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Abstract. A predator-prey system with nonmonotonic functional response is considered. Global
qualitative and bifurcation analyses are combined to determine the global dynamics of the model.
The bifurcation analysis of the model depending on all parameters indicates that it exhibits nu-
merous kinds of bifurcation phenomena, including the saddle-node bifurcation, the supercritical and
subcritical Hopf bifurcations, and the homoclinic bifurcation. It is shown that there are different
parameter values for which the model has a limit cycle or a homoclinic loop, or exhibits the so-called
paradox of enrichment phenomenon. Moreover, a limit cycle cannot coexist with a homoclinic loop
for all parameters. In the generic case, the model has the bifurcation of cusp type of codimension 2
(i.e., Bogdanov–Takens bifurcation) but for some specific parameter values it has a multiple focus of
multiplicity at least 2.
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1. Introduction. In population dynamics, a functional response of the predator
to the prey density refers to the change in the density of prey attached per unit time
per predator as the prey density changes. In microbial dynamics or chemical kinetics,
the functional response describes the uptake of substrate by the microorganisms.
The simplest model of functional response is obtained by assuming that in the time
available for searching, the total change in the prey density/substrate concentration
is proportional to the prey density/substrate concentration. Hence, if x(t) represents
the prey density/substrate concentration at time t, then the functional response is
ax(t), where a > 0 is a constant. Such a response was used almost simultaneously by
Lotka in 1925 in studying a hypothetical chemical reaction and by Volterra in 1926
in modeling a predator-prey interaction. However, the curve defined by the Lotka–
Volterra response function is a straight line through the origin and is unbounded.
Thus, more reasonable response functions should be nonlinear and bounded. In 1913,
Michaelis and Menten proposed the response function

p(x) =
mx

a+ x
(1.1)

in studying enzymatic reactions, where m > 0 denotes the maximal growth rate of
the species and a > 0 is the half-saturation constant. In 1959, Holling [20] also used
this function as one of the predator functional responses. It is now referred to as a
Michaelis–Menten function or a Holling type-II function. Another class of response
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function is

p(x) =
mx2

a+ bx+ x2
,(1.2)

which is called a sigmoidal response function, while the simplification

p(x) =
mx2

a+ x2
(1.3)

is known as a Holling type-III function. For some other types of response functions,
we refer to Freedman [13]. In general the response function p(x) satisfies the following
general hypothesis (see Hale and Somolinos [19]):

(A) p(x) is a continuously differentiable function defined on [0,∞) and satisfies

p(0) = 0, p′(x) > 0, and lim
x→∞ p(x) = m <∞.(1.4)

The inherent assumption in (A) is that p(x) is monotonic, which is true in many
predator-prey interactions (see, e.g., Freedman [13], Hsu [22], Kooij and Zegeling
[23], Kuang and Freedman [25], May [27], Sugie, Kohno, and Miyazaki [32], and the
references cited therein). However, there is experimental and observational evidence
that indicates that this need not always be the case, for example, in the cases of
“inhibition” in microbial dynamics and “group defense” in population dynamics.

There are experiments (Andrews [1], Boon and Landelout [6], Edwards [12], Yang
and Humphrey [39], etc.) that indicate that nonmonotonic responses occur at the mi-
crobial level: when the nutrient concentration reaches a high level an inhibitory effect
on the specific growth rate may occur. This is often seen when microorganisms are
used for waste decomposition or for water purification. To model such an inhibitory
effect, Andrews [1] suggested a function

p(x) =
mx

a+ bx+ x2
,(1.5)

called the Monod–Haldane function, which is similar to the Monod (i.e., the Michaelis–
Menten) function for low concentrations but includes the inhibitory effect at high
concentrations. Collings [9] also used the response function (1.5) in a mite predator-
prey interaction model and called it a Holling type-IV function (see Taylor [34]). The
experiments of Edwards [12] supported the use of the function (1.5) for the dependence
of the growth rate on an inhibitory substrate. In experiments on the uptake of phenol
by pure culture of Pseudomonas putida growing on phenol in continuous culture, Sokol
and Howell [31] proposed a simplified Monod–Haldane function of the form

p(x) =
mx

a+ x2
(1.6)

and found that it fits their experimental data significantly better and is simpler since it
involves only two parameters. We can see that if the Monod–Haldane or Holling type-
IV function (1.5) is regarded as a modification of the sigmoidal response function (1.2),
then the simplified Monod–Haldane or Holling type-IV function (1.6) is a modification
of the Holling type-III function (1.3).

In population dynamics, group defense is a term used to describe the phenomenon
whereby predation is decreased, or even prevented altogether, due to the increased
ability of the prey to better defend or disguise themselves when their numbers are
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Fig. 1.1. The nonmonotonic predator response function p(x).

large enough. An example of this phenomenon is described by Tener [35]. Lone musk
ox can be successfully attacked by wolves. Small herds of musk ox (2 to 6 animals)
are attacked but with rare success. No successful attacks have been observed in
larger herds. A second example described by Holmes and Bethel [21] involves certain
insect populations. Apparently, large swarms of insects make individual identification
difficult for their predators. The third example was observed by Davidowicz, Gliwicz,
and Gulati [10]. Filamenteous algae are often qualified as inedible by herbivorous
zooplankton. However, experiments show that Daphnia can consume them at low
concentrations, while they jam their filtering apparatus in high concentrations.

To study the predator-prey interaction when the prey exhibits group defense,
Freedman and Wolkowicz [14], Mischaikow and Wolkowicz [28], and Wolkowicz [36]
proposed the following model (see also Lin [26]):

ẋ = xg(x,K)− yp(x),
ẏ = y(−D + q(x)).

(1.7)

Here, x and y are functions of time representing population densities of prey and
predator, respectively; K > 0 is the carrying capacity of the prey and D > 0 is the
death rate of the predator. The function g(x,K) represents the specific growth rate of
the prey in the absence of predator and is assumed to satisfy the following conditions
(for x ≥ 0,K > 0):

g(K,K) = 0, g(0,K) > 0, lim
K→∞

g(0,K) <∞,
gx(x,K) < 0, gK(x,K) ≥ 0, gxK(x,K) > 0, lim

K→∞
gx(x,K) = 0.

A prototype is the logistic growth

g(x,K) = r
(
1− x

K

)
,

which satisfies all the conditions. The function p(x) denotes the predator response
function and it is assumed that p(x) satisfies

p(0) = 0, p(x) > 0 for x > 0.

In order to model group defense, it is assumed that there is a constant M > 0 such
that (see Figure 1.1)

p′(x)
{
> 0, 0 ≤ x < M,
< 0, x > M.
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Fig. 1.2. (i) q(M) < D; (ii) q(M) = D; (iiia)–(iiib) q(M) > D.

In particular, the Monod–Haldane or Holling type-IV function (1.5), the simplified
version (1.6), and the function p(x) = αxe−βx satisfy the assumptions; α and β are
positive constants. The rate of conversion of prey to predator is described by q(x).
In Gause’s model, q(x) = cp(x) for some positive constant c. It is assumed that q(x)
has properties similar to p(x), that is,

q(0) = 0, q(x) > 0 for x > 0

and

q′(x)
{
> 0, 0 ≤ x < M,
< 0, x > M.

The existence of M > 0 is precisely the assumption which models group defense. It is
assumed that the same M holds for both functions p and q since the conversation of
prey to predator should increase and decrease as the consumption of prey increases
and decreases.

Freedman and Wolkowicz [14] showed that if the carrying capacity of the prey
population is sufficiently large, the predator population is almost always driven to
extinction. This is related to the phenomenon of paradox of enrichment as described
in Rosenzweig [29]. Wolkowicz [36] showed that if the carrying capacity is made
sufficiently large by enrichment of the environment, the model predicts the eventual
extinction of the predator. In fact, she showed that there is actually a separatrix:
for all solutions initiating on one side of the separatrix, extinction of the predator
results; solutions initiating on the other side of the separatrix converge to an interior
equilibrium. The x-component of any interior equilibrium of system (1.7) satisfies the
algebraic equation

q(x) = D.(1.8)

There are three possibilities (see Figure 1.2): (i) q(M) < D. In this case, system
(1.7) has no interior equilibrium. (ii) q(M) = D. In this case, system (1.7) has a
unique interior equilibrium, denoted by E∗ = (x∗, y∗) if x∗ < K. (iii) q(M) > D. In
this case, system (1.7) has two interior equilibria, E1 = (x1, y1) and E2 = (x2, y2),
provided x1 < x2 < K (see Figure 1.2(iiia)). And system (1.7) has a unique interior
equilibrium E1 = (x1, y1) if x1 < K < x2 (see Figure 1.2(iiib)).

