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Abstract. Freedman and Xu [J. Math. Biol., 31 (1993), pp. 513–527] proposed two chemostat-
type competition models with nutrient recycling. In the first model the recycling is instantaneous,
whereas in the second, the recycling is delayed. They carried out the equilibrium analysis and
obtained persistence criteria for the models. In this paper, by applying the method of Liapunov
functionals we study the global asymptotic stability of the positive equilibria of the models. We
also generalize the results to the multispecies competition models with instantaneous and delayed
nutrient recycling, respectively. Differing from the dynamics of the usual chemostat models, we find
that the competing populations could coexist if there is nutrient recycling and they compete directly.

Key words. competition model, nutrient recycling, time delay, Liapunov functional, global
stability

AMS subject classifications. 34K15, 34K20, 92A15

PII. S0036139996299248

1. Introduction. An important factor among the many processes which in-
fluence ecosystem dynamics is nutrient (material) recycling. The effect of nutrient
recycling on ecosystem stability and persistence has been studied by Antonios and
Hallam [1], DeAngelis, Bartell, and Brenker [10], Nisbet and Gurney [18], Nisbet,
McKinstry, and Gurney [19], Powell and Richerson [20], Ruan [21, 22], and Ulanow-
icz [26], etc. Usually, nutrient recycling is regarded as an instantaneous term, thus
neglecting the time required to regenerate nutrient from dead biomass by bacterial
decomposition (Svirezhev and Logofet [25]. However, in natural systems such as a
lake, there is generally a residence time of nutrient and sediments measured in years
(Powell and Richerson [20]). Thus a time delay is always present in a natural system
and it increases when temperature decreases (Whittaker [27]).

In order to model the growth of planktonic communities in lakes, where the plank-
ton feeds on a limiting nutrient supplied at a constant rate, such as unicellular algae
feeding on phosphorus, Beretta, Bischi, and Solimano [3] proposed a chemostat-type
model with delayed nutrient recycling. They supposed that the limiting nutrient is
partially recycled due to bacterial decomposition of dead planktonic biomass and used
a distributed delay to model the nutrient recycling in order to study its effect on the
stability of the positive equilibrium. In [7], Bischi studied the effect of the time delay
on resilience, the rate at which a system returns to a stable steady state following a
perturbation. Bischi showed that if the system is characterized by oscillating behavior,
an increase of the time delay involved in nutrient recycling can have a stabilizing effect.
This is counterintuitive to the usual observation that time delay has a destabilizing
effect in the sense that increasing the time delay could cause a stable steady state to
become unstable and/or cause the population to fluctuate (Cushing [9], Gopalsamy
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[12], Kuang [16], and MacDonald [17]). Recently, Beretta and Takeuchi [4–6] and He
and Ruan [13] studied the global asymptotic stability of the positive equilibrium by
applying the Liapunov functional method. For other related work, we refer to Beretta
and Takeuchi [4–6] and Ruan [23].

Freedman and Xu [11] extended the single-species model proposed by Beretta,
Bischi, and Solimano [3] to two-species competition models with instantaneous and
delayed nutrient recycling. Their models differ from the usual chemostat models (see
Butler and Wolkowicz [8], Hsu [14], Hsu, Hubbell, and Waltman [15], Smith and
Waltman [24], etc.). First, a chemostat model is thought of as referring to a stirred
tank with a substantial washout rate. Hence all “death” in chemostat models is due
to washout. Second, there is no direct competition between the two microorganisms.
Third, there is no nutrient recycling. Freedman and Xu developed persistence and
extinction criteria for the competing populations. But they did not study the global
stability of the positive equilibrium.

Our goal in this paper is to discuss the global asymptotic stability of the mod-
els proposed by Freedman and Xu [11] and of the n-species competition models with
instantaneous and delayed nutrient recycling. Namely, we consider the following com-
petition model with delayed nutrient recycling:

Ṡ = D(S0 − S)−
n∑
i=1

µiNip(S) +
∫ ∞

0
F (u)

( n∑
i=1

biDiNi(t− u)
)
du,

Ṅi = Ni

[
−(D +Di) +mip(S)−

n∑
j=1

δijNj

]
, i = 1, 2, . . . , n,

(1.1)

and its special cases, where S(t) denotes the nutrient concentration and Ni(t) (i =
1, 2, . . . , n) is the competitor concentration at time t.

In system (1.1), S0 is the input concentration of the limiting nutrient; D is the
washout rate; µi (i = 1, 2, . . . , n) is the maximal nutrient uptake rate of the ith
competitor; Di (i = 1, 2, . . . , n) is the linear component of the ith competitor’s death
rate, whereas δii (i = 1, 2, . . . , n) is its quadratic component; δij are the competition
coefficients; mi (i = 1, 2, . . . , n) is the maximal conversion rate of the nutrient into
planktonic biomass; bi (i = 1, 2, . . . , n) is the recycling rate of the ith competitor.
Notice that system (1.1) can be thought to represent a real lake system, so the washout
rate D is small and other plankton death rates Di (i = 1, 2, . . . , n) are significant.

We assume that the competing microorganisms are sufficiently similar that their
nutrient uptake functions have similar properties, that is, have similar geometrical
shapes with different maximal values. These maximal values represent a saturation
effect in the nutrient uptake. In system (1.1), p(S) is the nutrient uptake function
and satisfies the following properties:

p(0) = 0, p′(S) > 0, lim
S→∞

p(S) = 1.(1.2)

In particular, the Michaelis–Menton function p(S) = S/(k + S) satisfies the assump-
tions, where k > 0 is the half-saturation constant.

We also assume that the competing populations are sufficiently similar in their
uptake of nutrient so that the resultant delays are the same. The kernel F : R→ R+

is continuous and satisfies∫ ∞
0

F (u) du = 1, Tf =
∫ ∞

0
uF (u) du <∞.(1.3)
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The solutions of system (1.1) exist for all t ≥ 0 under the initial conditions

S(0) = S0 > 0, Ni(u) = φi(u), i = 1, 2, . . . , n, u ∈ (−∞, 0],(1.4)

where φi (i = 1, 2, . . . , n) are positive linear continuous functions on (−∞, 0].
The paper is organized as follows. In section 2, we first consider the two-species

competition model with instantaneous nutrient recycling. The two-species competi-
tion model with delayed nutrient recycling is discussed in section 3. In section 4, we
generalize the results in sections 2 and 3 to the n-species competition models with
instantaneous and delayed nutrient recycling, respectively. Finally, a discussion and
numerical simulations are presented in section 5.

