Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

DIFFERENTIAL
EQUATIONS

Editors-in-Chief Editorial Board
Shui-Hee Chow Sigurd Anganent
Juba Maliet-Paret dohn Ball
Kanstantin Mischaikow Alberto Bressan
Courtney Colaman
Founding Editors Avner Friedman
Juck K_Hale Sty le
J.P. LaSalle L
Crastow Olach

James Serrin
Marshall Slemrad
Wialter Strauss
Reger Temam
Sijsa Wy

Wirgtei Vi

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

]J. Differential Equations 249 (2010) 1410-1435

Contents lists available at ScienceDirect

Journal of Differential Equations RS

www.elsevier.com/locate/jde

Versal unfoldings of predator-prey systems with
ratio-dependent functional response ™

Shigui Ruan®*, Yilei TangP®, Weinian Zhang ¢

4 Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
b Department of Mathematics, Shanghai Jiao Tong University, Minhang, Shanghai 200240, PR China
¢ Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, PR China

ARTICLE INFO ABSTRACT
Article history: In this paper we study the versal unfolding of a predator-prey sys-
Received 17 October 2008 tem with ratio-dependent functional response near a degenerate

Revised 8 January 2010 equilibrium in order to obtain all possible phase portraits for its

perturbations. We first construct the unfolding and prove its ver-

I;ﬂfcc(')s sality and degeneracy of codimension 2. Then we discuss all its
34C60 possible bifurcations, including transcritical bifurcation, Hopf bifur-
92D25 cation, and heteroclinic bifurcation, give conditions of parameters

for the appearance of closed orbits and heteroclinic loops, and de-
Keywords: scribe the bifurcation curves. Phase portraits for all possible cases

Predator-prey system
Versal unfolding
Normal form

are presented.
© 2010 Elsevier Inc. All rights reserved.

Degenerate equilibrium
Heteroclinic loop
Bifurcation

1. Introduction

The dynamics of predator-prey systems has been favored by both biologists and mathematicians
since the well-known Lotka-Volterra model was brought forward (see [9,21]). Functional response is
a crucial and important concept in modeling predator-prey interactions, which describes the change
in the density of prey per unit time per predator. Traditionally, the functional response is regarded as
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a function of the prey density and is called a prey-dependent functional response. A typical example is
the Michaelis-Menten or Holling type II function p(x) = cx/(x +m) (see [9,21]).

It has been noticed that predator-prey models with prey-dependent functional response cannot
explain the experimental observations that the predators or both the predators and prey can either go
extinction or coexist in oscillatory modes depending on the initial populations densities (see [14,20]).
Also, such models cannot produce the so-called “paradox of biological control” phenomenon: durable
coexistence of prey with their predators at a mean abundance is much lower than the prey carrying
capacity (see [19,1]). To address these issues, Arditi and Ginzburg [2] suggested that the functional
response should be expressed in terms of the ratio of prey to their predators which is now called the
ratio-dependent functional response. Based on the Michaelis—-Menten or Holling type Il function, they
proposed the following ratio-dependent predator—-prey model

(1.1)

where x(t) and y(t) are the density of prey and predators at time t, respectively. All parameters
are positive constants, a is the prey intrinsic growth rate, a/b is the carrying capacity of the prey,
c represents the capturing rate of predators, d denotes the death rate of predators, f is the conversion
rate, and m is the half saturation constant. In the last decade, many researchers (e.g. [4,5,13,17,18,22,
26]) have paid their attention to this model and many interesting and novel dynamic behaviors have
been observed.

With the change of variables x — (a/b)x, y — (a/mb)y, t — (m/c)t and the transformation of
parameters « =ma/c, § =md/c, k =mf /c, system (1.1) can be transformed into an equivalent form

X _ax(1—x)— 2
dt x+y’ (12)
dy Byt KXy '
ar =~ PV E y’
which in turn is orbitally equivalent to the following system

dx )

. =x{ax+ (@ — 1)y —ax® —axy},

d; (1.3)

o =Yl —px—py}

after the re-scaling of the time variable dt = (x + y)dt, where x,y > 0 and «, 8, k are all positive.
Notice that system (1.3) is of Lotka-Volterra type.

System (1.3) has three equilibria (0, 0), (1,0) and (x*, y*) in the first quadrant, where x* = (ax —
K + B)/ak, y* = (k — B)x/B. The origin (0,0) is degenerate and great efforts [4,13,15,17,26] have
been made to understand its qualitative properties by means of Briot-Bouquet transformations and
generalized normal sectors. Transcritical bifurcation at (1, 0) and Hopf bifurcation at (x*, y*) have also
been discussed. The existence of a heteroclinic orbit connecting the equilibria (1,0) and (0, 0) was
proposed in [13] and discussed in [4,26]. Heteroclinic orbits have been further studied by combining
analytical method and numerical approach in [4,18,22,25].

The above mentioned bifurcations are induced by the change of parameters within system (1.2).
Actually, having so much degeneracy the system may be affected by other changes from outside but
within Lotka-Volterra systems. This motivates us to unfold bifurcations of the system completely near
the degenerate origin and display all possible phase portraits arising from perturbations in the class
of generalized Lotka-Volterra systems (called GLV systems for abbreviation)
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X xPx,y)
g; (14)
E = yQ(Xv y)a

where both P(x, y) and Q (x, y) are analytic functions.

In this paper we study the versal unfolding of system (1.3) near (0, 0) in the class of GLV systems.
We first reduce system (1.3) to a normal form and prove that its degeneracy is of codimension 2.
Then we present a versal unfolding for the system, study qualitative properties of the unfolding in
various cases, and discuss all possible bifurcations including transcritical bifurcation, Hopf bifurcation,
bifurcations of periodic orbits and heteroclinic loops. We give conditions on system parameters for
the appearance of closed orbits and heteroclinic loops and describe their bifurcation curves.

The rest of the paper is organized as follows. In Section 2 the system is reduced to its normal
form. The versal unfolding is presented in Section 3. The existence and properties of equilibria of the
versal unfolding are discussed in Section 4. Section 5 is devoted to the study of limit cycles, including
the existence and uniqueness. Section 6 deals with the existence of heteroclinic loops. Bifurcation
diagrams for all possible cases are given in Section 7.

2. Normal forms

The Jacobian matrix of system (1.3) at the origin (0, 0) is a zero matrix. We consider vector fields
in the family of GLV systems (1.4) with the same degeneracy

d
d_)t( = x{a10% + ao1y + a20%* + a11xy + a2y? + 0 (|x, )},
(2.1)
d
d_}t/ = y{b10x + bo1y + b2oX* + b11xy + bo2y* + O (|(x, y)|3)}.

First, we reduce (2.1) to the simplest GLV system which is orbitally equivalent to (2.1).

Lemma 1. Under the generic condition ag1bo1(bo1b10 — 2b10a01 +bo1a10) # 0, system (2.1) is orbitally equiv-

alent to
dx ~ 2 3
a :X{G]0X+ao1y+a20X + O(|(X’ _V)} )}’
(2.2)
d
d_‘f = y{b10x+b01y + O(|(X, y)‘B)}

near the origin (0, 0).

