeneous equation has exponential dichotomies on R. Trans-
versality of homoclinic orbits for periodically perturbed partial functional
differential equations is studied using the Liapunov-Schmidt method and the
Melnikov integral.
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1. INTRODUCTION

Exponential dichotomies have played an important role in studying var-
ious types (ordinary, parabolic, functional) of differential equations. For
ordinary differential equations (see Coppel [8]), under certain assumptions,
a linear system admits an exponential dichotomy in [0,∞) if and only if
the inhomogeneous linear system has a bounded solution on [0,∞) for
every bounded function. The theory of exponential dichotomies in finite
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dimensional systems has been studied extensively, we refer to a series of
papers by Sacker and Sell [22] and the monograph by Coppel [8].

If the linear homogeneous equation has exponential dichotomies in
(−∞,0] and [0,∞), then the Fredholm Alternative holds in the case of
bounded solutions for the nonhomogeneous equation. This result in finite
dimensional systems can be found in [16, 17, 20], etc. The theory of expo-
nential dichotomies and the Fredholm Alternative have also been general-
ized to infinite dimensional systems, for example, to functional differential
equations by Lin [12], to parabolic equations by Blazquez [3], Zeng [27],
and Zhang [28], and to abstract evolution equations by Chow and Leiva
[7], Sacker and Sell [23], and Rodrigues and Ruas-Filho [19]. For further
details on exponential dichotomies and properties of solutions to abstract
equations, we refer to the monograph by Chicone and Latushkin [4].

Exponential dichotomies also arise in the linear variational equation
at a homoclinic orbit of an autonomous equation. Generalizing the ideas
in Chow et al. [6], Palmer [16] employed exponential dichotomies of the
linear variational system to establish the existence of transversal homo-
clinic points in periodically perturbed systems. The procedure uses the
Fredholm Alternative and Liapunov-Schmidt method associated with the
Melnikov integral (see also Battelli and Lazzari [1], Battelli and Palmer [2],
Meyer and Sell [15], and the references cited therein). Following the above
mentioned techniques Blazquez [3], Zeng [27] and Zhang and Stewart [29]
studied transverse homoclinc orbits in parabolic equations, Lin [12, 13]
and Zhang and Wu [30] investigated transverse homoclinic orbits in func-
tional differential equations.

Recently, great attention has been paid to the study of partial func-
tional differential equations, we refer to the classical papers by Travis and
Webb [24, 25], Martin and Smith [14], and the monograph by Wu [26].
Ruan et al. [21] studied the bifurcation from a homoclinic orbit in partial
functional differential equations using Šilnikov’s techniques. In this paper,
we first discuss the exponential dichotomies for the linear operator equa-
tion. Then the Fredholm Alternative is established for the inhomogeneous
operator equation. Finally, using Liapunov-Schmidt method and Melnikov
integral, we study the transversality of homoclinic orbits in a periodically
perturbed partial functional differential equation.

2. EXPONENTIAL DICHOTOMIES

Let X denote a Banach space over R = (−∞,∞), J ⊂ R an interval,
and B(J,X) the Banach space of bounded continuous X-valued functions
from J to X equipped with the supremum norm. Let r > 0 be a given
constant and C=C([−r,0];X) the Banach space of continuous X-valued
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functions on [−r,0] with the supremum norm | · |. For any real numbers
a�b, t ∈ [a, b] and any continuous mapping u: [a− r, b]→X,ut denotes the
element of C given by ut (θ)=u(t+ θ) for θ ∈ [−r,0].

Consider the following linear operator equation

u̇(t)=Au(t)+L(t)ut , (2.1)

where A is the infinitesimal generator of an analytic compact semigroup
{S(t)}t�0 on X. For a function η(t, ·): [−r,0] →B(X,X) of bounded vari-
ation for t ∈R, the linear operator L(t): C→X is defined by

L(t)ξ =
∫ 0

−r
[dθη(t, θ)]ξ(θ), ξ ∈C. (2.2)

For φ ∈C, denote the solution of Eq. (2.1) with initial value

us =φ (2.3)

by ut (s, φ), t� s− r. Define

T (t, s)φ=ut (s, φ). (2.4)

Then {T (t, s)}t�s is an evolution family of bounded linear operators on C
(see [24]).

Definition 2.1. It is said that T (t, s) has an exponential dichotomy on
an interval J ⊂R with constants K�0 (called the bound) and α>0 (called
the exponent) if there exist projections P(θ) and Q(θ)= I −P(θ), strongly
continuous in θ ∈J, such that

(i) T (t, s)P (s)=P(t)T (t, s) for t� s in J ;
(ii) T (t, s)|R(Q(s)), t � s, is an isomorphism from R(Q(s)) onto

R(Q(t)) and T (s, t): R(Q(t))→R(Q(s)) is defined as the inverse
of T (t, s)|R(Q(s)), where R(Q(s)) denotes the range of Q(s);

(iii) |T (t, s)P (s)|�Ke−α(t−s) for t� s in J ;
(iv) |T (t, s)Q(s)|�Keα(t−s) for t� s in J.

