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Abstract. We consider a family of partial functional differential equations which has a homoclinic

orbit asymptotic to an isolated equilibrium point at a critical value of the parameter. Under some

technical assumptions, we show that a unique stable periodic orbit bifurcates from the homoclinic

orbit. Our approach follows the ideas of Šil’nikov for ordinary differential equations and of Chow

and Deng for semilinear parabolic equations and retarded functional differential equations.

1. Introduction. For an ordinary differential equation

ẋ = g(x, ε), (1.1)

where x ∈ Rn, ε ∈ R is a parameter and g is a smooth function, it is known that if
x = 0 is a hyperbolic equilibrium for ε = 0 and the Jacobian matrix Dxf(0, 0) = A
has a unique eigenvalue λ > 0 which is simple and the real parts of all other
eigenvalues are strictly less than −λ, then under certain additional transversality
conditions, a unique stable periodic orbit bifurcates from the homoclinic orbit as
the parameter ε changes. See, for example, Andronov et al. [AL73], Chow and
Hale [CH86] and Kuznetsov [Ku95]. One of the approaches to the above bifurcation
problem, originated in the work of Neimark and Šil’nikov [NS65] and Šil’nikov [Si68]
for ordinary differential equations in Rn with n ≥ 3, is to reduce the bifurcation
problem to a problem of the continuation of fixed points for a one-parameter map
in a small neighborhood of the hyperbolic equilibrium. This map resembles the
well-known Poincaré map but the points on the stable manifold do not return. In
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what follows we shall call this map the Šil’nikov map and we refer to Kuznetsov
[Ku95] for a detailed description of Sil’nikov’s results and techniques.

The above result has been generalized to other kinds of equations, while sev-
eral other methods have also been developed. These include the work of Blázquez
[Bl86] for semilinear parabolic equations, and of Walther [Wa90] for retarded func-
tional differential equations. We should particularly mention the work of Chow and
Deng [CD89] for some infinite dimensional dynamical systems including semilin-
ear parabolic differential equations and retarded functional differential equations,
where they obtained some subtle estimates related to linear variational equations
along semiorbits of the nonlinear equations and established the smoothness and the
existence of a fixed point of the Šil’nikov map.

In this paper, we consider the following one-parameter family of partial functional
differential equations:

u̇(t) = Au(t) + L(ut) + g(ut, ε), (1.2)

where A is the generator of an analytic semigroup, L is a linear operator and g is a
smooth nonlinear functional. g depends on not only the current but also the historic
status of u. More specific descriptions will be given in next section. This kind of
equations is motivated by reaction-diffusion equations where the reaction terms may
involve time delay and have been studied by many researchers, see, for example,
Faria [Fa99, Fa01], Faria et al. [FHW02], Hale [Ha86], Hale and Ladeira [HL93],
He [He90], Martin and Smith [MS90], Memory [Me91], Travis and Webb [TW74,
TW78], etc. For an introduction of the fundamental theory of such equations and
some related references, we refer to the monograph by Wu [Wu96].

The purpose of this paper is to generalize Šil’nikov’s theorem and Chow and
Deng’s techniques to the above partial functional differential equations. In section
2, we introduce the notations and present the main results. The differentiability of
solutions of equation (1.2) with respect to the initial values and parameters and the
smoothness of the stable and unstable manifolds are proved in section 3. The local
analysis of equation (1.2) near the equilibrium is given in section 4. In section 5,
we construct the Šil’nilov map and discuss some of its properties. The proof of the
main theorem is presented in section 6.

2. The Main Results. Let X denote a Banach space over R = (−∞,∞) and
B(X,X) the Banach space of bounded linear operators from X to X equipped with
the operator norm. Let r > 0 be a given constant and C = C([−r, 0];X) the Banach
space of continuous X-valued functions on [−r, 0] with the supremum norm | · |. For
any real numbers a ≤ b, t ∈ [a, b] and any continuous mapping u : [a − r, b] → X,
ut denotes the element of C given by ut(θ) = u(t + θ) for θ ∈ [−r, 0].

Consider the following family of partial functional differential equations

u̇(t) = Au(t) + L(ut) + g(ut, ε), (2.1)

where ε ∈ (−ε0, ε0) is a parameter, ε0 is a given positive constant, A,L and g satisfy
the following assumptions:

(H1) A is the infinitesimal generator of an analytic compact semigroup {S(t)}t≥0

on X.
(H2) L : C → X is given by

Lφ =
∫ 0

−r

dη(θ)φ(θ), φ ∈ C
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for a function η : [−r, 0] → B(X,X) of bounded variation.
(H3) g ∈ C3(C × (−ε0, ε0);X) and g(0, ε) = 0, Dφg(0, ε) = 0 for ε ∈ (−ε0, ε0).
The associated linear equation is given by

u̇(t) = Au(t) + L(ut). (2.2)

For each complex number λ, define the linear operator ∆(λ) : Dom(A) → X by

∆(λ)u = Au − λu + L(eλ·u), u ∈ Dom(A),

where eλ·u ∈ C is defined by

(eλ·u)(θ) = eλθu, θ ∈ [−r, 0].

λ is called a characteristic value of equation (2.2) if there exists u ∈ Dom(A) \ {0}
solving the characteristic equation

∆(λ)u = 0.

A characteristic value λ is simple if dim(Ker(∆(λ))n) = 1 for all positive integer n.
We further assume that

(H4) Equation (2.2) has a unique positive characteristic value λ > 0 which is
simple and the real parts of all other characteristic values of (2.2) are smaller than
−λ.

It is known that for each φ ∈ C, the initial value problem

u(t) = S(t)φ(0) +
∫ t

0

S(t − α)L(uα)dα, t ≥ 0,

u0 = φ

has a unique solution defined for t ≥ −r. Denote this solution by

T (t)φ = ut(φ),

then {T (t)}t≥0 is a strongly continuous semigroup of bounded linear operators on
C with the generator denoted by AT . Also, for each φ ∈ C and ε ∈ (−ε0, ε0), there
exists τ(φ, ε) > 0 and a unique continuous map u = u(φ, ε) : [−r, τ(φ, ε)) → X such
that

u(φ, ε)(t) = S(t)φ(0) +
∫ t

0

S(t − α)[L(uα(φ, ε)) + g(uα(φ, ε), ε)]dα

for t ∈ [0, τ(φ, ε)). Using the mapping X0 : [−r, 0] → B(X,X) defined by

X0(θ) =
{

0, −r ≤ θ < 0,
I, θ = 0,

we have the following variation of constants formula (see He [He90], Memory [Me91]
and Wu [Wu96])

u(t) = T (t)φ +
∫ t

0

T (t − α)X0g(uα, ε)dα,

u0 = φ

(2.3)
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for u(φ, ε) on [0, τ(φ, ε)). By assumption (H4), C can be decomposed as C = Cs⊕Cu,
where Cu is the one-dimensional eigenspace of AT associated with {λ} and Cs is the
generalized eigenspace associated with the remaining spectrum. Let φλ = φλ(0)eλ·

be the eigenvector of A0 associated with λ and φ∗
λ be the eigenvector corresponding

to {λ} of the formal adjoint operator associated with the bilinear pairing (see Travis
and Webb [Tw74])

〈ψ, φ〉 = ψ(0)φ(0) −
∫ 0

−r

∫ θ

0

ψ(ξ − θ)[dη(θ)]φ(ξ)dξ,

where ψ ∈ C∗ = C([0, r];X∗), X∗ is the dual space of X and φ ∈ C. Then

Cu = {φ;φ ∈ C, φ = aφλ for some a ∈ R},
Cs = {φ;φ ∈ C, 〈φ∗

λ, φ〉 = 0}.

For every φs + φu ∈ Cs ⊕ Cu, we have

φu = 〈φ∗
λ, φ〉φλ, φs = φ − φu.

Note that for φ ∈ C,

T (t)φ(θ) =
{

φ(t + θ), −r ≤ t + θ ≤ 0,

T (t + θ)φ(0), t + θ ≥ 0
(2.4)

and for φu ∈ Cu,
T (t)φu = φueλt, t ∈ R,

φu(θ) = φu(0)eλθ, θ ∈ [−r, 0].
(2.5)

Let P s and Pu be the projections of C onto Cs and Cu, respectively, i.e. Cs =
P sC, Cu = PuC. It is shown that P s and Pu can be applied to the elements X0w
with w ∈ X. Define Xs

0 and Xu
0 by

Xu
0 w = PuX0w, Xs

0w = P sX0w, w ∈ X. (2.6)

Note that if w ∈ X, then T (t)Xu
0 w ∈ Cu for all t ∈ R and T (t)Xs

0w ∈ Cs for t ≥ r.
Moreover, there exist constants K1 and µ > λ > 0 such that

|T (t)φs| ≤ K1e
−µt|φs|, t ≥ 0, φs ∈ Cs; |T (t)Xs

0 | ≤ K1e
−µt, t ≥ 0.

|T (t)φu| ≤ K1e
µ|t||φu|, t ≤ 0, φu ∈ Cu; |T (t)Xu

0 | ≤ K1e
µ|t|, t ≤ 0.

(2.7)

Decompose ut(φ, ε) as
ut(φ, ε) = us

t (φ, ε) + uu
t (φ, ε)

with us
t (φ, ε) ∈ Cs and uu

t (φ, ε) ∈ Cu. Then we have the following variation of
constants formula (see He [He90], Memory [Me91] or Wu [Wu96]):

us
t (φ, ε) = T (t)φs +

∫ t

0

T (t − α)Xs
0g(uα(φ, ε), ε)dα,

uu
t (φ, ε) = eλtφu +

∫ t

0

eλ(t−α)Xu
0 g(uα(φ, ε), ε)dα

(2.8)
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for t ∈ [0, τ(φ, ε)).
Since g is C3−smooth, by the differentiability of the solution with respect to

initial values and parameters (see Theorem 3.1 in section 3), ut(φ, ε) is C3−smooth
in (φ, ε) for all t ≥ 0 in the maximal interval of existence. Set

vs
t (φ, ε) = Dφus

t (φ, ε), vu
t (φ, ε) = Dφuu

t (φ, ε). (2.9)

We have

vs
t (φ, ε) = T (t)P s +

∫ t

0

T (t − α)Xs
0Dφg(uα(φ, ε), ε)vα(φ, ε)dα,

vu
t (φ, ε) = T (t)Pu +

∫ t

0

T (t − α)Xu
0 Dφg(uα(φ, ε), ε)vα(φ, ε)dα

(2.10)

with T (t)Puφ = eλtφu, φ ∈ C, t ∈ R. By assumptions (H3) and (H4) there exist
δ1 > 0 and ε1 ∈ (0, ε0) such that the local stable and unstable manifolds W s

loc(ε)
and Wu

loc(ε) exist and are subsets of B(δ1) for ε ∈ [−ε1, ε1], where B(δ1) = {φ ∈
C; |φs| < δ1, |φu| < δ1} and W s

loc(ε) and Wu
loc(ε) are given by

W s
loc(ε) = {φ = φs + φu;φu = hs(φs, ε), |φs| < δ1},

Wu
loc(ε) = {φ = φs + φu;φs = hu(φu, ε), |φu| < δ1}, (2.11)

where hs and hu are C3−smooth (see Theorem 3.2 in section 3) and hu is defined
by

hu(φu, ε) =
∫ 0

−∞
T (−α)Xs

0g(u∗
α(φu, ε), ε)dα, |φu| < δ1, ε ∈ [−ε1, ε1] (2.12)

(see Memory [Me91]), and u∗
t (φ

u, ε) is the unique bounded solution of (2.1) on
(−∞, 0] with

|u∗
t (φ

u, ε)| ≤ K2e
µt|φu|, t ≤ 0 (2.13)

for some positive constant K2 independent of (φu, ε).
In order to state the main theorem, we need one additional assumption:
(H5) When ε = 0, equation (2.1) has a homoclinic orbit Γ0 asymptotic to the

equilibrium 0.
For a fixed ε ∈ (−ε0, ε0), let Wu

+(ε) be the orbit of equation (2.1) through a given
φ0 ∈ Wu

loc(ε) with 〈φ∗
λ, φu

0 − hs(φs
0, ε)〉 > 0. Without loss of generality, we assume

that the homoclinic orbit Γ0 = Wu
+(0). Here, a homoclinic orbit Γ0 asymptotic to

0 is a continuous mapping u : R → X satisfying

u(t) = S(t − s)u(s) +
∫ t

s

S(t − α)[L(uα) + g(uα, 0)]dα

for t, s ∈ R with t ≥ s, and limt→±∞ u(t) = 0. Now we can state our main theorem
on homoclinic bifurcation of (2.1), which is a generalization of the results of Šil’nikov
[Si68] and Chow and Deng [CD89] to abstract semilinear functional differential
equations.

