
DELAY DIFFERENTIAL EQUATIONS IN SINGLE
SPECIES DYNAMICS

Shigui Ruan1

Department of Mathematics
University of Miami

PO Box 249085
Coral Gables, FL 33124-4250

USA
E-mail: ruan@math.miami.edu

Contents
1. Introduction
2. Hutchinson’s Equation
3. Recruitment Models
4. The Allee Effect
5. Food-Limited Models
6. Regulation of Haematopoiesis
7. A Vector Disease Model
8. Multiple Delays
9. Volterra Integrodifferential Equations
10. Periodicity
11. State Dependent Delays
12. Diffusive Models with Delay
References

O. Arino et al. (eds.), Delay Differential Equations and Applications,
Springer, Berlin, 2006, pp.477-517.

1Research was partially supported by NSF grant DMS-0412047 and a Small Grant Award from

the University of Miami.

1



2

1. Introduction

Time delays of one type or another have been incorporated into biological models
to represent resource regeneration times, maturation periods, feeding times, reac-
tion times, etc. by many researchers. We refer to the monographs of Cushing
(1977a), Gopalsamy (1992), Kuang (1993) and MacDonald (1978) for discussions
of general delayed biological systems. In general, delay differential equations ex-
hibit much more complicated dynamics than ordinary differential equations since
a time delay could cause a stable equilibrium to become unstable and cause the
populations to fluctuate. In this survey, we shall review various delay differential
equations models arising from studying single species dynamics.

Let x(t) denote the population size at time t; let b and d denote the birth rate
and death rate, respectively, on the time interval [t, t + ∆t], where ∆t > 0. Then

x(t + ∆t)− x(t) = bx(t)∆t− dx(t)∆t.

Dividing by ∆t and letting ∆t approach zero, we obtain

(1.1)
dx

dt
= bx− dx = rx,

where r = b − d is the intrinsic growth rate of the population. The solution of
equation (1.1) with an initial population x(0) = x0 is given by

(1.2) x(t) = x0e
rt.

The function (1.2) represents the traditional exponential growth if r > 0 or decay
if r < 0 of a population. Such a population growth, due to Malthus (1798), may be
valid for a short period, but it cannot go on forever. Taking the fact that resources
are limited into account, Verhulst (1836) proposed the logistic equation

(1.3)
dx

dt
= rx

(
1− x

K

)
,

where r(> 0) is the intrinsic growth rate and K(> 0) is the carrying capacity of
the population. In model (1.3), when x is small the population grows as in the
Malthusian model (1.1); when x is large the members of the species compete with
each other for the limited resources. Solving (1.3) by separating the variables, we
obtain (x(0) = x0)

(1.4) x(t) =
x0K

x0 − (x0 −K)e−rt
.

If x0 < K, the population grows, approaching K asymptotically as t → ∞. If
x0 > K, the population decreases, again approaching K asymptotically as t →∞.
If x0 = K, the population remains in time at x = K. In fact, x = K is called an
equilibrium of equation (1.3). Thus, the positive equilibrium x = K of the logistic
equation (1.3) is globally stable; that is, lim

t→∞
x(t) = K for solution x(t) of (1.3)

with any initial value x(0) = x0.
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2. Hutchinson’s Equation

In the above logistic model it is assumed that the growth rate of a population at
any time t depends on the relative number of individuals at that time. In practice,
the process of reproduction is not instantaneous. For example, in a Daphnia a
large clutch presumably is determined not by the concentration of unconsumed
food available when the eggs hatch, but by the amount of food available when the
eggs were forming, some time before they pass into the broad pouch. Between this
time of determination and the time of hatching many newly hatched animals may
have been liberated from the brood pouches of other Daphnia in the culture, so
increasing the population. In fact, in an extreme case all the vacant spaces K − x

might have been filled well before reproduction stops. Hutchinson (1948) assumed
egg formation to occur τ units of time before hatching and proposed the following
more realistic logistic equation

(2.1)
dx

dt
= rx(t)

[
1− x(t− τ)

K

]
,

where r and K have the same meaning as in the logistic equation (1.3), τ > 0 is a
constant. Equation (2.1) is often referred to as the Hutchinson’s equation or delayed
logistic equation.