Proof. We need to use transformations which do not change the structure of GLV systems. Such
transformations can be chosen in the form

x=X(1+c1Xx+c2y), y=y(A+c3x+csy), dt=(+c5x+cgy)dt, (2.3)

where the spatial part of the transformation (x, y) — (x, y) is close to the identity near the origin.
Even if a constant cq is considered as one of its coefficients of degree 1, a simple dilation can reduce
co to 1. This transformation is obviously one-to-one near the origin, does not change the sign of time,
and transforms system (2.1) into the following
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dx . - S - .
d_)f( = x{a10% + ao1 ¥ + d20%* + 11Xy + do2y* + O (| (%, J’)‘B)},
- (2.4)
d . . I . L~ Y .
d_}f’ = y{b10X + b1y + b20%* + b11Xy + bo2* + O (| (%, J’)P)},

where

a0 = a10Cs + a20,
do2 = —bo1¢2 + ap1¢4 + ao1C6 + ao2,
a1 = —ap1¢1 + (a10 — b1o)c2 4 Ao1€3 + Ao1C5 + a10C6 + A11,
bao = b1oc1 — a10¢3 + b1ocs + bao,
boz2 = boics + boa,

b11 = b1oca + (bor — ao1)c3 — b1ocs + bo1¢s + b1ocs + b1

In order to make (2.4) coincide with (2.2), it is required that

d11 = doz = bag = b11 = bz =0, (2.5)
which is a system of linear equations in (cq, ..., cg). Under the condition that
W :=ap1bo1(bo1b10 — 2b10a01 + bo1aio) # 0,
the coefficient matrix of system (2.5) has the same rank as its augmented matrix. Thus we can solve
from system (2.5) that
1= {Zb%oamboz + b3,a11b10 — bo1a3boa — ao1b1ob11bo1 + 3aiob10ao1boz — b3ya02bor
— bo1b10a10boz2 — a10b10a02bo1 + bo1a3,b20 — ao1bo1ai1bio + aiob3a
— a10ao01b11bo1 + (béla% + b1obd,a10 — 2a10a01bo1b10)c2}/W,
3= {4b%0001b02 + b3 a11b10 + b3 a01b20 — 2a01b10b11b01 — bo1b10a1oboz
— 2b%sao2bo1 + (b1ob§ aio + b3gbg; — 2a01bo1bdy)ca}/W,
¢4 = {ao1boz — dozbo1 + b3 2} /{aotbot},
C5 = {b%0002b01 — b2,a01b20 — 2b3ya01boz — b3,a11b10 + bo1b10aioboz + arob10ao1boz
+ao1b1ob11bo1 — a10b10a02bo1 + bo1a3;b20 + ao1bo1a11b10 — aioaorb11bot Yw,
¢6 = —bo2/bo1,

where c; € R can be chosen arbitrarily. Hence, an appropriate transformation (2.3) is determined,
which transforms (2.1) into the normal form (2.2). O

Since system (2.1) has a zero matrix in its linear part, we cannot proceed the standard computation
of normal forms (as shown in [6,10]) to simplify the system. From (2.4) we see that the transformation
(2.3) does not change the coefficients a1g, ao1, b1o, bo1 of the terms of degree 2. We will concentrate
on the generic case that none of aig, ap1, b10, bo1 is zero. In the opposite cases higher codimensions
will be involved. In comparison with (2.1), system (2.2) clearly has the least number of coefficients
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and thus is called a normal form of (2.1), as being in the simplest form in the family of GLV systems
reduced with the structure-preserving transformation (2.3) near the origin.
From Lemma 1, there remains a case that the generic condition is invalid, i.e.,

Uz0(ai0, ao1, b1o, bo1) :=bo1b1o — 2b1oao1 + bo1aio =0. (2.6)

In this case our strategy is to give up the constant dyp but retain one of others. If we retain a1,
similarly to (2.5) we obtain another linear system of (c1, ..., cg) and the condition

U11(a10, ao1, b1o. bo1) :=aop1 — bo1 #0. (2.7)

Retaining dg>, 520, 511, and 502, we obtain the conditions

Uo2(a10, o1, b1o, bo1) := a0 — b10 #0, (2.8)
V20(a10, do1, b1o, bo1) = U11(a10, a1, b1o, bo1) #0, (2.9)
V11(@10, ao1, b1o, bo1) = Uo2(a10, a1, b1o, bo1) #0, (210)

Vo2(ai0, do1, b1o, bo1) := bo1aio + do1a10 — 2ap1b10 # 0, (211)

respectively. It is easy to see that the polynomials U;; and V;; have common zeros in the subset

z:= {((110, ao1, b1o, bo1) € Rg: ap1 = bo1, aio = bm}, (212)

where Rg := R\{0}. Therefore, out of Z we can transform Eq. (2.1) into the simplest GLV system as
in Lemma 1, where only one coefficient of degree 3 is retained. Concrete calculations show that the
normal forms under (2.11) are same as the one given in Lemma 1 by the homeomorphism (x, y) —
(¥, x). Similarly, the normal forms under (2.7) and (2.10) are the same and the normal forms under
(2.8) and (2.9) are the same by (x, y) — (¥, x).

Applying Lemma 1 to our system (1.3), we obtain its normal form

d ~
d_)t( =x{ax+ (@ — Dy +dz0x* + 0 (|(x, Y)‘B)}’

dy _
dt

(213)
v —px—By+0o(jx )},

where

. ook +20B —3ak — 2B + B2 — Bk + 2k)
DT T A — Rk —k + B) + Bk —a —B))

(2.14)

under the generic condition (1 — &){2(ak —k + B) + B(k —a — B)} # 0. If the generic condition is
invalid, as shown above we can obtain normal forms of system (1.3) of other forms, which can be
discussed similarly.
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3. Versal unfoldings

In order to give a versal unfolding of system (1.3), in what follows we consider the 3-jet of the
normal form (2.13)

dx .~ 9

I =x{ax+ (o — 1)y + dxx”},

dy (3.1)
I = y{( — B)x— By}

near the origin as the principal system [3], which is denoted by V. More generally, let £V (x) be the
space of germs at the point x = (x1, Xx2) € R? of vector fields in the family of GLV systems and, fixed a
neighborhood Uy of the origin in R?, let

v= [ Lve®.

§elp
A germ Ve €V at & € Ug defines a vector field of the GLV form

%—V(x) xelU (3.2)
dt_ 9 E? .

where Ug C Ug is a neighborhood of &.

Obviously, system Vj is at least of codimension 2. Its versal unfolding of exact codimension 2 is
the most fundamental and simplest situation. In order to give such a versal unfolding for V¢ in V, we
first need to describe the class of germs which have the same singularity as V. Actually, this class is

S={Ve e V| Vg satisfies (Hy), (H1), (H3)},
where

(H1) the linearization of Vg (x) at x=£ is [8 8];

(H3) the coefficients of the terms of degree 2 in the expansion (2.1) of Vg (x) satisfy

aijbij(aij — bij)(aiobo1 —ao1b10) #0, i,j=0,1,i#j;
(H3) the coefficients of the terms of degree 3 in the expansion (2.1) of V¢ (x) are not all equal to 0.
In fact, without (H) additional degeneracy will be caused as explained after the proof of Lemma 1.
Under (H3) the coefficients of (2.1) are out of Z as shown in (2.12), so hypothesis (H3) guarantees
that (2.1) can be reduced surely to a normal form as in Lemma 1. Being a non-degeneracy condition,

(H) together with (H3) is generic in order to achieve an unfolding of codimension 2. Actually, we
will prove that S forms a local submanifold of codimension 2 near Vg in V.

Lemma 2. The set S is a smooth submanifold of codimension 2 near Vy in ).

Proof. Let J¥ = {j*V: | V¢ €V}, where k € Z* and j¥V; is the k-jet of V¢ at &, which corresponds to
a truncated polynomial system of degree k. A natural projection 7y : V — J¥ can be defined by

Ve > (V(§),DV(E),..., D'V (&),
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where V is defined in (3.2) and D¥V (&) is the kth order derivative of V at x = &. Note that V (§) =0
since V is in the family of GLV systems.

First of all, we prove that 7t1(S) constructs a smooth submanifold of codimension 2 near 71(Vp)
in J1. By the definition of S, we have

(3.3)

aVv aVv

0Xq 0X>

where V1 and V, are components of V. The structure of the submanifold for 771(S) is observed from
the projection 71 to a finite-dimensional Euclidean space. The two equalities in (3.3) confine the
submanifold 771 (S) to be of codimension 2 near (Vo) in J'.