Theorem 2.1. Suppose (H1) – (H5) hold. Then there exist a neighborhood N (Γ0)
of Γ0 ∪ {0} in C and ε̄0 ∈ (0, ε0) such that Wu

+(ε) ∩ W s
loc(ε) = ∅ if and only if there

exists a periodic orbit in N (Γ0) for given ε ∈ [−ε̄0, ε̄0]. Furthermore, for the given
ε ∈ [−ε̄0, ε̄0] this periodic orbit is unique and exponentially asymptotically stable.
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Corollary 2.2. Under the same assumptions of Theorem 2.1, there exists a neigh-
borhood N (Γ0) of Γ0 ∪ {0} in C and 0 < ε̄0 < ε0 such that if there is a homoclinic
orbit in N (Γ0) for equation (2.1) at ε with |ε| ≤ ε̄0, then there exist no periodic
orbits of equation (2.1) lying entirely in N (Γ0) at ε.

3. Preliminaries. In this section, we prove the differentiability of solutions of
equation (2.1) with respect to initial values and parameters and the smoothness of
the stable and unstable manifolds.
3.1. Differentiability with Respect to Initial Values and Parameters. Let
V be a neighborhood of 0 in C, (a, b) be an open interval in R and F ∈ Ck(V ×
(a, b);X). Consider

u(t) = T (t)φ(0) +
∫ t

0

T (t − s)F (us, α)ds,

u0 = φ.

(3.1)

Theorem 3.1. The solution u(φ, α) is Ck−smooth with respect to (φ, α) for t in
any compact set of of the domain of definition of u(φ, α). Moreover, for each ψ ∈
C, Dφu(φ, α)ψ(t) satisfies the linear variational equation

v(t) = T (t)ψ(0) +
∫ t

0

T (t − s)DφF (us(φ, α), α)vsds,

v0 = ψ.

(3.2)

In the proof, we shall use Lemma 4.2 and the argument for Theorem 4.1 in Hale
and Verduyn Lunel [HV93].

Proof. Fix ξ ∈ V and α0 ∈ (a, b). There exist constants M > 0, δ > 0 and N > 0
such that



|T (t) ≤ M for 0 ≤ t ≤ 1,

Bδ(ξ) ⊆ V with Bδ(ξ) = {ψ ∈ C; ‖ψ − ξ‖ < δ},
[α0 − δ, α0 + δ] ⊆ (a, b),

|F (ψ, α)| ≤ N, |DφF (ψ, α)| ≤ N for (ψ, α) ∈ Bδ(ξ) × [α0 − δ, α0 + δ].

Now choose η ∈ (0, 1) and ν ∈ (0, 1) so that




ν <
δ

2
, η <

ν

MN
,

sup
θ,θ′∈[−r,0]
|θ′−θ|≤η

|ξ(θ′) − ξ(θ)| <
δ

8
,

sup
t∈[0,η]

‖T (t)ξ(0) − ξ(0)‖ <
δ

4
.

Let
K(η, ν) = {w ∈ C([−r, η];X);w0 = 0, ‖wt‖ ≤ ν for t ∈ [0, η)}.

Clearly K(η, ν) is a closed subset of the Banach space

C0([−r, η]) = {φ ∈ C([−r, η];X); φ(θ) = 0 for θ ∈ [−r, 0]}
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equipped with the super-norm.
For each φ ∈ C, define φ̃ : [−r,∞) → X by φ̃0 = φ and φ̃(t) = T (t)φ(0) for t ≥ 0.

Now for fixed φ ∈ B δ
4(1+M)

(ξ) and α ∈ (α0 − δ, α0 + δ), define A(φ, α) on K(η, ν) by

A(φ, α)w(t) =
{ ∫ t

0
T (t − s)F (ws + φ̃s, α)ds, w ∈ K(η, ν), t ∈ [0, η],

0 t ∈ [−r, 0].

It follows that A(φ, α)w ∈ C([−r, η];X). Moreover, since for s ∈ [0, η], ‖ws‖ ≤ ν
and

‖φ̃s − ξ‖ ≤‖φ̃s − ξ̃s‖ + ‖ξ̃s − ξ‖
≤‖φ − ξ‖ + sup

s∈[0,η]

‖T (s)‖|φ(0) − ξ(0)| + sup
θ∈[−r,0]
s∈[0,η]

s+θ∈[−r,0]

‖ξ(s + θ) − ξ(θ)‖

+ sup
θ∈[−r,0]
s∈[0,η]
s+θ≥0

‖T (s + θ)ξ(0) − ξ(0)‖ + sup
θ∈[−r,0]
s∈[0,η]
s+θ≤0

‖ξ(θ) − ξ(0)‖

≤(1 + M)‖φ − ξ‖ +
δ

8
+

δ

4
+

δ

8
<

δ

2
,

we have ‖ws + φ̃s − ξ‖ < ν + δ
2 < δ and hence

|F (ws + φ̃s, α)| ≤ N for s ∈ [0, η], α ∈ [α0 − δ, α0 + δ].

This shows that
|A(φ, α)w(t)| ≤ MNη < ν for t ∈ [0, η].

Thus, A(φ, α)w ∈ K(η, ν) and A(φ, α)K(η, ν) ⊆ K(η, ν). Moreover, using |DφF (φ, α)| ≤
N for (φ, α) ∈ Bδ(ξ) × [α0 − δ, α0 + δ], we have for w, ŵ ∈ K(η, ν) that

|A(φ, α)w(t) − A(φ, α)ŵ(t)| ≤
∣∣∣∣
∫ t

0

T (t − s)[F (ws + φ̃s, α) − F (ŵs + φ̃s, α)]ds

∣∣∣∣
≤MNη sup

s∈[0,t]

‖ws − ŵs‖

≤MNη sup
s∈[−r,η]

‖w(s) − ŵ(s)‖

<ν sup
s∈[−r,η]

‖w(s) − ŵ(s)‖.

Since ν < 1, we conclude that

A(·) : B δ
4(1+M)

(ξ) × [α0 − δ, α0 + δ] → K(η, ν)

is a uniform contraction. By Lemma 4.2 of Hale and Verduyn Lunel [HV93], for
each fixed (φ, α) ∈ B δ

4(1+M)
(ξ) × [α0 − δ, α0 + δ], A(·) has a unique fixed point

w(φ, α) ∈ K(η, ν) which is continuous in (φ, ν).
Note that B δ

4(1+M)
(ξ)× [α0−δ, α0 +δ] is the closure of the open set B δ

4(1+M)
(ξ)×

(α0 − δ, α0 + δ) and A(φ, α)w has continuous k−th derivative with respect to
(φ, α,w) ∈ B δ

4(1+M)
(ξ) × (α0 − δ, α0 + δ) × K0(η, ν), where

K0(η, ν) = {w ∈ K(η, ν); ‖wt‖ < ν for t ∈ [0, α]}
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with K0(η, ν) being open in C0([−r, η]) and K(η, ν) = K0(η, ν). Therefore, by
Lemma 4.2, w(φ, α) is Ck−smooth with respect to (φ, α) ∈ B δ

4(1+M)
(ξ) × (α0 −

δ, α0 + δ). Hence, u(φ, α) = φ̃ + w(φ, α) is Ck−smooth with respect to (φ, α) ∈
B δ

4(1+M)
(ξ) × (α0 − δ, α0 + δ) for t ∈ [0, η]. Standard continuation argument then

leads to the Ck−smoothness of u(φ, α) with respect to (φ, α) for t in any compact
subset of the domain of the definition of u(φ, α). �

3.2. Smoothness of the Stable and Unstable Manifolds. In this subsection,
we study the Ck−smoothness of the stable and unstable manifolds of equation (2.1)
(Chow and Lu [CL88a, CL88b]). First, we modify assumption (H3) as follows:

(H3∗) g ∈ Ck(C × (−ε0, ε0);X) and g(0, ε) = 0, Dφg(0, ε) = 0 for ε ∈ (−ε0, ε0).
For a given ε ∈ (−ε0, ε0), a (mild) solution of equation (2.1) subject to the

initial condition u0 = φ ∈ C on [−r, τ(φ, ε)), τ(φ, ε) > 0, is a continuous mapping
u = u(φ, ε) : [−r, τ(φ, ε)) → X such that

u(φ, ε)(t) = S(t)φ(0) +
∫ t

0

S(t − α)[L(uα(φ, ε)) + g(uα(φ, ε), ε)]dα

for t ∈ [0, τ(φ, ε)). Note that u(0, ε)(t) = 0 for all t ≥ 0 is always a solution of
(2.1) with u0 = 0. Therefore, for a fixed τ1 > r, by the basic theory of (2.1) (see
Wu [Wu96]) it follows that there exists an open neighborhood N0 of 0 in C and
ε1 ∈ (−ε0, ε0) such that for each ε ∈ (−ε1, ε1) and for every φ ∈ N0, equation (2.1)
has a solution u(φ, ε) defined at least on [−r, τ1]. Let f̃ : N0 × (−ε1, ε1) → C be
given by

f̃(φ, ε) = uτ1(φ, ε).

Then f̃ is completely continuous, Ck−smooth and Dφf̃(0, 0) = T (τ1) (defined in
section 2). Let

Σs = {λ ∈ C;λ is a characteristic value of (2.2) with Reλ < 0},
Σc = {λ ∈ C;λ is a characteristic value of (2.2) with Reλ = 0},
Σu = {λ ∈ C;λ is a characteristic value of (2.2) with Reλ > 0}

and assume that
Σu �= ∅, Σc = ∅.

For each λ ∈ Σs∪Σu, let Mλ be the realized generalized eigenspace of AT associated
with λ and denote

Cs =
⊕
λ∈Σs

Mλ, Cu =
⊕

λ∈Σu

Mλ.

Then we know that dimCu < ∞, Cu and Cs are closed subspaces of C such that
C = Cs ⊕ Cu and T (τ1)Cs ⊆ Cs, T (τ1)Cu ⊆ Cu.

Theorem 3.2. We have the following results on the smoothness of the stable and
unstable manifolds.

(i) There exist a constant εs ∈ (0, ε0), convex open bounded neighborhoods Ns of
0 in Cs and Nu of 0 in Cu, and a Ck−smooth mapping hs : Ns× (−εs, εs) →
Cu with hs(0, 0) = 0, Dφhs(0, 0) = 0, hs(Ns × (−εs, εs)) ⊆ Nu such
that for φ ∈ C and ε ∈ (−εs, εs), if equation (2.1) has a solution u(φ, ε) on



HOMOCLINIC BIFURCATION IN PARTIAL FDES 1301

[−r,∞) satisfying ut(φ, ε) ∈ Ns × Nu for t ≥ 0, then φ ∈ W s
loc(ε), where

W s
loc(ε) is the stable manifold defined by

W s
loc(ε) = {φs + hs(φs, ε);φs ∈ Ns}.