Case (i) is not interesting. In case (iiia), according to Wolkowicz [36], E1 is stable
(a node or focus) if

∂

∂x

(xg(x,K)

p(x)

)
< 0
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Fig. 1.3. Three possibilities of the portion of the stable and unstable manifold of E2 to the left
of x2.

and E2 = (x2, y2) is unstable (a saddle). By regarding K, the carrying capacity of the
prey, as a bifurcation parameter, Wolkowicz [36] showed that the system undergoes
a Hopf bifurcation at E1 when K passes through a critical value. With the presence
of the two interior equilibria, Freedman and Wolkowicz [14] observed that there are
three possibilities (see Figure 1.3).

In Figure 1.3(b), we can see that there is a homoclinic orbit surrounding E1.
Recall that a periodic orbit bifurcates from E1 when K passes through some critical
value. Their numerical analysis indicated that the periodic orbit coalesces with the
homoclinic orbit when K varies. Based on this observation, Wolkowicz [36] then
argued that there exists a homoclinic bifurcation associated with the Hopf bifurcation
(either the Hopf bifurcation followed by the homoclinic bifurcation or the homoclinic
bifurcation followed by the Hopf bifurcation) when the same bifurcation parameter K
takes some other value. The observation and analysis by Freedman andWolkowicz [14]
and Wolkowicz [36] show that system (1.7) has very interesting and rich dynamics. Let
us reconsider the existence of the interior equilibria. In case (i) there is no interior
equilibrium, in case (ii) there is only one, and in case (iii) there are at most two
(a saddle and a node (or focus)). It follows from case (i) to case (iii) that system
(1.7) exhibits a saddle-node bifurcation. This bifurcation occurs when either D or
a parameter involved in p(x) varies. Freedman and Wolkowicz [14] and Wolkowicz
[36] studied one situation in case (iii) when system (1.7) has two interior equilibria
E1 = (x1, y1) and E2 = (x2, y2) with x1 < x2 < K and only regarded K as a
bifurcation parameter, while case (ii) has never been investigated in the literature.
Then it is very natural to ask the following questions:

(1) If there is a unique interior equilibrium, what is its property?
(2) How many kinds of bifurcations can the model exhibit?
(3) What are the global dynamics of the model depending on all parameters?
To have a clear and global bifurcation picture and corresponding phase pictures

about system (1.7), we consider g(x,K) given by the logistic function, p(x) the sim-
plified Monod–Haldane or Holling type-IV function given by (1.6), and q(x) = cp(x).
Scaling the parameter m (and then changing r, but we still denote it by r) in the first
equation and writing µ = mc in the second equation, we have the following system:

ẋ = rx
(
1− x

K

)
− xy

a+ x2
,

ẏ = y

(
µx

a+ x2
−D

)
.

(1.9)

From the point of view of biology, we only restrict our attention to system (1.9) in
the closed first quadrant in the (x, y) plane.
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By studying question (1), we can clearly observe the so-called paradox of enrich-
ment phenomenon depending on the dynamics of the system. Now let us consider
question (2). System (1.9) has five positive parameters, r, K, a, µ, and D. When
these parameters change, system (1.9) has a sequence of bifurcations such as a saddle-
node bifurcation, a supercritical Hopf bifurcation, a subcritical Hopf bifurcation, a
homoclinic bifurcation, etc. By the results in Guckenheimer [15], we know that these
bifurcations cannot be obtained by varying just one parameter. From analysis, we
shall see that the parameter r cannot be a bifurcation parameter; however, the other
parameters can become bifurcation parameters. As discussed above, the saddle-node
bifurcation depends on one parameter; the Hopf bifurcation studied in Wolkowicz [36]
in fact depends on another parameter. However, the homoclinic bifurcation (i.e., the
brokenness of the homoclinic orbit) may depend on both parameters. Therefore, the
codimension of these bifurcations must be at least 2 (see also Chow, Li, and Wang
[8], Guckenheimer and Holmes [16], and Kuznetsov [24]). Even though we can prove
that the unique degenerate interior equilibrium E∗ is a cusp of codimension 2 and
the system exhibits a Bogdanov–Takens bifurcation (see Bogdanov [4, 5] and Takens
[33]), it is possible that system (1.9) has more than two limit cycles since there exists
a multiple focus of multiplicity at least 2. Therefore, the dynamics of system (1.9)
could be much more complicated than we may have expected.

We shall make global qualitative and bifurcation analyses of system (1.9) depend-
ing on all parameters and show that system (1.9) has a unique limit cycle or a global
attractive equilibrium in the interior of the first quadrant, or exhibits the paradox
of enrichment phenomenon for different parameter values. However, it cannot have
a limit cycle and a homoclinic loop simultaneously for all parameters. Furthermore,
we show that system (1.9) can exhibit qualitatively different dynamics, including the
supercritical and subcritical Hopf bifurcations, the saddle-node bifurcation as well
as the homoclinic bifurcation. In the generic case, system (1.9) has a bifurcation of
codimension 2 (i.e., the Bogdanov–Takens bifurcation) and no bifurcations of codi-
mension 3. We also present a global bifurcation picture near the cusp. The global
bifurcation diagram enables us to link these bifurcations one to another by using the
two bifurcation parameters, namely, K (the carrying capacity of the prey) and D (the
death rate of the predator).

We would like to mention that one could use the Bogdanov–Takens bifurcation
theorem stated in Kuznetsov [24] to show that system (1.9) exhibits a Bogdanov–
Takens bifurcation. However, to find the global bifurcation diagram and to locate the
bifurcation curves in terms of the parameters in system (1.9), one still has to calculate
the unfoldings. Instead of applying the Bogdanov–Takens bifurcation theorem in
Kuznetsov [24] directly, we use a series of (nontrivial) transformations to compute
the normal form, and thus we are able to determine the bifurcation curves and the
diagram by using the original parameters in system (1.9).

This paper is organized as follows. General phase portrait analysis of the system
(1.9) is carried out in section 2. We study all possible bifurcations depending on all
parameters and describe the phase portraits and the biological ramifications. More-
over, we show that the system has a unique limit cycle for some parameters, has a
global attractive equilibrium in the interior of the first quadrant for some other pa-
rameters, and cannot have both a limit cycle and a homoclinic loop for all parameters.
In section 3 we consider a degenerate equilibrium. We show that in a small neigh-
borhood of the degenerate equilibrium, system (1.9) undergoes the Bogdanov–Takens
bifurcation in the generic case, i.e., the bifurcation of the cusp type of codimension
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2 and no bifurcation of codimension 3 when the parameters vary in a small neigh-
borhood of some parameter values. Finally, we choose two parameters, K and D, as
the bifurcation parameters and show that system (1.9) exhibits the Bogdanov–Takens
bifurcation. For different parameters, the system could have a unique limit cycle or a
homoclinic loop. The paper ends with a brief discussion.

2. General phase portraits analysis of the system (1.9). As is typical for
predator-prey systems, the x-axis, y-axis, and interior of the first quadrant are all
invariant under system (1.9); solutions with positive initial values are positive and
bounded; and there is a hyperbolic saddle point at the origin and an equilibrium
(K, 0) in the x-axis for all permissible parameters. The equilibrium of the greatest
interest would be an equilibrium interior to the first quadrant, so we seek conditions
for such an equilibrium to exist. From system (1.9), we can see that if there is an
interior equilibrium, then the equation

µx

a+ x2
−D = 0,

that is,

Dx2 − µx+ aD = 0,(2.1)

has positive roots. Therefore, the first condition is that

µ2 − 4aD2 ≥ 0.(2.2)

Biologically, this is necessary for the persistence of the ecosystem, for if µ2−4aD2 < 0,
then µx

a+x2 − D < 0 for all x > 0 and ẏ(t) < 0. Hence limt→∞ y(t, t0, x0, y0) = 0 as
x0 > 0, y0 > 0. This implies that the predator species goes extinct. Mathematically,
µ2 − 4aD2 = 0 is a saddle-node bifurcation surface. When the parameters pass from
one side of the surface to the other side, the number of equilibria of the system changes.
To determine the y value of the equilibrium, we merely solve

rx
(
1− x

K

)
− y x

a+ x2
= 0(2.3)

for y at the root x∗ of (2.1) and get

y∗ = r
(
1− x∗

K

)
(a+ (x∗)2).