2. Competition models with instantaneous nutrient recycling. Let S(t)
denote the nutrient concentration and Ni(t) (i = 1, 2) be the competitor concentration
at time t. To model a real lake system, it is reasonable to expect that direct com-
petition occurs between two microorganisms. We consider the following two-species
competition model with instantaneous nutrient recycling:

Ṡ = D(So − S)− (µ1N1 + µ2N2)p(S) + b1D1N1 + b2D2N2,

Ṅ1 = N1[−(D +D1) +m1p(S)− (δ11N1 + δ12N2)],(2.1)

Ṅ2 = N2[−(D +D2) +m2p(S)− (δ21N1 + δ22N2)]

under nonnegative initial values

S(0) = S0 ≥ 0, Ni(0) = Ni0 ≥ 0, i = 1, 2.

THEOREM 2.1. All solutions of (2.1) are bounded.
Proof. As in the proof of Theorem 2.5 in [11], let

V (S,N1, N2) = S(t) +
µ1

m1
N1(t) +

µ2

m2
N2(t).(2.2)

Then, along the solutions of (2.1),

V̇ = D(S0 − S)− µ1

(
D +D1

m1
− b1D1

µ1

)
N1 − µ2

(
D +D2

m2
− b2D2

µ2

)
N2

− µ1

m1
δ11N

2
1 −

(
µ1

m1
δ12 +

µ2

m2
δ21

)
N1N2 −

µ2

m2
δ22N

2
2 .

(2.3)

Let γi = (D +Di)/mi − biDi/µi (i = 1, 2). If γi > 0 for i = 1, 2, then the conclusion
follows from Theorem 2.5 in [11]. Now let us first suppose that γi ≤ 0 for i = 1, 2.
We rewrite (2.3) in the following form:

V̇ = D(S0 − S)− µ1γ1N1 − µ2γ2N2

− µ1

m1
δ11N

2
1 −

(
µ1

m1
δ12 +

µ2

m2
δ21

)
N1N2 −

µ2

m2
δ22N

2
2

= D(So − S)− µ1

m1
δ11

(
N1 −

γ1m1

2δ11

)2

− µ2

m1
δ22

(
N2 −

γ2m2

2δ22

)2

−
(
µ1

m1
δ12 +

µ2

m2
δ21

)
N1N2 +

µ1γ
2
1m1

4δ11
+
µ2γ

2
2m2

4δ22
.

(2.4)
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Thus, outside the region of the positive cone bounded by the three positive coordinate
planes and by the surface

DS +
µ1

m1
δ11

(
N1 −

γ1m1

2δ11

)2

+
µ2

m1
δ22

(
N2 −

γ2m2

2δ22

)2

+
(
µ1

m1
δ12 +

µ2

m2
δ21

)
N1N2 = DS0 +

µ1γ
2
1m1

4δ11
+
µ2γ

2
2m2

4δ22
,

V̇ is negative and hence the boundedness follows. For the remaining cases when
γ1γ2 ≤ 0, a similar argument can be used. This completes the proof.

Remark 2.2. In Theorem 2.5 in [11], the boundedness of the solutions is guaran-
teed under the condition (D+Di)/mi > biDi/µi for i = 1, 2. Obviously, Theorem 2.1
improves Theorem 2.5 in [11].

We note that E0 = (S0, 0, 0) is always an equilibrium for the system (2.1). The
following result about the stability of E0 was proved in [11].

THEOREM 2.3 (Theorem 2.3 in [11]). Suppose that

mip(So) < D +Di, i = 1, 2,(2.5)

and

mibi < µi, i = 1, 2.(2.6)

Then limt→∞(S(t), N1(t), N2(t)) = E0.
In fact, the condition (2.5) in Theorem 2.3 is also necessary.
THEOREM 2.4. E0 is local asymptotically stable if and only if (2.5) holds.
Proof. The linearized system of (2.1) at E0 is given by

ẋ(t) = −Dx+ [−µp(S0) + b1D1]y1 + [−µp(S0) + b2D2]y2,

ẏ1(t) = [−(D +D1) +m1p(S0)]y1,

ẏ2(t) = [−(D +D2) +m2p(S0)]y2.

(2.7)

From (2.7), one can easily obtain the conclusion.
Notice that inequalities (2.5) and (2.6) can be rewritten as

S0 < min
{
p−1
(
D +D1

m1

)
, p−1

(
D +D2

m2

)}
(2.5a)

and

bi <
µi
mi

, i = 1, 2.(2.6a)

Inequality (2.5a) means that the nutrient input concentration S0 is very small. In-
equality (2.6a) means that the nutrient recycling rate bi of the ith competitor is less
than the ratio of its maximal uptake rate and maximal conversion rate. Thus, the
above results indicate that if there is not enough nutrient input and the nutrient
recycling rates are relatively low, then no population can survive indefinitely.

Giving more detailed analysis on the proof of Theorem 2.4 in [11], we can obtain
the following necessary and sufficient condition on the existence of a unique nonneg-
ative equilibrium Êi in the S − Ni plane, i = 1 or 2, which is an improvement of
Theorem 2.4 in [11].
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THEOREM 2.5. System (2.1) has a unique nonnegative equilibrium Êi with Ŝi < S0

in the S −Ni plane if and only if

p(S0) >
D +Di

mi
for i = 1 or 2.(2.8)

Proof. As in the proof of Theorem 2.4 in [11], let Ŝi and N̂i be the coordinate
components of Êi in the S −Ni plane and denote αi = D +Di and βi = biDi. Then
Ŝi and N̂i must be the roots of the following equations:

N̂i =
mi

δii

[
p(Ŝi)−

αi
mi

]
,(2.9)

Ŝi = S0 − miµi
Dδii

[
p(Ŝi)−

αi
mi

] [
p(Ŝi)−

βi
µi

]
.(2.10)

Define two functions φ and ψ on [0, S0 + T ] by

φ(S) : =
1
2

[
αi
mi

+
βi
µi

+
((

αi
mi
− βi
µi

)2

+
4Dδii(S0 − S)

miµi

)1/2]
,

ψ(S) : =
1
2

[
αi
mi

+
βi
µi
−
((

αi
mi
− βi
µi

)2

+
4Dδii(S0 − S)

miµi

)1/2]
,

where T = miµi(αi/mi − βi/µi)2/4Dδii. Then Ŝi is a root of (2.10) if and only if

p(Ŝi) = φ(Ŝi) or p(Ŝi) = ψ(Ŝi).(2.11)

Sufficiency. We first prove that, under the condition (2.8), system (2.1) has
a unique nonnegative equilibrium Êi with Ŝi < S0. Indeed, ψ(S) is increasing on
[0, S0 + T ] and

ψ(S0 + T ) =
1
2

[
αi
mi

+
βi
µi

]
.