(ii) There exist a constant εu ∈ (0, ε0) and a Ck−smooth mapping hu : Nu ×
(−εu, εu) → Cu with hu(0, 0) = 0, Dφhu(0, 0) = 0, hu(Nu × (−εu, εu)) ⊆
Ns such that for φ ∈ C and ε ∈ (−εu, εu), if there exists u(φ, ε) : (−∞, 0] →
X satisfying u0(φ, ε) = φ,

u(φ, ε)(t) = S(t − θ)φ(θ) +
∫ t

θ

S(t − α)[L(uα(φ, ε)) + g(uα(φ, ε), ε)]dα

for t, θ ≤ 0 with t ≥ θ, and ut(φ, ε) ∈ Ns ×Nu for t ≤ 0, then φ ∈ Wu
loc(ε),

where Wu
loc(ε) is the unstable manifold defined by

Wu
loc(ε) = {φu + hu(φu, ε);φu ∈ Nu}.

Proof. (i) Let f : N0 × [−ε1, ε1] → C × R be given by f(φ, ε) = (f̃(φ, ε), ε). Clearly,
f is Ck−smooth, f(0, 0) = 0 and

L = Df(0, 0) = (Dφf̃(0, 0), Id) = (T (τ1), Id).

Hence, E = C × R has the following decomposition

E = Es ⊕ Ec ⊕ Eu

with
Es = Cs × {0}, Ec = {0} × R, Eu = Cu × {0}.

Clearly, Es �= {0} is a closed subspace, Ec �= {0} and Eu �= {0} with dimEc = 1
and dimEu =dimCu < ∞. We have




LEs ⊆ Es, LEc ⊆ Ec, LEu ⊆ Eu,

σ(L|Es
) ⊆ {z ∈ C; |z| ≤ a} for some a ∈ (0, 1),

σ(L|Ec
) = {1},

σ(L|Eu
) ⊆ {z ∈ C; |z| ≥ 1}.

By Theorem II.1 of Krisztin, Walther and Wu [KWW99], there exist open neighbor-
hoods Ñsc of 0 in Es⊕Ec, Ñu of 0 in Eu and a Ck−smooth mapping h̃ : Ñsc → Eu

(Theorem II.1 ensures C1−smoothness if f is C1−smooth, the same argument there
yields Ck−smoothness of h̃ if f is Ck−smooth) with

h̃(0, 0) = 0, D(φ,ε)h̃(0, 0) = 0, h̃(Ñsc) ⊆ Ñu

and ∞⋂
n=0

f−n(Ñsc ∪ Ñu) ⊆ W̃ ,
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where
W̃ = {(φs, ε) + h̃(φs, ε); (φs, ε) ∈ Ñsc}.

Let πu : Eu → Cu be the natural projection. Find open neighborhoods Ns of 0
in Cs, Nu of of 0 in Cu and εs ∈ (0, ε0) so that

Ns × (−εs, εs) ⊆ h̃(Ñsc), Nu × {0} = Ñu.

Also let
hs : Ns × (−εs, εs) → Cu

be given by
hs(φs, ε) = πuh̃(φs, ε).

Then hs is Ck−smooth and satisfies


hs(0, 0) =πuh̃(0, 0) = 0,

Dφhs(0, 0) =πuDφh̃(0, 0) = 0,

hs(Ns × (−εs, εs)) =πuh̃(Ns × (−εs, εs))

⊆πuh̃(Ñsc) ⊆ πuÑu = Nu.

Assume that u(φ, ε) is a solution of equation (2.1) on [−r,∞) with ε ∈ (−εs, εs) and
ut(φ, ε) ∈ Ns ×Nu for t ≥ 0. Fix t ≥ 0. Then for each integer n ≥ 0,

ut+nτ1(φ, ε) = f̃n(ut(φ, ε), ε) ∈ Ns ×Nu.

Therefore,

fn(ut(φ, ε), ε) = (f̃n(ut(φ, ε), ε), ε) ∈ (Ns × (−εs, εs)) ∪ (Nu × {0}) ⊆ Ñsc ∪ Ñu.

Consequently, ut(φ, ε) ∈ W̃ . In other words,

ut(φ, ε) = (φ̃s, ε) + h̃(φ̃s, ε) for some (φ̃s, ε) ∈ Ñsc.

As φ̃s = us
t (φ, ε) ∈ Ns and ε ∈ (−εs, εs), we must have

uu
t (φ, ε) = πuh̃(φ̃s, ε) = hs(φ̃s, ε) = hs(us

t (φ, ε), ε).

That is, ut(φ, ε) ∈ W. This proves (i).
(ii) Using Theorem III.1 of Krisztin, Walther and Wu [KWW99], the smoothness

of the unstable manifold can be proved similarly. �
4. Local Analysis. Under hypothesis (H3), we may assume, without loss of
generality, that the constant K2 defined in (2.13) is positive and that δ1 > 0 is
chosen so that for |φs| < δ1, |φu| ≤ δ1 and ε ∈ [−ε1, ε1], we have

|hs(φs, ε)| ≤ K2|φs|2, (4.1)

|Dφshs(φs, ε) · ψs| ≤ K2|φs||ψs|, ψs ∈ Cs, (4.2)

|D2
φshs(φs, ε) · (ψs

1, ψ
s
2)| ≤ K2|ψs

1| |ψs
2|, ψs

i ∈ Cs, i = 1, 2 (4.3)
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and

|hu(φu, ε)| ≤ K2|φu|2, (4.4)

|Dφuhu(φu, ε) · ψu| ≤ K2|φu||ψu|, ψu ∈ Cu, (4.5)

|D2
φuhu(φu, ε) · (ψu

1 , ψu
2 )| ≤ K2|ψu

1 | · |ψu
2 |, ψu

i ∈ Cu, i = 1, 2. (4.6)

Denote u∗
t = u∗

t (φ
u, ε) and hu = hu(φu, ε) for |φu| < δ1 and |ε| ≤ ε1. By (2.4),

the definition of X0 and the fact that Xs
0 + Xu

0 = X0, we have

T (−α)Xs
0(θ) =

{
Xs

0(θ − α) = −Xu
0 (θ − α), θ − α ≤ 0,

Xs
0(0) +

∫ θ−α

0
L(T (β)Xs

0)dβ, θ − α > 0.
(4.7)

Thus, (2.12) can be rewritten as follows

hu(θ) =
∫ θ

−∞
[Xs

0(0) +
∫ θ−α

0

L(T (β)Xs
0)dβ]g(u∗

α, ε)dα

−
∫ 0

θ

Xu
0 (θ − α)g(u∗

α, ε)dα.

By the smoothness of the local unstable manifold Wu
loc(ε), differentiation of hu(θ)

with respect to θ ∈ [−r, 0] leads to

d

dθ
hu(θ) = X0(0)g(u∗

θ, ε) + L

(∫ 0

−∞
T (−α)Xs

0g(u∗
α+θ, ε)dα

)

−
∫ 0

θ

d

dθ
Xu

0 (θ − α)g(u∗
α, ε)dα. (4.3)

Similar to the proof of Proposition 3.2 in Chow and Deng [CD89], we have the
following lemma.

Lemma 4.1. For φu ∈ Cu with |φu| < δ1, θ ∈ [−r, 0] and ε ∈ [−ε1, ε1], we have

d

dθ
(Dφuhu · φu

1 ) (θ) =
(

Dφu

d

dθ
hu(θ)

)
· φu

1 , φu
1 ∈ Cu, (4.8)

d

dθ
(D2

φuhu · (φu
1 , φu

2 ))(θ) =
(

D2
φu

d

dθ
hu(θ)

)
· (φu

1 , φu
2 ), φu

1 , φu
2 ∈ Cu,

(4.9)

d

dθ

(
Dφu

d

dθ
hu · φu

1

)
(θ) =

(
Dφu

d2

dθ2
hu(θ)

)
· φu

1 , φu
1 ∈ Cu. (4.10)

Moreover, there exists a constant K3 > 0 depending on δ1, ε1,K1 and K2 such that∣∣∣∣ d

dθ
[(D2

φuhu) · (φu
1 , φu

2 )]
∣∣∣∣ ≤ K3|φu

1 | |φu
2 |, φu

1 , φu
2 ∈ Cu, (4.11)∣∣∣∣ d

dθ

[(
Dφu

d

dθ
hu

)
· φu

1

]∣∣∣∣ ≤ K3|φu| |φu
1 |, φu

1 ∈ Cu. (4.12)

By the smoothness of the stable and unstable manifolds (Theorem 3.2) and fol-
lowing the argument in the proof of Proposition 3.4 in Chow and Deng [CD89], we
have the following lemma.
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Lemma 4.2. Let φu ∈ Cu with |φu| < δ1, θ ∈ [−r, 0] and ε ∈ [−ε1, ε1]. Then there
exists a constant K4 > 0 depending on δ1, ε1,K1,K2 and K3 such that

(i) d
dtT (t)hu|t=0+ = d

dθhu − X0g(hu + φu, ε);
(ii)

∣∣T (t) d
dτ T (τ)hu|τ=0+

∣∣ ≤ K4e
−µt|φu|2, t ≥ 0.

Define φ̄ = H(φ, ε), φ ∈ B(δ1), |ε| ≤ ε1, by

φ̄s = φs − hu(φu, ε), φ̄u = φu. (4.13)

In terms of the new variable φ̄, we have

Wu
loc(ε) = {φ̄ : φ̄ ∈ H(B(δ1), ε), φ̄s = 0}.

The inverse H−1 of H is given by

φs = φ̄s + hu(φ̄u, ε), φu = φ̄u.

The variation of constants formula (2.8) becomes

us
t (φ̄, ε) = T (t)φ̄s +

∫ t

0

T (t − α)f̄(ūα, ε)dα

uu
t (φ̄, ε) = eλtφ̄u +

∫ t

0

eλ(t−α)Xu
0 ḡ(ūα, ε)dα

(4.14)

where
ūt = ūt(φ̄, ε) = H(ut(φ, ε), ε), ḡ(φ̄, ε) = g(H−1(φ̄, ε), ε),

and

f̄(φ̄, ε) = Xs
0 ḡ(φ̄, ε)− d

dt
T (t)hu(φ̄u, ε)|t=0+−Dφ̄uhu(φ̄u, ε)·[λφ̄u +Xu

0 f̄(φ̄, ε)]. (4.15)

Lemma 4.3. There exist constants 0 < δ3 < δ2 and 0 < ε3 < ε2 and a map F :
B(δ3)×[−ε3, ε3] → L(Cs, L∞), L∞ = L∞([−r, 0],X), such that f̄(φ̄, ε) = F (φ̄, ε)·φ̄s

for φ̄ ∈ B(δ3) and |ε| < ε3, where φ̄s = P sφ̄. Furthermore
(i) F is C1;
(ii) if ψ̄ ∈ Cs, then (F (φ̄, ε) · ψ̄s)(θ) is C1 in θ ∈ [−r, 0];
(iii) there exists a constant K5 > 0 depending on δ3, ε3 and Ki(i = 1, 2, 3, 4) such

that for every φ ∈ B(δ3), ε ∈ [−ε3, ε3],

|F (φ̄, ε) · ψ̄s|L∞ ≤ K5|φ̄| |ψ̄s|,

sup
−r≤θ≤0

∣∣∣∣ d

dθ
(F (φ̄, ε) · ψ̄s)(θ)

∣∣∣∣ ≤ K5|ψ̄s|.

Proof. Claim: There exist 0 < δ3 < δ2 and 0 < ε3 < ε2 such that if |φ̄| < δ3, φ̄ ∈ Cu

and |ε| ≤ ε3, then f̄(φ̄, ε)(θ) = 0 for θ ∈ [−r, 0].
Suppose |φ̄| < δ2 and |ε| ≤ ε2. Define

t0 = t0(φ, ε) = sup{t ≥ 0 : ut(φ, ε) ∈ H−1(B(δ2), ε)}.
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If δ2 > 0 is sufficiently small, then t0 > 2r for all |φ| ≤ δ̄2 and |ε| ≤ ε2. Since H is
near the identity map, there exists 0 < ε3 < ε2 and 0 < δ3 < δ2 such that

B(δ3) ⊂ H(B(δ̄2), ε), |ε| ≤ ε3.