Next, we claim that for each k > 2 the set m(S) is also a smooth submanifold of codimension 2
near (Vo) in J¥. The structure of the submanifold for 7, (S) is observed similarly to the last step.
Define a projection 7 : J¥ — J1 such that

(V(E),DV(E).....D*V(®)) — (V(§). DV (&),

which is clearly a regular submersion. Hence, the map mj; intersects 71(S) C J! transversally. By
Theorem 3.3 in [12] (p. 22), 7'[,51(711 (S)) is a smooth submanifold in J¥ and the codimension of

nk_]](m (S)) in J¥ is the same as the codimension of 1 (S) in J!, i.e.,
codim JTk_ll (1(S)) = codim 71 (S) = 2, (3.4)

as shown in the last paragraph. On the other hand, m(S) C Jrk_ll(m(S)). Actually, 7, (S) consists
of those in 7T,:11(7T1 (S)) with restrictions (Hy) and (Hs3). Furthermore, m,(S) is an open subset of
Jrk_ll(zr] (S)) near mi(Vy) because of the strict inequalities (Hy) and (H3). It follows from (3.4) that
in _]k,

codim . (S) = 2. (3.5)

Since 7y is a smooth submersion from V to J¥, we know that 7, intersects m(S) C J¥ transver-
sally. As above, Theorem 3.3 in [12] also implies that S = nk_](nk(S)) is a smooth manifold in V
and

codim S = codim JTk_] (7k(S)) = codim i (S) =2
by (3.5). It means that S is a smooth submanifold of codimension 2 in V. O

By Lemma 2, a versal unfolding of (2.13) has at least two unfolding parameters. Having the GLV
form, a natural unfolding of system (2.13) near the origin is

dx =2
o = Fax+ (@ =Dy +a00°} = Xy, 40,

(3.6)
dy

e y{2+ k= B)x— By} =Y, y, 1),

where = (w1, 42) denotes the tuple of the unfolding parameters near (0, 0) and the condition

(@—-Dk =Pk —a—p) A —a—pB)ak +p—Kk)ax#0 (3.7)

is required by the non-degeneracy conditions (H) and (H3).



S. Ruan et al. / ]. Differential Equations 249 (2010) 1410-1435 1417

Now we can state and prove the main result of this section.
Theorem 3. System (3.6) with (3.7) is a versal unfolding of system (1.3).

Proof. Let V(u) = (V1i(x,y, 1, 42), Va(x, y, i1, u2)) denote the family of vector fields in the form
of (3.6). Clearly, V(0) = Vg € S. In order to prove the transversality of V (i), define a map g:R?> — J3
by

e 73(V () = (V (), DV (), D2V (1), D>V (w)).

It suffices to prove that g intersects 3(S) C J3 transversally at 3(Vg). Consider an open neighbor-
hood U of u = 0. By condition (H{) we have DV () = 0 at the intersection g(l{) Nm3(S), i.e.,

9 i
VI Y s ) = i + 20X+ (@ = 1y +3d30x° =0,

5 (3.8)
@Vz(x, Vo1, m2) =p2+ (k —B)x =2y =0
as in (3.3). Furthermore, the Jacobian matrix of g at ;& = 0 contains a sub-matrix
v v
8;/,1 ( =) 3#2 ( =) 1 0
3V2 3V2 0 1 ’ (39)
T m S T m (5y")

which has rank 2. Therefore, the Jacobian matrix of g is of full rank, implying the transversality of g.
Furthermore, we can show that a general versal unfolding of (1.3), i.e.,

dx

I {1 +ax+ (@ — 1)y —ax® —axy + pn3y*},

d; (3.10)
i = y{p2 + (k — B)x — By + pax® + pwsxy + pey*}

can be reduced to system (3.6) by a series of equivalent transformations. Let ©u = (11, U2, U3, 44,
s, e). Consider the transformation

x=X(14+ wix+w}y), y =51 +w3X+ way), dt = (1 4+ wsx+wgy)dt, (3.11)

where wy = —pu3/B — (@ — De/B% + O(|l?), wa =0, wg = jug/p and

={a(B® - Bx —B—Kka+k)/((1 —a)(2k —2ka —2B + B> — Bk + aB))}
+{(38% =3Bk +ap — 2B — 2ka + 2k)(—k + BB/ ((a — D) (—2ka + ap + 2«
+p%2—28— ,3/()3)},u1 —{(B* —2B%* +a*B —2ap + PK* — 2ka* + 2k )
/(B — 1) (ap — 2k + 2k + p* = 28 — Bi)) huus + { (@ — 1)/ (26 — 2k + B
+B% =28 — B) fpa+ {(B - — k) /(2 — 2ka + af + B* — 2B — pr) } i
—{@k =2k —2B+ap)(B* —a —ap — fr +a?)
/(B = 1)(2 =2k +f + B2 =28 — k) fius + O (Iul),
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w3 ={(k — Bap/((@ —1)(ap —2ka + 2« + p* =28 — px))} — {(38% — 3Bk +ap — 28
— 2k +2k) (B — k) B/ ((a — 1)* (26 — 2k +aB + B* — 28 — ,8/{)3)},ul
+{( = B)(B* +2B — Bx —af + 2k — 2k) /(B — 1) (e — 2K x
+ 2K+ B2 =28 — Brc)) s — {B/ (B — 2k + 2k + B% — 28 — Bic) b 1na
+{2(8 —x)/(2k — 2k +af + B> — 2B — Br) }us
—{(=k + B)(2aBp* —38% +3ap — 3Bk + 3Bk — B — 2B + 2k — 4k + 2k )
/(B* (@ — D)(=2ka + af + 2k + B> — 28 — ) Jus + O (I1l?),

ws = {a(a + B — (B —K)/(( — 1)(—2ka +af + 2k + 2 — 2B — Bk))}
+{Ba* (@ + B —1)(B —K)(38% =3Bk +af — 2B — 2k + 2k)

J(( =12 (@B — 2ca + 26 + % = 28 — Bic))
+{B-)B—k+a)/((@—1D(aB —2ka+2k + 2 — 28 — Br)) } i3
+{(@—1+p8)/(af — 2k + 2k + p* — 2B — Bx) } 114
—{(B—k+a)/(ap —2ka + 2K + > =28 — i)} us

+{(B—K)(p —2B+0® — o + 2k — 2k x)

/(B —1)(af —2ca + 2k + % =28 — Bic)) Jus + O (1ul?).

As in (2.3), the transformation (3.11) preserves the structure of GLV systems and changes system
(3.10) into

dx ) S
d—}f =& + (@ + e (W)X + (¢ = 1+ €2(W))§ + G0 (WX},
t (3.12)

= = i{ua + (k= B+ es()X+ (=B +ean)7),

where €1 (i) = (Ws —w1) 1, €2(0) = Wel1 — W L2, €3(U) = —W3 1+ W52, €4(1) = (W — Wa) U2,
d20(p) = aoo0+ O (||) and ayg is given in (2.14). In order to reduce (3.12) to the same form as in (3.6),
we use the change of variables

x=ax, y=by, [=I/c, (3.13)

where @ = adizo()/ (@ + €1 ()20, b = o?( — 1+ €2(11))a20(1) /(¢ + €1(1))% (¢ — 1)dzo and € =
a?lro(1) /(o + €1())%ang, which transforms (3.12) into

x ) I
E:x{c,ul + oX+ (a0 — 1)y + d20%° },
d—?=5/{5m+ E(K—ﬂ;€3(u)))—(+ c(—p +_e4(uu))y}.