We consider the following two cases.
Case 1. αi/mi > βi/µi. Following the argument of the proof of Theorem 2.4 in

[11], one can derive N̂i < 0, which is impossible.
Case 2. αi/mi ≤ βi/µi. Suppose N̂i > 0 and there exists Ŝi < S0 such that

p(Ŝi) = ψ(Ŝi). Then it follows from (2.8) that p(Ŝi) > αi/mi, which implies

βi
µi
− αi
µi

>

[(
βi
µi
− αi
µi

)2

+
4Dδii(So − Ŝi)

miµi

]1/2

.

Squaring both sides in the above inequality, one can see that Ŝi > S0, which contra-
dicts Ŝi < S0. Hence Ŝi must satisfy p(Ŝi) = φ(Ŝi).

Since φ(S) is decreasing, φ(0) > 0 = p(0), and φ(S0) = αi/mi < p(S0) by (2.7),
there must be a unique Ŝi ∈ (0, S0) such that p(Ŝi) = φ(Ŝi) and, consequently, N̂i > 0.
Therefore the sufficiency is proved.

Necessary. We now prove that, if (2.8) does not hold, then (2.1) does not have
nonnegative equilibrium Êi with Ŝi < S0 in the S − Ni plane. In fact, if p(S0) ≤
αi/mi, then p(Ŝi) < p(S0) ≤ αi/mi and hence, from (2.9), N̂i < 0. This leads to a
contradiction. The proof is completed.
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Remark 2.6. Theorem 2.4 in [11] gives sufficient conditions for the existence of
Êi under an additional condition

D +Di

mi
>
biDi

µi
(i = 1.2).

Obviously Theorem 2.5 improves Theorem 2.4 in [11].
The stability of Êi was studied in [11]. The following theorem improves the con-

ditions in [11] and can be proved by using a similar argument as in proving Theorem
2.8.

THEOREM 2.7. Assume that system (2.1) has a positive equilibrium Êi on the
S − Ni plane. If µip(Ŝi) > biDi, then the positive equilibrium Êi of (2.1) is globally
asymptotically stable in the S −Ni plane.

Notice that condition (2.8) can be rewritten as S0 > p−1((D+Di)/mi) for i = 1, 2
and µip(Ŝi) represents the nutrient uptake rate of the ith competitor. Thus, Theorems
2.5 and 2.7 demonstrate that if there is enough nutrient input, then either population
can live on the nutrient in the absence of the other, provided it uptakes nutrient
sufficiently.

In [11], Freedman and Xu also studied the persistence of system (2.1). Then,
under persistence and boundedness, the ω limit set of (2.1) may contain positive
equilibria or, possibly, periodic solutions. In the following, we intend to study the
global stability of the positive equilibrium of (2.1) if it exists.

Let E∗ = (S∗, N∗1 , N
∗
2 ) be a positive equilibrium of (2.1). Define

x = S − S∗, yi = ln(Ni/N∗i ) (i = 1, 2),(2.12)

that is,

S = x+ S∗, Ni = N∗i e
yi (i = 1, 2).

Also, denote

ξ(x(t)) = p(x(t) + S∗)− p(S∗).(2.13)

Then

−S∗ < x < +∞, −∞ < yi < +∞, i = 1, 2, −p(S∗) ≤ ξ(x(t)) < 1− p(S∗)

and xξ(x) > 0 for x 6= 0, xξ(x) = 0 if and only if x = 0. It follows from (2.12) and
(2.1) that

ẋ = D[S0 − x− S∗]− (µ1N
∗
1 e
y1 + µ2N

∗
2 e
y2)p(x+ S∗)

+ b1D1N
∗
1 e
y1 + b2D2N

∗
2 e
y2

= − Dx− µ1N
∗
1 [ey1p(x+ S∗)− p(S∗)]− µ2N

∗
2 [ey2p(x+ S∗)− p(S∗)]

+ b1D1N
∗
1 [ey1 − 1] + b2D2N

∗
2 [ey2 − 1]

= − Dx− µ1N
∗
1

(
ey1 [p(x+ S∗)− p(S∗)] + p(S∗)[ey1 − 1]

)
− µ2N

∗
2

(
ey2 [p(x+ S∗)− p(S∗)] + p(S∗)[ey2 − 1]

)
+ b1D1N

∗
1 [ey1 − 1] + b2D2N

∗
2 [ey2 − 1],

ẏ1 = − (D +D1) +m1p(x+ S∗)− [δ11N
∗
1 e
y1 + δ12N

∗
2 e
y2 ]

= m1[p(x+ S∗)− p(S∗)]− (δ11N
∗
1 [ey1 − 1] + δ12N

∗
2 [ey2 − 1]),

ẏ2 = − (D +D2) +m2p(x+ S∗)− [δ21N
∗
1 e
y1 + δ22N

∗
2 e
y2 ]

= m2[p(x+ S∗)− p(S∗)]− (δ21N
∗
1 [ey1 − 1] + δ22N

∗
2 [ey2 − 1]).
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By using the function ξ(x(t)), we can rewrite the above equations as follows:

ẋ(t) = − Dx(t)− µ1N
∗
1 e
y1(t)ξ(x(t))− µ2N

∗
2 e
y2ξ(x(t))

− N∗1 [µ1p(S∗)− b1D1][ey1(t) − 1]−N∗2 [µ2p(S∗)− b2D2][ey2(t) − 1],

ẏ1(t) = m1ξ(x(t))− (δ11N
∗
1 [ey1(t) − 1] + δ12N

∗
2 [ey2(t) − 1]),

ẏ2(t) = m2ξ(x(t))− (δ21N
∗
1 [ey1(t) − 1] + δ22N

∗
2 [ey2(t) − 1]).

(2.14)

Let z(t) = (x(t), y1(t), y2(t)) be the solutions of (2.14) with initial values x(0) >
−S∗, yi(0) ∈ R, i = 1, 2. Define

Vi(z(t)) = N∗i

∫ yi

0
[eu − 1] du (i = 1, 2), V3(z(t)) =

∫ x

0
ξ(u) du.(2.15)

Then Vi > 0 (i = 1, 2), z 6= 0. Along the solutions of (2.14), we have

(2.16)

V̇1(z(t)) = N∗1 [ey1(t) − 1]ẏ1(t)

= m1N
∗
1 ξ(x(t))[ey1(t) − 1]− (δ11(N∗1 )2[ey1(t) − 1]2

+δ12N
∗
1N
∗
2 [ey1(t) − 1][ey2(t) − 1]),

(2.17)

V̇2(z(t)) = N∗2 [ey2(t) − 1]ẏ2(t)

= m2N
∗
2 ξ(x(t))[ey2(t) − 1]− (δ21N

∗
1N
∗
2 [ey1(t) − 1][ey2(t) − 1]

+δ22(N∗2 )2[ey2(t) − 1]2),

(2.18)

V̇3(z(t)) = ξ(x(t))ẋ(t)

= −Dx(t)ξ(x(t))− µ1N
∗
1 e
y1(t)ξ2(x(t))− µ2N

∗
2 e
y2(t)ξ2(x(t))

−N∗1 [µ1p(S∗)− b1D1]ξ(x(t))[ey1(t) − 1]

−N∗2 [µ2p(S∗)− b2D2]ξ(x(t))[ey2(t) − 1].