R(P (t)) and R(Q(t)) are called the stable and unstable subspaces of
T (t, s), respectively. Since T (t, s) is compact for t > s+ r (see Travis and
Webb [25]), we assume that R(Q(t)) is finite dimensional.

The adjoint of C is identified with C∗ =C([0, r];X∗), where X∗ is the
dual space of X with the duality 〈x, y〉 for x ∈X and y ∈X∗. For φ ∈C
and ψ ∈C∗, we use the bilinear pairing

〈〈ψ,φ〉〉=
∫ 0

−r
〈dψ(θ), φ(θ)〉 (2.5)
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as defined in (3.3) on page 176 of Hale and Lunel [10], which differs from
that one

〈〈ψ,φ〉〉=〈ψ(0), φ(0)〉−
∫ 0

−r

∫ θ

0
〈ψ(ξ − θ)[dη(θ)], φ(ξ)〉dξ

in [24]. Let T ∗(s, t) be the adjoint of T (t, s) defined by

〈〈ψ,T (t, s)φ〉〉=〈〈T ∗(s, t)ψ,φ〉〉, φ ∈C, ψ ∈C∗. (2.6)

Then T ∗(s, t) is a linear semigroup for s� t ∈J and is weak∗ continuous
with respect to s� t ∈J. If P ∗(t) is the adjoint of P(t), then it is a projec-
tion operator and is weak∗ continuous in t ∈J. We can show that T ∗(s, t)
has an exponential dichotomy on J with weak∗ continuity.

Proposition 2.2. If T (t, s) has an exponential dichotomy on J ⊂R with
constants K � 0, α > 0 and projections P and Q, then the adjoint T ∗(s, t)
satisfies

(i)′ T ∗(s, t)P ∗(t)=P ∗(s)T ∗(s, t) for s� t in J ;
(ii)′ T ∗(s, t)|R(Q∗(t)), s � t, is an isomorphism from R(Q∗(t)) onto

R(Q∗(s)) and T ∗(t, s): R(Q∗(s))→ R(Q∗(t)) is defined as the
inverse of T ∗(s, t)|R(Q∗(t));

(iii)′ |T ∗(s, t)P ∗(t)|�Ke−α(t−s) for s� t in J ;
(iv)′ |T ∗(s, t)Q∗(t)|�Keα(t−s) for s� t in J.

Proof. We only prove (ii)′, the other statements are consequences of
the definition of exponential dichotomy.

We first show that T ∗(s, t)|R(Q∗(t)) : R(Q∗(t))→ R(Q∗(s)) is one-to-
one. Choose ξ ∈ R(Q∗(t)) such that T ∗(s, t)ξ = 0. For any φ ∈ C, write
φ=φ1 +φ2 with φ1 ∈R(Q(t)) and φ2 ∈R(P (t)). We have

〈〈ξ, φ〉〉=〈〈ξ, φ1 +φ2〉〉=〈〈ξ, φ1〉〉+〈〈ξ, φ2〉〉=〈〈ξ, φ1〉〉.
Now, there exists ψ1 ∈R(Q(s)) such that φ1 =T (t, s)ψ1. It follows that

〈〈ξ, φ1〉〉=〈〈ξ, T (t, s)ψ1〉〉=〈〈T ∗(s, t)ξ,ψ1〉〉=0,

which implies that ξ =0 and T ∗(s, t)|R(Q∗(t)) is one-to-one.
To prove that T ∗(s, t)|R(Q∗(t)) is onto, fix η∈R(Q∗(s)). For any φ∈C,

again write φ=φ1 +φ2 with φ1 ∈R(Q(t)) and φ2 ∈R(P (t)). Let ψ1 be such
that T (t, s)ψ1 =φ1. Define ξ ∈C∗ such that

〈〈ξ, φ〉〉=〈〈η,ψ1〉〉, ∀φ ∈C.

By the definition of exponential dichotomy it follows that ξ is well defined.
Also, since for φ∈C, 〈〈P ∗(t)ξ, φ〉〉=〈〈ξ,P (t)φ〉〉=0, we have ξ ∈R(Q∗(t)).
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Let ψ=ψ1 +ψ2 ∈C with ψ1 ∈R(Q(s)) and ψ2 ∈R(P (s)). Then

〈〈T ∗(s, t)ξ,ψ〉〉=〈〈ξ, T (t, s)ψ〉〉=〈〈ξ, T (t, s)ψ1 +T (t, s)ψ2〉〉

with T (t, s)ψ1 ∈R(Q(t)) and T (t, s)ψ2 ∈R(P (t)). Let φ=T (t, s)ψ . By the
definition of ξ, it follows that

〈〈T ∗(s, t)ξ,ψ〉〉=〈〈ξ, φ〉〉=〈〈η,ψ1〉〉.

Notice that 〈〈η,ψ2〉〉=〈〈η,P (s)ψ2〉〉=〈〈P ∗(s)η,ψ2〉〉. We thus have

〈〈T ∗(s, t)ξ,ψ〉〉=〈〈η,ψ1〉〉=〈〈η,ψ1〉〉+〈〈η,ψ2〉〉=〈〈η,ψ〉〉

for any ψ ∈C. Therefore, T ∗(s, t)ξ =η. This completes the proof.