To ensure that y∗ > 0, however, we must make a second assumption:

x∗ < K.(2.4)

Notice that if the predator response function is monotone, Freedman [13] has shown
that if x∗ > K, then the predator goes extinct. However, if the predator response
function is nonmonotone, as in system (1.7), there could be two roots x1 and x2 of
(1.8). Even if one xi > K, the predator does not necessarily go to extinction. We will
see more details in the following.

Next we discuss the possible phase portraits of system (1.9) according to condi-
tions (2.2) and (2.4).

2.1. µ2 − 4aD2 < 0. In this case, system (1.9) has no interior equilibria. It is
easy to see that the equilibrium (K, 0) is a stable node.
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2.2. µ2 − 4aD2 = 0 and µ
2D

< K. In this case, system (1.9) has three
equilibria, a hyperbolic saddle (0, 0), a stable node (K, 0), and an interior equilibrium
(x0, y0), where x0 = µ

2D , y0 = r(1 − x0

K )(a + x2
0). After some calculations, we know

that (x0, y0) is a saddle-node as µ �= KD. The detailed results will follow.

2.2.1. K < µ
D
. The saddle-node (x0, y0) consists of two hyperbolic sectors and

one parabolic sector; the parabolic sector is between the y-axis and the equilibrium.
The phase portrait can be sketched as in Figure 2.1.

In this case, there exist two seperatrices. Solutions initiating on one side of the
seperatrix converge to the interior equilibrium. Thus, the population of the predator
and the population of the prey will tend to a steady state if their initial populations lie
in the parabolic sector, and the predator will tend to extinction as its initial population
density lies in one of the two hyperbolic sectors.

2.2.2. K > µ
D
. The saddle-node (x0, y0) consists of two hyperbolic sectors and

one parabolic sector; the hyperbolic sectors lie between the y-axis and the equilibrium.
The phase portrait is depicted in Figure 2.2.

In this case, there exists one seperatrix which converges to the interior equilibrium,
and all other solutions tend to the equilibrium (K, 0). Therefore, sufficient enrichment
of the environment leads to extinction of the predator for almost all initial values,
which strongly supports the so-called paradox of enrichment.

2.2.3. µ = KD. The equilibrium (x0, y0) is a cusp which consists of two hyper-
bolic sectors and two seperatrices. One of the seperatrices converges to the interior
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equilibrium (x0, y0) and all other solutions tend to the equilibrium (K, 0). Hence, in
this case the paradox of enrichment also holds. The phase portrait is shown in Figure
2.3.

In section 3, we will prove that the surface

BT : µ2 − 4aD2 = 0, µ = KD

is a cusp bifurcation surface of codimension 2 for system (1.9) (i.e., Bogdanov–Takens
bifurcation surface).

2.3. µ2 − 4aD2 > 0. Now system (1.9) has at most four equilibria, (0, 0),
(K, 0), and two interior equilibria (x1, y1), (x2, y2), where

x1 =
µ−

√
µ2−4aD2

2D , y1 = r(1− x1

K )(a+ x2
1),

x2 =
µ+

√
µ2−4aD2

2D , y2 = r(1− x2

K )(a+ x2
2).

For the sake of simplicity, we also denote

x3 =
2µ−

√
µ2 − 4aD2

2D
, x4 =

2µ+
√
µ2 − 4aD2

2D
.

More precisely, there are three possibilities.
(a) When K ≤ x1, system (1.9) has two boundary equilibria, (0, 0) and (K, 0),

and no interior equilibria. The dynamics of system (1.9) is trivial.
(b) When x1 < K < x2, system (1.9) has three equilibria, (0, 0), (K, 0), and an

interior equilibrium (x1, y1). In this case the interior equilibrium (x1, y1) is a focus or
node.

(c) When K > x2, system (1.9) has four equilibria, a hyperbolic saddle (0, 0), a
hyperbolic stable node (K, 0), and two interior equilibria (x1, y1) and (x2, y2). We
can see that (x2, y2) is a hyperbolic saddle and (x1, y1) is a focus or node.

Next we discuss the dynamics of system (1.9) in detail.

Lemma 2.1. If 4aD2 < µ2 < 18+2
√

6
3 aD2 and K = x3, then the equilibrium

(x1, y1) of system (1.9) is a stable multiple focus of multiplicity 1. If µ2 > 18+2
√

6
3 aD2

and K = x3, then the equilibrium (x1, y1) of system (1.9) is an unstable multiple focus

of multiplicity 1. And if µ2 = 18+2
√

6
3 aD2 and K = x3, the equilibrium (x1, y1) of

system (1.9) is a multiple focus of multiplicity at least 2.
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Proof. Let x̄ = x− x1, ȳ = y − y1, and let dt = (a+ x2)dτ. Then when K = x3,
system (1.9) can be transformed into

dx̄

dτ
=− x1ȳ + r

(
− a

K
+ 3x1 − 6x2

1

K

)
x̄2 − x̄ȳ − r

(
1− 4x1

K

)
x̄3 − r

K
x̄4,

dȳ

dτ
= (µ− 2Dx1)y1x̄−Dy1x̄2 + (µ− 2Dx1)x̄ȳ −Dx̄2ȳ.

(2.5)

According to the formula for the third focal value (i.e., the Liapunov number) of a
multiple focus on p. 253 of Andronov [2], we obtain, after elementary but lengthy
computations, the following expression for the third focal value α3 of the multiple
focus (0, 0) in system (2.5):

α3 =
3πx1y1r

2KD(x1y1(µ− 2Dx1))
3
2

(
2µx1 − 10aD +

µ2

D

)

=
3πr

2KD(µ− 2Dx1)(x1y1(µ− 2Dx1))
1
2

(2µ2 − µ
√
µ2 − 4aD2 − 10aD2).

When 4aD2 < µ2 < 18+2
√

6
3 aD2, α3 < 0. Hence, the equilibrium (x1, y1) is a sta-

ble multiple focus of multiplicity 1. When µ2 > 18+2
√

6
3 aD2, α3 > 0. Then the

equilibrium (x1, y1) is an unstable multiple focus of multiplicity 1. When µ2 =
18+2

√
6

3 aD2, α3 = 0. Thus, the equilibrium (x1, y1) is a multiple focus of multiplicity
at least 2.

By Lemma 2.1, we know that the equilibrium (x1, y1) is a stable focus when

4aD2 < µ2 < 18+2
√

6
3 aD2 and x1 < K ≤ x3. However, the equilibrium (x1, y1) is an

unstable focus as 4aD2 < µ2 < 18+2
√

6
3 aD2 and K > x3.

Hence, when parameters pass from one side of the following surface to the other
side, system (1.9) can undergo a supercritical Hopf bifurcation. A stable limit cycle
appears in the small neighborhood of (x1, y1). The surface

H1 : K = x3, 4aD2 < µ2 <
18 + 2

√
6

3
aD2

is called the supercritical Hopf bifurcation surface of system (1.9).
On the other hand, the equilibrium (x1, y1) is an unstable focus when µ2 >

18+2
√

6
3 aD2 and K ≥ x3; however, it is a stable focus as µ2 > 18+2

√
6

3 aD2 and
x1 < K < x3. Therefore, when parameters pass from one side of the following surface
to the other side, system (1.9) can undergo a subcritical Hopf bifurcation. An unstable
limit cycle appears in the small neighborhood of (x1, y1). The surface

H2 : K = x3, µ
2 >

18 + 2
√
6

3
aD2

is called the subcritical Hopf bifurcation surface of system (1.9).
The surface

H0 : K = x3, µ
2 =

18 + 2
√
6

3
aD2

is called the degenerate Hopf bifurcation surface of system (1.9).