Assume

µip(S∗) > biDi (i = 1, 2).(2.19)

One can select αi > 0 (i = 1, 2) such that

αi =
1
mi

[µip(S∗)− biDi] (i = 1, 2).

Now define a Liapunov function as follows:

V (z(t)) = α1V1(z(t)) + α2V2(z(t)) + V3(z(t)).(2.20)

Thus,

V̇ (z(t)) = − Dx(t)ξ(x(t))− µ1N1(t)ξ2(x(t))− µ2N2(t)ξ2(x(t))
− α1(δ11(N∗1 )2[ey1(t) − 1]2 + δ12N

∗
1N
∗
2 [ey1(t) − 1][ey2(t) − 1])

− α2(δ21N
∗
1N
∗
2 [ey1(t) − 1][ey2(t) − 1] + δ22(N∗2 )2[ey2(t) − 1]2)

= − Dx(t)ξ(x(t))− µ1N1(t)ξ2(x(t))− µ2N2(t)ξ2(x(t))
− α1(δ11[N1(t)−N∗1 ]2 + δ12[N1(t)−N∗1 ][N2(t)−N∗2 ])
− α2(δ21[N1(t)−N∗1 ][N2(t)−N∗2 ] + δ22[N2(t)−N∗2 ]2)

= − Dx(t)ξ(x(t))− µ1N1(t)ξ2(x(t))− µ2N2(t)ξ2(x(t))−N(t)ABNT (t),

(2.21)



COMPETITION MODELS WITH NUTRIENT RECYCLING 177

in which

N(t) = (N1(t)−N∗1 , N2(t)−N∗2 ), A = diag(α1, α2), B = (δij)2×2.

Based on the above analysis, we conclude the following result on the global sta-
bility of the positive equilibrium of (2.1).

THEOREM 2.8. Assume that
(i) system (2.1) has a positive equilibrium E∗ = (S∗, N∗1 , N

∗
2 );

(ii) µip(S∗) > biDi for i = 1, 2;
(iii) the matrix B = (δij)2×2 is semipositive definite.

Then E∗ of (2.1) is globally asymptotically stable.

3. Competition models with delayed nutrient recycling. In this section,
we assume that there is a distributed delay in the nutrient recycling process. We
also assume that the competing populations are sufficiently similar in their uptake
of nutrient so that the resultant delays are the same. Consider the following delay
equations:

Ṡ = D(S0 − S)− (µ1N1 + µ2N2)p(S)

+
∫ ∞

0
F (u)[b1D1N1(t− u) + b2D2N2(t− u)] du,

Ṅ1 = N1[−(D +D1) +m1p(S)− (δ11N1 + δ12N2)],
Ṅ2 = N2[−(D +D2) +m2p(S)− (δ21N1 + δ22N2)],

(3.1)

in which the kernel function F : R → R+ is continuous and satisfies (1.3). Solutions
of system (3.1) exist for all t ≥ 0 under the initial conditions

S(0) = S0 > 0, Ni(u) = φi(u), i = 1, 2, u ∈ (−∞, 0],

where φi (i = 1, 2) are positive linear continuous functions on (−∞, 0].
Following the argument in the proof of Theorem 2.1 in this paper and Theorem

4.1 in [11], one can derive the boundedness of the solutions of (3.1).
THEOREM 3.1. All solutions of system (3.1) are bounded.
Note that system (3.1) always has an equilibrium of the form E0 = (S0, 0, 0).

Following the arguments in Theorem 2.1 and Corollary 2.2 in [11], we can prove the
following convergence result of the equilibrium E0.

THEOREM 3.2. (i) Let the inequality

mi < D +Di(3.2)

hold, where i = 1 or 2. Then limt→∞Ni(t) = 0.
(ii) If (3.2) holds for i = 1 and 2, then limt→∞(S(t), N1(t), N2(t)) = E0.
In the following, we generalize Theorem 2.3 in [11] to the delay model (3.1).
THEOREM 3.3. Assume D̂Tf < 1 and

mibi < µi, mip(S̃) < D +Di (i = 1, 2),(3.3)

where D̂ = max{b1m1D1/µ1, b2m2D2/µ2} and S̃ = S0/(1− D̂Tf ). Then

lim
t→∞

(S(t), N1(t), N2(t)) = E0.
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Proof. Let

Z1(t) = m1m2S(t) +m2µ1N1(t) +m1µ2N2(t).(3.4)

Then, along the solutions of (3.1), we have

Ż1(t) = m1m2Ṡ(t) +m2µ1Ṅ1(t) +m1µ2Ṅ2(t)

= m1m2

[
D(S0 − S(t))− (µ1N1 + µ2N2)p(S(t))

+
∫ ∞

0
F (u)[b1D1N1(t− u) + b2D2N2(t− u)] ds

]
+m2µ1N1(t)[−(D +D1) +m1p(S(t))− (δ11N1(t) + δ12N2(t))]
+m1µ2N2(t)[−(D +D2) +m2p(S(t))− (δ21N1(t) + δ22N2(t))]

= m1m2DS
0 −DZ1(t)

+m1m2

∫ ∞
0

F (u)[b1D1N1(t− u) + b2D2N2(t− u)] du

−m2µ1D1N1(t)−m2µ1[δ11N1(t) + δ12N2(t)]N1(t)
−m1µ2D2N2(t)−m1µ2[δ21N1(t) + δ22N2(t)]N2(t).

(3.5)

Define

Z2(t) = m1m2

∫ ∞
0

F (u)
∫ u

t−u
[b1D1N1(v) + b2D2N2(v)]dvdu(3.6)

and

Z(t) = Z1(t) + Z2(t).(3.7)

Then, from (3.5)–(3.7) and by the nonnegativity of Z2, we have

Ż(t) ≤ −DZ1(t) +m1m2DS
0 +m2D1(m1b1 − µ1)N1(t) +m1D2(m2b2 − µ2)N2(t)

≤ −DZ(t) +m1m2DS
0 +m2D1(m1b1 − µ1)N1(t) +m1D2(m2b2 − µ2)N2(t)

+m1m2D

∫ ∞
0

F (u)
∫ u

t−u
[b1D1N1(v) + b2D2N2(v)] dv du

≤ −DZ(t) +m1m2DS
0 +m2D1(m1b1 − µ1)N1(t) +m1D2(m2b2 − µ2)N2(t)

+DD̂

∫ ∞
0

F (u)
∫ u

t−u
Z(v) dv du,

(3.8)

where D̂ = max{b1m1D1/µ1, b2m2D2/µ2}. By assumption (3.3), it then follows from
(3.8) that

Ż(t) ≤ −DZ(t) +m1m2DS
0 +DD̂

∫ ∞
0

F (u)
∫ u

t−u
Z(v) dv du.(3.9)

Multiplying eDt on both sides of (3.9) and then integrating over [0, t] (t ≥ 0), we have

Z(t)eDt ≤ Z(0) +m1m2S
o[eDt − 1] +DD̂

∫ t

0
eDr

∫ ∞
0

F (u)
∫ r

r−u
Z(v) dv du dr.