3. THE FREDHOLM ALTERNATIVE

In this section, we consider the following nonhomogeneous equation

u̇(t)=Au(t)+L(t)ut +h(t) (3.1)

associated with the initial value us = φ, where h: R → X is continuous.
Associate with the nonhomogeneous equation (3.1), we also consider the
adjoint equation of Eq. (2.1) ([9])

v̇(s)=−A∗v(s)−L∗(s)vs, (3.2)

where A∗ is the adjoint of A,vs ∈ C∗ is given by vs(τ ) = v(s + τ) for
τ ∈ [0, r],L∗(s)ψ = ∫ 0

−r [dαη
∗(s, α)]ψ(−α) for ψ ∈C∗ and η∗ is the adjoint

of η. We note that T ∗(s, t0) is the evolution operator of (3.2) and vs :=
T ∗(s, t0)v0 for each fixed v0 ∈C∗ satisfying (3.2). In fact, for each fixed
u0 ∈C Eq. (2.1) has the solution us =T (s, t0)u0 and

d
ds

〈〈vs, us〉〉= d
ds

〈〈T ∗(s, t0)v0, us〉〉= d
ds

〈〈v0, T (t0, s)us〉〉

= d
ds

〈〈v0, u0〉〉=0, ∀s. (3.3)

On the other hand, by (2.5) the left-hand side of (3.3) can be calculated
as follows:
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d
ds

〈〈vs, us〉〉 = d
ds

∫ 0

−r

〈
dθ vs(θ), us(θ)

〉

=
∫ 0

−r

〈
dθ

d
ds
v(θ + s), u(θ + s)

〉
+
∫ 0

−r

〈
dθ v(θ + s), d

ds
u(θ + s)

〉

=
∫ 0

−r

〈
dθ

d
ds
v(θ + s), u(θ + s)

〉

+
∫ 0

−r
〈dθ v(θ + s),Au(θ + s)+L(θ + s)uθ+s〉

=
∫ 0

−r

〈
dθ

d
ds
v(θ + s), u(θ + s)

〉

+
∫ 0

−r

〈
dθ [A∗v(θ + s)+L∗(θ + s)vθ+s ], u(θ + s)〉

because the just defined L∗(s) satisfies

〈v(t),L(t)ut 〉=〈L∗(t)vt , u(t)〉, ∀u(t)∈X, ∀v(t)∈X∗, (3.4)

as implied by Proposition 4.13 of Travis and Webb [24]. Hence d
ds v(s)+

A∗v(s)+L∗(s)vs =0 by the arbitrary choice of u0.
By Proposition 2.2, if the homogeneous equation (2.1) has exponen-

tial dichotomies on R+ = (0,∞) and R− = (−∞,0) with projections P+(t)
and P−(t), respectively, then its adjoint equation (3.2) also has expo-
nential dichotomies with the same exponents and bounds on R+ and
R− with projections Q∗+(t) and Q∗−(t), respectively, where Q∗+(t) = I −
P ∗+(t),Q∗−(t)= I −P ∗−(t),P ∗+(t), and P ∗−(t) are the adjoints of P+(t) and
P−(t), respectively.

Definition 3.1. We say that the Fredholm Alternative holds if for each
h∈B(R,X), the nonhomogeneous equation (3.1) has a bounded solution
in B(R,X) if and only if

∫ ∞

−∞
〈v(t), h(t)〉dt=0 (3.5)

for every solution v(t)∈B(R,X∗) of the adjoint equation (3.2).

Define a map X0: [−r,0]→B(X,X) by

X0(θ)=
{

0, −r� θ <0,
I, θ =0.
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We have the following variation of constants formula for the nonhomoge-
neous equation (3.1) (Wu [26])

ut =T (t, s)φ+
∫ t

s

T (t, α)X0h(α)dα. (3.6)

Following Theorem 7.6.3 in [11] and Theorem 4.2.2 in [26], we have the
following proposition

Proposition 3.2. If the homogeneous equation (2.1) has an exponential
dichotomy on R+ with projections P+ and Q+ for any h∈B(R+,X), then the
nonhomogeneous Eq. (3.1) has a solution u∈B(R+,X) if and only if

ut = T (t,0)P+(0)φ+
∫ t

0
T (t, α)P+(α)X0h(α)dα

−
∫ ∞

t

T (t, α)Q+(α)X0h(α)dα, t ∈R+ (3.7)

for some φ∈C. Similarly, if (2.1) has an exponential dichotomy on R− with
projections P− and Q− for any h ∈ B(R−,X), then the nonhomogeneous
Eq. (3.1) has a solution u∈B(R−,X) if and only if

ut = T (t,0)Q−(0)φ+
∫ t

−∞
T (t, α)P−(α)X0h(α)dα

+
∫ t

0
T (t, α)Q−(α)X0h(α)dα, t ∈R− (3.8)

for some φ ∈C.

We are now in a position to state and prove our main result in this
section.