GLOBAL ANALYSIS IN A PREDATOR-PREY SYSTEM 1455

y

0 (K, 0) x

(x  , y  )1 1

Fig. 2.4. The phase portrait of system (1.9) when 4aD2 < µ2 ≤ 16
3
aD2 and x1 < K < x2.

Theorem 2.2. If 4aD2 < µ2 ≤ 16
3 aD

2 and x1 < K < x2, then system (1.9) has
three equilibria: two hyperbolic saddles (0, 0) and (K, 0) and a globally asymptotically
stable equilibrium (x1, y1) in the interior of the first quadrant. The phase portrait is
shown in Figure 2.4.

Proof. It is easily to check that the equilibrium (x1, y1) is a stable focus (or
node). Next we prove that system (1.9) has no periodic orbits in the interior of the
first quadrant.

It is clear that the dynamics of system (1.9) are equivalent to that of the system

dx

dτ
= x

(
r
(
1− x

K

)
(a+ x2)− y

)
,

dy

dτ
= y

(
µx−D(a+ x2)

)
,

(2.6)

where dt = (a+ x2)dτ .
Taking the Dulac function D(x, y) = x−1y−1 for system (2.6) and noting that

K ≤ √
3a if 4aD2 < µ2 ≤ 16

3 aD
2 and x1 < K < x2, we can see that system (2.6) has

no periodic orbits in the interior of the first quadrant. Hence the equilibrium (x1, y1)
is globally asymptotically stable in the interior of the first quadrant.

Remark 2.3. In Theorem 2.2 if K = x2, then the equilibrium (x2, y2) goes to
the equilibrium (K, 0) such that the equilibrium (K, 0) is a complex equilibrium. By
analysis we readily find the equilibrium (K, 0) is a saddle-node equilibrium and (x1, y1)
is a globally asymptotically stable equilibrium in the interior of the first quadrant.

Theorem 2.4. If µ2 > 16
3 aD

2 and x2 > K > x3, then system (1.9) has at least
one limit cycle in the interior of the first quadrant.

Proof. It is clear that the periodic orbit of system (1.9) must be in the domain
E1 if it exists, where

E1 = {(x, y) : 0 < x < K, 0 < y < +∞}.

Taking a ray line l1 beginning at the point A(K, 0)

l1 = {(x, y) : x = K, y > 0},

we can see that the direction vector field of system (1.9) on l1 is from right to left
(see Figure 2.5).
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Fig. 2.5. The phase portrait of system (1.9) when µ2 > 16
3
aD2 and x3 < K < x2.

Now we consider the solution (x∗(t), y∗(t)) of system (1.9) passing through the
point B(K, yb), where yb > y1. It is easy to prove that the orbit (x∗(t), y∗(t)) must
cross the line l2 at point C(x1, yc) and yc ≥ yb, where l2 = {(x, y) : x = x1, y > 0}.

Making a line l3 = {(x, y) : y = yc}, which begins at point C(x1, yc) and ends at
point D(0, yc), we can see that the direction vector field of system (1.9) on l3 is from
up to down (see Figure 2.5). Therefore the orbits of system (1.9) in the interior of
the region OABCDO cannot cross the boundary.

On the other hand we know that the equilibrium (x1, y1) is an unstable focus
(or node) since K > x3 Therefore, the existence of a periodic orbit follows directly
from the Poincaré–Bendixson theorem. Moreover, the periodic orbit is stable in the
interior.

Theorem 2.5. If µ2 > 16
3 aD

2 and x2 > K > x3, then system (1.9) has at most
one limit cycle in the interior of the first quadrant.

Proof. We prove the theorem by contradiction. First of all, we consider only the
system in the domain E1 by Theorem 2.4.

Let x − x1 = −X, y − y1 = y1(e
Y − 1) and xdt = (a + x2)dT . For the sake of

simplicity, we still denote X, Y , and T by x, y, and t, respectively. Then system (1.9)
can be written as (see Zhou [40])

dx

dt
= φ(y)− F (x),

dy

dt
=− g(x),

(2.7)

where φ(y) = y1(e
y − 1), F (x) = r(1 − x1−x

K )(a + (x1 − x)2) − y1, and g(x) =
Dx(x−x1+x2)

x1−x , where x1 −K < x < x1, and −∞ < y < +∞.
Note that the problem of uniqueness of a limit cycle of system (1.9) in the domain

E1 is equivalent to that of system (2.7) in the domain E2, where E2 = {(x, y) :
x1 −K < x < x1, −∞ < y < +∞}.

Notice that in the domain E2, φ(y) = F (x) defines a smooth curve, and

F (x) =
rx

K
(x2 + (K − 3x1)x+ a+ x

2
1 − 2Kx1 + 2x2

1).

When x3 < K < x2, it is clear that F (x) = 0 has three roots r1, 0, and r2 in E2, where
r1 < 0 < r2. Thus, the prey-isocline φ(y) = F (x) of system (2.7) has two humps in



GLOBAL ANALYSIS IN A PREDATOR-PREY SYSTEM 1457

 x

y

0

Γ

Γ

Q

Q

Q

P

P

P

R

R
R

R

φ

 1

 2

 1

2
3

4

1

1

2

2

 2

 1

1

 2

Q’

Q’P’

P’

(y)=F(x)

xx -K1 1

Fig. 2.6. System (2.7) has at most one limit cycle.

E2, namely, a local maximum and a local minimum, and crosses the x-axis at three
points, P (r1, 0), O(0, 0), and Q(r2, 0), respectively.

Suppose, on the contrary, that system (2.7) has two periodic orbits Γ1 and Γ2;
then Γ1 ⊂ intΓ2 and it is easy to prove that POQ ⊂ intΓ1 (see Figure 2.6).

Consider the function

W (x, y) =

∫ x

0

g(s)ds+

∫ y

0

φ(s)ds.

We can see that ∮
Γ1

dW (x, y) =

∮
Γ2

dW (x, y) = 0.(2.8)

Now we partition Γ1 and Γ2 as follows (see Figure 2.6):

Γ1 = Q̂2Q1

⋃
Q̂1P1

⋃
P̂1P2

⋃
P̂2Q2,

Γ2 = Q̂′
2R1

⋃
R̂1R2

⋃
R̂2Q′

1

⋃
Q̂′

1P
′
1

⋃
P̂ ′

1R3

⋃
R̂3R4

⋃
R̂4P ′

2

⋃
P̂ ′

2Q
′
2.

Hence ∮
Γ1

dW =

∫
Q̂2Q1

dW +

∫
Q̂1P1

dW +

∫
P̂1P2

dW +

∫
P̂2Q2

dW,∮
Γ2

dW =

∫
Q̂′

2R1

dW +

∫
R̂1R2

dW +

∫
R̂2Q′

1

dW +

∫
Q̂′

1P
′
1

dW

+

∫
P̂ ′

1R3

dW +

∫
R̂3R4

dW +

∫
R̂4P ′

2

dW +

∫
P̂ ′

2Q
′
2

dW.

(2.9)

Since F (x) > 0 for either (x, y) ∈ Q̂2Q1 or (x, y) ∈ Q̂′
2Q

′
1, it follows that∫

R̂1R2

dW =

∫
R̂1R2

F (x)dy >

∫
Q̂2Q1

dW =

∫
Q̂2Q1

F (x)dy,(2.10)
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Q̂′

2R1

dW =

∫
Q̂′

2R1

F (x)dy > 0,(2.11)

and ∫
R̂2Q′

1

dW =

∫
R̂2Q′

1

F (x)dy > 0(2.12)

by the expression of W (x, y) and system (2.7).