(3.10)
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Define

‖Z(t)‖ = sup
−∞<u≤t

Z(u).(3.11)

Then (3.10) leads to

Z(t)eDt ≤ Z(0) +m1m2S
0[eDt − 1] +DD̂‖Z(t)‖

∫ t

0
eDr

∫ ∞
0

F (u)
∫ r

r−u
dv du dr

= Z(0) +m1m2S
0[eDt − 1] +DD̂

(∫ t

0
eDr dr

)
‖Z(t)‖

∫ ∞
0

uF (u) du

= Z(0) +m1m2S
0[eDt − 1] + D̂Tf [eDt − 1]‖Z(t)‖,

and hence

‖Z(t)‖eDt = sup
−∞<u≤t

Z(u)eDu

≤ Z(0) +m1m2S
0[eDt − 1] + D̂Tf [eDt − 1]‖Z(t)‖.

That is,

‖Z(t)‖ ≤ Z(0)e−Dt +m1m2S
0[1− e−Dt] + D̂Tf [1− e−Dt]‖Z(t)‖.(3.12)

Since D̂Tf < 1, there exists a T1 such that

L(t) ≡ D̂Tf [1− e−Dt] < 1 for t ≥ T1.(3.13)

By (3.12) and (3.13), we obtain

‖Z(t)‖ ≤ 11− L(t)
[
Z(0)e−Dt +m1m2S

0[1− e−Dt]
]

→ m1m2S
0

1− D̂Tf
= m1m2S̃ as t→∞,

(3.14)

which, together with (3.4) and (3.7), implies that

lim
t→∞

S(t) ≤ S̃ =
S0

1− D̂Tf
.

By assumption (3.3), there exists T2 > 0 such that

mip(S(t)) < D +Di (i = 1, 2), t ≥ T2.

Then Ṅi(t) ≤ 0 (i = 1, 2) for t ≥ T = max{T1, T2}, which implies that limt→∞Ni(t) =
0 (i = 1, 2), which in turn implies that limt→∞ S(t) = S0.

Remark 3.4. When the kernel F (u) is a delta function, system (3.1) becomes the
ODE model (2.1) and Theorem 3.3 reduces to Theorem 2.3 in [11].

From the Remark in section 4 in [11], we can see the following estimates for the
upper bound of Ni(t) (i = 1, 2).

LEMMA 3.5. If D +Di < mi(i = 1, 2), then

lim sup
t→∞

Ni(t) ≤Mi =
mi − (D +Di)

δii
, i = 1, 2.(3.15)
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Similar to the analysis in section 2, we know that system (3.1) has a unique
nonnegative equilibrium Êi with Ŝi < S0 in the S − Ni plane (i = 1 or 2) if (2.8)
holds true. In the following, we study the stability of Êi.

THEOREM 3.6. Assume that
(i) (2.7) holds;
(ii) biDi < µip(Ŝi);
(iii) Tf <∞ and T ∗f = (1/di)

∫∞
0 F (s)[edis−1] ds <∞ with di = (D+Di)+δiiMi;

(iv) biDi[(mi + δiiN̂i)T ∗f +miTf ]/2 < µi;
(v) either δii = 0 or N̂i[µip(N̂i)− biDi]/mi > biDiTfMi/2.

Then Êi is globally asymptotically stable in the S −Ni plane.
Proof. Consider the subsystem

Ṡ = D(S0 − S)− µiNi + biDi

∫ ∞
0

F (u)Ni(t− u)ds,

Ṅi = Ni[−(D +Di) +mip(S)− δiiNi].
(3.16)

Let

x = S − Ŝi, yi = `n
Ni

N̂i
.

Then system (3.16) can be written as

ẋ(t) = −Dx(t)− µiN̂ieyi(t)ξ(x)− µiN̂ip(Ŝi)[eyi(t) − 1]

+ biDiN̂i

∫ ∞
0

F (s)[eyi(t−s) − 1] ds,

ẏi(t) = miξ(x(t))− δiiN̂i[eyi(t) − 1],

(3.17)

where ξ(x(t)) = p(x(t) + Ŝi)− p(Ŝi). Define

V1(x(t)) =
∫ x

0
ξ(u) du, W1(yi(t)) =

∫ yi

0
[eu − 1] du.(3.18)

Then

Ẇ1 = [eyi(t) − 1]ẏi(t)

= miξ(x(t))[eyi(t) − 1]− δiiN̂i[eyi(t) − 1]2,

V̇1 = −Dx(t)ξ(x(t))− µiN̂ieyi(t)ξ2(x(t))− µiN̂ip(Ŝi)ξ(x(t))[eyi(t) − 1]

+ biDiN̂iξ(x(t))
∫ ∞

0
F (s)[eyi(t−s) − 1] ds

= −Dx(t)ξ(x(t))− µiN̂ieyi(t)ξ2(x(t))− N̂i[µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

− biDiN̂iξ(x(t))
∫ ∞

0
F (s)

∫ t

t−s
eyi(u)ẏi(u) du ds

= −Dx(t)ξ(x(t))− µiN̂ieyi(t)ξ2(x(t))− N̂i[µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

− biDiN̂iξ(x(t))
∫ ∞

0
F (s)

∫ t

t−s
eyi(u)

(
miξ(x(u))− δiiN̂i[eyi(u) − 1]

)
du ds

≤ −Dx(t)ξ(x(t))− µiN̂ieyi(t)ξ2(x(t))− N̂i[µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]
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+
biDiN̂i

2

[
mi

(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
ξ2(x(t))

+mi

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)ξ2(x(u)) du ds

+ δiiN̂i

(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
ξ2(x(t))

+ δiiN̂i

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)[eyi(u) − 1]2 du ds

]
.

Next, we define

V2(t) =
biDiN̂i

2

[
mi

∫ ∞
0

F (s)
∫ t

t−s

∫ t

v

eyi(u)ξ2(x(u)) du dv ds

+ δiiN̂i

∫ ∞
0

F (s)
∫ t

t−s

∫ t

v

eyi(u)[eyi(u) − 1]2 du dv ds
](3.19)

and

V3(t) = V1(t) + V2(t).(3.20)

Thus

V̇3 ≤ −Dx(t)ξ(x(t))− µiN̂ieyi(t)ξ2(x(t))− N̂i[µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

+
biDiN̂i

2

{[
(mi + δiiN̂i)

(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
+miTfe

yi(t)
]
ξ2(x(t))

+ δiiN̂iTfe
yi(t)[eyi(t) − 1]2

}
.