This system is clearly the same as (3.6) with the new parameters

CB-eap)
T a

c(k —,3:|-€3(M)) LB

M1 i=CUq, M2 1= Ccu2, B =
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Observe that a = (1 — e1()/a + O(||®)(A + 0(ju])) =1+ O(Jw]). Similarly, b=1+ O(|m]) and
¢ =1+ 0(|u|). Therefore, =B+ 0(|u|) and k — B =k — B+ O(|u]). It implies that, as B and «, the
new parameters 8 and & satisfy the non-degeneracy condition (3.7). Moreover, transformations (3.11)
and (3.13) are both orientation-preserving homeomorphisms. Hence, system (3.6) is a versal unfolding
of system (1.3). O

4. Equilibria
We first discuss the qualitative properties of equilibria for the versal unfolding (3.6). It has at most
six equilibria in the first quadrant: (i) O = (0,0), (ii) Bg = (0, u2/B) (exists if wy > 0), (iii) Ag =

(x4, 0) (exists if w1 < 0), (iv) A1 = (x_,0) (exists if ayp < 0), (v) Co = (Xg, yo) (exists if &g > 0,
Zop > 0), and (vi) C1 = (x1, y1) (exists if @1 > 0, &1 > 0), where

_ —Bu1+ 1 —a)u;

o

k]

oK + B —k
o _ B—p o
=0 ak +B8—Kk
oK + B —k
1=
—Baxo
,;]:(ﬁ—K)(OlK—i-,B—K)
B2azo ’
—a 4 a? — 4axo g m1 G 5 3
= — - —_—— = — O s
Xt 220 o a3 M7 + (“’Lll )
—a —Ja? —4a o 1
X_ = = o0 _ X —p1 + 0 (|1 l?),
2az0 a o
—(ak + B — k) F/(ak + B — k)% — 4drp? 1 — 4axB(a — D
‘o — B Vv B« B2 B 12 _ o0 1 o (up),
2a308
0:M2+(K—5)X0
ﬁ 9
—(ak —K) £ (ak —K)2 —4ay9B2% 11 — 4azB (o — 1
g = Z(o B0 (e + B — k)% — Aliz0B 1 — Aliz0( 2 _ o 4 o).
2a308
n2 + (k — B)x
1= B .

The sign  in the expression of xo depends on whether ok +8—x < 0 or > 0, and similarly in x;. The
last two equilibria lie in the interior of the first quadrant but the remaining four lie on its boundary.

Theorem 4. System (3.6) has at most six equilibria: O, Bg, Ao, A1, Co, and Cq in the first quadrant as defined
above.

(i) O is anode (resp. saddle) when 1y > 0 (resp. < 0).
(ii) By is a stable node (resp. saddle) when w1 — (1 — o)/ B) 2 < 0 (resp. > 0).
(iii) Ag is an unstable node (resp. saddle) when o — ((k — B) /o)1 > 0 (resp. < 0).
(iv) Aq is a stable node (resp. saddle) when B — k > 0 (resp. < 0).
v) Cop is either a saddle when ak — k + 8 > 0 or a node (or focus) when ek — k + 8 <O.
(vi) Cq iseither a saddle when (ax —k + 8)(k — B) < 0 or a node (or focus) when (ak —k + 8)(k — 8) > 0.
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Moreover, O, Ag and Bg are saddle-nodes when (. lies on the (1-(or (u2-) axis and on the curves

K_
QagCy = {(Ml» n2) ‘ M2 = T'BIM + O(|l/~1|2), m1 < 0},

QByCoy = {(Ml,,uz) ‘ M2 = fam, H2 >0},

1

respectively, all of which are transcritical bifurcation curves. Cy is a stable weak focus with multiplicity 1 when
w lies on the Hopf bifurcation curve

Bk —o — B)

+0 ) ak—k+B<0, 0 >0, Zg>0},
a(oz+,3—1)'u1 (I11) B 0 0 }

OH 1={(M1,M2)‘M2=

and a unique stable limit cycle arises when uy — B(k — o — B)pu1/(x(x + B — 1)) > 0 (resp. < 0) is small
fora+ B —1>0(resp. <0).

Proof. (i) It is easy to see that O = (0,0) is a node (resp. saddle) when iy > 0 (resp. < 0). In
particular, O is an unstable (resp. stable) node if both @y > 0 and uy > 0 (resp. both @1 <0 and
2 < 0). In the case that 1 =0 and uy #0 or w1 #0 and py =0, the equilibrium O is degenerate.
In the first case, from Y (x, y, #) =0 in (3.6) we know that the branch passing through the origin is
the curve y = ¢(x, ) = 0. Thus, we consider zeros of the function

X(x, 0, ), ) = p1x + ax® + dyox’ (4.1)

for bifurcations of equilibria, where X(x, y, u) is also defined in (3.6). As in [10] (Section 3.4) we
know that O is a saddle-node when @{ =0 and a transcritical bifurcation occurs in system (3.6)
when p; #0 and w@q passes through 0. Actually, the equilibrium Aq is bifurcated from O as @ #0
but it does not lie in the first quadrant as @1 > 0. In the other case, i.e., ;1 #0 and u, =0, we solve
for x=¢(y, u) =0 from X(x, y, u) =0 and discuss zeros of the function

Y(o(y, 1), ¥, i) = 2y — By*. (4.2)

Similarly, we know that O is a saddle-node and the equilibrium By arises from a transcritical bifur-
cation in system (3.6) near O.

(ii) The same phenomenon also happens at By = (0, (2/8), which exists in the first quadrant only
when uy > 0. In fact, the linearization of system (3.6) at By has eigenvalues w1 — ((1 —«)/8)u2 and
— 2. Discussion on the signs of eigenvalues gives the properties of Bg. When w1 — ((1 —a)/B)u2 is
near 0, as in (4.1), we similarly derive from (3.6) a function

X1(x, ) = (1 — (1 — )2/ B)x + (ak + B — K)X*/ B + X’

The dependence of its zeros upon u gives the bifurcations of equilibria for system (3.6). From this
function we know that By is a saddle-node when w1 = ((1 — a)/B)u2 and the equilibrium Cy arises
from a transcritical bifurcation in system (3.6) near By.

(iii) Similarly, Ag = (x4, 0) exists in the first quadrant only if @ < 0. The linearization of system
(3.6) at Ag has eigenvalues

(—a + o2 — 4azxop1)y/o? — 4ax /i
ro1 = v 20 v =—p1 + 0 (Ju1l?),

(kK — B)(—ot + ou? — 4drope1) _

2020

K_
ro2 = M2 + Mz—Tﬁm-l-O(I/MIZ)-
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Discussion on the signs of Lg; and Ay gives the properties of Ag. When ) — ((k — 8) /)41 is near 0,
as in (4.2), we similarly derive from (3.6) a function

Y1(y, ) = (12 — (c — Bypa/a + 0(In1l?))y — ((ax + B — 1) /) y* + O (IyP).

The dependence of its zeros upon pu yields the bifurcations of equilibria for system (3.6). From this
function we know that Ag is a saddle-node when w; = ((k — 8)/a) 1 + O (|ie1]?) and the equilibrium
Cop arises from a transcritical bifurcation in system (3.6) near Ag.

(iv) A1 = (x_,0) is a simple equilibrium which exists in the first quadrant only when ayy < O.
More precisely, the linearization of system (3.6) at A; has eigenvalues

(a4 Va? —Adypur)v/a? —Aappnr o

)\. po - + O | | ’
! 2az0 azo (1)
(kK — B)(—a —a? —4dxm) (B —Ka
Ay =2+ 2o = + 0 (Ipl).

None of them is zero for small || because of the requirement (3.7). Since 8 # «, discussion on the
signs of Aq and XA, gives the properties of A;. We see that A; is a stable node (or saddle) when
B—k >0 (or <0).