On the other hand, F (x) < 0 for either (x, y) ∈ P̂1P2 or (x, y) ∈ P̂ ′
1P

′
2, and thus∫

R̂3R4

dW =

∫
R̂3R4

F (x)dy >

∫
P̂1P2

dW =

∫
P̂1P2

F (x)dy,(2.13)

∫
P̂ ′

1R3

dW =

∫
P̂ ′

1R3

F (x)dy > 0,(2.14)

and ∫
R̂4P ′

2

dW =

∫
R̂4P ′

2

F (x)dy > 0.(2.15)

However, since F (x)g(x) < 0, φ(y) − F (x) > 0 for (x, y) ∈ Q̂1P1

⋃
Q̂′

1P
′
1 and

F (x)g(x) < 0, φ(y) − F (x) < 0 for (x, y) ∈ P̂2Q2

⋃
P̂ ′

2Q
′
2, and φ(y) is a strictly

increasing function, it leads to∫
Q̂′

1P
′
1

dW =

∫
Q̂′

1P
′
1

−F (x)g(x)
φ(y)− F (x)dx >

∫
Q̂1P1

−F (x)g(x)
φ(y)− F (x)dx =

∫
Q̂1P1

dW,

∫
P̂ ′

2Q
′
2

dW =

∫
P̂ ′

2Q
′
2

−F (x)g(x)
φ(y)− F (x)dx >

∫
P̂2Q2

−F (x)g(x)
φ(y)− F (x)dx =

∫
P̂2Q2

dW.

Summarizing the above estimations, we have∮
Γ1

dW (x, y) <

∮
Γ2

dW (x, y),

which contradicts (2.8). Hence, system (2.7) has at most one periodic orbit. This
leads to the conclusion of the theorem.

Summarizing Theorems 2.4 and 2.5, we have the following theorem.
Theorem 2.6. If µ2 > 16

3 aD
2 and x2 > K > x3, then system (1.9) has three

equilibria: two hyperbolic saddles (0, 0) and (K, 0) and an unstable focus (or node)
(x1, y1) in the interior of the first quadrant. Moreover, system (1.9) has a unique limit
cycle, which is stable. The phase portrait is given in Figure 2.5.

Theorem 2.7. If x2 < K and x3 < K < µ
D , then system (1.9) has at most one

limit cycle in the interior of the first quadrant.
Proof. It is clear that the limit cycles of system (1.9) must be in the domain E3

if they exist, where E3 = {(x, y) : 0 < x < x2, 0 < y < +∞}.
Note that the problem of uniqueness of a limit cycle of system (1.9) in the domain

E3 is equivalent to that of system (2.7) in the domain E4, where E4 = {(x, y) :
x1 − x2 < x < x1, −∞ < y < +∞}.
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Fig. 2.7. The portrait of φ(y) = F (x) in E4 when K ≤ µ
D
.

It is clear that φ(y) = F (x) defines a smooth curve in the domain E4, and when
x3 < K, F (x) = 0 has three real roots r1 < 0 < r2 as in the proof of Theorem 2.5.
Notice that since x1+x2 =

µ
D , x1x2 = a, and x

2
2+a =

µx2

D , we can see that as x2 < K
the three roots r1, 0, r2 of F (x) are in E4 if and only if k <

µ
D . Hence, the prey-isocline

φ(y) = F (x) of system (2.7) has two humps in E4, namely, a local maximum and a
local minimum, and crosses the x-axis at three points, P (r1, 0), O(0, 0), and Q(r2, 0),
respectively. Using the same method as in the proof of Theorem 2.5, we obtain the
conclusion of the theorem.

Theorem 2.8. If µ
D ≤ K, then system (1.9) has no limit cycles in the interior

of the first quadrant.
Proof. It is clear that K > x2. Note that the problem of existence of a limit cycle

of system (1.9) is equivalent to that of system (2.7) in the domain E4.
If K ≥ µ

D , then the three roots of F (x) = 0 satisfy r1 ≤ x1 − x2 < 0 < x1 ≤ r2
according to the proof of Theorem 2.7. Thus, the prey-isocline φ(y) = F (x) of system
(2.7) has no such humps in E4; see Figure 2.7.

Suppose, on the contrary, that system (2.7) has a limit cycle Γ in E4, which
crosses the y-axis at two points A and B.

Consider the function

W (x, y) =

∫ x

0

g(s)ds+

∫ y

0

φ(s)ds.

Then ∮
Γ

dW (x, y) = 0.(2.16)

On the other hand,

∮
Γ

dW (x, y) =

∫
ÂB

dW (x, y) +

∫
B̂A

dW (x, y) =

∫
ÂB

F (x)dy +

∫
B̂A

F (x)dy < 0.

(2.17)

Obviously (2.17) contradicts (2.16). Therefore, the limit cycle Γ does not exist. This
leads to the conclusion of the theorem.

Using a similar argument as in the proof of the Theorem 2.8, we obtain the
following result.
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Fig. 2.8. The phase portrait of system (1.9) when 4aD2 < µ2 < 16
3
aD2 and x2 < K < x3.

Theorem 2.9. If µ2 > 16
3 aD

2 and x1 < K < −x1+2
√

µx1

D , then system (1.9) has
three equilibria: two hyperbolic saddles (0, 0) and (K, 0) and a globally asymptotically
stable equilibrium (x1, y1) in the interior of the first quadrant. The phase portrait is
shown in Figure 2.4.

Theorem 2.10. If 4aD2 < µ2 < 16
3 aD

2 and x2 < K < x3, then system (1.9)
has four equilibria: two hyperbolic saddles (0, 0) and (x2, y2), a hyperbolic stable node
(K, 0), and a stable equilibrium (x1, y1), and system (1.9) has no closed orbits. The
phase portrait is given in Figure 2.8.

Proof. We prove that system (1.9) has no closed orbits. Note that the dynamics
of system (1.9) are equivalent to that of system (2.6). Therefore, we consider only
system (2.6) in the domain E3 = {(x, y) : 0 < x < x2, 0 < y < +∞}.

Taking a Dulac function D(x, y) = x−1ym for system (2.6), after some compu-
tations we can prove that system (2.6) has no closed orbits by the Bendixson–Dulac

theorem since K+
√
K2−3a
3 ≤ µ−

√
µ2−4aD2

2D , where m = 2r
√
K2−3a(K+

√
K2−3a)

3K
√

µ2−4aD2
− 1.

Therefore, the theorem holds.
Theorem 2.11. It is impossible that a limit cycle and a homoclinic loop of system

(1.9) coexist.
Proof. Assume that system (1.9) has both a limit cycle and a homoclinic loop.

Then we have that µ2 > 4aD2 and x2 < K < µ
D by Theorem 2.8. However, when

4aD2 < µ2 ≤ 16
3 aD

2 and x2 < K ≤ x3, system (1.9) has no limit cycles by Theorem
2.10. Therefore, µ2 > 16

3 aD
2 and x3 < K < µ

D . Note that the focus (or node) (x1, y1)
is unstable as µ2 > 16

3 aD
2 and x3 < K < µ

D . Theorem 2.7 thus implies that system
(1.9) has at most one limit cycle, and it is stable if it exists.

On the other hand, if there exists a homoclinic loop, then it is stable by calculating
the quantity of the saddle (x2, y2) (i.e., the sum of the eigenvalues) as µ2 > 16

3 aD
2

and x3 < K < µ
D . This leads to a contradiction. Therefore, a limit cycles and a

homoclinic loop cannot coexist for system (1.9).
Summarizing Theorems 2.7 and 2.11 and the supercritical Hopf bifurcation, we

have the following result.

Theorem 2.12. If 16
3 aD

2 < µ2 < 18+2
√

6
3 aD2 and x3 < K < µ

D , then system
(1.9) has four equilibria: two hyperbolic saddles (0, 0) and (x2, y2), a hyperbolic stable
node (K, 0), and an unstable focus (or node) (x1, y1). Moreover, there exists a constant
ε0 > 0 such that the phase portrait of system (1.9) can be sketched in Figure 2.9 as
18+2

√
6

3 aD2 > µ2 > 16
3 aD

2 and x3 < K < x3 + ε0 <
µ
D (i.e., there exists a unique
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Fig. 2.10. The phase portrait of system (1.9) when µ2 > 4aD2 and K > x4.

limit cycle, which is stable).
According to Theorem 2.8, we obtain the following theorem by calculating the

quantity of the saddle (x2, y2).
Theorem 2.13. If µ2 > 4aD2 and K > x4, then system (1.9) has four equilibria:

two hyperbolic saddles (0, 0) and (x2, y2), a hyperbolic stable node (K, 0), and an
unstable equilibrium (x1, y1). Moreover, system (1.9) has no closed orbits, that is, it
exhibits the so-called paradox of enrichment phenomenon. The phase portrait is given
in Figure 2.10.