(3.21)

Choose α > 0 such that

αN̂i[µip(Ŝi)− biDi] = mi

and define

V (t) = αV3(t) +W1(t).(3.22)

We have

V̇ ≤ −δiiN̂i[eyi − 1]2

+ α

{
−Dxξ(x)− µiNi(t)ξ2(x)

+
biDi

2

[
(mi + δiiN̂i)

(∫ ∞
0

F (s)
∫ t

t−s
Ni(u) du ds

)
+miTfNi(t)

]
ξ2(x(t))

+ δiiTfNi(t)[eyi(t) − 1]2
}
.

(3.23)
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On the other hand, Lemma 3.5 and (3.16) imply that

Ṅi(t) ≥ Ni(t)[−(D +Di)− δiiMi] = −diNi(t) for all large t.(3.24)

Integrating (3.24) from s to t (t > s) and using the fact that Ni(s) ≤ edi(t−s)Ni(t),
one can obtain from assumption (iii) that∫ ∞

0
F (s)

∫ t

t−s
Ni(u) du ds ≤ T ∗fNi(t).

Hence, by (3.23) and assumptions (iv) and (v), we have

V̇ ≤ −δiiN̂i[eyi − 1]2

+ α

{
−Dxξ(x)− µiNi(t)ξ2(x)

+
biDi

2

[
(mi + δiiN̂i)T ∗f +miTf

]
Ni(t)ξ2(x(t))

+ δiiTfMi[eyi(t) − 1]2
}

< 0.

This completes the proof.
Remark 3.7. The stability of Êi of system (3.16) has been studied by Beretta and

Takeuchi [6]. Our conditions in Theorem 2.5 are different from those in Theorems 4.1
and 4.3 in their paper, in which δii > 0 is required to be sufficiently large and is used
to control other terms.

Now we discuss the global stability of the positive equilibrium E∗ = (S∗, N∗1 , N
∗
2 )

by applying the Liapunov functional method.
THEOREM 3.8. Assume that

(i) system (3.1) has a positive equilibrium N∗ = (S∗, N∗1 , N
∗
2 );

(ii) D +Di < mi, biDi < µip(S∗i ), i = 1, 2;
(iii) Tf < ∞, T ∗i = (1/d∗i )

∫∞
0 F (s)[ed

∗
i s − 1] ds < ∞ with d∗i := (D + Di) +∑2

j=1 δijMj , i = 1, 2;
(iv) biDi[(mi +

∑2
j=1 δijN

∗
j )T ∗i +miTf ]/2 < µi, i = 1, 2;

(v) B = (bij)2×2 is semipositive finite with bij ≥ 0 defined by

bij =

{
δii − Tfmi

2[µip(S∗)−biDi]N∗i

∑2
j=1 bjDjδjiMj if i = j,

δij if i 6= j.
(3.25)

Then E∗i is globally asymptotically stable.
Proof. By using the same transform as in section 2, system (3.1) can be rewritten

as

ẋ(t) = −Dx(t)−
2∑
i=1

{
µiN

∗
i e
yi(t)ξ(x)µiN∗i p(S

∗)[eyi(t) − 1]

− biDiN
∗
i

∫ ∞
0

F (s)[eyi(t−s) − 1] ds
}
,

ẏi(t) = miξ(x(t))−
2∑
j=1

δijN
∗
j [eyj(t) − 1] (i = 1, 2).

(3.26)
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Define

V1(x(t)) =
∫ x

0
ξ(u) du, Wi(yi(t)) = N∗i

∫ yi

0
[eu − 1] du (i = 1, 2).(3.27)

Then, we have

Ẇi = N∗i [eyi(t) − 1]ẏi(t)

= miN
∗
i ξ(x(t))[eyi(t) − 1]−

2∑
j=1

δijN
∗
i N
∗
j [eyi(t) − 1][eyj(t) − 1]

(3.28)

and

V̇1 = −Dx(t)ξ(x(t))−
2∑
i=1

{
µiN

∗
i e
yi(t)ξ2(x(t)) +N∗i [µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

+ biDiN
∗
i ξ(x(t))

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)ẏi(u) ds

}
= −Dx(t)ξ(x(t))−

2∑
i=1

{
µiN

∗
i e
yi(t)ξ2(x(t)) +N∗i [µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

+ biDiN
∗
i ξ(x(t))

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)

(
miξ(x(u))−

2∑
j=1

δijN
∗
j [eyj(u) − 1]

)
du ds

}

≤ −Dx(t)ξ(x(t)) +
2∑
i=1

{
− µiN∗i eyi(t)ξ2(x(t))−N∗i [µip(Ŝi)− biDi]ξ(x(t))[eyi(t) − 1]

+
biDiN

∗
i

2

[
mi

(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
ξ2(x(t))

+mi

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)ξ2(x(u)) du ds

+
2∑
j=1

[
δijN

∗
j

(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
ξ2(x(t))

+ δijN
∗
j

∫ ∞
0

F (s)
∫ t

t−s
eyi(u)[eyj(u) − 1]2 du ds

]]}
.

(3.29)

Next, we define

V2(t) =
2∑
i=1

biDiN
∗
i

2

[
mi

∫ ∞
0

F (s)
∫ t

t−s

∫ t

v

eyi(u)ξ2(x(u)) du dv ds

+
2∑
j=1

δijN
∗
j

∫ ∞
0

F (s)
∫ t

t−s

∫ t

v

eyi(u)[eyj(u) − 1]2 du dv ds
](3.30)

and

V3(t) = V1(t) + V2(t).(3.31)
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Notice that Ṅ(t) ≥ −d∗iNi(t). Then, by Lemma 3.5 we have from (3.29)–(3.31) that

V̇3 ≤ −Dx(t)ξ(x(t)) +
2∑
i=1

{
− µiN∗i eyi(t)ξ2(x(t))−N∗i [µip(S∗)− biDi]ξ(x(t))[eyi(t) − 1]

+
biDiN

∗
i

2

{[(
mi +

2∑
j=1

δijN
∗
j

)(∫ ∞
0

F (s)
∫ t

t−s
eyi(u) du ds

)
+miTfe

yi(t)
]
ξ2(x(t))

+
2∑
j=1

δijN
∗
j Tfe

yi(t)[eyj(t) − 1]2
}}

≤ −Dx(t)ξ(x(t)) +
2∑
i=1

{
− µiNi(t)ξ2(x(t))−N∗i [µip(S∗)− biDi]ξ(x(t))[eyi(t) − 1]

+
biDi

2

{[(
mi +

2∑
j=1

δijN
∗
j

)
T ∗i +miTf

]
Ni(t)ξ2(x(t))

+
2∑
j=1

δijN
∗
j TfMi[eyj(t) − 1]2

}}
.