(v) Consider Co = (xo, yo), which exists in the interior of the first quadrant only if ®y > 0 and
Zo > 0. The linearization of system (3.6) at Co has trace and determinant

—a—pur—a@+p—1
T, = HE S R o ),
(oo — po 4t B) (=18 + K b1 — o) 3
DCO— O[K—K—l—,B +O(|I’L| )

Thus Cp is either a saddle when D¢, < 0 or a node (or focus) when D¢, > 0. In particular, when Cy is
a node (or focus) it is stable (resp. unstable) when T¢, <0 (resp. > 0); i.e., (B(k —a — )1 — (o +
B—1u2)/(ak —k +B) <0 (resp. > 0). If Tc, =0, ie., o = (B(k —a—B) /e +B—1)) w1 +0(|n1]%),
and Tgo —4Dc, <0, ie, ak —k + B <0, a Hopf bifurcation may occur at Co. Compute the first
Liapunov value

1 [3a08%(a — Dk —a — p)>

1:—2{ 5 +O(|,u|) #0 (4.3)
w5 | 16 (k — B)(ak + B — k)

by (3.7). It implies that Cy is a weak focus with multiplicity 1. Note that the inequality ox —k +8 <0

implies that 8 <« and o < 1. Therefore,

5120 < 0. (4-4)

In fact, when k <a + 8 <1 (resp. 1 < + 8 < k) we have ddyp/dk > 0 (resp. < 0). The monotonicity
in x implies that ayp < o(o —2)/2(1 — ) < 0 (resp. dyo < /(o — 1) < 0) since Kk < & + B (resp. Kk >
B/(1 —a)). In the remaining case, i.e., « + 8 < min{1, k}, we consider the monotonicity of n(«, 8, k)
and §(«, B, k), the numerator and the denominator of dyy respectively, in B. It is easy to see that
an/9B <0 and 38/9p > 0. For k < 1, we have that § < ak(k — 1)(a — 1) < 0 since B < k(1 — a).
Therefore Gy = a®(k — B)(a + B —1)/(—8) —a < 0. For « > 1, similarly we can see that 1 > o(k —
D —1)2>0and § < (1 —k)(@ —1)% <0 since B <1 — «, implying that dyg < 0. For k =1, we
calculate directly that ayo =« (2 —a — B)/(1 —a)(B —2) < 0. From (4.3) and (4.4) we see that L1 <0
and Cp is stable. Thus, the Hopf bifurcation curve Qp is well defined as in the statement of the
theorem.
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(vi) C1 = (x1, y1) is a simple equilibrium which exists in the first quadrant when &, > 0, &7 > 0.
We can compute the trace T¢, and determinant D¢, of the linearization of system (3.6) at Cq as
follows:

(ak —k +B) KB — B2 —apf + 20k — 2k +2B)
= - +
az0p?
_ (ak —Kk+B)>3 K —B)
1 a3’

Tc,

O (Iul),

D¢ +0(|ul).

Thus Cy is either a saddle when D¢, < 0 or a node (or focus) when D¢, > 0. More concretely, when
Cy is a node (or focus) it is stable (resp. unstable) when T¢, < 0 (resp. > 0); i.e., (ak —k + B) (kB —
B% —ap +2ak — 2K +2p) /a0 < 0 (resp. > 0). O

5. Limit cycles

As known in Section 4, the only possible equilibria in the interior of the first quadrant are Cy
and Cq. Thus limit cycles (if exist) surround either Cy or C;. In what follows we first prove that there
is no cycle surrounding C1. Then we discuss the cycles surrounding Cy in the case

ak + B8 —k <0, (5.1)
because this equilibrium is a saddle in the other case.
Theorem 5. When B8 < k, otk + B —k > 0 and a9 < 0, system (3.6) has no closed orbits in the first quadrant.

Proof. In this case the possible closed orbits surround the equilibrium C; since C; lies in the interior
of the first quadrant and Cy is a saddle if it exists. Note that the interval | between —3 and —(ax +
B—Kk+ B+ B—«k))/(ak + B — k) is nonempty. In fact, the denominator of ayg contains the factor
81(a, B,k) =2(ak + B — k) + B(k —a — B), which is nonzero by the non-degeneracy condition (3.7).
It is easy to show that —3 < —(axk + B — Kk + B¢+ B — k))/(ak + B — k) (resp. >) if §1(«, B, k) >0
(resp. < 0). For arbitrarily chosen ¢ € J, consider a Dulac function

W(X, y) ::le(Ol—2ﬂ—1+L(Ol—l))/ﬂ (52)

and discuss the divergence of the modified vector field WX(x, y, ), WY (x, y, i)). Assume that the
system has a closed orbit y in the first quadrant. Since the y-axis coincides with a union of orbits,
the distance p between the y-axis and y is a definite positive constant. Therefore, divOVX, WY) has
zeros in the region S = {(x, y): x> p/2, y > 0}. On the other hand,

. 9 3
divOVX, WY) = — (WX(x, y, jv) + @(WY(X, Y. 1)

a—pB—14ot—1t K(o, B, k)
M2+ —

5 5 X+ (+ 3)&20x2 }

=W, y){(t+ D+ (
(5.3)

where K(o, B, k) =ak + B8 —k + (¢ + B — k) + t(ak + B — k). One can check that K(«, 8,k) <0
(resp. > 0) and (¢t + 3)azg < 0 (resp. > 0) when 61 (c, 8, k) > 0 (resp. < 0). Thus, when 81 (c, 8,k) >0
we have

K(x, B,k) p

2
divOvX, WY) < W(x, y){ 3 5 +( +3)&20<§) + O(|M|)} <0
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in S for sufficiently small |@|. In the other case we can also prove that divOVX, WY) > 0. This
contradicts the existence of zeros of the divergence in S. The proof is completed. O

Next we discuss closed orbits around the equilibrium Cg. In the case of (5.1), by Theorem 4,
a unique stable limit cycle can arise from a Hopf bifurcation at Co when parameters pass through the
bifurcation curve Q. Now we further discuss the existence and uniqueness of the cycle for parame-
ters not close to the Hopf bifurcation value and prove that the cycle will disappear as a heteroclinic
loop arises.

Theorem 6. Suppose that o, 8, k satisfy (5.1) and o 4+ B < 1. Then system (3.6) has a closed orbit in the first
quadrant for small (41, ju2) in the region

Bk —a—B)

2
oz(oc-i——,B—])'u] + 0 (11l )}

SLi= {(m,uz) eR* |1 >0, sy <

which lies on the right half plane but below the Hopf bifurcation curve Q.

This result will be proved by using the Poincaré-Bendixson Theorem. An observation at equilibria
at infinity makes it more convenient for us to construct an outer boundary in the proof.

Lemma 7. System (3.6) has two equilibria at infinity, Iy and I, in the first quadrant locating on the posi-
tive half x-axis and y-axis, respectively. Moreover, I is a stable (or unstable) node if o > 0 (or < 0). I is
degenerate with a saddle sector when o + 8 < 1 and d»p < 0.

Proof. With the Poincaré transformation x = 1/z, y = u/z and a change of time dt = dt/z?, system
(3.6) is reduced to

du -
g = deout (k —a— Puz+ (1 — o — Puz+ (u2 — p1)uz’,
(5.4)
d -
é = —Gy0z —Z® + (1 —a)uz® — 1 2°.

On the u-axis system (5.4) has only one equilibrium (0, 0), i.e., off the y-axis system (3.6) has exactly
one equilibrium Iy at infinity in the first quadrant, locating on the positive half x-axis. Eigenvalues of
(5.4) at (0, 0) are both the same —ayg. Thus, the equilibrium is a stable (or unstable) node if d;o > 0
(or < 0).

With another Poincaré transformation x=v/z, y =1/z and the same change of time, system (3.6)
is rewritten as

dv ~ 3 2 2
E:(a-}—ﬁ—l)vz-i—azov + @+ B—Kk)vz+ (U1 — U2)vZT,

dz
o= BZ2 + (B — K)VZ? — 22>,

(5.5)

Obviously, Iy = (0, 0) is a degenerate equilibrium of (5.5), i.e., system (3.6) has a degenerate equilib-
rium I, at infinity on the positive y-axis. With the polar coordinates v =rcos6,z =rsinf, system
(5.5) is reduced to

1dr  H(@®) +o(1)

TR s 0,
rdo GO +o(1)
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where G(9) = sin®6cosf(1 — ), H®O) = B sin 6 + (o + B — 1)sin@ cos? 6. Function G has exactly
two zeros 0 and 7t /2 in the first quadrant, which are both possible exceptional directions [23,28].
Obviously, the v-axis and z-axis each coincides with an orbit. We hope to know others except for
these two. Clearly, 6o = 7t /2 is a simple zero of G and satisfies H(w/2) =8 >0, G'(m/2)H(r /2) =
B(a — 1) < 0. It follows that exact one orbit leaves Iy in 6y = 7 /2, by Theorem 6 in Chapter 5 of [23]
(or Theorem 3.7 in Chapter 2 of [28]).