To prove the claim, we suppose that there exist φ̄u
0 ∈ Cu with |φ̄u

0 | < δ3, |ε0| ≤ ε3
and θ0 ∈ [−r, 0], such that

f̄(φ̄u
0 , ε0)(θ0) �= 0. (4.16)

Let φ0 ∈ H−1(φ̄u
0 , ε). Then φ0 ∈ Wu

loc(ε0) and |φ0| ≤ δ̄2. Let ūt = H(ut(φ0, ε0), ε0),
−θ0 ≤ t ≤ t0 − θ0. Since Wu

loc(ε0) ⊂ {φ̄ : φ̄s = P sφ̄ = 0} and ūs
t+θ0

= 0 for
−θ0 ≤ t ≤ t0 − θ0, ū0 = H(φ0, ε) = φ̄u

0 . By (4.14)

0 = ūs
t+θ0

=
∫ t

−θ0

T (t − α)f̄(ūα+θ0 , ε0)dα.

Let t = θ0 + σ and θ < σ ≤ t0 with σ < −θ0 if θ0 �= 0. By (2.5), we have

0 =
∫ −θ0+σ

−θ0

[T (−θ0 + σ − α)f̄(ūα+θ0 , ε0)](θ0)dα

=




∫ −θ0+σ

−θ0
f̄(ūα+θ0 , ε0)(σ − α)dα if − θ0 > σ > 0

∫ σ

0
T (σ − α)[f̄(ūα, ε0)(0)]dα if θ0 = 0.

(4.17)

Dividing (4.17) by σ and letting σ → 0+, we have

0 = lim
σ→0+

1
σ

∫ −θ0+σ

−θ0

[T (−θ0 + σ − α)f̄(ūα+θ0 , ε0)](θ0)dα

= f̄(φ̄u
0 , ε0)(θ0), θ0 ∈ [−r, 0],

which contradicts (4.16). This proves the claim.
Hence

f̄(φ̄, ε) = f̄(φ̄s + φ̄u, ε) − f̄(φ̄u, ε) =
(∫ 1

0

Dφ̄s f̄(αφ̄s + φ̄u, ε)dα

)
· φ̄s.

Define

F (φ̄, ε) =
∫ 1

0

Dφ̄s f̄(αφ̄s + φ̄u, ε)dα. (4.18)

By (4.15), we have

Dφ̄s f̄(αφ̄s + φ̄u, ε) = Xu
0 (L̄1 + ḡ1) − (Dφ̄uh) · (Xu

0 ḡ1) + X0ḡ1, (4.19)

where L̄1 = Dφ̄sL̄(αφ̄s + φ̄u) and ḡ1 = Dφ̄s ḡ(αφ̄s + φ̄u, ε). Thus F (φ̄, ε) : B(δ3) ×
[−ε3, ε3] → L(Cs, L∞) is C1 and [F (φ̄, ε) · ψ̄s](θ) is C1 in θ ∈ [−r, 0] for all ψ̄s ∈ Cs.

To prove (iii), we notice from (4.18) and (4.19) that F (0, ε) = 0 for ε ∈ [−ε3, ε3].
Thus, there exists K̃5 > 0 depending on δ2, ε3 and Ki(i = 1, 2, 3, 4) such that for
|φ̄| < δ3, |ε| < ε3 and ψ̄s ∈ Cs,

|F (φ̄, ε) · ψ̄s| ≤ K̃5|φ̄||ψ̄s|.
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Also, by Lemma 4.1, there exists ˜̃K5 > 0 depending on δ3, ε3 and Ki(i = 1, 2, 3, 4)
such that for |φ̄| < δ3, |ε| < ε3, and ψ̄ ∈ Cs.∣∣∣∣ d

dθ
[F (φ̄, ε) · ψ̄s](θ)

∣∣∣∣ ≤ ˜̃K5|ψ̄s|, −r ≤ θ ≤ θ.

Choose K5 = max{K̃5,
˜̃K5}, we prove (iii). �

From (4.15), we have

T (t)F (φ̄, ε) = T (t)Xs
0 ḡ − T (t)

d

dτ
T (τ)hu|τ=0+ − T (t)Dφ̄uhu · (λφ̄u + Xu

0 ḡ), (4.20)

where ḡ = ḡ(φ̄, ε) and hu = hu(φ̄u, ε). Since Cs is closed, we have T (t)Xs
0(L̄+ḡ) ∈ Cs

for t > r and (Dφ̄uhu) · (λφ̄u + Xu
0 ḡ) ∈ Cs. Thus, by (2.7), (4.20) and Lemma 4.2,

there exists a constant K6 > 0 depending on δ3, ε3 and Ki(i = 1, . . . , 5) such that
for φ̄ ∈ B(δ3) and |ε| ≤ ε3,

|T (t)f̄(φ̄, ε)| ≤ K6e
−µt|φ̄||φ̄s|, t ≥ 0. (4.21)

By Lemma 4.3, we can rewrite (4.14) as follows

ūs
t (φ̄, ε) = T (t)φ̄s +

∫ t

0

T (t − α)F (ūα(φ̄, ε), ε) · ūs
α(φ̄, ε)dα

ūu
t (φ̄, ε) = eλtφ̄u +

∫ t

0

eλ(t−α)ḡ(ūα(φ̄, ε), ε)dα.

(4.22)

Denote v̄t = Dφ̄ūt(φ̄, ε). Denote v̄t = Dφ̄ūt(φ̄, ε). Differentiating (4.22) with respect
to φ̄ in L∞, we can see that v̄s

t = Dφ̄ūs
t (φ̄, ε) and v̄u

t = Dφ̄ūu
t (φ̄, ε) satisfy the

following variational equations:

v̄s
t = T (t)P s +

∫ t

0

T (t − α)[Dφ̄F (ūα(φ̄, ε), ε) · (v̄α, ūs
α(φ̄, ε))

+ F (ūα(φ̄, ε), ε) · v̄s
α]dα, 0 ≤ t ≤ t0,

v̄u
t = eλtPu +

∫ t

0

eλ(t−α)Dφ̄ḡ(ūα(φ̄, ε), ε) · v̄αdα, 0 ≤ t ≤ t0.

(4.23)

Lemma 4.4. There is a constant K7 > 0 depending on δ3, ε3 and Ki(i = 1, . . . 6)
such that if ūt(φ̄, ε) ∈ B(δ3) for all 0 ≤ t ≤ t0 where t0 > 0 is any given constant,
then

|ūs
t (φ̄, ε)| ≤ K7|φ̄s|e−µt, 0 ≤ t ≤ t0.

Proof. From (4.14), we have

|ūs
t (φ̄, ε)| ≤ |T (t)φ̄s| +

∫ t

0

|T (t − α)f̄(ūα(φ̄, ε), ε)|dα.

By (2.7) and (4.21) and the assumption that ūt ∈ B(δ3), we obtain

|ūs
t (φ̄, ε)| ≤ K1e

−µt|φ̄s| + δ3K6

∫ t

0

e−µ(t−α)|ūs
α(φ̄, ε)|dα.
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Let x(t) = eµt|ūs
t (φ̄, ε)|. Then

x(t) ≤ K1|φ̄s| + δ3K6

∫ t

0

x(α)dα.

The Gronwall’s Inequality implies that

x(t) ≤ K1|φ̄s|eδ3K6t0 for 0 ≤ t ≤ t0.

Choosing K7 = K1e
δ3K6t0 , we obtain the desired inequality. �

Denote µ̃ = µ−λ
4 , λ̃ = µ+λ

2 . Then µ̃ < µ, λ̃ > λ, and −µ + 2µ̃ + λ̃ = 0. Let
δ4 > 0 be a small constant such that

δ4 ≤ min
{

δ3,
1

4K1(K2K7(1/µ̃ + 1/λ̃) + K5/(µ − µ̃))
,

1
2[K2(1/(λ + µ̃) + 1/(λ̃ − λ))]

1
2

}
.

Lemma 4.5. Let λ̃, µ̃, and δ4 be as above and ˜̃
λ ∈ (0, λ). If ūt(φ̄, ε) ∈ B(δ4) for

0 ≤ t ≤ t0 where t0 is any given constant, then

|Dφ̄ūs
t (φ̄, ε)| ≤ 2e−µ̃t, t ∈ [0, t0], ε ∈ [−ε3, ε3],

|Dφ̄ūu
t (φ̄, ε)| ≤ 2eλ̃t, t ∈ [0, t0], ε ∈ [−ε3, ε3],

|Dφ̄u ūu
t (φ̄, ε)| ≤ 1

2
e
˜̃
λt, t ∈ [0, t0], ε ∈ [−ε3, ε3].

Proof. Let Ṽ be a subset of C with a metric

d(w1t, w2t) = max
0≤t≤t0

|w1t − w2t|.

Define a subset V in Ṽ as follows:

V = {wt : wt = ws
t + wu

t ∈ Ṽ , w0 = ws
0 + wu

0 = the identity map in C,

|ws
t | ≤ 2e−µ̃t, |wu

t | ≤ 2eλ̃t, 0 ≤ t ≤ t0}.

Clearly V is a closed subset of Ṽ . Let Φ : V → Ṽ , wt = Φ(wt), be defined by

ws
t = T (t)P s +

∫ t

0

T (t − α)[DφF (uα(φ, ε), ε) · (wα, us
α(φ, ε)) + F (uα(φ, ε), ε) · ws

α]dα,

wu
t = eλtPu +

∫ t

0

eλ(t−α)Xu
0 Dφg(uα(φ, ε), ε) · wαdα.

By using (2.7), (4.18), (4.19), (4.2), Lemmas 4.3 and 4.4, we have

|ws
t | ≤ e−µt + 2K1K2K7δ4e

−µt

∫ t

0

e−µ̃αdα + 2K1K5δ4e
−µt

∫ t

0

e(µ−µ̃)αdα

+ 2K1K2K7δ4e
−µt

∫ t

0

eλ̃αdα.
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Since −µ < −µ̃,−µ + λ̃ = −2µ̃ < −µ̃, we have

|ws
t | ≤ e−µ̃t

(
1 +

2K1K2K7δ4

µ̃
+

2K1K5δ4

µ − µ̃
+

2K1K2K7δ4

λ̃

)
.

Since δ4 ≤ 1/[4K1(K2K7(1/µ̃ + 1/λ̃) + K5/(µ − µ̃))], it follows that

|ws
t | ≤ 2e−µ̃t.

Similarly, since λ̃ > λ, we have

|wu
t | ≤ eλt + 2K2δ

2
4eλt

∫ t

0

e−(λ+µ̃)αdα + 2K2δ
2
4eλt

∫ t

0

e(λ̃−λ)αdα

≤ eλ̃t

(
1 +

2K2δ
2
4

λ + µ̃
+

2K2δ
2
4

λ̃ − λ

)

≤ 2eλ̃t

provided δ4 ≤ 1/2[K2(1/(λ+ µ̃)+1/(µ̃−λ))]
1
2 . It follows that Φ maps V into itself.

For w1t, w2t ∈ V, define another metric d as follows

d(w1t, w2t) = max
0≤t≤t0

(eµ̃t|ws
1t − ws

2t| + e−λ̃t|wu
1t − wu

2t|).