(3.32)

Choose αi > 0 such that

[µip(S∗i )− biDi] = αimi (i = 1, 2)

and define

V (t) = V3(t) + α1W1(t) + α2W2(t).(3.33)

It follows from (3.32) and (3.33) that

V̇ ≤ −n(t)ABnT (t) +
{
−Dxξ(x)

−
2∑
i=1

[
µi −

biDi

2

(mi +
2∑
j=1

δijN
∗
j

T ∗i +miTf

)]}
Ni(t)ξ2(x(t)),

(3.34)

where

n(t) = (N1(t)−N∗1 , N2(t)−N∗2 ), A = diag(α1, α2), B = (bij)2×2

with bij defined in assumption (v). Thus, by the assumptions, (3.34) implies that
V̇ < 0. Applying the standard theorem on the method of Liapunov functionals (cf.,
e.g., Theorem 2.5.1 in Kuang [16]), we obtain the global asymptotic stability of E∗.
This completes the proof.

4. n-species competition models. In this section, we generalize the results in
the previous sections on two-species competition models to multispecies competition
models.
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4.1. The instantaneous model. First we consider the following n-species com-
petition model with instantaneous nutrient recycling:

Ṡ = D(S0 − S)−
n∑
i=1

µiNip(S) +
n∑
i=1

biDiNi,

Ṅi = Ni

[
−(D +Di) +mip(S)−

n∑
i=1

δijNj

]
, i = 1, 2, . . . , n.

(4.1)

First we have the following result about the boundedness of solutions to system
(4.1).

THEOREM 4.1. If

D +Di

mi
>
biDi

µi
, i = 1, 2, . . . , n,(4.2)

then all solutions of (4.1) are bounded.
Proof. Following the argument in [11], choose

V (t) = S(t) +
n∑
i=1

µi
mi

Ni(t).(4.3)

Then V ≥ 0 and V → ∞ when ‖(S(t), N1(t), . . . , Nn(t))‖ → ∞. Along solutions of
(4.2), we have

V̇ = D(S0 − S)−
n∑
i=1

µi

(
D +Di

mi
− biDi

µi

)
Ni −

n∑
i=1

n∑
j=1

µiδij
mi

NiNj .

By the assumptions, the coefficients of Ni are negative. Thus, V̇ < 0 outside the
region of the positive cone bounded by the positive coordinate planes and by the
hypersurface

DS +
n∑
i=1

µi

(
D +Di

mi
− biDi

µi

)
Ni +

n∑
i=1

n∑
j=1

µiδij
mi

NiNj = DS0.

Boundedness follows by Yoshizawa’s theorem (see Yoshizawa [30]).
Note that E0 = (S0, 0, . . . , 0) is always an equilibrium for system (4.1).
THEOREM 4.2. If

mip(S0) < D +Di, mibi < µi, i = 1, 2, . . . , n,(4.4)

then E0 is asymptotically stable.
Proof. Define a Liapunov function as follows:

V (t) =
( n∏
j=1

mj

)
S(t) +

( n∏
j=1
j 6=i

mj

)( n∑
i=1

µiNi

)
.(4.5)
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Then we have

V̇ = −DV (t) +
( n∏
j=1

mj

)
DS0

−
( n∏
j=1
j 6=i

mj

) n∑
i=1

(µi −mibi)DiNi −
( n∏
j=1
j 6=i

mj

) n∑
i=1

n∑
j=1

µiδijNiNj

≤ −DV (t) +
( n∏
j=1

mj

)
DS0,

which implies that

V (t) ≤ V (0)e−Dt +
( n∏
j=1

mj

)
S0.

Thus,

lim
t→∞

V (t) =
( n∏
j=1

mj

)
S0,

which in turn implies that

lim
t→∞

S(t) ≤ S0.(4.6)

Hence, by (4.4), there exists T > 0 such that for t ≥ T, mip(S(t)) ≤ D+Di. By the
second equation in system (4.1), we have Ṅi(t) ≤ 0 for i = 1, 2, . . . , n. Since there are
no invariant sets such that Ni > 0 is constant, it follows that limt→∞Ni(t) = 0 for
i = 1, 2, . . . , n, and then (4.6) implies limt→∞ S(t) = S0.

Now suppose that there is a positive equilibrium E∗ = (S∗, N∗1 , . . . , N
∗
n) for

system (4.1). Define

x = S − S∗, yi = ln(Ni/N∗i ), i = 1, 2, . . . , n.(4.7)

Thus, system (4.1) can be written as follows:

ẋ(t) = −Dx(t)−
n∑
i=1

µiN
∗
i e
yi(t)ξ(x(t))−

n∑
i=1

N∗i [µip(S∗)− biDi][eyi(t) − 1],

ẏi(t) = miξ(x(t))−
n∑
j=1

δijN
∗
j [eyj(t) − 1], i = 1, 2, . . . , n,

(4.8)

where ξ(x(t)) is defined in (2.11).
THEOREM 4.3. Suppose that

(i) system (4.1) has a positive equilibrium E∗;
(ii) µip(S∗) > biDi for i = 1, 2, . . . , n;
(iii) the matrix B = (δij)n×n is semipositive definite.

Then the positive equilibrium E∗ is globally asymptotically stable.
Proof. Let z(t) = (x(t), y1(t), . . . , yn(t)) be the solutions of (4.8) with positive

initial values. Set

V0(z(t)) =
∫ x

0
ξ(u) du, Vi(z(t)) = N∗i

∫ yi

0
[eu − 1] du, i = 1, 2, . . . , n.(4.9)



COMPETITION MODELS WITH NUTRIENT RECYCLING 187

By assumption (ii), we can choose αi > 0 (i = 1, 2, . . . , n) such that

αi =
1
mi

[µip(S∗)− biDi], i = 1, 2, . . . , n.

Now define a Liapunov functional as follows:

V (z(t)) = V0(z(t)) +
n∑
i=1

αiVi(z(t)).(4.10)

Denote

N(t) = (N1(t)−N∗1 , . . . , Nn(t)−N∗n), A = diag(α1, . . . , αn), B = (δij)n×n.

Then, along the solutions of system (4.8), we obtain

V̇ (z(t)) = −Dx(t)ξ(x(t))−
n∑
i=1

µiNi(t)ξ2(x(t))

−
n∑
i=1

n∑
j=1

αiδijN
∗
i N
∗
j [eyi − 1][eyj − 1]

= −Dx(t)ξ(x(t))−
n∑
i=1

µiNi(t)ξ2(x(t))−N(t)ABNT (t)

< 0,

followed by assumption (iii). This completes the proof.