2.1. Stability and Bifurcation. The initial value of equation (2.1) is given by

x(θ) = φ(θ) > 0, θ ∈ [−τ, 0],

where φ is continuous on [−τ, 0]. An equilibrium x = x∗ of (2.1) is stable if for any
given ε > 0 there is a δ > 0 such that |φ(t) − x∗| ≤ δ on [−τ, 0] implies that all
solutions x(t) of (2.1) with initial value φ on [−τ, 0] satisfy |x(t) − x∗| < ε for all
t ≥ 0. If in addition there is a δ0 > 0 such that |φ(t) − x∗| ≤ δ0 on [−τ, 0] implies
lim

t→∞
x(t) = x∗, then x∗ is called asymptotically stable.

Notice that equation (2.1) has equilibria x = 0 and x = K. Small perturbations
from x = 0 satisfy the linear equation dx

dt = rx, which shows that x = 0 is unstable
with exponential growth. We thus only need to consider the stability of the positive
equilibrium x = K. Let X = x−K. Then,

dX

dt
= −rX(t− τ)− r

K
X(t)X(t− τ).

Thus, the linearized equation is

(2.2)
dX

dt
= −rX(t− τ).

We look for solutions of the form X(t) = ceλt, where c is a constant and the
eigenvalues λ are solutions of the characteristic equation

(2.3) λ + re−λτ = 0,

which is a transcendental equation. By the linearization theory, x = K is asymp-
totically stable if all eigenvalues of (2.3) have negative real parts.
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Set λ = µ + iν. Separating the real and imaginary parts of the characteristic
equation (2.3), we obtain

(2.4)
µ + re−µτ cos ντ = 0,

ν − re−µτ sin ντ = 0.

Notice that when τ = 0, the characteristic equation (2.3) becomes λ + r = 0 and
the eigenvalue λ = −r < 0 is a negative real number. We seek conditions on τ such
that Reλ changes from negative to positive. By the continuity, if λ changes from
−r to a value such that Reλ = µ > 0 when τ increases, there must be some value of
τ, say τ0, at which Reλ(τ0) = µ(τ0) = 0. In other words, the characteristic equation
(2.3) must have a pair of purely imaginary roots ±iν0, ν0 = ν(τ0). Suppose such is
the case. Then we have

cos ν0τ = 0,

which implies that

νoτk =
π

2
+ 2kπ, k = 0, 1, 2, . . . .

Noting that νo = r, we have

τk =
π

2r
+

2kπ

r
, k = 0, 1, 2, . . .

Therefore, when

τ = τ0 =
π

2r
,

equation (2.3) has a pair of purely imaginary roots ±ir, which are simple and all
other roots have negative real parts. When 0 < τ < π

2r , all roots of (2.3) have
strictly negative real parts.

Denote λ(τ) = µ(τ) + iν(τ) the root of equation (2.3) satisfying µ(τk) = 0,
ν(τk) = ν0, k = 0, 1, 2, . . . We have the transversality condition

dµ

dτ

∣∣∣∣
τ=τk

= r2 > 0, k = 0, 1, 2, . . .

We have just shown the following conclusions.

Theorem 1. (i) If 0 ≤ rτ < π
2 , then the positive equilibrium x = K of equa-

tion (2.1) is asymptotically stable.
(ii) If rτ > π

2 , then x = K is unstable.
(iii) When rτ = π

2 , a Hopf bifurcation occurs at x = K; that is, periodic solu-
tions bifurcate from x = K. The periodic solutions exist for rτ > π

2 and
are stable.

The above theorem can be illustrated by Fig. 1, where the solid curves represent
stability while the dashed lines indicated instability.