Then (V, d) is a complete space. Let w1t = Φ(w1t), w2t = Φ(w2t). Then

|ws
1t − ws

2t|

≤
∫ t

0

(K1K2K7δ4e
−µt + K1K5δ4e

−µ(t−α))|ws
1α − ws

2α|dα

+ K1K2K7δ4e
−µt

∫ t

0

|wu
1α − wu

2α|dα

=
∫ t

0

(K1K2K7δ4e
−µt + K1K5δ4e

−µ(t−α))e−µ̃α(eµ̃α|ws
1α − ws

2α|)dα

+ K1K2K7δ4e
−µt

∫ t

0

eλ̃α(e−λ̃α|wu
1α − wu

2α|)dα

≤ (K1K2K7δ4e
−µt

∫ t

0

e−µ̃αdα + K1K5δ4e
−µt

∫ t

0

e(µ−µ̃)αdα) · d(w1t, w2t)

+ K1K2K7δ4e
−µt

∫ t

0

eλ̃αdα · d(w1tw2t)

≤ K1δ4

[
K2K7

(
1
µ̃

+
1
λ̃

)
+

K5

µ − µ̃

]
e−µ̃t · d(w1t, w2t).

Hence

eµ̃t|ws
1t − ws

2t| ≤ K1δ4

[
K2K7

(
1
µ̃

+
1
λ̃

)
+

K5

µ − µ̃

]
· d(w1t, w2t).

Similarly,

e−λ̃t|wu
1t − wu

2t| ≤ K2δ
2
4

(
1

λ + µ̃
+

1
λ̃ − λ

)
· d(w1t, w2t).
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Thus,

d(w1t, w2t)

= max
0≤t≤t0

(eµ̃t|ws
1t − ws

2t| + e−λ̃t|wu
1t − wu

2t|)

≤
{

K1δ4

[
K2K7

(
1
µ̃

+
1
µ̃

)
+

K5

µ − µ̃

]
+ K2δ

2
4

(
1

λ + µ̃
+

1
λ̃ − λ

)}
· d(w1t, w2t)

≤
(

1
4

+
1
4

)
d(w1t, w2t)

=
1
2
d(w1t, w2t),

which implies that Φ : V → V is a contractive mapping under the new topology
(V, d). Hence, Φ has a unique fixed point, say w̃t ∈ V , such that w̃t = Φ(w̃t). By
the uniqueness of the solution of (4.23), we have

w̃s
t = Dφus

t (φ, ε), w̃u
t = Dφuu

t (φ, ε).

Thus, we have established the first two estimates. To show the third estimate, we
differentiate the second equation in (4.22) and obtain

Dφ
uuu

t (φ, ε) = eλt +
∫ t

0

eλ(t−α)Xu
0 Dφ

ug(uα(φ, ε), ε) · Dφ
uuα(φ, ε)dα),

Dφ
uuu

0 (φ, ε) = 1.

Let t1 = sup{t : 0 ≤ t ≤ t0,Dφ
uuu

t (φ, ε) ≥ 0}. Then t1 > 0. We will show that
t1 = t0. Suppose t1 < t0. Then Dφ

uuu
t1(φ, ε) = 0. We have

dDφ
uuu

t (φ, ε)

dt
= λDφ

uuu
t (φ, ε) + Xu

0 Dφ
ug(ut(φ, ε), ε) · Dφ

uut(φ, ε)

≥ ˜̃
λDφ

uut(φ, ε) − |Xu
0 Dφ

ug(ut(φ, ε), ε) · Dφ
uut(φ, ε)|.

It follows that
Dφ

uuu
t (φ, ε) ≥ 1

2
e
˜̃
λt, 0 ≤ t ≤ t1.

Hence Dφ
uuu

t1(φ, ε) ≥ 1
2e

˜̃
λt1 �= 0, a contradiction. So t1 = t0 and this completes the

proof. �

Note that in terms of the variable φ̄, the local stable and unstable manifolds are
given by

W s
loc(ε) = {φ̄ : φ̄u = h̄s(φ̄s, ε), |φ̄s| < δ4},

Wu
loc(ε) = {φ̄ : φ̄s = 0, |φ̄u| < δ4},

where h̄s is C3, h̄s(0, ε) = 0, ε ∈ [−ε3, ε3] and Dφ̄s h̄s(0, 0) = 0. For every ε ∈
[−ε3, ε3], we define

Ω = Ω(δ4, ρ, ε) =
{
φ̄ : |φ̄s| < δ4/K7, |〈φ∗

λ, φ̄u − h̄s(φ̄s, ε)〉| < ρ
} ⊂ B(δ4),

Ω+ = Ω+(δ4, ρ, ε) = {φ̄ : φ̄ ∈ Ω(δ4, ρ, ε), 0 < 〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉 < ρ},

Ω− = Ω−(δ4, ρ, ε) = {φ̄ : φ̄ ∈ Ω(δ4, ρ, ε), −ρ < 〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉 < 0},

where 〈 · ; · 〉 is defined in section 2. Note that since W s
loc(ε) has codimension one

and Ω+ ∩ Ω− = ∅, Ω = Ω+ ∪ W s
loc(ε) ∪ Ω−, we must have
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Lemma 4.6. Consider ūt(φ̄, ε) satisfying (4.22) in B(δ4) and 0 < ρ < δ4/4, δ4 <
1/(2K2). If φ ∈ Ω+ ∪ Ω−, then there exists τ = τ(φ̄, ε) > 0 such that

ūu
τ (φ̄, ε) − ūu

τ (φ̄s + h̄s(φ̄s, ε), ε) =
{

δ4/2 if φ̄ ∈ Ω+, |ε| ≤ ε3
−δ4/2 if φ̄ ∈ Ω−, |ε| ≤ ε3.

Furthermore, if φ̄ ∈ Ω+ ∪ Ω− and |ε| ≤ ε3, then

1
λ̃

ln
δ4

4|〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉| ≤ τ ≤ 1

˜̃
λ

ln
δ4

|〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉| ,

|Dφ̄τ(φ̄, ε)| ≤ 8
λδ4 − 8K2δ2

4

eλ̃τ(φ̄,ε).

Proof. If φ̄ ∈ Ω+ ∪Ω− ⊂ Ω \W s
loc(ε), then the solution cannot stay in B(δ4) for all

t > 0. If |φ̄s| < δ4
2K7

, then Lemma 4.4 implies that

|ūs
t (φ̄, ε)| ≤ K7 · δ4

2K7
· e−µt ≤ δ4

2
for 0 ≤ t ≤ t0,

where t0 > 0 is such that the solution ūt(φ̄, ε) ∈ B(δ4) for all 0 ≤ t ≤ t0. Hence,
ūt(φ̄, ε) has to leave B(δ4) through either ūu

t (φ̄, ε) = δ4 or ūu
t (φ̄, ε) = −δ4. Thus,

τ̃ = inf{t > 0 : |ūu
t (φ̄, ε)| = δ4}

is well defined.
Let

∆t(φ̄, ε) = 〈φ∗
λ, ūu

t (φ̄, ε) − ūu
t (φ̄s + h̄s(φ̄s, ε), ε)〉, 0 ≤ t ≤ τ̃ .

Note that ∆t is C2. Since φ̄ ∈ Ω,

|∆0(φ̄, ε)| = |〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉| < ρ < δ4/4.

Note that by (4.1), if |φ̄s| < δ4, then |h̄s(φ̄s, ε)| ≤ K2δ
2
4 < δ4/2. Since ūt(φ̄s +

h̄s(φ̄s, ε), ε) ∈ W s
loc(ε), we have

|∆τ̃ (φ̄, ε)| ≥ |〈φ∗
λ, ūu

τ̃ (φ̄, ε)〉| − |〈φ∗
λ, ūs

τ̃ (φ̄s + h̄s(φ̄s, ε), ε)〉| > δ4 − δ4/2 > δ4/4.

Thus, by the Intermediate Value Theorem,

τ(φ̄, ε) = inf
{
t : 0 < t < t̃, |∆t(φ̄, ε)| = δ4/4

}
is well defined for φ̄ ∈ Ω+ ∪ Ω−. We shall prove that

∆τ(φ̄,ε)(φ̄, ε) =
{

δ4/2 if φ̄ ∈ Ω+

−δ4/2 if φ̄ ∈ Ω−.
(4.24)

We only prove ∆τ(φ̄,ε)(φ̄, ε) = δ4/2 for φ̄ ∈ Ω+, the other case can be treated
similarly.

By the way of contradiction, suppose ∆τ(φ̄,ε)(φ̄, ε) = −δ4/2. We have

〈φ∗
λ, ūu

τ(φ̄,ε)(φ̄, ε)〉 = −δ4/2 + 〈φ∗
λ, ūu

τ(φ̄,ε)(φ̄
s + h̄s(φ̄s, ε), ε)〉 < −δ4/4. (4.25)
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Define
dt(φ̄, ε) = 〈φ∗

λ, ūu
t (φ̄, ε) − h̄s(ūs

t (φ̄, ε), ε)〉.
Since φ̄ ∈ Ω+, we have

d0(φ̄, ε) = 〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉 = ∆0(φ̄, ε) > 0.

On the other hand, by (4.25), we have

dτ(φ̄,ε)(φ̄, ε) < −δ4/4 − 〈φ∗
λ, h̄s(ūs

t (φ̄, ε), ε)〉 < 0.

Thus the Intermediate Value Theorem implies that there exists τ0, 0 < τ0 < τ(φ̄, ε),
such that

dτ0(φ̄, ε) = 0

which implies that ūτ0(φ̄, ε) ∈ W s
loc(ε). Therefore,

ūt(φ̄, ε) ∈ W s
loc(ε)

which contradicts φ̄ ∈ Ω \ W s
loc(ε). This proves (4.24).

Since ∆t(φ̄, ε) is C2 and

∂

∂t
∆t(φ̄, ε) = λ∆t(φ̄, ε) + ḡ(ūt(φ̄, ε), ε) − ḡ(ūt(φ̄s + h̄s(φ̄s, ε), ε), ε),

we have
∂

∂t
∆t(φ̄, ε)|t=τ(φ̄,ε) ≥

λδ4

2
− 4K2δ

2
4 > 0, φ̄ ∈ Ω+. (4.26)

Applying the Implicit Function Theorem to

∆t(φ̄, ε) = δ4/2, φ̄ ∈ Ω, ε ∈ [−ε2, ε2],

it follows that τ(φ̄, ε) is C2. Moreover, by Lemma 4.5, we have

δ4/2 = 〈φ∗
λ, ūu

τ(φ̄,ε)(φ̄, ε) − ūu
τ(φ̄,ε)(φ̄

s + h̄s(φ̄s, ε), ε)〉|
≤ 2eλ̃τ(φ̄,ε)|〈φ∗

λ, φ̄u − h̄s(φ̄s, ε)〉|.
Therefore,

τ(φ̄, ε) ≥ 1
λ̃

ln
δ4

4|〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉| .

Similarly we can show that

τ(φ̄, ε) ≤ 1
˜̃
λ

ln
δ4

|〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉| .

Let φ̄ ∈ Ω+ ∪ Ω−. Differentiating (4.24) and using the Chain Rule, we have

∂

∂t
∆t(φ̄, ε)|t=τ(φ̄,ε) · Dφ̄τ(φ̄, ε) + Dφ̄∆t(φ̄, ε)|t=τ(φ̄,ε) = 0.

Therefore, by (4.26) and Lemma 4.4, we obtain

|Dφ̄τ(φ̄, ε)| ≤ 8
λδ4 − 8K2δ2

4

eλ̃τ(φ̄,ε).

This completes the proof. �
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Lemma 4.7. Let φ̄ ∈ Ω, |ε| ≤ ε3 and t0 > 2r be as in the proof Lemma 4.3. Then
there exists a constant K8 > 0 depending on δ3, ε3 and Ki(i = 1, . . . 7) such that if
a solution ūt(φ̄, ε) of (4.22) is in B(δ4) for 0 ≤ t ≤ t0, then ūs

t (φ̄, ε) is differentiable
in t ∈ (r, t0) and satisfies

∣∣∣∣ d

dt
ūs

t (φ̄, ε)
∣∣∣∣ ≤ K8|φ̄|e−µt, r < t < t0,

where d
dt is taken in L∞.