Remark 2.14. When 18+2
√

6
3 aD2 ≤ µ2 and K ≤ x3, the dynamics of system (1.9)

in the interior of the first quadrant could be very complicated. There may exist two
or more limit cycles.

Remark 2.15. In section 3, we will show that system (1.9) has a homoclinic loop
when parameters take some suitable values.

Remark 2.16. We summarize and classify the global dynamics of system (1.9) in
the interior of the first quadrant by dividing 4aD2 < µ2 into two cases:

(I) 4aD2 < µ2 ≤ 16
3 aD

2 (see Table 2.1);
(II) 16

3 aD
2 < µ2 (see Table 2.2).

Case (II) can be further classified into three subcases:

(II1)
16
3 aD

2 < µ2 < 18+2
√

6
3 aD2;
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Table 2.1
4aD2 < µ2 ≤ 16

3
aD2.

Range of parameter K Number of interior equilibria and dynamics of (1.9)

x1 < K ≤ x2 one equilibrium: (x1, y1) globally stable focus (or node)
two equilibria: (x1, y1) stable focus (or node); (x2, y2) saddle

x2 < K < x3 no closed orbit (neither limit cycle nor homoclinic loop)
two equilibria: (x1, y1) stable multiple focus with multiplicity 1;

K = x3 (x2, y2) saddle; no closed orbit
two equilibria: (x1, y1) unstable focus; (x2, y2) saddle
supercritical Hopf bifurcation

x3 < K < µ
D

if a limit cycle exists, it is unique and stable
if a homoclinic loop exists, it is stable
a limit cycle and a homoclinic loop cannot coexist
two equilibria: (x1, y1) unstable focus; (x2, y2) saddle

µ
D

≤ K ≤ x4 no limit cycle

two equilibria: (x1, y1) unstable focus; (x2, y2) saddle
x4 < K no closed orbit

Table 2.2
16
3
aD2 < µ2.

Range of parameter K Number of interior equilibria and dynamics of (1.9)

x1 < K < −x1 + 2
√

µx1
D

one equilibrium: (x1, y1) globally stable focus (or node)

one equilibrium: (x1, y1) stable focus (or node)

−x1 + 2
√

µx1
D

≤ K < x3 (II3): subcritical Hopf bifurcation; if there exist limit cycles,

there is at least one which is unstable from inside
one equilibrium (x1, y1)

K = x3 (II1): stable multiple focus with multiplicity 1
(II2): multiple focus with multiplicity at least 2
(II3): unstable multiple focus with multiplicity 1
(II1): one equilibrium (x1, y1), unstable focus (or node)

x3 < K ≤ x2 supercritical Hopf bifurcation
a unique limit cycle exists and is stable

(II2,3): one equilibrium: (x1, y1) unstable focus (or node)
there exists a stable unique limit cycle

two equilibria: (x1, y1) unstable focus; (x2, y2) saddle
x2 < K < µ

D
if a limit cycle exists, it is unique and stable
if a homoclinic loop exists, it is stable
a limit cycle and a homoclinic loop cannot coexist
two equilibria: (x1, y1) unstable focus; (x2, y2) saddle

µ
D

≤ K ≤ x4 no limit cycle

two equilibria: (x1, y1) unstable focus; (x2, y2) saddle
x4 < K no closed orbit

(II2) µ
2 = 18+2

√
6

3 aD2;

(II3)
18+2

√
6

3 aD2 < µ2.
In each case, the number of interior equilibria and the dynamics vary as K, the
carrying capacity, takes different values.

3. Bifurcations of the degenerate singular point. From the analysis in
section 2, we know that when µ = KD and µ2−4aD2 = 0, system (1.9) has an interior
equilibrium (x0, y0) which is a cusp. In this section, we are interested in the bifurcation
of the cusp as the parameters vary in a small neighborhood of (µ0,K0, a0, D0), where
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µ0,K0, a0, and D0 satisfy the equations

µ−KD = 0,(3.1)

µ2 − 4aD2 = 0.(3.2)

By bifurcation analysis we show that system (1.9) has a homoclinic loop for some
parameters values. Now we consider the system

ẋ = rx

(
1− x

K0

)
− xy

a0 + x2
,

ẏ = y

(
µ0x

a0 + x2
−D0

)
.

(3.3)

First of all, we translate the interior equilibrium (x0, y0) to the origin and expand
system (3.3) in a power series around the origin. Let X = x− x0, Y = y − y0. Then
system (3.3) can be rewritten as

Ẋ =− x0

a0 + x2
0

Y +

(
x0y0

(a0 + x2
0)

2
− r

K0

)
X2 + P1(X,Y ),

Ẏ =− µ0x0y0
(a0 + x2

0)
2
X2 +Q1(X,Y ),

(3.4)

where x0 =
µ0

2D0
, y0 = r(1− x0

K0
)(a0+x

2
0), and P1 and Q1 are C

∞ functions in (X,Y )
at least of the third order. Next, we study the normal form of the system (3.4) in the
two-dimensional center manifold. Making the affine transformation

x = X, y = − x0

a0 + x2
0

Y,

we can rewrite system (3.4) as follows:

ẋ = y +

(
x0y0

(a0 + x2
0)

2
− r

K0

)
x2 + P̃1(x, y),

ẏ =
µ0x

2
0y0

(a0 + x2
0)

3
x2 + Q̃1(x, y).

(3.5)

In order to find the canonical normal form of the cusp, we take

X = x, Y = y +

(
x0y0

(a0 + x2
0)

2
− r

K0

)
x2 + P̃1(x, y).

Then system (3.5) becomes

Ẋ = Y,

Ẏ =
µ0x

2
0y0

(a0 + x2
0)

3
X2 + 2

(
x0y0

(a0 + x2
0)

2
− r

K0

)
XY +R(X,Y ),

(3.6)

where R is a C∞ function in (X,Y ) at least of the third order. Since

2x0y0
(a0 + x2

0)
2
− 2r

K0
= −D0

µ0
r < 0,

µ0x
2
0y0

(a0 + x2
0)

3
=
rµ0

8a0
> 0,
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we have the following theorem.
Theorem 3.1. The interior equilibrium (x0, y0) of system (3.3) is a cusp of

codimension 2.
The above theorem indicates that system (3.3) could exhibit the Bogdanov–

Takens bifurcation under a small parameter perturbation if the bifurcation parameters
are chosen suitably. In the following, we will see what parameters can be chosen as
bifurcation parameters. For convenience, we denote

(µ0,K0, a0, D0) = (λ0
1, λ

0
2, λ

0
3, λ

0
4) = λ

0, (µ,K, a,D) = (λ1, λ2, λ3, λ4) = λ.

Then system (1.9) in a small neighborhood of (x0, y0) can be rewritten as

ẋ = y +W1(x, y, λ, r),

ẏ =
rµ0

8a0
x2 − D0

µ0
rxy +W2(x, y, λ, r),

(3.7)

where W1,W2 ∈ C∞(R2 × R5, R), W1(x, y, λ0, r) = 0, W2(x, y, λ0, r) = R(x, y), x
and y belong to a small neighborhood of (0, 0), and λ is in a small neighborhood of
λ0.

Lemma 3.2. System (3.7) is C∞ equivalent to

ẋ = y,

ẏ = φ(λ, r) + ψ(λ, r)x+ x2 +

(
−6D0

√
a0r

µ0
+ α(λ, r)

)
xy + R̃(x, y, λ, r),

(3.8)

where φ, ψ, and α are smooth functions, φ(λ0, r) = ψ(λ0, r) = 0, α(λ0, r) = 0, R̃ is a
C∞ function in (x, y) at least of the third order.