By (iii), the Hutchinson’s equation (2.1) can have periodic solutions for a large
range of values of rτ , the product of the birth rate r and the delay τ . If T is the
period then x(t + T ) = x(t) for all t . Roughly speaking, the stability of a periodic
solution means that if a perturbation is imposed the solution returns to the original
periodic solution as t →∞ with possibly a phase shift. The period of the solution
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Figure 1. The bifurcation diagram for equation (2.1).
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Figure 2. The periodic solution of the Hutchinson’s equation (2.1).
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Figure 3. Numerical simulations for the Hutchinson’s equation
(2.1). Here r = 0.15,K = 1.00. (i) When τ = 8, the steady state
x∗ = 1 is stable; (ii) When τ = 11, a periodic solution bifurcated
from x∗ = 1.

at the critical delay value is 2π
ν0

(Hassard et al. (1981)), thus, it is 4τ (see Fig. 2).
Numerical simulations are given in Fig. 3.
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2.2. Wright Conjecture. The Hutchinson’s equation (2.1) can be written as

dy

dt
= −ry(t− τ)[1 + y(t)]

by assuming y(t) = −1 + x(t)/K. Letting t = τt, y(t) = y(t), we have

d

dt
y(t) = −rτy(t− 1)[1 + y(t)].

Denoting α = rτ and dropping the bars, we obtain

(2.5)
dy

dt
= −αy(t− 1)[1 + y(t)].

By Theorem 1, we know that the zero solution of (2.5) is asymptotically stable if
α < π/2 and unstable if α > π/2. Wright (1955) showed that the zero solution of
(2.5) is globally stable of α < 3/2. Wright then conjectured that the zero solution
of (2.5) is globally stable if α < π/2, which is still open.

Kakutani and Markus (1958) proved that all solutions of (2.5) oscillate if α > 1/e

and do not oscillate if α < 1/e. Jones (1962a, 1962b) studied the global existence
of periodic solutions for α > π/2. For further research on existence of non-constant
periodic solutions, see Hadeler and Tomiuk (1977), Hale and Verduyn Lunel (1993),
Kaplan and York (1975), Naussbaum (1974), Walther (1975), etc. See also Kuang
(1993) for further results and more references.

Recently, some attention has been paid to the study of equation (2.5) when
α = α(t) is a positive continuous function. For example, Sugie (1992) showed that
the zero solution of (2.5) with α = α(t) is uniformly stable if there is a constant
α0 > 0 such that

(2.6) α(t) ≤ α0 <
3
2

for all t ≥ 0.

Chen et al. (1995) improved condition (2.6) to the following:

(2.7)
∫ t

t−1

α(s)ds ≤ α0 <
3
2

for t ≥ 1.

Stability conditions such as (2.6) and (2.7) are called 3
2−stability criteria. For

further related work, we refer to Kuang (1993), Yu (1996) and the references therein.

2.3. Instantaneous Dominance. Consider a logistic equation with a discrete de-
lay of the form

(2.8)
dx

dt
= rx(t)[1− a1x(t)− a2x(t− τ)],

where a1 and a2 are positive constants. There is a positive equilibrium x∗ = 1
a1+a2

,

which is stable when there is no delay. Employing similar arguments, one can prove
the following results.

Theorem 2. (i) If a1 ≥ a2, then the steady state x∗ = 1
a1+a2

is asymptotically
stable for all delay τ ≥ 0.
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(ii) If a1 < a2, then there is a critical value τ0 given by

τ0 =
a1 + a2

r
√

a2
2 − a2

1

arcsin

√
a2
2 − a2

1

a2
,

such that x∗ = 1
a1+a2

is asymptotically stable when τ ∈ [0, τ0) and unstable
when τ > τ0. A Hopf bifurcation occurs at x∗ when τ passes through τ0.

The above result indicates that if a1 ≥ a2, that is, if the instantaneous term is
dominant, then the steady state x∗ = 1

a1+a2
is asymptotically stable for all delay

τ ≥ 0. In fact, we can show that it is asymptotically stable for any initial value,
that is, globally stable.

Theorem 3. If a1 > a2, then the steady state x∗ = 1
a1+a2

of (2.8) is globally stable.

Proof. Suppose x is a continuous function from [−τ, r) to R and denote xt(θ) =
x(t + θ), θ ∈ [−τ, 0]. Choose a Liapunov function of the form

(2.9) V (x(t), xt(θ)) = x− x∗ − x∗ ln
x

x∗
+ ξ

∫ 0

−τ

[xt(θ)]2dθ,

where ξ > 0 is a constant to be determined. Rewrite equation (2.8 ) as follows:

(2.10)
dx

dt
= rx(t)[−a1(x(t)− x∗)− a2(x(t− τ)− x∗)].