We have difficulties with the direction 63 = 0 since it is a double zero of G and satisfies H(0) =0
and G’(0)H(0) = 0. In such a situation no theorems in [23] and [28] are applicable. However, from
(5.5) we see that dz/dv < 0 near Iy in the interior of the first quadrant. By Lemma 4 in [24], no
orbits connect with Iy in 6y =0 in the interior. So the unique orbit, which approaches Iy, lies on the
positive v-axis. O

Proof of Theorem 6. Under condition (5.1) we have B8 < k, o < 1. Moreover, dyg < 0 by (4.4). As
defined in Theorem 4, the curves Qa,c, and 9p,c, lie in the third and first quadrant of the (w1, ®2)-
plane respectively. The inequalities @y > 0 and Z( > 0 in the definition of the Hopf bifurcation curve
Qp imply that Qp lies in the first, forth and third quadrant, respectively, when «, 8, ¥ satisfy condi-
tions k <a+pB <1, o+ B <min{l,k} and 1 <o + B < k. In our case, @ + 8 < 1, as stated in the
theorem. Thus it suffices to discuss the case k <o + 8 <1 and the case a + 8 < min{1, k}.

In the first case, we prove the existence of closed orbits by the Poincaré-Bendixson Theorem [11]
for (i1, m2) in the sub-regions

Bk —a —B)

Pk —a—p) 2
a(a+5—1)“1+0(|’“| ). M >0}

Sg = {(,ul,,uz)eRz O<ux <

and Sf, the closure of the fourth quadrant.

For (w1, 1) in SLI, by Theorem 4, system (3.6) has an unstable node O = (0, 0), two saddles A1 =
(x—,0) and By = (0, u2/8), and an unstable node or focus Cy = (Xg, yo). Moreover, at infinity it has an
unstable node I and a degenerate equilibrium I, with a saddle sector, as shown in Lemma 7. System
(3.6) has a vertical isocline V': y = (G0x*> + ax + i1)/(1 —«) and a horizontal isocline H': y =
((k — B)/B)x + u2/B uniquely in the interior of the first quadrant. Obviously, V' passes through A;
and Cp and intersects the y-axis at D = (0, w1/(1 — «)), a point located above the equilibrium By
because

1—«a

n1 > (T)MZ (5.6)

in Sg, which follows the fact that B(k —a — B)/(x(x+ 8 —1)) < 8/(1 — ), i.e, the curve Qg lies
below Qg,c,, under condition (5.1) and the assumption k <« + 8 < 1 for the first case. Similarly, H’
passes through By and Cg. We will show that the curve of the unstable manifold W’go of By goes

around Cg and intersects ' at a point E, between By and Cg so that the arc B/OE\* of this curve and
the segment E,By on H' compose the outer boundary for the application of the Poincaré-Bendixson
Theorem.

Firstly, the saddle By has its stable manifold Wgo on the y-axis and its unstable manifold Wgo
with the slope (k —B8)u2/(Bu1+ (¢ +B—1)uu2) at By, which is greater than 0 but less than (x —8)/8
by (5.6). Thus, Wg’o lies below H’ and above the positive x-axis but cannot go through the segments

O A1 and OBy by the uniqueness of solutions and the qualitative properties of O and A;. Moreover,
Wg’o cannot go back to intersect the open segment ByCy on H’ because

Xl =xQ1(X) (5.7)
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I‘l‘ [T e H! I.__.

T

Fig. 1. Left: Outer boundary for u € SLl. Right: Outer boundary for u € SZ‘.
by (3.6) and the quadratic function

Q1(x) = dz0x* + ((ak + B —k)/B)x+ w1 + (( — 1)/B) 2

is positive for x € (0, xg). In fact, dyg < 0 by (4.4) and Q1(x) has its zeros at x; < 0 and xy > 0 by
Theorem 4. Since Cy is unstable, Wgo has to intersect with the arc of V' between A; and Cy at a
point Ej.

Secondly, on the parabola V' we have

Yy =yQa(x), (5.8)

where the quadratic function

Q2(x) = (—Biz/(1 — a))x* — ((ak + B — k) /(1 — )X+ pa — (B/(1 — &) i

is positive for x > xo because dyp <0 and Q3 (x) also has zeros at x; < 0 and xg > 0. Thus all orbits
from the arc A;Co of V' leave the region surrounded by 0A;, A;Co, CoBo and BoO by the convexity
of the parabola. The repellency of the equilibrium I, at infinity forces Wg’o to intersect H’ outside
the segment BoCy. Let E, denote the intersection point.

Obviously, X < 0 at E; by (5.7), i.e., as an orbit the curve Wgo penetrates 7' at E; from one side
to the other. Thus, thirdly, such a curve will finally intersect V' again on the open arc CoD by the
repellency of I, and the uniqueness of solutions. We denote the intersection point by Es. Similarly,
we also know that W penetrates V' at E3 and enters the region surrounded by CoD, DBy and BoCo
since x=0, y <0 at E3 by (5.8) and the slope of V" at E5 is a positive number. At last, the repellency
of Cy and By forces Wgo to intersect H’ again on the open segment BoCp of ' at a point E,.

Thus, as shown in Fig. 1(left), the closed curve BoEﬁfz\EgE* U E.Bo makes an outer boundary,
from which no orbits leave the closed region surrounded by this closed curve. Since the equilibrium
Cp is unstable, the Poincaré-Bendixson Theorem ensures the existence of a closed orbit in this closed
region.

For (41, t2) in S#, by Theorem 4 and Lemma 7, system (3.6) has the same situation of equilibria
as for (i1, u2) in S}, except Bg disappears and O becomes a saddle. Moreover, in this case system
(3.6) has the same vertical isocline V' and horizontal isocline H’ as for (w1, (2) in Sg. Similarly, V'
passes through A; and Co and intersects the y-axis at the same point D as above, but H’ passes
through Cg and intersects the positive x-axis at the point Dy = (—ua/(k — B8), 0), which obviously
lies on the left-hand side of A; for small |uy|. We claim that the unstable manifold W}L(1 of A goes

around Cp and intersects ' at a point E,, between A; and Cp so that the arc A;E/ of W/L{] and the

arc ﬁ of V' compose the outer boundary for application of the Poincaré-Bendixson Theorem.
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Firstly, the saddle A has its stable manifold Wﬁh on the x-axis and its unstable manifold le
with the slope (k + o — B)/(a — 1) + O(Jit|) <0 at Aq. Note that the slope of V' at Ay is o/(x —
D+O0(u) and (k +a — B) /(¢ — 1) <o /(. — 1) < 0. It follows that WX1 lies on the right-hand side
of V' near Aj. By repellency of Ay, Co and Iy and the uniqueness of solutions, ijh has to intersect
either ' outside the closed segment DCy or the open arc 1‘\/1?0 of V'. However, the second option is
impossible because on the parabola V' we have y|y» = yQ2(x) > 0 for x > xo by (5.8). Let Eq denote

the intersection point for the first option.
Using the same arguments as in the case of S}, we know that ij‘1 penetrates 1’ at E| from

one side to the other because x =xQ1(x) <0,y =0 at E} by (5.7). After penetration, the repellency
of I, and Co forces Wfq’l to intersect V' again on the open arc CoD. Let E/, denote this intersection
point. Furthermore, as an orbit le has to enter the region surrounded by CO/\D, DO, 0Dq and DGy

because x =0,y = yQ2(x) <0 at E, by (5.8) and the slope of the parabola V' at this point is a
positive number. For the same reason, the repellency of Co and O forces le to intersect H’ again

at a point E/3 on the segment DCy.
Finally, x=xQ1(x) > 0, y =0 at E} by (5.7), which implies that W/‘L{] enters the region surrounded

by CoD1, D1A1 and the arc A/la) of V'. Therefore, the repellency of Cy and A also forces it to inter-

o —

sect V' again at a point E/, on the arc A1Co. As shown in Fig. 1(right), the closed curve A1E}E,ESE, Ay
makes an outer boundary, from which no orbits leave the surrounded closed region. The Poincaré-
Bendixson Theorem implies the existence of a closed orbit in this closed region.