4.2. The delay model. Suppose that there is a delay involved in nutrient recy-
cling; that is, consider the following n-species competition model with delayed nutrient
recycling:

Ṡ = D(S0 − S)−
n∑
i=1

µiNip(S) +
∫ ∞

0
F (u)

( n∑
i=1

biDiNi(t− u)
)
du,

Ṅi = Ni

[
−(D +Di) +mip(S)−

n∑
j=1

δijNj

]
, i = 1, 2, . . . , n,

(4.11)

in which the kernel F is continuous and satisfies (1.3).
THEOREM 4.4. If (4.2) in Theorem 4.1 is satisfied, then all solutions of (4.11)

are bounded.
Proof. Choose

V (t) = S(t) +
n∑
i=1

µi
mi

Ni(t) +
∫ ∞

0
F (u)

[∫ t

t−u

n∑
i=1

biDiNi(v)dv
]
du.(4.12)
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Then, along solutions of (4.11), we have

V̇ = D(S0 − S(t))−
n∑
i=1

µiNi(t)p(S(t)) +
∫ ∞

0
F (u)

( n∑
i=1

biDiNi(t− u)
)
du

+
n∑
i=1

µi
mi

Ni(t)
[
−(D +Di) +mip(S)−

n∑
j=1

δijNj

]

+
∫ ∞

0
F (u)

n∑
i=1

biDi

(
Ni(t)−Ni(t− u)

)
du

= D(S0 − S(t))−
n∑
i=1

µi

(
D +Di

mi
− biDi

µi

)
Ni(t)−

n∑
i=1

n∑
j=1

µiδij
mi

NiNj .

The rest is the same as in the proof of Theorem 4.1.
Notice that E0 = (S0, 0, . . . , 0) is an equilibrium of system (4.11). Using the

same function V (t) defined in (4.5) and following the arguments in section 3, we can
prove the following theorem on the stability of E0.

THEOREM 4.5. If D̂Tf < 1 and

mibi < µi, mip(S̃) < D +Di, i = 1, 2, . . . , n,

where Tf is defined as in section 3, D̂ = max1≤i≤2{bimiDi/µi}, and S̃ = S0/(1 −
D̂Tf ), then E0 is asymptotically stable.

If D+Di < mi, i = 1, 2, . . . , n, following the arguments in section 4 in Freedman
and Xu [11], we can obtain the following upper bound for Ni(t):

lim sup
t→∞

Ni(t) ≤Mi :=
mi − (D +Di)

δii
, i = 1, 2, . . . , n.(4.13)

Finally, by using similar functionals constructed in the proof of Theorem 3.8, we
can prove the following theorem.

THEOREM 4.6. Assume that
(i) system (4.11) has a positive equilibrium E∗ = (S∗, N∗1 , . . . , N

∗
n);

(ii) D +Di < mi, biDi < µip(S∗i ), i = 1, 2, . . . , n;
(iii) Tf < ∞, T ∗i = (1/d∗i )

∫∞
0 F (s)[ed

∗
i s − 1] ds < ∞, i = 1, 2, . . . , n, where

d∗i = (D +Di) +
∑n
j=1 δijMj ;

(iv) biDi[(mi +
∑n
j=1 δijN

∗
j )T ∗i +miTf ]/2 < µi, i = 1, 2, . . . , n;

(v) the matrix B = (bij)n×n is semipositive definite with bij ≥ 0 defined as
follows:

bij =

{
δii − Tfmi

2[µip(S∗)−biDi]N∗i

∑n
j=1 bjDjδjiMj if i = j,

δij if i 6= j.

Then E∗ is globally asymptotically stable.
Note that Theorem 4.6 can be regarded as a generalization of Theorem 3.8 on

the two-species model (3.1) to the n-species competition model (4.11) as well as a
generalization of Theorem 4.3 on the ODE model (4.1) to the delayed model (4.11).

5. Discussion. In this paper, we first considered the chemostat-type two-species
competition models with instantaneous or delayed nutrient recycling proposed by
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FIG. 1. The model with instantaneous nutrient recycling. p(S) = S
k+S , k = 4.0, D =

0.15, S0 = 5.75, µ1 = 2.0, µ2 = 3.0, b1 = 0.4, b2 = 0.6, D1 = 0.2, D2 = 0.3, δ11 = 0.4, δ12 =
0.2, δ21 = 0.3, δ22 = 0.5.
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FIG. 2. The model with delayed nutrient recycling. F (u) = αe−αu, α = 0.15, all other
parameters are the same as in Fig. 1.
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FIG. 3. The model with delayed nutrient recycling but without direct competition. δij = 0 (i, j =
1, 2).

Freedman and Xu [11]. Freedman and Xu carried out the equilibrium analysis and
derived persistence and extinction criteria for the competing populations. We studied
the global asymptotic stability of the positive equilibrium by using the method of Li-
apunov functionals. We also generalized the obtained results to n-species competition
models with instantaneous and delayed nutrient recycling, respectively.

The models we studied differ from the usual chemostat models in several aspects
due to the fact that a chemostat model is referred to as a stirred tank with a constant
washout rate, where all death is due to washout, there is no direct competition be-
tween/among the competing microorganisms, and there is no nutrient recycling. The
dynamics of our models is also different from that of the classic chemostat models. It is
known (see Hsu, Hubbell, and Waltman [15], Hsu [14], Butler and Wolkowicz [8], and
Wolkowicz and Lu [28]) that in chemostat models all species concentrations eventually
approach equilibrium concentrations and at most one population avoids dying out;
that is, the competitive exclusion principle (Armstrong and McGehee [2]) occurs. By
using the classical method of Liapunov function(al)s, we were able to show that under
certain assumptions, the positive equilibrium is globally asymptotically stable. Thus,
the competitors can coexist if they compete directly and there is nutrient recycling
that provides extra food for the populations. The same difference exists between the
competition models with delayed nutrient recycling and the chemostat models with
delay (see Wolkowicz and Xia [29]).

Finally, for selected functional response, kernel, initial values, and parameters (so
that the conditions in Theorems 2.8 and 3.8 are satisfied), numerical simulations show
that solutions are converging to the positive equilibrium in the models with instan-
taneous and delayed nutrient recycling, respectively (Figs. 1 and 2). However, if the
two populations only compete indirectly for the nutrient and do not compete directly,
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then only one population can survive (Fig. 3). This is similar to the phenomenon
observed in chemostat models (see Hsu, Hubbell, and Waltman [15]).

It would be interesting to study the global asymptotic stability of the diffusion-
competition models or predator-prey models with nutrient recycling (instantaneous
or delayed). We leave this for future consideration.
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