Then we have
dV

dt

∣∣∣∣
(2.10)

=
dx

dt

x− x∗

x
+ ξ[(x(t)− x∗)2 − (x(t− τ)− x∗)2]

= −{(ra1 − ξ)[x(t)− x∗]2 + ra2[x(t)− x∗][x(t− τ)− x∗]

+ξ[x(t− τ)− x∗]2}.
If a1 > a2, choose ξ = 1

2ra1, so dV
dt |(2.10) is negatively definite and the result

follows. ¤

3. Recruitment Models

3.1. Nicholson’s Blowflies Model. The Hutchinson’s equation (2.1) can be used
to explain several experimental situations, including Nicholson’s (1954) careful ex-
perimental data of the Australian sheep-blowfly (Lucila cuprina). Over a period of
nearly two years Nicholson recorded the population of flies and observed a regular
basic periodic oscillation of about 35-40 days. To apply the Hutchinson’s equation
(2.1), K is set by the food level available, τ is approximately the time for a larva
to mature into an adult. The only unknown parameter is r, the intrinsic growth
rate of the population. If we take the observed period as 40 days, then the delay is
about 9 days: the actual delay is about 15 days.

To overcome the discrepancy in estimating the delay value, Gurney et al. (1980)
tried to modified Hutchinson’s equation. Notice that Nicholson’s data on blowflies
consist primarily of observations of the time variation of adult population. Let x(t)
denote the population of sexually mature adults. Then the rate of change of x(t)
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Figure 4. Oscillations in the Nicholson’s blowflies equation (3.1).
Here P = 8, x0 = 4, δ = 0.175, and τ = 15.

is the instantaneous rate of recruitment to the adult population R(t) minus the
instantaneous total death rate D(t) :

dx

dt
= R(t)−D(t).

To express R(t) we have to consider the populations of all the various stages in
the life-history of the species concerned and make the following assumptions:

(i) all eggs take exactly τ time units to develop into sexually mature adults;
(ii) the rate at which the adult population produces eggs depends only on its

current size;
(iii) the probability of a given egg maturing into a viable adult depends only on

the number of competitors of the same age.

These imply that the rate of recruitment at time t + τ is a function only of the
instantaneous size of the adult population at time t. Assume that the average per
capita fecundity drops exponentially with increasing population, thus

R(t + τ) = θ(x(t)) = Px(t) exp[−x(t)/x0],

where P is the maximum per capita daily egg production rate, x0 is the size at
which the blowflies population reproduces at its maximum rate, and δ is the per
capita daily adult death rate.

Assume that the per capita adult death rate has a time and density independent
value δ. The additional assumption that the total death rate D(t) is a function only
of the instantaneous size of the adult population

D(t) = φ(x(t)) = δx(t)

enables the entire population dynamics to be expressed in the delay differential
equation

(3.1)
dx

dt
= Px(t− τ) exp

[
−x(t− τ)

x0

]
− δx(t).
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Figure 5. Aperiodic oscillations in the Nicholson’s blowflies equa-
tion (3.1). Here P = 8, x0 = 4, δ = 0.475, and τ = 15.

There is a positive equilibrium

x∗ = x0 ln(P/δ)

if the maximum possible per capita reproduction rate is greater than the per capita
death rate, that is, if P > δ. As in the Hutchinson’s equation, there is a critical value
of the time delay. The positive equilibrium is stable when the delay is less the crit-
ical value, becomes unstable when it is greater the value, and there are oscillations.
Testing Nicholson’s data, equation (3.1) not only provides self-sustaining limit cy-
cles as the Hutchinson’s equation did, but also gives an accurate measurement of
the delay value as 15 days. Gurney et al. (1980) showed that the fluctuations
observed by Nicholson are quite clear, of limit-cycle type (see Fig. 4). The period
of the cycles is set mainly by the delay and adult death rate. High values of Pτ

and δτ will give large amplitude cycles. Moving deeper into instability produces a
number of successive doublings of the repeated time until a region is reached where
the solution becomes aperiodic (chaotic). See Fig. 5.