Proof. Making the parameter-dependent nonsingular change of variables

X = x, Y = y +W1(x, y, λ, r),

then system (3.7) can be written as

Ẋ = Y,

Ẏ = P (X,λ, r) + Y F (X,λ, r) + Y 2G(X,Y, λ, r),
(3.9)

where P, F,G ∈ C∞ and

P (0, λ0, r) =
∂P (0,λ0,r)

∂X = 0, ∂2P (0,λ0,r)
∂X2 = rµ0

8a0
> 0,

F (0, λ0, r) = 0, ∂F (0,λ0,r)
∂X = −D0

µ0
r < 0, G(0, 0, λ0, r) = 0.

Applying the Malgrange preparation theorem (see [7]) to the function P (X,λ, r), we
have

P (X,λ, r) = [φ(λ, r) + ψ(λ, r)X +X2]B(X,λ, r),

where φ, ψ and B ∈ C∞, B(0, λ0, r) = rµ0

8a0
�= 0, φ(λ0, r) = ψ(λ0, r) = 0. Thus,

system (3.9) can be rewritten as

Ẋ = Y,

Ẏ =

[
φ(λ, r) + ψ(λ, r)X +X2 +

Y F (X,λ, r)

B(X,λ, r)
+
Y 2G(X,Y, λ, r)

B(X,λ, r)

]
B(X,λ, r).

(3.10)
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Let

x = X, y =
Y√

B(X,λ, r)
, τ =

∫ t

0

√
B(X(s), λ, r)ds.

Then system (3.10) becomes

ẋ = y,

ẏ = φ(λ, r) + ψ(λ, r)x+ x2 +
yF (x, λ, r)√
B(x, λ, r)

+ y2G̃(x, y, λ, r),
(3.11)

where ẋ = dx
dτ and ẏ = dy

dτ . Expanding the function
F (x,λ,r)√
B(x,λ,r)

in a power series around

x = 0, we have

F (x, λ, r)√
B(x, λ, r)

=

(
−
√

2r

µ0
+ α(λ, r)

)
x+ F̃ (x, λ, r),(3.12)

where α(λ0, r) = 0, and F̃ is a C∞ function in x at least of the second order. Denote

R̃(x, y, λ, r) = yF̃ (x, λ, r) + y2G̃(x, y, λ, r).

Then system (3.11) is transformed into system (3.8).
Theorem 3.3. If the rank of the matrix

N =


 ∂φ1(λ,r)

∂r
∂φ1(λ,r)

∂λ1

∂φ1(λ,r)
∂λ2

∂φ1(λ,r)
∂λ3

∂φ1(λ,r)
∂λ4

∂φ2(λ,r)
∂r

∂φ2(λ,r)
∂λ1

∂φ2(λ,r)
∂λ2

∂φ2(λ,r)
∂λ3

∂φ2(λ,r)
∂λ4




(λ0,r)

is 2, then we can choose bifurcation parameters such that system (3.7) exhibits the
Bogdanov–Takens bifurcation.

Proof. Since the rank of the matrix N is 2, we can choose two parameters, either
(λi, λj) or (r, λi), in (λ, r) such that the determinant of either the matrix

N1 =


 ∂φ1(λ,r)

∂λi

∂φ1(λ,r)
∂λj

∂φ2(λ,r)
∂λi

∂φ2(λ,r)
∂λj




(λ0,r)

or the matrix

N2 =


 ∂φ1(λ,r)

∂r
∂φ1(λ,r)

∂λj

∂φ2(λ,r)
∂r

∂φ2(λ,r)
∂λj




(λ0,r)

is not zero. Without loss of generality, assume that the determinant of N1 is not zero.
Then we choose the parameters λi and λj as bifurcation parameters. Let

µ = φ1(λ, r), ν = φ2(λ, r), η1 = r, η2 = λk, η3 = λl, l, k �= i, j.
Obviously, the above parameters transformation is not singular. Hence, system (3.8)
can be written as

ẋ = y,

ẏ = µ+ νx+ x2 −
√

2r

µ0
xy + ˜̃R(x, y, µ, ν, η1, η2, η3),

(3.13)
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where ˜̃R is a C∞ function in (x, y) at least of the second order and the coefficient
of the second order is zero if (µ, ν, η1, η2, η3) = (φ1(λ0, r), φ2(λ0, r), r, λ

0
k, λ

0
l ). By the

theorems in [4], [5], and [33], we know that the universal unfoldings (or versal defor-
mation) of system (3.13) is

ẋ = y,

ẏ = µ+ νx+ x2 −
√

2r

µ0
xy.

(3.14)

Therefore, system (3.13) exhibits the Bogdanov–Takens bifurcation.
Remark 3.4. When the rank of the matrix N equals 2, we say that system (3.7)

has the generic property, i.e., system (3.7) is a generic family.
Remark 3.5. From the above analysis, we can see that the parameter r cannot

be taken as a bifurcation parameter. In fact, det(N2) = 0.
Theorem 3.6. If system (3.7) is a generic family, then there exists a unique

smooth surface HL corresponding to the homoclinic bifurcation and a unique smooth
surface H corresponding to the Hopf bifurcation such that system (3.7) has a unique
and hyperbolic stable cycle for parameter values inside the region bounded by H and
HL and no cycles outside this region.

The theorem can be proved directly from the results in [4], [5], and [33] by the
linear transformation of coordinates (x, y, t, µ, ν) → (x,−y,−t, µ, ν). In the above
analysis, we chose two parameters as bifurcation parameters so that the predator-prey
system with group defense exhibits the Bogdanov–Takens bifurcation. By Theorem
3.1, the system cannot have bifurcations with codimension greater than 2. Therefore,
the existence of a semistable periodic orbit as well as the coexistence of a limit cycle
and a homoclinic loop cannot occur for the generic system (3.7). However, if the
functional response function p(x) = x

a+bx+x2 , where a and b are positive constants,
then these phenomena can occur if we choose three suitable bifurcation parameters,
that is, there are bifurcations of codimension 3. See also Rothe and Shafer [30].

Finally, we choose K and D as bifurcation parameters and make a bifurcation
analysis of system (1.9) depending on these two parameters. We will show that system
(1.9) has a homoclinic loop and sketch the bifurcation diagram and the corresponding
phase portraits. Consider

ẋ = rx

(
1− x

K0 + λ1

)
− xy

a0 + x2
,

ẏ = y

(
µ0x

a0 + x2
−D0 − λ2

)
,

(3.15)

where the constants µ0,K0, a0, and D0 are described in section 3, r is a positive
constant, and λ1 and λ2 are parameters in a small neighborhood of (0, 0). We are
interested only in the phase portraits of system (3.15) when x and y are in a small
neighborhood of the interior equilibrium (x0, y0) = ( µ0

2D0
, ra0). We translate (x0, y0)

to the origin and expand system (3.15) in a power series around the origin. Let

x = x− x0, y = y − y0.
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Then we have

ẋ =
r

4
λ1 + b1(λ1) +

[
x0r

2a0
λ1 + b2(λ1)

]
x− x0

2a0
y

+

[
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
x2 +B(x, y, λ1),

ẏ =− y0λ2 − λ2y +
µ0x

3
0y0 − 3µ0a0x0y0
(a0 + x2

0)
3

x2 + C(x, y, λ2),

(3.16)

where bi(λ1) (i = 1, 2, 3) are smooth functions at least of the second order, B and
C are C∞ functions at least of the third order with respect to (x, y), and the coeffi-
cients depend smoothly on λ1 and λ2, respectively. Hereafter, we assume that these
transformations have been made and drop the overbars. System (3.16) can be written
as

ẋ =
r

4
λ1 + b1(λ1) +

(
x0r

2a0
λ1 + b2(λ1)

)
x− x0

2a0
y

+

[
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
x2 +B(x, y, λ1),

ẏ =− y0λ2 − λ2y − µ0x0y0
(a0 + x2

0)
2
x2 + C(x, y, λ2).