Proof. Let t > r. By (4.22) we have

ūs
t (θ) = T (t + θ)φ̄s(0) +

∫ t+θ

0

T (t + θ − α)[F (ūα, ε) · ūs
α](0)dα

+
∫ t

t+θ

[F (ūα, ε) · ūs
α](t + θ − α)dα, θ ∈ [−r, 0].

By (4.18) and (4.19), we have

∫ t

t+θ

[F (ūα, ε) · ūs
α](t + θ − α)dα =

∫ t

t+θ

F̃ (α, t + θ − α) · ūs
αdα,

where

F̃ (α, θ) · ψ̄s = [F (ūα, ε) · ψ̄s](θ) − X0(θ)
∫ 1

0

ḡ1(ūα, ε, β)dβ · ψ̄s.

Lemma 4.3 implies that F̃ (α, θ) is C1 in θ ∈ [−r, 0] and

∣∣∣∣ ∂

∂θ
F̃ (α, θ) · ψ̄s

∣∣∣∣ ≤ K5|ψ̄s|, |F̃ (α, θ) · ψ̄s| ≤ K5|ψ̄s| (4.27)

for 0 ≤ α ≤ t0, θ ∈ [−r, 0] and ψ̄s ∈ Cs. Thus

d

dt
ūs

t (θ) =L(T (t(θ)φ̄s) + [F (ūt+θ, ε) · ūs
t+θ](0) +

∫ t+θ

0

L[T (t + θ − α)F (ūα, ε) · ūs
θ]dα

+ F̃ (t, θ) · ūs
t − F̃ (t + θ, 0) · ūs

t+θ −
∫ t

t+θ

∂

∂θ
F̃ (α, t + θ − α) · ūs

αdα.

This, together with (2.4), (4.27), Lemmas 4.1 and 4.4, implies the desired estimate
and completes the proof. �

Define a function � : B(δ4) × [−ε3, ε3] → R by

�(φ̄1, φ̄2, ε) = max
i=1,2

{〈φ∗
λ, φ̄u

i − h̄s(φ̄s
i , ε)〉}.
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Lemma 4.8. Let φ̄ ∈ Ω+(δ4, ρ, ε), ρ < δ4
2 and ε ∈ [−ε3, ε3]. There exist constants

K9 > 0 and a > 0 depending on δ4, ε3 and Ki(i = 1, . . . , 8) such that if φ̄1, φ̄2 ∈
Ω+(δ4, ρ, ε) and ε ∈ [−ε3, ε3], then

|ūτ(φ̄1,ε)(φ̄1, ε) − ūτ(φ̄2,ε)(φ̄2, ε)| ≤ K9[�(φ̄1, φ̄2, ε)]a|φ̄1 − φ̄2|. (4.28)

Proof. For φ̄i = φ̄s
i + φ̄u

i ∈ Ω+(δ4, ρ, ε), i = 1, 2, define

φ̃s(θ, ε) = (1 − θ)φ̄s
1 + θφ̄s

2,

φ̃u(θ, ε) = φ̄u
1 − h̄s(φ̄s

1, ε) + h̄s(φ̃s(θ, ε), ε), 0 ≤ θ ≤ 1

and

˜̃
φs(θ, ε) = φ̃s

2,

˜̃
φu(θ, ε) = (1 − θ)φ̃u(1, ε) + θφ̄u

2 , 0 ≤ θ ≤ 1.

Then

φ̃s(θ, ε) + φ̃u(θ, ε) ∈ Ω+(δ4, ρ, ε), ˜̃
φs(θ, ε) + ˜̃

φu(θ, ε) ∈ Ω+(δ4, ρ, ε), 0 ≤ θ ≤ 1.

By the Chain Rule, Lemmas 4.5, 4.6, and 4.7, it follows that

|Dφūs
τ(φ̄,ε)(φ̄, ε)| =

∣∣∣∣ d

dt
ūs

τ(φ̄,ε)(φ̄, ε) · Dφτ(φ̄, ε)
∣∣∣∣ +

∣∣∣Dφūs
t (φ̄, ε)|t=τ(φ̄,ε)

∣∣∣
≤

∣∣∣∣K8|φ̄|e−µτ(φ̄,ε) · 8
λδ4 − 8K2δ2

4

eλ̃τ(φ̄,ε)

∣∣∣∣ + 2|e−µ̃τ(φ̄,ε)|

≤ 8K8( δ4
4 )(−µ+λ̃)/λ̃

λ − 8K2δ4
|〈φ∗

λ, φ̄u − h̄s(φ̄s, ε)〉|(λ̃−µ)/µ̃

+ 2
(

δ4

4

)−µ̃/µ̃

|〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉|µ̃/λ̃.

Also, by (4.1) and (4.2), we have∣∣∣∣ d

dθ
(φ̃s(θ, ε) + φ̃u(θ, ε))

∣∣∣∣ = |φ̄s
1 − φ̄s

2| +
∣∣∣∣Dφs h̄s(φ̃(θ, ε), ε) · d

dθ
φ̃(θ, ε)

∣∣∣∣
≤ (1 + K2δ

2
4)|φ̄s

1 − φ̄s
2|

≤ (1 + K2δ
2
4)|φ̄1 − φ̄2|

and ∣∣∣∣ d

dθ
( ˜̃
φs(θ, ε) + ˜̃

φu(θ, ε))
∣∣∣∣ = |φ̄u

2 − φ̃u(1, ε)|

≤ |φ̄u
2 − φ̄u

1 | + |h̄s(φ̄s
1, ε) − h̄s(φs

2, ε)|
≤ (1 + K2δ

2
4)|φ̄1 − φ̄2|.

Denote

K̃9(δ4) =

[
8K8( δ4

4 )(−µ+λ̃)/λ̃

λ − 8K2δ4
+ 2

(
δ4

4

)−µ̃/λ̃
]

(1 + K2δ
2
4), a = min

{
µ − λ̃

λ̃
,
µ̃

λ̃

}
.
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Thus

|ūs
τ(φ̄1,ε)(φ̄1, ε) − ūs

τ(φ̄2,ε)(φ̄2, ε)|
= |ūs

τ(φ̄s
1+φ̃u

1 ,ε)
(φ̄s

1 + φ̃u
1 , ε) − ūs

τ(φ̄s
2+φ̃u(1,ε),ε)

(φ̄s
2 + φ̃u(1, ε), ε)

+ ūs
τ(φ̄s

2+φ̃u(1,ε),ε)
(φ̄s

2 + φ̃u(1, ε), ε) − ūs
τ(φ̄s

2+φ̄u
s ,ε)(φ̄

s
2 + φ̄u

2 , ε)|

=
∣∣∣∣
∫ 1

0

d

dθ
ūs

τ(φ̃s(θ,ε)+φ̃u(θ,ε),ε)
(φ̃s(θ, ε) + φ̃u(θ, ε), ε)dθ

+
d

dθ
ūs

τ(
˜̃
φs(θ,ε)+

˜̃
φu(θ,ε),ε)

( ˜̃
φs(θ, ε) + ˜̃

φu(θ, ε), ε)dθ

∣∣∣∣
≤

∣∣∣∣
∫ 1

0

Dφūs
τ(φ̃s(θ,ε)+φ̃u(θ,ε),ε)

(φ̃s(θ, ε) + φ̃u(θ, ε), ε) · d

dθ
(φ̃s(θ, ε) + φ̃u(θ, ε))dθ

∣∣∣∣
+

∣∣∣∣
∫ 1

0

Dφūs

τ(
˜̃
φ

s
(θ,ε)+

˜̃
φu(θ,ε),ε)

( ˜̃
φs(θ, ε) + ˜̃

φu(θ, ε), ε) · d

dθ
( ˜̃
φs(θ, ε) + ˜̃

φu(θ, ε))dθ

∣∣∣∣
≤ K̃9(δ4)

∫ 1

0

|〈φ̃s
λ(θ, ε), φ̃u(θ, ε) − h̄s(φ̃s(θ, ε), ε)〉|adθ · |φ̄1 − φ̄2|

+ K̃9(δ4)
∫ 1

0

|〈 ˜̃φs
λ(θ, ε), ˜̃

φu(θ, ε) − h̄s(
˜̃
φs(θ, ε), ε)〉|adθ · |φ̄1 − φ̄2|

= K̃9(δ4)(|〈φ∗
λ, φ̄u

1 − h̄s(φ̄s
1, ε)〉|a + |〈φ∗

λ, φ̄u
2 − h̄s(φ̄s

2, ε)〉|a) · |φ̄1 − φ̄2|
≤ 2K̃9(δ4)[�(φ̄1, φ̄2, ε)]a|φ̄1 − φ̄2|.

Next, by (4.1) and (4.24),

|ūu
τ(φ̄1,ε)(φ̄1, ε) − ūu

τ(φ̄2,ε)(φ̄2, ε)|
=

∣∣∣δ4/2 + ūu
τ(φ̄1,ε)(φ̄1 + h̄s(φ̄s

1, ε), ε) − δ4/2 + ūu
τ(φ̄2,ε)(φ̄

s
2 + h̄s(φ̄s

2, ε), ε)
∣∣∣

= |hs(ūs
τ(φ̄1,ε)(φ̄

s
1 + h̄s(φ̄s

1, ε), ε) − hs(ūs
τ(φ̄2,ε)(φ̄

s
2 + h̄s(φ̄s

2, ε), ε)|
≤ K2δ

2
4 |ūs

τ(φ̄1,ε)(φ̄
s
1 + h̄s(φ̄s

1, ε), ε) − ūs
τ(φ̄2,ε)(φ̄

s
2 + h̄s(φ̄s

2, ε), ε)|
≤ 2K2δ

2
4K̃9(δ4)[�(φ̄1, φ̄2, ε)]a|φ̄1 − φ̄2|.

Let K9 = 2(1 + K2δ
2
4)K̃9(δ4). Then we obtain

|ūτ(φ̄1,ε)(φ̄1, ε) − ūτ(φ̄2,ε)(φ̄2, ε)| ≤ K9[�(φ̄1, φ̄2, ε)]a|φ̄1 − φ̄2|.

This completes the proof. �
5. The Šil’nikov Map. In this section, we shall define a map in a small neighbor-
hood of the hyperbolic equilibrium which is closely related to the Poincaré map but
is somehow different. The idea of construction of the map is due to Šil’nikov [Si68],
so we call it a Šil’nikov map. We shall show that the Šil’nikov map is Lipschitzian
with a small Lipschitz constant.
5.1. Construction of the map π1. Let δ4 and φ < δ4/4 be fixed. Denote

ρ0 ≤ min{[21+a(1 + K2δ
2
4)K9(δ4)]−1/a, ρ/2}, (5.1)

B(ρ0) = {φ̄ : |φ̄s| < ρ0, |φ̄u| < ρ0}, (5.2)

S(δ4, ε) = {φ̄ : 〈φ∗
λ, φ̄u − hs(φ̄s, ε)〉 = δ4/4, |φ̄s| < δ4/2}. (5.3)
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Since W s
loc(ε) and Ω(δ4, ρ, ε) continuously depend on ε ∈ [−ε3, ε3], there exist a small

0 < ε4 < ε3 such that B(ρ0) ∩ W s
loc(ε) �= ∅ and B(ρ0) ⊂ Ω(δ4, ρ, ε) for ε ∈ [−ε4, ε4].

Define a map π̃1 : B(ρ0) × [−ε4, ε4] → C by

π̃1(φ̄, ε) =
{

ūτ(φ̄,ε)(φ̄, ε) if φ̄ ∈ Ω+(δ4, ρ, ε) ∩ B(ρ0),
δ4/2 if φ̄ ∈ {Ω − Ω+} ∩ B(ρ0).

(5.4)

Notice that for each ε ∈ [−ε4, ε4], π̃1 maps B(ρ0) into S(δ4, ε).