Equation (3.1) is now refereed to as the Nicholson’s blowflies equation, see Nisbet
and Gurney (1982), Kulenović et al. (1992), So and Yu (1994), Smith (1995), Györi
and Trofimchuk(2002), etc.

3.2. Houseflies Model. To describe the oscillations of the adult numbers in labo-
ratory populations of houseflies Musca domestica, Taylor and Sokal (1976) proposed
the delay equation

(3.2)
dx

dt
= −dx(t) + bx(t− τ)[k − bzx(t− τ)],

where x(t) is the number of adults, d > 0 denotes the death rate of adults, the
time delay τ > 0 is the length of the developmental period between oviposition and
eclosion of adults. The number of eggs laid is assumed to be proportional to the
number of adults, so at time t−τ the number of new eggs would be bx(t−τ), where
b > 0 is the number of eggs laid par adult. k−bzx(t−τ) represents the egg-to-adult
survival rate, where k > 0 is the maximum egg-adult survival rate, and z is the
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Figure 6. Numerical simulations in the houseflies model (3.2).
Here the parameter values b = 1.81, k = 0.5107, d = 0.147, z =
0.000226, τ = 5 were reported in Taylor and Sokal (1976).

reduction in survival produced by each additional egg. Notice that when there is
no time delay, i.e., τ = 0, then the equation becomes the familiar logistic equation.

Though analytical analysis of equation (3.2) has never been carried out, numeri-
cal simulations indicate that its dynamics are very similar to that of the Nicholson’s
blowflies equation (see Fig. 6). However, unlike the Nicholson’s model, aperiodic
oscillations have not been observed.

3.3. Recruitment Models. Blythe et al. (1982) proposed a general single species
population model with a time delay

(3.3)
dx

dt
= R(x(t− τ))−Dx(t),

where R and D represent the rates of recruitment to, and death rate from, an adult
population of size x, and τ > 0 is the maturation period. For a linear analysis of
the model, see Brauer and Castillo-Chávez (2001).

This equation could exhibit very complex dynamic behavior for some functions
R, such as R(x(t − τ)) = Px(t − τ) exp[−x(t − τ)/x0] in the Nicholson’s blowflies
equation. However, for some other functions, for example

R(x(t− τ)) =
bx2(t− τ)

x(t− τ) + x0

[
1− x(t− τ)

K

]

as in Beddington and May (1975), the time delay is not necessarily destabilizing
(see also Rodŕıguez (1998)).

Freedman and Gopalsamy (1986) studied three classes of general single species
models with a single delay and established criteria for the positive equilibrium to be
globally stable independent of the length of delay. See also Cao and Gard (1995),
Karakostas et al. (1992).
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4. The Allee Effect

The logistic equation was based on the assumption that the density has a negative
effect on the per-capita growth rate. However, some species often cooperate among
themselves in their search for food and to escape from their predators. For example
some species form hunting groups (packs, prides, etc.) to enable them to capture
large prey. Fish and birds often form schools and flocks as a defense against their
predators. Some parasitic insects aggregate so that they can overcome the defense
mechanism of a host. A number of social species such as ants, termites, bees, etc.,
have developed complex cooperative behavior involving division of labor, altruism,
etc. Such cooperative processes have a positive feedback influence since individuals
have been provided a greater chance to survive and reproduce as density increase.
Aggregation and associated cooperative and social characteristics among members
of a species were extensively studied in animal populations by Allee (1931), the
phenomenon in which reproduction rates of individuals decrease when density drops
below a certain critical level is now known as the Allee effect.

Gopalsamy and Ladas (1990) proposed a single species population model ex-
hibiting the Allee effect in which the per capita growth rate is a quadratic function
of the density and is subject to time delays:

(4.1)
dx

dt
= x(t)[a + bx(t− τ)− cx2(t− τ)],

where a > 0, c > 0, τ ≥ 0, and b are real constants. In the model, when the density
of the population is not small, the positive feedback effects of aggregation and co-
operation are dominated by density-dependent stabilizing negative feedback effects
due to intraspecific competition. In other words, intraspecific mutualism dominates
at low densities and intraspecific competition dominates at higher densities.