The discussion in the subcase when o + 8 < min{1, k} is totally a repetition of that for u € SZ‘ in
the subcase when k¥ < o 4+ 8 < 1. Similarly we obtain the existence of a closed orbit and the proof of
the theorem is completed. O

We now study the uniqueness of the closed orbit given above. It suffices to discuss the uniqueness
under condition (5.1) and the condition that ®y > 0, &y > 0. These conditions guarantee that Co =
(%0, Yo) is not a saddle and xg > 0, yg > 0, respectively, as shown in Theorem 4 and in the proof of
Theorem 6. Our strategy is to reduce system (3.6) to the form of a generalized Liénard system

{X=¢(Y)—F(X), (5.9)

y=-2x)

and apply a known result (Theorem 1.1 in [16]) on the uniqueness of limit cycles, which is a modifi-
cation of Z.-F. Zhang’s Theorem in [27] as given in [7,8]. For this purpose, re-arrange terms in system
(3.6) in the order of the powers of y, i.e.,

{k:fb@)—FNMy, (5.10)

¥ =G0y + G2(0y?,
where Fg(x) = x(j41 + ax + dz0x?), F1(x) = (1 — o)X, G1(X) = 2 + (k — B)x and G, (x) = —B. Then,

we need some transformations to eliminate terms containing the product xy in the first equation of
(5.10) and lower the degree of the second one of (5.10) in y. The two transformations

X=X, y=Fo(x) — F1(X)y, (5.11)

and

X X

X=X, u:&exp(/E(w)dw), df:exp(—/E(w)dw) de, (5.12)

X0 X0

where E(x) = (G2(x) — F{(x))/F1(x), change system (5.10) into
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X=u,
X X

I =—%x) eXD(fZE(w)dw) — u¥(x) exp(f E(W)dw>, (5.13)

X0 X0

where

Wo(x) = FoX) { F1()G1(X) + Fo(x)G2(x) } /F1 (%),
W1 (x) = —Fp(X) — G1(X) + {F1 (0 Fo(X) — 2Fo(X)G2(X) } / F1(X).

Obviously, the first equation of system (5.13) has the simplest form and the degree of the second
equation is lowered by 1. Another transformation

X

X=X, v=1u— Fp(x) exp(f E(W)dw) + Fo(xp) (5.14)

X0
changes system (5.13) further into

X

x=v+ Fo(x) exp(/ E(W)dW> — Fo(x0),

X0
X

e F1(x)G1(x) + Fo(x)G2(X) exp(/ E(w)dW> (v — Fo(x0)),

F1(x)

X0

a form in which variables are separated in the first equation by addition and in the second equation
by multiplication. Note that Fo(xg) = F1(Xg)Yo = (1 —a)Xpyo > 0 because o < 1 by (5.1), and that v <
Fo(xg) because F1(x) = (1 — a)x > 0 implies that y < Fo(x). Therefore, u — Fo(x) exp(f;; E(w)dw) +
Fo(xg) < Fo(xp). So 1 —v/Fg(xg) > 0 and the transformation

v
Fo(xo)

X=x, j/:lﬂ(l— > dt = —Fo(xg) dt (5.16)

can be applied to reduce system (5.15) to the form (5.9), where

D(y)=e’ -1, F(X)=;OO((;;)) exp(/E(w)dW>_1,
] I (517)
~ F1(0)G1(X) + Fo(x)G2(x)
gx) = Fo(xo)F1 (0 exp(/ E(W)dW).
Xo

Theorem 8. System (3.6) has at most one closed orbit in the interior of the first quadrant under condition (5.1)
and the inequalities « + 8 < 1 and

Bk —a—Bur +a(l —a—B)uz <0. (5.18)

Moreover, the closed orbit is stable if it exists.
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Proof. Clearly, transformations (5.11), (5.12), (5.14) and (5.16) are all one-to-one for x > 0 and y > 0,
so it is equivalent to discuss the uniqueness of closed orbit of system (5.9) for x > 0. With those
transformations, the coordinates of the equilibrium Cy = (xg, yo) of system (5.10) is translated into
(x0, 0) for system (5.9). From (5.17), we calculate

X

o -
Fo0 Py — (20200 = 2020 + G0p)X* + (e + B — Dx+ B exp(/E(W)dw)

Fo(xo)(1 — )

X0

X

. Q®
gx) = Fo(xo) exp(f E(w)dw),

X0

where Q> (x) is defined in (5.8). Clearly, @'(y) =eY > 0 for all y e R and g(xg) =0, (x—xg)g(x) > 0 for
0 < x # xo by the properties of Q»(x) as shown below (5.8). Thus conditions (i) and (ii) in Theorem 1.1
in [16] hold. In order to verify condition (iii), we calculate

o _ _ 2 x
f(XO):{ﬂ(K a— B —ala+p ”“”O('“')}exp(/g(w)dw)>o, (519)

oK + B —k

X0

where the negativeness of the denominator and the numerator is guaranteed by (5.1) and (5.18). On
the other hand,

d (fo h(x)
- = for 0 5.20
dx(g(x)) Qoe—1 rOSrF (5:20)

where

h(x) = 20 (20k + 2B — 2k + Bk — P — B*)x°

+ 26202811 + (B +2a =2 pa)x — (Blk —a — Bp1 +a(l —a — pua).

Note that the coefficient of x? in h(x) is equal to dx08(ct, B, k)/(1 — ), where §(«, B, k), the denomi-
nator of ayg, is less than 0 in the case when o + 8 < min{1, x} as defined and proved after (4.4) in the
proof of Theorem 4. Since we assume in Theorem 8 that o +f < 1, the other case is k <a+ 8 <1 by
(3.7). In this case it is obvious that §(«, B, k) < 0 under (5.1). Moreover, dyg <0 by (44)and 1 —« >0
as implied by (5.1). Thus the coefficient of x? in the quadratic function h(x) is positive. On the other
hand, (5.18) implies that the discriminant A of h(x) satisfies

00

A =4 (26101 + (B + 20 — 2)p1a)° +4< )(ﬂ(lc —a— B+l —a —pu)

1—-«a

206
=4< “2°a){ﬂ<x —a =Py +a(l —a = Bz + 0(jul?)} <0.

This implies that h(x) > 0 for all x € R, i.e., (d/dx)(f(x)/g(x)) <0 for 0 < x # xo, by (5.20). Together
with (5.19) it proves condition (iii) in Theorem 1.1 in [16]. Therefore, system (3.6) has at most one
closed orbit which is hyperbolic if it exists. Furthermore, conditions (5.1) and (5.18) imply that the
equilibrium Cg is an unstable focus or node as shown in the proof of Theorem 4. Hence, the limit
cycle is stable if it exists. O
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CLaocs

[] Ay

o

Fig. 2. Bifurcation diagram in case (C1) when 8 <k, ¢ <1, 0k +B8—k <0and 1 <o+ <«.

6. Heteroclinic loops

Notice that (5.18) describes a region below the line puy = (B(k — o — B)/a(o + 8 — 1))u1 in the
(1, 2)-plane and the Hopf bifurcation curve Qp is tangent to this line at the origin. Since exact one
limit cycle can be produced from the Hopf bifurcation, we assure by Theorem 8 that in the region S;
system (3.6) has exact one limit cycle when o+ 8 < 1. From Theorem 4 we know that the slope of the
curve Qa,c, is larger than that of the line under (5.1). Thus we also assure the uniqueness of a limit
cycle in the subset of the third quadrant between the negative wy-axis and the curve Q ,c,, as shown
in Fig. 2, when o + 8 < 1. If this limit cycle exists, it lies between the vertical lines £g: x = x4 (resp.
the positive y-axis) and £¢1: x =x_ if Ag = (x4, 0) exists (resp. not) in the first quadrant, because
Xx=(x—1)x;y <0 on £p\{Ap} and x= (¢ — 1)x_y < 0 on £1\{A1}.