Theorem 3.3. (Fredholm alternative). Let L(t) be continuous and
bounded in the operator norm with respect to t ∈R. Suppose that the homo-
geneous equation (2.1) has exponential dichotomies on R+ and R− with pro-
jections P+ and P−, respectively. Define F :B(R,X) → B(R,X) by

(Fu)(t)= d
dt
u(t)−Au(t)−L(t)ut . (3.9)

Then F is a Fredholm operator of index

IndF =dimR(Q−(0))−dimR(Q+(0)) (3.10)
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and

R(F ) =
{
h∈B(R,X) :
∫ +∞

−∞
〈v(t), h(t)〉dt=0 for all solutions v(t)∈B(R,X∗)of (3.2)

}
,

(3.11)

N(F ) = {[T (t,0)φ](0) :φ ∈R(P+(0))∩R(Q−(0)), t ∈R}. (3.12)

Proof. Since N(F ) consists of all bounded solutions u(t) =
[T (t,0)φ](0) of the homogeneous equation (2.1), it follows by the expo-
nential dichotomies of (2.1) on R± that T (t,0)φ ∈B(R,X) if and only if
φ ∈R(P+(0))∩R(Q−(0)). This shows that (3.11) holds.

For any h(t)∈R(F ), there is a differentiable mapping u(t)∈B(R,X)
such that

h(t)= (Fu)(t)= d
dt
u(t)−Au(t)−L(t)ut .

Thus, each solution v(t)∈B(R,X∗) of the adjoint equation (3.2) satisfies

〈v(t), h(t)〉 =
〈
v(t),

d
dt
u(t)

〉
−〈v(t),Au(t)〉−〈v(t),L(t)ut 〉

=
〈
v(t),

d
dt
u(t)

〉
−〈A∗v(t), u(t)〉−〈L∗(t)vt , u(t)〉

=
〈
v(t),

d
dt
u(t)

〉
+
〈
d

dt
v(t), u(t)

〉

= d
dt

〈v(t), u(t)〉. (3.13)

Since the adjoint equation (3.2) has an exponential dichotomy, it follows
that v(t)→0 exponentially as t→±∞. By (3.13) and the boundedness of
h(t), we have ∫ ∞

−∞
〈v(t), h(t)〉dt=〈v(t), u(t)〉

∣∣∣∣
∞

−∞
=0. (3.14)

The sufficient conditions for h∈R(F ) are that there exist φ∈C and a
continuous map t→ut such that (3.7) and (3.8) hold, which have a solu-
tion φ ∈C if and only if

[P+(0)−Q−(0)]φ =
∫ 0

−∞
T (0, α)P−(α)X0h(α)dα

+
∫ ∞

0
T (0, α)Q+(α)X0h(α)dα. (3.15)
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Since P+(0) is a Fredholm operator and Q−(0) is compact, it follows that
P+(0)−Q−(0) is a Fredholm operator. Thus, R(P+(0)−Q−(0)) is closed
and (3.15) has a solution φ ∈C if and only if

〈〈ψ, [P+(0)−Q−(0)]φ〉〉=0

for all ψ ∈N((P+(0)−Q−(0))∗)=N(P ∗+(0)−Q∗−(0)). However, for ψ ∈
N(P ∗+(0)−Q∗−(0)), we have

ψ0 ≡P ∗
−(0)ψ=Q∗

+(0)ψ ∈R(P ∗
−(0))∩R(Q∗

+(0)).

Since the adjoint equation (3.2) has an exponential dichotomy, it follows
that [T ∗(t,0)ψ0](0) is a bounded solution of (3.2) and approaches 0 expo-
nentially as t→±∞. Also

〈〈ψ, [P+(0)−Q−(0)]φ〉〉
=
∫ 0

−∞
〈〈ψ,T (0, α)P−(α)X0h(α)〉〉dα+

∫ ∞

0
〈〈ψ,T (0, α)Q+(α)X0h(α)〉〉dα

=
∫ 0

−∞
〈〈T ∗(α,0)P ∗

−(0)ψ,X0h(α)〉〉dα+
∫ ∞

0
〈〈T ∗(α,0)Q∗

+(0)ψ,X0h(α)〉〉dα

=
∫ 0

−∞
〈〈T ∗(α,0)ψ0,X0h(α)〉〉dα+

∫ ∞

0
〈〈T ∗(α,0)ψ0,X0h(α)〉〉dα

=
∫ ∞

−∞
〈〈T ∗(α,0)ψ0,X0h(α)〉〉dα

= 0

if
∫∞
−∞〈v(t), h(t)〉dt = 0 for all bounded solution v(t) of the adjoint equa-

tion (3.2). Thus, the characterization (3.11) of R(F ) is proved.
To prove that R(F ) is closed, dim N(F )<∞, and codim R(F )<∞,

define J :R(P ∗−(0))∩R(Q∗+(0))→B∗(R,X) as follows:

J (ψ0)(h)=
∫ ∞

−∞
〈〈T ∗(α,0)ψ0,X0h(α)〉〉dα (3.16)

for any ψ ∈ R(P ∗−(0)) ∩ R(Q∗+(0)) and h ∈ B(R,X). We can see that
J is linear and one-to-one. Thus, R(P ∗−(0)) ∩ R(Q∗+(0))∼= J (R(P ∗−(0)) ∩
R(Q∗+(0)))⊂ B∗(R,X). The characterization (3.11) of R(F ) implies that
R(F )⊂B(R,X) is an annihilator of (R(P ∗−(0))∩R(Q∗+(0))), that is,

R(F )=
⋂

{N(ψ̄) : ψ̄ ∈J (R(P ∗
−(0))∩R(Q∗

+(0)))}. (3.17)
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It follows that R(F ) is closed and

dimN(F ) = dimR(P−(0))∩R(Q+(0))
� dim′R(Q+(0))
< ∞,

codimR(F ) = dim J (R(P ∗
−(0))∩R(Q∗

+(0)))
= dimR(P ∗

−(0))∩R(Q∗
+(0))

� dimR(Q∗
+(0))

< ∞.