Equation (4.1) has a positive equilibrium

x∗ =
b +

√
b2 + 4ac

2c
.

Gopalsamy and Ladas (1990) showed that under some restrictive assumptions, the
positive equilibrium is globally attractive (see Fig. 7). If the delay is sufficiently
large, solutions of equation (4.1) oscillate about the positive equilibrium. See also
Cao and Gard (1995). The following result is a corollary of the main results of Liz
et al. (2003).

Theorem 4. If

τx∗(2cx∗ − b) ≤ 3
2
,

then the equilibrium x∗ attracts all positive solutions of (4.1).

Ladas and Qian (1994) generalized (4.1) to the form

(4.2)
dx

dt
= x(t)[a + bxp(t− τ)− cxq(t− τ)],

where p, q are positive constants, and discussed oscillation and global attractivity
in the solutions.
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Figure 7. The steady state of the delay model (4.1) is attractive.
Here a = 1, b = 1, c = 0.5, τ = 0.2.

5. Food-Limited Models

Rewriting the logistic equation (2.1) as

1
x(t)

dx

dt
= r

(
1− x

K

)
,

we can see that the average growth rate of a population is a linear function of its
density. In experiments of bacteria cultures Daphnia magna Smith (1963) found
that the average growth rate (1/x)(dx/dt) is not a linear function of the density.
Smith argued that the per capita growth rate of a population is proportional to the
rate of food supply not momentarily being used. This results in the model:

(5.1)
1
x

dx

dt
= r

(
1− F

T

)
,

where F is the rate at which a population of biomass x consumes resources, and
T is the rate at which the population uses food when it is at the equilibrium K.

Note that F/T is not usually equal to x/K. It is assumed that F depends on the
density x (that is being maintained) and dx/dt (the rate of change of the density)
and takes the following form:

F = c1x + c2
dx

dt
, c1 > 0, c2 ≥ 0.

When saturation is attained, dx/dt = 0, x = K and T = F. Thus, T = c1K and
equation (5.1) becomes

1
x

dx

dt
= r

[
1− c1x + c2

dx
dt

c1K

]
.

If we let c = c2/c1 ≥ 0, the above equation can be simplified to the form

(5.2)
1

x(t)
dx(t)

dt
= r

[
K − x(t)

K + rcx(t)

]
,
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Figure 8. The steady state of the delay food-limited model (5.3)
is stable for small delay (τ = 8) and unstable for large delay (τ =
12.8). Here r = 0.15,K = 1.00, c = 1.

which is referee to as the food-limited population model. Equation (5.2) has also
been discussed by Hallam and DeLuna (1984) in studying the effects of environ-
mental toxicants on populations.

Gopalsamy et al. (1988) introduced a time delay τ > 0 into (5.2) and obtained
the delayed food-limited model

(5.3)
dx

dt
= rx(t)

[
K − x(t− τ)

K + rcx(t− τ)

]
.

They studied global attractivity of the positive equilibrium x∗ = K and oscillation
of solutions about x∗ = K (see Fig. 8). The dynamics are very similar to the
Hutchinson’s model.

For other related work on equation (5.3) and its generalizations, see Gopalsamy
et al. (1990a), Grove et al. (1993), So and Yu (1995), Qian (1996), etc.

6. Regulation of Haematopoiesis

Haematopoiesis is the process by which primitive stem cells proliferate and dif-
ferentiate to produce mature blood cells. It is driven by highly coordinated patterns
of gene expression under the influence of growth factors and hormones. The regu-
lation of haematopoiesis is about the formation of blood cell elements in the body.
White and red blood cells are produced in the bone marrow from where they enter
the blood stream. The principal factor stimulating red blood cell product is the
hormone produced in the kidney, called erythropoiesis. About 90% of the erythro-
poiesis is secreted by renal tubular epithelial cells when blood is unable to deliver
sufficient oxygen. When the level of oxygen in the blood decreases this leads to a
release of a substance, which in turn causes an increase in the release of the blood
elements from the marrow. There is a feedback from the blood to the bone marrow.
Abnormalities in the feedback are considered as major suspects in causing periodic
haematopological disease.
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Figure 9. Oscillations in the Mackey-Glass model (6.1). Here
λ = 0.2, a = 01, g = 0.1,m = 10 and τ = 6.