Lemma 5.1. π̃1(φ̄, ε) is continuous in (φ̄, ε) ∈ B(ρ0)× [−ε4, ε4] and is Lipschitzian
continuous in φ̄ ∈ B(ρ0).

Proof. The continuity of π̃1 follows from Lemmas 4.5 and 4.6. To show π̃1 is Lip-
schitzian, denote

∆1 = 〈φ∗
λ, φ̄u

1 − h̄s(φ̄s
1, ε)〉 > 0, ∆2 = 〈φ∗

λ, φ̄u
2 − h̄s(φ̄s

2, ε)〉 ≤ 0

and let

φ̃2(θ) = θ[h̄s(φ̄s
2, ε) + φ̄u

1 − h̄s(φ̄s
1, ε)] + (1 − θ)φ̄u

2 , 0 ≤ θ ≤ 1.

We have

|π̃1(φ̄1, ε) − π̃1(φ̄2, ε)| ≤ |π̃1(φ̄s
1 + φ̄u

1 , ε) − π̃1(φ̄s
2 + φ̃2(1), ε)|

+ |π̃1(φ̄s
2 + φ̃2(1), ε) − π̃1(φ̄s

2 + φ̄u
2 , ε)|. (5.5)

Since 〈φ∗
λ, φ̃2(1) − h̄s(φ̄s

2, ε)〉 = 〈φ∗
λ, φ̄u

1 − h̄s(φ̄s
1, ε)〉 = ∆1 > 0, φ̄s

2 + φ̃s(1) ∈
Ω+(δ4, ρ, ε). Lemma 4.8 implies that

|π̃1(φ̄s
1 + φ̄u

1 , ε) − π̃1(φ̄s
2 + φ̃s(1), ε)|

≤ K9(δ4)[l(φ̄1, φ̄2, ε)]a(|φ̄s
1 − φ̄s

2| + |φ̄u
1 − φ̃2(1)|)

≤ (1 + K2δ
2
4)K9(δ4)[(φ̄1, φ̄2, ε)]a|φ̄s

1 − φ̄s
2|. (5.6)

Note that 〈φ∗
λ, φ̃2(1) − h̄s(φ̄s

2, ε)〉 = ∆1 > 0, but 〈φ∗
λ, φ̃2(0) − h̄s(φ̄s

2, ε)〉 = 〈φ∗
λ, φ̄u

2 −
h̄s(φ̄s

2, ε)〉 = ∆2 ≤ 0, there must exist 0 ≤ θ̃ ≤ 1 such that 〈φ∗
λ, φ̃2(θ)− h̄s(φ̄s

2, ε)〉 = 0
and 〈φ∗

λ, φ̃2(θ) − h̄s(φ̄s
2, ε)〉 > 0 for θ̃ < θ ≤ 1, which implies that φ̄s

2 + φ̃s(θ) ∈
Ω+(δ4, ρ, ε) for θ̃ < θ ≤ 1. By the definition of π̃1, π̃1(φ̄s

2 + φ̃2(θ̃), ε) = π̃1(φ̄s
2 +

φ̄u
2 , ε) = δ4/2. Thus, Lemma 4.8 implies that

|π̃1(φ̄s
2 + φ̃2(1), ε) − π̃1(φ̄s

2 + φ̄u
2 , ε)|

= |π̃1(φ̄s
2 + φ̃2(1), ε) − π̃1(φ̄s

2 + φ̃2(θ̃), ε)|
≤ K9(δ4)[l(φ̄1, φ̄2, ε)]a|φ̃2(1) − φ̃2(θ̃)|
= K9(δ4)[l(φ̄1, φ̄2, ε)]a|(1 − θ̃)[h̄s(φ̄s

2, ε) − h̄s(φ̄s
1, ε)] + (φ̄u

1 − φ̄u
2 )|

≤ (1 + K2δ
2
4)K9(δ4)[l(φ̄1, φ̄2, ε)]a(|φ̄s

1 − φ̄s
2| + |φ̄u

1 − φ̄u
2 |). (5.7)

Therefore, by (5.6) and (5.7), we have

|π̃1(φ̄s
1 + φ̄u

1 , ε) − π̃1(φ̄s
2 + φ̄u

2 , ε)|
≤ 2(1 + K2δ

2
4)K9(δ4)[l(φ̄1, φ̄2, ε)]a(|φ̄s

1 − φ̄s
2| + |φ̄u

1 − φ̄u
2 |),
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which means that π̃1 is Lipschitzian. �

For ε ∈ [−ε4, ε4], define

Wu
+(ε) = {φ : there exists t > 0 and ψ ∈ Wu

loc(ε) with

〈φ∗
λ, ψu − hs(ψs, ε)〉 > 0 and φ = ut(ψ, ε)}, (5.8)

φ1(ε) = Wu
+(ε) ∩ Σ(δ4/2, ε), (5.9)

where

Σ(δ4/2, ε) = {φ : 〈φ∗
λ, φ̄u − h̄s(φ̄s, ε)〉 = δ4/2, φ̄ = H(φ, ε)}. (5.10)

Fix 0 < ρ0 < δ4/2. Since H is near the identity map, there exists 0 < ρ1 < ρ0 and
0 < ε5 < ε4 such that

B(ρ1) ⊂ H−1(Ω(δ4, ρ0, ε), ε), ε ∈ [−ε5, ε5]. (5.11)

Let φ0 ∈ W s
loc(0) with |φ0| < ρ1 be fixed. By the continuity property of W s

loc(ε) in
ε, for every 0 < ρ < dist (∂B(ρ1), φ0), there exists 0 < ε6(ρ) < ε5 such that

B(φ0, ρ) ∩ W s
loc(ε) �= ∅, ε ∈ [−ε6, ε6], (5.12)

where B(φ0, ρ) = {φ̄ ∈ C : |φ̄s − φs
0| < ρ, |φ̄u − φu

0 | < ρ}. Define H × I : B(φ0, ρ) ×
[−ε6, ε6] → C × R by

(H × I)(φ̄, ε) = (H(φ̄, ε), ε)

and π̃1 × I : B(φ0, ρ) × [−ε6, ε6] → C × R by

(π̃1 × I)(φ̄, ε) = (π̃1(φ̄, ε), ε).

Thus π1 : B(φ0, ρ) × [−ε6, ε6] → C given by

π1(φ̄, ε) = H−1((π̃1 × I) ◦ (H × I)(φ̄, ε), ε) (5.13)

is well-defined. Notice that by (4.2) and (4.13),

|Dφ̄H(φ̄, ε)| ≤ 2 + K2δ
2
4 ,

|Dφ̄H−1(φ̄, ε)| ≤ 2 + K2δ
2
4

for (φ̄, ε) ∈ B(φ0, ρ) × [−ε6, ε6]. Thus, by Lemma 4.8, π1 is also continuous and
Lipschitzian in φ̄ and φ1(ε) is the unique intersection point of Wu

+(ε) and Σ(δ4/2, ε).
The above discussion can be summarized as a lemma.

Lemma 5.2. The map π1 : B(φ0, ρ) × [−ε6, ε6] → C defined in (5.6) satisfies:
(a) If |ε| < ε6(ρ), |φ − φ0| < ρ and 〈φ∗

λ, φu − hs(φ̄s, ε)〉 > 0, then π1(φ, ε) is the
intersection point of Σ(δ4/2, ε) and the solution orbit of (2.1) with the initial value
φ and parameter ε. If 〈φ∗

λ, φs − hs(φs, ε)〉 ≤ 0, then π1(φ, ε) = φ1(ε).
(b) π1(φ, ε) is continuous in (φ, ε) and is Lipschitzian in φ for each fixed ε.

5.2. Construction of the map π2. Let t0 > 0 be the time such that ut0(φ1(0), 0) =
φ0 and Γ̃0 = {φ : φ = ut(φ1(0), 0), 0 ≤ t ≤ t0} ⊂ Γ0. Define π2 : B(φ1(0), ρ1) ×
[−ε6, ε6] → B(ρ1) by

π2(φ, ε) = ut0(φ, ε). (5.14)
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By the differentiability of solutions to (2.1) with respect to initial values (see The-
orem 3.1), there exist 0 < ρ2 < ρ1 and 0 < ε7 < ε6 such that

|D(φ,ε)π
2(φ1, ε)| ≤ |D(φ,ε)π

2(φ1(0), 0)| + 1

for (φ1, ε) ∈ B(φ1(0), ρ2) × [−ε7, ε7]. Let

K10 = |D(φ,ε)π
2(φ1(0), 0)| + 1. (5.15)

Then for every 0 < ρ < ρ2 and 0 < ε ≤ ε7, π
2 is continuous and Lipschitzian with

Lipschitz constant K10.
5.3. Construction of the map π. Since φ1(ε) is continuous in ε ∈ [−ε6(ρ), ε6(ρ)]
for every 0 < ρ < dist (φ0, ∂B(ρ1)), there exists 0 < ε8(ρ) < ε6(ρ) such that

|φ1(ε) − φ1(0)| < K9(δ4)ρa+1, ε ∈ [−ε8(ρ), ε8(ρ)]. (5.16)

Let

ρ3 = min

{[
1

2K10K9(δ4)

]− 1
a

,

[
ρ2

2K9(δ4)

]− 1
a+1

, dist (∂B(ρ1), φ0)

}
,
(5.17)

ε9 = min{ε7, ε6(ρ2)}. (5.18)

Then 2K10K9(δ4)ρa
3 < 1/2 and the composite map

π(·, ε) = π2(π1(·, ε), ε) (5.19)

mapping B(φ0, ρ3) × [−ε8, ε8] into B(φ0, ρ3/2). By Lemma 5.2 and the defini-
tion of π2, π is continuous and is Lipschitzian in φ. The Lipschitz constant is
K10K9(δ4)ρa

3 < 1
2 by (5.17) and independent of ε ∈ [−ε8, ε8]. Thus, π is continuous

for every ε ∈ [−ε8, ε8]. We now summarize the properties of π in the following
result:

Theorem 5.3. (i) π is continuous and π(·, ε) : B(φ0, ρ3) → B(φ0, ρ3) is a contrac-
tion with a contraction constant less than 1

2 uniformly in ε ∈ [−ε8, ε8].
(ii) If φ ∈ B(φ0, ρ3) and 〈φ∗

λ, φu − hs(φs, ε)〉 > 0, then π(φ, ε) is on the orbit of
(2.1) containing φ. If 〈φ∗

λ, φs − hs(φs, ε)〉 ≤ 0, then π(φ, ε) is a constant map with
π(φ, ε) = π2(φ1(ε), ε).

(iii) For every ε ∈ [−ε8, ε8],

B(φ0, ρ3) ∩ {φ : 〈φ∗
λ, φu − hs(φs, ε)〉 > 0} �= ∅,

B(φ0, ρ3) ∩ {φ : 〈φ∗
λ, φu − hs(φs, ε)〉 ≤ 0} �= ∅.

6. The Proof of the Main Results. To prove Theorem 2.1, we need the
following lemmas.

Lemma 6.1. There exist ε9 > 0 and neighborhoods N1 of {0} and N2 of Γ̃0,
respectively, such that

(i) N(Γ0) = N1 ∪ N2 is a neighborhood of the homoclinic orbit Γ0;
(ii) if γ is an orbit of (2.1) at ε ∈ [−ε9, ε9] satisfying γ ∩ N1 �= ∅, γ ⊆ N(Γ0),

then
〈φ∗

λ, φu − hs(φs, ε)〉 > 0 for every φ ∈ γ ∩ N1;
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(iii) if φ ∈ N2 and ε ∈ [−ε9, ε9], then ut(φ, ε) ∈ B(φ0, ρ3) for some t > 0.