Up to now, the existence of limit cycles remains unclear for (i1, (2) in the open subset Sf of
the third quadrant between Qa,c, and the negative pp-axis. In the other case, ie, 1 <a + 8 <k,
which has not been dealt with previously, the Hopf bifurcation curve Qp lies in SL3 but the result of
existence of limit cycles is also uncomplete in Sf.

The following theorem gives a further answer.

Theorem 9. Under condition (5.1) there exists a curve Q; in the (i1, w2)-plane on which the limit cycle of
system (3.6) arising from the Hopf bifurcation disappears, while a heteroclinic loop of (3.6) connecting Ag with
A1 exists. The curve Qy lies in the region Sf. In particular, it lies between Q a,c, and Qp in the third quadrant
ifl<oa+p<k.

Proof. We still discuss two cases: (i) k <a+ B8 <1 or o+ <min{l,x} and (ii) 1 <o + B8 < k.
As known in Theorem 4, for (w1, u2) € Qayc, system (3.6) has no equilibria in the interior of the
first quadrant, implying that no closed orbits exist in the first quadrant. On the other hand, for u :=
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(U1, m2) € Sp system (3.6) has a closed orbit in the first quadrant by Theorem 6. Thus, the continuity
of the vector field implies that in case (i) there exists a parameter boundary Q; between the curves
Qayco and Qy in Sf, as shown in Fig. 2, on which the closed orbit disappears. Obviously, Q; cannot
coincide with Qp. In what follows we prove that Q; does not coincide with Qa,c, and a heteroclinic
loop I7 exists when u € Qj.

For ;1 € S?, both Ag and A; are saddles. Let I"(w) denote the limit cycle of system (3.6) for a given
i € S;. By the continuous dependence of solutions on parameters, the limit I"(ft) = lim,_, heq, ' (1)
is an invariant set. Obviously, I" (1) is also connected. Since Theorem 8 implies that I"(u) is stable,
i.e., the w-limit set of an orbit, we can see that I" (1) is also an w-limit set of an orbit, whose positive
semi-orbit is bounded because the two equilibria at infinity in the first quadrant are both repellent.
A corollary of the Poincaré-Bendixson Theorem (Theorem 1.3, Chapter II, [11]) implies that I"(jt) is
either a single equilibrium which has to be Cg, a closed orbit, or a closed curve containing equilibria
and a set of orbits connecting these equilibria. However, I"({t) is not Co because Cp remains an
o-limit set of an orbit. The definition of Q; prevents I'(ft) from being a closed orbit. For the third
option, the only candidates of equilibria in the closed curve I'(fi) are O, Ag and A;. By the qualitative
properties of these equilibria, the curve I"(ft) contains a heteroclinic orbit from A to either O or Ao.
Assume it contains the orbit from A; to O. Then the saddle A has a stable manifold Wjo connecting
with Cg. As u is sufficiently close to the curve O; on the side of existence, the limit cycle I'(u)
exists and passes through a sufficiently small neighborhood of Ag close to the curve I'(/i), but the
stable manifold W} (u) of the saddle Ao is also close to Wy . It turns out to contradict the fact
that Wj\o () N I'() # @. Therefore, I'(f1) is a closed curve consisting of saddles A; and Ap and
the heteroclinic orbits as shown in Fig. 2, called a heteroclinic loop and denoted by I7]. Actually, the
boundary Q; defines a bifurcation curve for the heteroclinic loop.

Now we can see that the bifurcation curve Q; cannot coincide with the bifurcation curve Qa,c,.
Otherwise, when parameters lie on Qa,c,, the equilibrium Cp coincides with the unstable node Ap.
Therefore, the unstable manifold of the saddle A; in the first quadrant has to extend to the equilib-
rium O at the origin, which implies that the heteroclinic loop I connecting Ag and A; does not
exist. This contradicts the existence of heteroclinic loop I'y when parameters lie on Q;.

Case (ii) can be discussed similarly. The proof is completed. O

7. Bifurcation diagrams

Summarizing the above theorems, we can give bifurcation diagrams for parameters (1, t2 and the
corresponding phase portraits for system (3.6) in terms of «, 8 and «.

(C1) B<k,a<l,ak+B—k<0and 1 <a + B <k (see Fig. 2).
(C2) B<k,a<l,ak+B—k <0and k <a+ B <1 (see Fig. 3).
(A3) B<k,x<1l,ak+B—k <0and o+ B <min{1, k} (see Fig. 4).
(C4) B<k,x<1and ok + B8 —k > 0 (see Fig. 5).

(C5) B<k,a>1,ax + B —k >0 and dyy < 0 (see Fig. 6).

(C6) B<k,a>1,ak + B —k >0 and ay > 0 (see Fig. 7).

(C7) k <B,aa<1,ax + B —k >0 and ay > 0 (see Fig. 8).

(C8) k <B,a<1,ax + B —k >0 and ay < 0 (see Fig. 9).

(C9) k <B,1<a,ak + B —k >0 (see Fig. 10).

Conditions in cases (C1)-(C4) and (C9) naturally imply dyg < 0.

In the case that the non-degenerate conditions (H) and (H3) (or equivalently the condition (3.7))
are invalid, the versal unfolding of system (2.13) is of codimension > 3. However, those cases of «, 8
and « which satisfy (3.7) may include some deformations of such a higher degenerate vector field.
So our discussion as above actually gives results of those versal unfoldings of higher codimensions
partially.

It has been demonstrated (see [4,5,13,17,18,22,26]) that predator-prey systems with ratio-
dependent functional response exhibit very rich and complex dynamics. These dynamical behaviors



S. Ruan et al. / ]. Differential Equations 249 (2010) 1410-1435 1431

“2 Qsoco ¥

Fig. 3. Bifurcation diagram in case (C2) when 8 <k, <1l,ak +B8—k <0and k <a+ 8 < 1.
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Fig. 4. Bifurcation diagram in case (C3) when 8 <k, @ <1, ok + 8 —k <0 and « + 8 < min{1, k}.
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Fig. 6. Bifurcation diagram in case (C5) when 8 <k, @ > 1, ak + 8 —k > 0 and ay <O.
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Fig. 8. Bifurcation diagram in case (C7) when kx <8, @ <1, ax + B —k > 0 and a9 > 0.
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Fig. 10. Bifurcation diagram in case (C9) when k <8, 1 <, ak + 8 —« > 0.
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are very sensitive to the initial values and the system parameters. These small changes can be under-
stood as small perturbations of the system but are difficult to estimate. An effective approach is to
discuss all possible small perturbations and explore its all possible phase portraits. That is the reason
we investigate its versal unfoldings.

In the case (C3), for example, the bifurcation diagram is shown in Fig. 3. If (u1, u2) lies above
the bifurcation curve Qa,c, but below the wi-axis, all orbits starting from an initial point in the
interior of the first quadrant eventually go to the origin. Hence, both the predators and the prey go
to extinction. If (w1, w2) lies below Qp,c, and to the right of the w;-axis, the predators and the
prey coexist in a regime of fixed populations or periodic oscillations because all orbits in the interior
approach an equilibrium Cp or a stable limit cycle. If (w1, 2) lies between Q) and the uy-axis, the
orbits above the stable manifold of the saddle Ag go to the origin but those below approach a stable
limit cycle or the heteroclinic loop Iy formed with the stable manifold. Therefore, the predators and
the prey either both go to extinction or coexist in a regime of bounded oscillations. If (w1, u2) lies
between Qa,c, and Qp, all orbits go to the origin except the one at the source Cqo or on the stable
manifold of the saddle Ag. That is, the predators and the prey generically go to extinction. Similarly,
we can explain the other cases (C1)-(C9).
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