Therefore, F is a Fredholm operator. Finally, following Zhang [28] we can
establish the index formula (3.10) for the operator F. This completes the
proof.

4. TRANSVERSE HOMOCLINIC ORBITS

In this section, we consider the following nonlinear equation

u̇(t)=Au(t)+g(ut ). (4.1)

Assume that

(H1) g∈Ck(C,X), k�1, and g(0)=0.
(H2) Equation (4.1) has a hyperbolic equilibrium u0 ∈X and a homoclin-

ic orbit p(t)∈X connecting u0 (i.e., ‖p(t)−u0‖→0 as t→±∞).

Since u0 is a hyperbolic equilibrium, the linearized equation at u0

u̇(t)=Au(t)+g′(u0)ut

admits an exponential dichotomy on R. Moreover, since

‖p(t)−u0‖→0 as t→±∞

the roughness of exponential dichotomies (see Pliss and Sell [18]) implies
that the linearized equation along the homoclinic orbit p(t),

u̇(t)=Au(t)+g′(pt )ut , (4.2)

has exponential dichotomies on R+ and R− with projections P+(t) and
P−(t), respectively, and dim Q+(0)=dim Q−(0). We should note that the
variational equation (4.2) does not have exponential dichotomies on R
since (4.2) has at least a bounded solution ṗ(t) on R. We thus assume that
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(H3) ṗ(t) is the unique bounded solution (counting constant multiples)
of the linearized equation (4.2).

By Theorem 3.3, the operator

(Gu)(t)= du
dt

−Au−g′(pt )ut (4.3)

is a Fredholm operator with Ind(G)= 0. On the other hand, assumption
(H3) implies that the adjoint equation of (4.2) has a unique bounded solu-
tion v(t). Assume that

∫ ∞

−∞
v2(t)dt=1.

Now consider the perturbed equation

u̇(t)=Au(t)+g(ut )+ εh(t, ut , ε). (4.4)

Assume that

(H4) h∈Ck(R ×C× R,X), k� 1, is T -periodic in t, h(t,0,0)= 0, ε∈ R is
a parameter.

(H5) The Melnikov function

M(β)=
∫ ∞

−∞
〈v(t), h(t+β,pt ,0)〉dt

has a simple zero β0, i.e., M(β0)=0 but M ′(β0) �=0.

The main result in this section is the following theorem.

Theorem 4.1. If the assumptions (H1)–(H5) hold, then

(i) for ε sufficiently small, Eq. (4.4) has a unique hyperbolic T -periodic
solution u0(t, ε)∈X satisfying u0(t,0)=u0;

(ii) for ε �=0 sufficiently small there exists a bounded solution u∗(t, ε)∈X
such that

‖u∗(t, ε)−u0(t, ε)‖→0 as ε→0;

(iii) the linearized equation at u∗(t, ε),

ẇ(t)=Aw(t)+
[
g′(u∗

t )+ ε
∂h

∂u
(t, u∗

t , ε)

]
wt, (4.5)

has an exponential dichotomy on R.
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Proof. (i) We can see that the linearized equation at u0,

u̇(t)=Au(t)+g′(u0)ut ,

has an exponential dichotomy on R. Regarding u0(t)≡u0 as a T-periodic
solution, since it is a trivial periodic solution, it follows that 1 is not in
the spectrum of the period map for the linearized Eq. (4.4) for u0(t), ε=0.
Hence, Theorem 8.3.1 of Henry [11] implies that for ε sufficiently small,
the perturbed Eq. (4.4) has a unique T-periodic solution u0(t, ε)∈X satis-
fying u0(t,0)=u0.

(ii) Make a change of variable in a neighborhood of p(t) by

z(t)=u(t+β)−p(t), β ∈R.

Then Eq. (4.4) becomes

ż(t)=Az(t)+g′(pt )zt +H(t, zt , β, ε), (4.6)

where

H(t, zt , β, ε) = εh(t+β, zt (β, ε)+pt , ε)
+g(zt (β, ε)+pt )−g(pt )−g′(pt )zt (β, ε).