6.1. Mackey-Glass Models. Let c(t) be the concentration of cells (the population
species) in the circulating blood with units cells/mm3. Assume that the cells are
lost at a rate proportional to their concentration, say, gc, where g has dimensions
(day−1). After the reduction in cells in the blood stream there is about a 6-day
delay before the marrow releases further cells to replenish the deficiency. Assume
the flux of cells into the blood stream depends on the cell concentration at an earlier
time, c(t − τ), where τ is the delay. Mackey and Glass (1977) suggested, among
others, the following delay model for the blood cell population

(6.1)
dc

dt
=

λamc(t− τ)
am + cm(t− τ)

− gc(t),

where λ, a, m, g and τ are positive constants. The numerical simulations of equation
(6.1) by Mackey and Glass (1977) (see also Mackey and Milton (1988)) indicate
that there is a cascading sequence of bifurcating periodic solutions when the delay
is increased (see Fig. 9). When the delay is further increased the periodic solutions
becomes aperiodic and chaotic (see Fig. 10).

6.2. Wazewska-Czyzewska and Lasota Model. Another well-known model be-
longs to Wazewska-Czyzewska and Lasota (1976) which takes the form

(6.2)
dN

dt
= −µN(t) + pe−γN(t−τ),

where N(t) denotes the number of red-blood cells at time t, µ is the probability of
death of a red-blood cell, p and γ are positive constants related to the production
of red-blood cells per unit time and τ is the time required to produce a red-blood
cells. See also Arino and Kimmel (1986).

Global attractivity in the Mackey-Glass model (6.1) and the Lasota-Wazewska
model (6.2) has been studied by Gopalsamy et al. (1990b), Karakostas et al. (1992),
Kuang (1992) and Györi and Trofimchuk (1999). Liz et al. (2002) study these
models when the delay is infinite.
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Figure 10. Aperiodic behavior of the solutions of the Mackey-
Glass model (6.1). Here λ = 0.2, a = 01, g = 0.1,m = 10 and
τ = 20.

Other types of delay physiological models can be found in Mackey and Milton
(1988,1990) and Fowler and Mackey (2002).

7. A Vector Disease Model

Let y(t) denote the infected host population and x(t) be the population of unin-
fected human. Assume that the total host population is constant and is scaled so
that

x(t) + y(t) = 1.

The disease is transmitted to the host by an insect vector, assumed to have a large
and constant population, and by the host to that vector. Within the vector there is
an incubation period τ before the disease agent can infect a host. So the population
of vectors capable of infecting the host is

z(t) = dy(t− τ).

where d is the infective rate of the vectors. Infection of the host is assumed to
proceed at a rate (e) proportional to encounters between uninfected host and vectors
capable of transmitting the disease,

ex(t) · dy(t− τ) = by(t− τ)[1− y(t)],

and recovery to proceed exponentially at a rate c. Thus, b is the contact rate.
Infection leads neither to death, immunity or isolation. Based on these assumptions,
Cooke (1978) proposed a delay model

(7.1)
dy

dt
= by(t− τ)[1− y(t)]− cy(t).

Using the Liapunov functional method, he obtained the following results on global
stability of the steady states.

Theorem 5. For the vector disease model (7.1), we have the following:
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Figure 11. Numerical simulations for the vector disease equation
(7.1). When a = 5.8, b = 4.8(a > b), the zero steady state u = 0 is
asymptotically stable; When a = 3.8, b = 4.8(a < b), the positive
steady state u∗ is asymptotically stable for all delay values; here
for both cases τ = 5.

(i) If 0 < b ≤ a, then the steady state solution u0 = 0 is asymptotically stable
and the set {φ ∈ ([−τ, 0], R) : 0 ≤ φ(θ) ≤ 1 for − τ ≤ θ ≤ 0} is a region
of attraction.