(3.17)

Making the parameter-dependent affine transformation

X = x, Y =

[
x0r

2a0
λ1 + b2(λ1)

]
x− x0

2a0
y,

we can see that system (3.17) becomes

Ẋ =
r

4
λ1 + b1(λ1) + Y + 2

[
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
X2 + B̃(X,Y, λ1),

Ẏ =
x0y0
2a0

λ2 +
(r
4
λ1 + b1(λ1)

)(
x0r

2a0
λ1 + b2(λ1)

)

+

(
x0r

2a0
λ1 − λ2 + b2(λ1)

)
Y + λ2

(
x0r

2a0
λ1 + b2(λ1)

)
X

+

[
µ0x

2
0y0

2a0(a0 + x2
0)

2
+ 2

(
x0r

2a0
λ1 + b2(λ1)

)(
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

)]
X2

+ C̃(X,Y, λ1, λ2)

=
x0y0
2a0

λ2 + c1(λ1) +

(
x0r

2a0
λ1 − λ2 + b2(λ1)

)
Y + c2(λ1, λ2)X

+

[
µ0x

2
0y0

2a0(a0 + x2
0)

2
+ c3(λ1)

]
X2 + C̃(X,Y, λ1, λ2),

(3.18)

where B̃ and C̃ are C∞ functions in variables (X,Y ) at least of the third order, the
coefficients depend smoothly on λ1 and λ2, and c1, c2, and c3 are smooth functions
of their variables. Let

x = X,

y =
r

4
λ1 + b1(λ1) + Y + 2

[
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
X2 + B̃(X,Y, λ1).
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Then system (3.18) can be written as

ẋ = y,

ẏ =
x0y0
2a0

λ2 + c̃1(λ1, λ2) +

(
x0r

2a0
λ1 − λ2 + b2(λ1)

)
y + c̃2(λ1, λ2)x

+

[
µ0x

2
0y0

2a0(a0 + x2
0)

2
+ c̃3(λ1, λ2)

]
x2 + 2

[
x0y0
4a2

0

− r

K0
+

r

4a0
λ1 + b3(λ1)

]
xy

+ R̃(x, y, λ1, λ2)

=
x0y0
2a0

λ2 + c̃1(λ1, λ2) +

(
x0r

2a0
λ1 − λ2 + b2(λ1)

)
y + c̃2(λ1, λ2)x

+

[
µ0r

8a0
+ c̃3(λ1, λ2)

]
x2 −

[
r

2x0
− r

4a0
λ1 − b3(λ1)

]
xy + R̃(x, y, λ1, λ2),

(3.19)

where c̃i (i = 1, 2, 3) are smooth functions of (λ1, λ2), R̃ is a C∞ function in variables
(λ1, λ2) and at least of the third order with respect to (x, y), and the coefficients
depend smoothly on λ1 and λ2. Rewriting system (3.19) as the form in system (3.9)
and using the method in the proof of Lemma 3.1, we obtain

ẋ = y,

ẏ =
4a0x0

µ0
λ2 + φ1(λ1, λ2) + φ2(λ1, λ2)x+


 x0r

2a0
λ1 − λ2√

µ0r
8a0

+ φ3(λ1, λ2)


 y

+ x2 −

 r

2x0√
µ0r
8a0

+ φ4(λ1, λ2)


xy +R(x, y, λ1, λ2),

(3.20)

where φ1, φ2, and φ3 are smooth functions in variables (λ1, λ2) at least of the second
order with respect to λ1 and λ2, φ4 is a smooth function of λ1 and λ2 at least of
the first order, R is a C∞ function in variables (x, y) at least of the third order
with respect to (x, y), and the coefficients depend smoothly on λ1 and λ2. Let X =
x− 1

2φ2(λ1, λ2), Y = y, and denote

γ1 =
4a0x0

µ0
λ2 + φ̃1(λ1, λ2), γ2 =

x0r
2a0
λ1 − λ2√

µ0r
8a0

+ φ̃3(λ1, λ2), γ3 =
r

2x0√
µ0r
8a0

+ φ̃4(λ1, λ2),

where φ̃1, φ̃3, and φ̃4 have the same properties as φ1, φ3, and φ4. Obviously, the above
local parameter representation change is nonsingular. Now system (3.20) becomes

Ẋ = Y,

Ẏ = γ1 + γ2Y +X2 − γ3XY +Q(x, y, λ1, λ2),
(3.21)

where Q has the same properties as R.
By the theorems in [4] and [5], we obtain the following local representations of

the bifurcation curves:
1. The saddle-node bifurcation curve SN = {(γ1, γ2) : γ1 = 0}.
2. The Hopf bifurcation curve H = {(γ1, γ2) : γ2 = − r

2x0

√
−γ1 µ0r

8a0
, γ1 < 0}.
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Fig. 3.1. The bifurcation set and the corresponding phase portraits of system (3.15). EK =
(K0 + λ1, 0).

3. The homoclinic bifurcation curveHL = {(γ1, γ2) : γ2 = − 5r
14x0

√
−γ1 µ0r

8a0
, γ1 <

0}.
We sketch these bifurcation curves in a small neighborhood of the origin in the

(λ1, λ2) plane by their first approximations and obtain the bifurcation diagram (see
Figure 3.1). The bifurcation curves divide the parameter plane into four parts: I, II,
III, and IV.

(a) When the parameter values are zero, system (3.15) has a unique degenerate
interior equilibrium, a cusp of codimension 2.

(b) When the parameter values are in the region I, system (3.15) has no interior
equilibria and every solution tends to the equilibrium (K0 + λ1, 0). Hence,
the predator will go extinct.

(c) When the parameter values lie on the saddle-node bifurcation curve SN,
system (3.15) has a unique degenerate interior equilibrium, a saddle node.
The phase portraits can be sketched into two cases: λ1 > 0 and λ1 < 0.

(d) When the parameter values are in the region II, system (3.15) has two interior
equilibria: one is a stable focus and the other is a hyperbolic saddle. There
exists an open set of initial population densities such that both predator and
prey approach to a stable steady state.

(e) When the parameter values lie on the Hopf bifurcation curve H, system (3.15)
has two interior equilibria: one is a stable weak focus, the other is a hyperbolic
saddle; and there is no periodic orbit.

(f) When the parameter values are in the region III, system (3.15) has two interior
equilibria and a unique stable limit cycle. Thus there exists an open set of
initial population densities such that both the predator and the prey tend to
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a stable oscillation.
(g) When the parameter values lie on the homoclinic bifurcation curve HL, sys-

tem (3.15) has a stable homoclinic loop.
(h) When the parameter values are in the region IV, system (3.15) has two interior

equilibria and no periodic orbits. From the corresponding phase portrait we
can see that there exist only two initial population densities such that the
predator and prey can coexist.

We have obtained all possible phase portraits for system (3.15) when the param-
eter values vary in a small neighborhood of the origin in the (λ1, λ2) plane.

4. Discussion. Codimension 2 bifurcations of some standard predator-prey sys-
tems have been observed and studied in Bazykin et al. [3], Hainzl [17, 18], Xiao and
Ruan [38], etc. In this paper, we have considered a predator-prey system with non-
monotonic functional response. We made a global qualitative analysis of the model
depending on all parameters and showed that the system exhibits the Bogdanov–
Takens bifurcation. By choosing the carrying capacity of the prey and the death rate
of the predator as bifurcation parameters, it has been shown that the system under-
goes a series of bifurcations including the saddle-node bifurcation, the supercritical
and subcritical Hopf bifurcations, and the homoclinic bifurcation. Though our model
is a specific case of the general model studied in Freedman and Wolkowicz [14], Mis-
chaikow and Wolkowicz [28], and Wolkowicz [36], our analysis supports their results
and also complements their results in the sense that we have not only found new types
of bifurcations but also provided a detailed and global qualitative analysis for the spe-
cific case. Moreover, our analysis indicates that the dynamics of the predator-prey
systems with nonmonotonic functional response can be much more complicated than
we may have expected. In fact, we considered only the system with the simplified
Monod–Haldane or Holling type-IV function

p(x) =
mx

a+ x2
.

If it takes the form of the original Monod–Haldane or Holling type-IV function, i.e.,

p(x) =
mx

a+ bx+ x2
,

then the system can have bifurcations of codimension 3 as observed in Rothe and
Shafer [30]. Differing from codimension 2 bifurcations of vector fields, the prob-
lem of codimension 3 bifurcations of vector fields itself is incomplete (see Dumortier,
Roussarie, and Satomayor [11] and Xiao [37]). Thus, the multiparameter bifurcation
problem in predator-prey systems with nonmonotonic functional response is very in-
teresting and challenging. We leave the codimension 3 bifurcation problem for future
consideration.
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