Since the linear part of (4.6) (i.e. Eq. (4.2)) admits exponential dichot-
omies on both R+ and R−, an application of the Liapunov-Schmidt
method (Chow and Hale [5]) implies that Eq. (4.6) is equivalent to the fol-
lowing two equations

ż(t) = Az(t)+g′(pt )zt +H(t, zt , β, ε)
−v(t)

∫ ∞

−∞
〈v(t),H(t, zt , β, ε)〉dt, (4.7)

∫ ∞

−∞
〈v(t),H(t, zt , β, ε)〉dt=0. (4.8)

Following Battelli and Palmer [2] or Zhang [28] (using the Implicit Func-
tion Theorem), for β−β0 and ε sufficiently small Eq. (4.7) has a unique
bounded solution z=z(t, β, ε) such that z(t, β0,0)=0. Moreover, z(t, β, ε)
is smooth in t, β, and ε. Substituting z(t, β, ε) into (4.8), we obtain the
following bifurcation equation

G(β, ε) =
∫ ∞

−∞
〈v(t),H(t, zt , β, ε)〉dt

=
∫ ∞

−∞
〈v(t), εh(t+β, zt (β, ε)+pt , ε)

+g(zt (β, ε)+pt )−g(pt )−g′(pt )zt (β, ε)〉dt. (4.9)
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We have

Gε(β, ε) =
∫ ∞

−∞

〈
v(t), h(t+β, zt (β, ε)+pt , ε)+ ε d

dε
h(t+β, zt (β, ε)+pt , ε)

+ g′(zt (β, ε)+pt ) d
dε

[zt (β, ε)+pt ]−g′(pt )
d
dε

[zt (β, ε)+pt ]
〉

dt

(4.10)

and

Gβ(β, ε) =
∫ ∞

−∞

〈
v(t), ε

d
dβ
h(t+β, zt (β, ε)+pt , ε)

+g′(zt (β, ε)+pt ) d
dβ

[zt (β, ε)+pt ]−g′(pt )
d

dβ
[zt (β, ε)+pt ]

〉
dt.

(4.11)

Define

G̃(β, ε)=
{
G(β, ε)/ε, ε �=0,
Gε(β,0), ε=0.

By assumption (H5), we know that

G̃(β0,0)=M(β0)=0, G̃β(β0,0)=M ′(β0) �=0.

Thus, the Implicit Function Theorem implies that for ε sufficiently small,
there exists a continuously differentiable function β=β(ε) with β(0)=β0,

such that G̃(β(ε), ε)= 0. Hence, G(β(ε), ε)= 0, i.e., the bifurcation equa-
tion (and thus (4.3)) has a unique bounded solution u∗(t, ε) with

u∗(t+β(ε), ε)= z(t, β(ε), ε)+p(t).
Obviously,

lim
ε→0

u∗(t, ε)=p(t).

Since

‖u∗(t, ε)−u0(t, ε)‖�‖u∗(t, ε)−p(t)‖+‖p(t)−u0(t, ε)‖,
we have

‖u∗(t, ε)−u0(t, ε)‖→0 as ε→0.

(iii) Notice that to show that for sufficiently small ε �=0 Eq. (4.5) has
an exponential dichotomy on R is equivalent to show that for sufficiently
small ε �=0 the equation
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ẇ(t)=Aw(t)+ [g′(zt +pt )+ ε ∂
∂u
h(t+β(ε), zt +pt , ε)]wt (4.12)

has an exponential dichotomy on R. For fixed t and ε, define A(t, ε):C→X

by

A(t, ε)φ= (Aφ)(0)+
[
g′(zt +pt )+ ε ∂

∂u
h(t+β(ε), zt +pt , ε)

]
φ, φ ∈C.

We can see that A(t,0)φ= (Aφ)(0)+ g′(pt )φ. Since (4.2) has exponential
dichotomies on R+ and R− with projections P+(t) and P−(t), respectively,
and dim Q+(0)=dim Q−(0). The roughness of exponential dichotomies
([23]) implies that for sufficiently small ε �=0 Eq. (4.12) also has an expo-
nential dichotomy on R+ and R− with projections P ε+(t) and P ε−(t),
respectively. In order to show that Eq. (4.12) has an exponential dichot-
omy on R, it suffices to define

X1(t) =
{
R(P ε+(t)), t�0,
{φ :Tε(0, t)φ ∈R(P ε+(0))}, t�0,

X2(t) =
{
R(Qε−(t)), t�0,
{Tε(t,0)φ :φ ∈R(Qε−(0))}, t�0,

where Tε(t, s) denotes the evolution operator for (4.12), and claim that

X1(t)⊕X2(t)=X, ∀t ∈R. (4.13)

First, we prove that (4.13) holds for t=0. For an arbitrary real num-
ber γ , the change of variable y(t)=w(t)−γ ṗ(t) transforms the system

ẇ(t)=A(t, ε)wt + ε2f (t) (4.14)

into

ẏ(t)=A(t,0)wt + [A(t, ε)−A(t,0)](yt +γ ṗt )+ ε2f (t), (4.15)

which is equivalent by the Liapunov-Schmidt reduction to the system
∫ ∞

−∞
〈v(t), [A(t, ε)−A(t,0)](yt +γ ṗt )+ ε2f (t)〉dt=0, (4.16)

ẏ(t) = A(t,0)wt + [A(t, ε)−A(t,0)](yt +γ ṗt )+ ε2f (t)+v(t)
×
∫ ∞

−∞
〈v(t), [A(t, ε)−A(t,0)](yt +γ ṗt )+ ε2f (t)〉dt, (4.17)

where v(t) is given in R(F ) in Theorem 3.3. One can prove that for
small ε Eq. (4.17) has a unique bounded solution y= y(t;γ, ε) such that



Transverse Homoclinic Orbits in Partial Functional Differential Equations 773

y(t;γ,0)=0. Substituting y=y(t;γ, ε) in (4.16) we obtain the bifurcation
equation

B(γ, ε) :=
∫ ∞

−∞
〈v(t), [A(t, ε)−A(t,0)](yt (γ, ε)+γ ṗt )+ ε2f (t)〉dt=0.