Proof. Let δ4, ρ and Ω(δ4, ρ, ε) be as in Lemma 4.5, and ε4 and S(δ4, ε) (see (5.3))
be as in Lemma 5.1. Define

Ñ(ε) = {φ : |φs| < δ4,−δ4/4 < 〈φ∗
λ, φu − hs, ε)〉 < δ4},

∂Ñ−(ε) = {φ : |φs| ≤ δ4,−δ4/4 = 〈φ∗
λ, φu − hs(φs, ε)〉}

(6.1)

for ε ∈ [−ε4, ε4]. Then

Ω(δ4, ρ, ε) ⊂ Ñ(ε), S(δ4, ε) ⊂ Ñ(ε), ε ∈ [−ε4, ε4]. (6.2)

By Lemma 5.1, for every φ ∈ Ñ(ε) ∩ Ω−(δ4, ρ, ε), there exists t > 0 such that
ut(φ, ε) ∈ ∂Ñ−(ε) for ε ∈ [−ε4, ε4]. Denote

N1 = H−1(Ñ(0), 0), ∂N−
1 = H−1(∂Ñ−(0), 0). (6.3)

Since H is continuous in ε, there exists 0 < ε10 < ε9 such that

N1 ⊃ H−1(Ω(δ4, ρ, ε), ε) ⊃ H−1(B(ρ0), ε) ⊃ B(φ0, ρ3),

N1 ⊃ H−1(S(δ4, ε), ε) = Σ(δ4, ε)
(6.4)

for ε ∈ [−ε10, ε10], where B(ρ0), B(φ0, ρ3), S(δ4, ε) and Σ(δ4, ε) are defined in
section 5. This implies the following properties:

(A) if φ ∈ N1 ∩ H−1(Ω−(δ4, ρ, ε), ε) \ W s
loc(ε) and ε ∈ [−ε10, ε10], then ut(φ, ε)

will leave N2 through ∂N−
1 ;

(B) ∂N−
1 is closed with Γ0 ∩ ∂N−

1 = ∅.
Thus, for t0 and Γ̃0 defined in section 5 and for every φ̃ = ut(φ1(0), 0) ∈ Γ̃0 there

exists ρ̃ = ρ̃(t) > 0 and ε̃ = ε̃(t) > 0 such that

B(φ̃, ρ̃) ∩ ∂N−
1 = ∅

and if φ ∈ B(φ̃, ρ̃), ε ∈ [−ε̃, ε̃], then

ut0−t(φ, ε) ∈ B(φ0, ρ3).

Note that
⋃

0≤t≤t0
B(φ̃, ρ̃) is an open cover of Γ̃0. By the compactness of Γ̃0, there

exists a finite open cover N2 =
⋃n

i=1 B(φ̃i, ρ̃i), where

φ̃i = uti
(φ1(0), 0), ρ̃i = ρ̃i(t), 0 < t1 < t2 < · · · < tn ≤ t0. (6.5)

Define ε10 = min1≤i≤n{ε̃(ti)} and N(Γ0) = N1 ∪ N2. Then N(Γ0) is an open
neighborhood of Γ0 ∪ {0}, which implies (i). Since N2 ∩ ∂N−

1 = ∅ and ∂N−
1 ⊂

∂N1 ⊂ ∂N(Γ0), by property (A), we obtain (ii). (iii) follows from the definition of
B(φ̃, ρ̃). �
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Lemma 6.2. There exist 0 < ε̄0 < ε10 and ρ̄ > 0 such that
(i) if (φ, ε) ∈ B(φ1(0), ρ̄) × [−ε̄0, ε̄0], then ut(φ, ε) ∈ N2 for all 0 ≤ t ≤ t0;
(ii) if ε ∈ [−ε̄0, ε̄0], then |φ1(ε) − φ1(0)| < ρ̄/4;
(iii) if φ∗(ε) is the unique fixed point of π and ε ∈ [−ε̄0, ε̄0], then

|〈φ∗
λ, φu

∗ − hs(φs
∗, ε)〉| < min

{
1
4
K10ρ̄, ρ3

}
,

where K10 and ρ3 are given in (5.15) and (5.17), respectively.

Proof. By Lemma 6.1, if φ ∈ B(φ1(0), ρ̃(0)) and ε ∈ [−ε9, ε9], then ut(φ, ε) is defined
for all 0 ≤ t ≤ t0. We claim that there exist 0 < ε10 < ε9 and 0 < ρ̄ < ρ̃(0) such
that for every (φ, ε) ∈ B(φ1(0), ρ̄) × [−ε10, ε10],

ut(φ, ε) ∈ N2, 0 ≤ t ≤ t0.

Suppose the contrary. Then there exists a sequence {(φk, εk, tk)}k with (φk, εk) →
(φ1(0), 0) as k → ∞ and 0 ≤ tk ≤ t0 for every k = 1, 2, . . . , such that

utk
(φk, εk) ∈ ∂N2.

Since [0, t0] is closed, without loss of generality, assume that tk → t0 ∈ [0, t0] as
k → ∞. Thus, limk→∞ utk

(φk, εk) = ut0(φ1(0), 0) ∈ Γ̃0, which contradicts Γ̃0 ⊂ N2.
This proves (i). (ii) and (iii) follow from the continuity of φ∗(ε) and φ1(ε) in ε. �
Lemma 6.3. Let N(Γ0) be the neighborhood of the homoclinic orbit Γ0 as in Lemma
6.1 and ε̄ and φ∗(ε) be as in Lemma 6.2. If γ is a periodic or homoclinic orbit of
equation (2.1) at ε ∈ [−ε̄0, ε̄0] and γ ⊆ N(Γ0), then φ∗(ε) ∈ γ.

Proof. If γ is a homoclinic orbit, then φ1(ε) ∈ γ and φ2(ε) = π2(φ1(ε), ε) ∈
B(φ0, ρ3), where ρ3 is defined in (5.17) and ε ∈ [−ε̄0, ε̄0]. Since γ ⊂ N(Γ0), by
Lemma 6.1(ii), γ ∩N1 ∩H−1(Ω−(δ4, ρ, ε), ε) = ∅. Theorem 5.3(b) then implies that

(π)k(φ2(ε), ε) ∈ γ, k = 0, 1, 2 . . . ,

where (π)k(φ2(ε), ε) = π((π)k−1(φ2(ε), ε), ε) is the kth iterate of π. Since γ ∩
W s

loc(ε) �= ∅, there exists K ≥ 0 such that (π)K(φ2(ε), ε) ∈ W s
+(ε). Once again

by Theorem 5.3,

π((π)K(φ2(ε), ε), ε) = π2(φ1(ε), ε) = φ2(ε),

which means φ2(ε) is a fixed point of πK+1, thus φ2(ε) = φ∗(ε). The case that γ is
a periodic orbit can be proved similarly. �

Proof of Theorem 2.1. Necessity. Suppose Wu
+(ε) ⊂ N(Γ0) for some ε ∈ [−ε̄0, ε̄0],

then Lemma 4.1 (iii) implies that Wu
+(ε) ∩ H−1(Ω−(δ4, ρ, ε), ε) = ∅. We claim that

φ∗(ε) /∈ H−1(Ω−1(δ4, ρ, ε), ε).

If not, by Theorem 5.3(b), φ∗(ε) = π(φ∗(ε), ε) = π2(φ1(ε), ε) ∈ Wu
+(ε), a contradic-

tion. Thus, π(φ∗(ε), ε) = φ∗(ε) ∈ γ, a solution orbit of equation (2.1). It follows
that γ is a periodic orbit.
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Let τ = τ(φ̄, ε) be as in Lemma 4.6 and

τ∗(ε) = τ(H(φ∗(ε), ε), ε).

By Lemma 4.6, ut(φ∗(ε), ε) ∈ N1 for 0 ≤ t ≤ τ∗(ε). By (5.17), the continuity of π1

and Lemma 6.2, we have

|π1(φ∗(ε), ε) − φ1(0)| ≤ |π1(φ∗(ε), ε) − φ1(ε)| + |φ1(ε) − φ1(0)| ≤ ρ̄/2,

where ρ̄ is given in Lemma 6.2. Thus, Lemma 6.1 implies that

ut+τ∗(ε)(φ∗(ε), ε) ∈ N2, 0 ≤ t ≤ t0.

Therefore, γ ⊂ N(Γ0).

Sufficiency. Let γ be a periodic orbit. Then Lemma 4.4 implies that φ∗(ε) ∈ γ.
Let φ2(ε) = π2(φ1(ε), ε) ∈ Wu

+(ε) ∩ B(φ0, ρ3) be as in the proof of Lemma 6.3 and
τ = τ(φ̄, ε) be as in Lemma 4.6. Define

φk
2(ε) = (π)k(φ2(ε), ε),

τk
2 (ε) = τ(H(φk

2(ε), ε), ε)

for ε ∈ [−ε̄0, ε̄0] and k = 1, 2, . . .
Claim A. φk

2(ε) ∈ H−1(Ω+(δ4, ρ3, ε), ε), ε ∈ [−ε̄0, ε̄0], k = 1, 2, . . . .
Suppose not, then there exists K such that

φK
2 (ε) ∈ H−1(Ω−(δ4, ρ3, ε), ε) ∪ W s

loc(ε)

and
φk

2(ε) /∈ H−1(Ω−1(δ4, ρ3, ε), ε) ∪ W s
loc(ε), k = 1, 2, . . . K − 1.

By Theorem 5.3(b), we have

π(φK
2 (ε), ε) = π((π)K(φ2(ε), ε), ε) = φ2(ε),

which implies that φ2(ε) is the fixed point of πK+1, thus, the fixed point of π.
Therefore φ2(ε) = φ∗(ε) ∈ γ. This contradiction proves the claim.

Claim B.
⋃

0≤t≤t0
{ut(φ1(ε), ε)} ⊂ N(Γ0).

By Theorem 5.3(b), φk
2(ε) ∈ Wu

+(ε) for every k = 1, 2, . . . . Thus, Lemma 6.3
implies the claim.

Claim C.
⋃

0≤t≤τ2(ε)+t0
{ut(φk

2(ε), ε)} ⊂ N(Γ0) for ε ∈ [−ε̄, ε̄0], k = 1, 2 . . . .
Theorem 5.3(a) and Lemma 6.2 imply that

|φk
2(ε) − φ∗(ε)| ≤

(
1
2

)k

|φ̃∗(ε) − φ∗(ε)|

≤
(

1
2

)k
K10ρ̄

4
,

where φ̃∗(ε) = φs
∗(ε) + hs(φs

∗(ε), ε) ∈ W s
loc(ε). Thus, by the continuity of π1, (5.17)

and Claim A, we have

|π1(φk
2(ε), ε) − π1(φ∗(ε), ε)| ≤ ρ̄/8.



HOMOCLINIC BIFURCATION IN PARTIAL FDES 1321

Hence
|π1(φk

2(ε), ε) − φ1(0)| < ρ̄/2 + ρ̄/8 < ρ̄,

this, together with Lemma 6.2(i), implies that

⋃
τk
2 (ε)≤t≤τk

2 (ε)+t0

{ut(φk
2(ε), ε)} ⊂ N2.

By the definition of N1 and Lemma 4.6, we have

⋃
0≤t≤τk

2 (ε)

{ut(φk
2(ε), ε)} ⊂ N1.

Therefore, Claim C is proved.
Given a φ ∈ Wu

+(ε), by Claims A, B, and C, φ is in either

⋃
0≤t≤t0

{ut(φk
2(ε), ε)} ⊂ N(Γ0)

or ⋃
0≤t≤τk

2 (ε)+t0

{ut(φk
2(ε), ε)} ⊂ N(Γ0)

for some k = 1, 2 . . . . Therefore, Wu
+(ε) ⊂ N(Γ0).

Finally, the exponentially asymptotic stability of γ follows from Theorem 5.3(a). �
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problem of the partial functional differential equation (1.2) can be studied using
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[Lin86, Lin90]. To extend Lin’s techniques and methods, however, one needs to
establish the exponential dichotomies and the Fredholm alternative for partial func-
tional differential equations. We shall study these issues in another paper [RZ02].
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