(4.18)

It is easy to check that B(γ, ε) is C2 and B(γ,0)=0. Furthermore, define
H(γ, ε) :=B(γ, ε)/ε for ε �= 0 and H(γ, ε) := ∂

∂ε
B(γ,0) for ε= 0. In order

to solve the implicit function from H(γ, ε)=0, we observe that

H(γ,0)= ∂

∂ε
B(γ,0)=γ

∫ ∞

−∞

〈
v(t),

∂

∂ε
A(t,0)ṗt

〉
dt. (4.19)

Obviously H(0,0) = 0. Moreover, ∂
∂ε
A(t,0) = g′′(pt ) ∂∂ε zt (t,0) + ∂

∂u
h(t +

β0, pt ,0). Notice that

ż(t, ε)=Az(t, ε)+g(zt +pt )−g(pt )+ εh(t+β(ε), zt +pt , ε). (4.20)

Differentiating both sides of Eq. (4.20) with respect to ε and setting ε=0,
we have

∂

∂ε
ż(t,0)=A ∂

∂ε
z(t,0)+g′(pt )

∂

∂ε
zt (t,0)+h(t+β0, pt ,0). (4.21)

Differentiating both sides of Eq. (4.21) with respect to t yields

d
dt

∂

∂ε
ż(t,0) = A

∂

∂ε
ż(t,0)+g′(pt )

∂

∂ε
żt (t,0)+ ∂

∂t
h(t+β0, pt ,0)

+
[
g′′(pt )

∂

∂ε
zt (t,0)+ ∂

∂u
h(t+β0, pt ,0)

]
ṗt

= A
∂

∂ε
ż(t,0)+g′(pt )

∂

∂ε
żt (t,0)

+
[
∂

∂t
h(t+β0, pt ,0)+ ∂

∂ε
A(t,0)ṗt

]
. (4.22)

It follows that ∂
∂ε
ż(t,0)∈X is a bounded solution on R of the equation

ż(t)=Az(t)+g′(pt )zt +
[
∂

∂t
h(t+β0, pt ,0)+ ∂

∂ε
A(t,0)ṗt

]
.

By Theorem 3.3, we have
∫ ∞

−∞

〈
v(t),

∂

∂t
h(t+β0, pt ,0)+ ∂

∂ε
A(t,0)ṗt

〉
dt=0.
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It follows from (4.19) that

∂

∂γ
H(0,0) =

∫ ∞

−∞

〈
v(t),

∂

∂ε
A(t,0)ṗt

〉
dt

= −
∫ ∞

−∞

〈
v(t),

∂

∂t
h(t+β0, pt ,0)

〉
dt

= −M ′(β0) �=0.

By the Implicit Function Theorem, there exists a continuous function γ =
γ (ε) such that γ (0)=0 and H(γ (ε), ε)=0 for sufficiently small ε. From the
bifurcation equation (4.18), we know that Eq. (4.14) has a bounded solution
w(t, ε)= y(t, γ (ε), ε)+γ (ε)ṗ(t). This implies that the operator Fε :w(t) �→
ẇ(t)−A(t, ε)wt has the range R(Fε)=B(R,X), i.e., codimR(Fε)=0. By
Theorem 3.3, index(Fε)= 0 for small ε. Thus dim N(Fε)= index(Fε)+
codim R(Fε)=0 and therefore, R(P ε+(0))∩R(Qε−(0))=N(Fε)={0}. It fol-
lows from Lemma 4 in [28] that

codim(R(P ε+(0))+R(Qε
−(0)))

= codim R(P ε+(0))−dim R(Qε
−(0))+dim(R(P ε+(0))∩R(Qε

−(0)))
= codim R(P ε+(0))−dim R(Qε

+(0))=0,

implying R(P ε+(0))+R(Qε−(0))=X, i.e., (4.13) holds for t=0.
Next, we show that

X1(t)+X2(t)=X, ∀t ∈R. (4.23)

For t � 0 we have X1(t)=R(P ε+(t)),X2(t)={Tε(t,0)φ :φ ∈R(Qε−(0))} and
dim X2(t) = dim X2(0) since Tε(t,0) is an isomorphism of R(Qε−(0))
onto R(Qε−(t)). From (4.13), for t = 0 we also know that codim X1(t)=
codimX1(0). Therefore (4.23) holds for t � 0. For t � 0 and φ ∈ X, we
know T (0, t)φ= φ1 + φ2 by (4.13) for t = 0, where φ1 ∈X1(0), φ2 ∈X2(0).
By the definition of X1(t) and X2(t) there exists φ̃1 ∈X1(t) such that φ1 =
Tε(0, t)φ̃1. Thus φ2 =Tε(0, t)(φ− φ̃1). The fact that φ2 ∈X2(0) implies that
φ − φ̃1 ∈R(Qε−(t)). Hence, there exists φ̃2 ∈X2(t) such that φ = φ̃1 + φ̃2,
implying (4.23) for t � 0. Furthermore, we can also prove that X1(t) ∩
X2(t)={0} for all t ∈R. This proves (4.13) for all t ∈R.

Thus, for sufficiently small ε �=0, the linearized equation (4.5) has an
exponential dichotomy on R. This completes the proof of Theorem 4.1.

Remark 4.2. The existence of an exponential dichotomy of Eq. (4.5)
on R implies that the bounded solution u∗(t, ε) is a transversal orbit ho-
moclinic to the hyperbolic T -periodic solution u0(t, ε).
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An example can be given by modifying the example in [12], which is
the partial functional differential equation

∂

∂t
u(x, t) = −(ch1)(sh1)−1 ∂

2

∂x2
u(x, t)− (sh1)−1

(
1+

(
u(x, t)

sin x

)2
)
u(x, t−1)

+ε cos t. (4.24)

Associated with the boundary value condition

u(0, t)=u(π,0)=0,

Eq. (4.24) explicitly has a homoclinic orbit u(x, t) = (sh1) sin x(cht)−1

when ε=0. Note that (sh1) sin x(cht)−1 →0 as t→±∞ and the spectrum
of the operator A := −(ch1)(sh1)−1 ∂2

∂x2 consists of the simple eigenvalues
λj = −(ch1)(sh1)−1j2, j = 1,2, . . . Hence, system (4.24) for ε = 0 has a
hyperbolic equilibrium u0 =0∈X :=H 1

0 (0, π)∩H 2(0, π). In order to apply
Theorem 4.1 we need to compute the Melnikov function

M(β)=
∫ ∞

−∞
〈v0(t), cos(t+β)〉dt

in condition (H5), where v0(t) is an nontrivial solution of the adjoint sys-
tem. Although numerical calculation of v0(t) was illustrated in [12], there
are still the usual computational difficulties associated with M(β) since the
spaces X and C are infinitely dimensional.
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Edinburgh Sect. A 116, 295–325.

14. Martin, R., and Smith, H. L. (1990). Abstract functional differential equations and reac-
tion-diffusion system, Trans. Amer. Math. Soc. 321, 1–44.

15. Meyer, K. R., and Sell, G. R. (1989). Melnikov transforms, Bernoulli bundles and almost
periodic perturbations, Trans. Amer. Math. Soc. 314, 63–105.

16. Palmer, K. J. (1984). Exponential dichotomies and transversal homoclinic points, J. Differ-
ential Equations 55, 225–256.

17. Palmer, K. J. (1988). Exponential dichotomies and Fredholm operators, Proc. Amer. Math.
Soc. 104, 149–156.

18. Pliss, V. A., and Sell, G. R. (1999). Robustness of exponential dichotomies in infinite-
dimensional dynamical systems, J. Dynam. Differential Equations 11, 471–513.

19. Rodrigues, H. M., and Ruas-Filho, J. G. (1995). Evolution equations: dichotomies and the
Fredholm alternative for bounded solutions, J. Differential Equations 119, 263–283.

20. Rodrigues, H. M., and Silveira, M. (1988). On the relationship between exponential
dichotomies and the Fredholm alternative, J. Differential Equations 79, 78–91.

21. Ruan, S., Wei, J., and Wu, J. (2003). Bifurcation from a homoclinic orbit in partial func-
tional differential equations, Discrete Contin. Dyn. Syst. 9, 1293–1322.

22. Sacker, R. J., and Sell, G. R. (1974, 1976). Existence of dichotomies and invariant split-
tings for linear differential systems, I, II, III. J. Differential Equations 15, 429–458; 22,
478–496; 497–522.

23. Sacker, R. J., and Sell, G. R. (1994). Dichotomies for linear evolutionary equations in
Banach spaces, J. Differential Equations 113, 17–67.

24. Travis, C. C., and Webb, G. F. (1974). Existence and stability for partial functional differ-
ential equations, Trans. Amer. Math. Soc. 200, 395–418.

25. Travis, C. C., and Webb, G. F. (1978). Existence, stability and compactness in the α−norm
for partial functional differential equations, Trans. Amer. Math. Soc. 240, 129–143.

26. Wu, J. (1996). Theory and Applications of Partial Functional Differential Equations,
Springer-Verlag, New York.

27. Zeng, W. (1997). Transversality of homoclinic orbits and exponential dichotomies for par-
abolic equations, J. Math. Anal. Appl. 216, 466–480.

28. Zhang, W. (1995). The Fredholm alternative and exponential dichotomies for parabolic
equations, J. Math. Anal. Appl. 191, 180–201.



Transverse Homoclinic Orbits in Partial Functional Differential Equations 777

29. Zhang, W., and Stewart, I. (1996). Bounded solutions for non-autonomous parabolic
equations, Dyn. Stability Syst. 11, 109–120.

30. Zhang, W., and Wu, J.-Y. (2000). Homoclinic orbits on invariant manifolds of a functional
differential equation, J. Differential Equations 165, 414–429.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