(ii) If 0 ≤ a < b, then the steady state solution u1 = (b− a)/b is asymptotically
stable and the set {φ ∈ ([−τ, 0], R) : 0 < φ(θ) ≤ 1 for − τ ≤ θ ≤ 0} is a
region of attraction.

The stability results indicate that there is a threshold at b = a. If b ≤ a, then
the proportion u of infectious individuals tends to zero as t becomes large and the
disease dies out. If b > a, the proportion of infectious individuals tends to an
endemic level u1 = (b− a)/b as t becomes large. There is no non-constant periodic
solutions in the region 0 ≤ u ≤ 1. Numerical simulations are given in Fig. 11.

Busenberg and Cooke (1978) studied the existence of periodic solutions in the
vector-host model (7.1) when b = b(t) is a positive periodic function.

8. Multiple Delays

Kitching (1977) pointed out that the life cycle of the Australian blowfly Lucila
cuprina has multiple time delay features which need to be considered in modelling
its population. Based on this observation, Braddock and van den Driessche (1983)
proposed the two delay logistic equation (see also Gopalsamy (1990))

(8.1)
dx

dt
= rx(t)[1− a1x(t− τ1)− a2x(t− τ2)],

where r, a1, a2, τ1 and τ2 are positive constants. Other equations with two delays
appear in neurological models (Bélair and Campbell (1994)), physiological models
(Beuter et al. (1993)), medical models (Bélair et al. (1995)), epidemiological models
(Cooke and Yorke (1973)), etc. Very rich dynamics have been observed in such
equations (Hale and Huang (1993), Mahaffy et al. (1995)).
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Figure 12. For the two delay logistic model (8.1), choose r =
0.15, a1 = 0.25, a2 = 0.75. (a) The steady state (a) is stable when
τ1 = 15 and τ2 = 5 and (b) becomes unstable when τ1 = 15 and
τ2 = 10, a Hopf bifurcation occurs.

Equation (8.1) has a positive equilibrium x∗ = 1/(a1 + a2). Let x(t) = x∗(1 +
X(t)). Then (8.1) becomes

(8.2) Ẋ(t) = −(1 + X(t))[A1X(t− τ1) + A2X(t− τ2)],

where A1 = ra1x
∗, A2 = ra2x

∗. The linearized equation of (8.2) at X = 0 is

Ẋ(t) = −A1X(t− τ1)−A2X(t− τ2).

Braddock and van den Driessche (1983) described some linear stability regions for
equation (8.1) and observed stable limit cycles when τ2/τ1 is large. Gopalsamy
(1990) obtained stability conditions for the positive equilibrium. Using the results
in Li et al. (1999), we can obtain the following theorem on the stability and
bifurcation of equation (8.1).

Theorem 6. If one of the following conditions is satisfied:

(i) A1 < A2 and τ1 > 0 such that π
2τ1

<
√

A2
2 −A2

1 < 3π
2τ1

;
(ii) A2 < A1 and τ1 > π

2(A1+A2)
such that τ1 ∈ [ π

2(A1+A2)
, τ1], where

τ1 = (A2
1 −A2

2)
− 1

2 arcsin
√

(A2
1 −A2

2)/A
2
1;

(iii) A1 = A2 and τ1 > 1
2A1

;

then there is a τ0
2 > 0, such that when τ2 = τ0

2 the two-delay equation (8.1) under-
goes a Hopf bifurcation at x∗ = 1/(b + c).

Lenhart and Travis (1986) studied the global stability of the multiple delay
population model

(8.3)
dx

dt
= x(t)

[
r + ax(t) +

n∑

i=1

bix(t− τi)

]
.
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Their global stability conditions very much depend on the negative, instantaneously
dominated constant a. It would be interesting to determine the dynamics of the
multiple-delay logistic equation without the negative instantaneously dominated
term (see Kuang (1993))

(8.4)
dx

dt
= rx(t)

[
1−

n∑

i=1

x(t− τi)
Ki

]
.

9. Volterra Integrodifferential Equations

The Hutchinson’s equation (2.1) means that the regulatory effect depends on
the population at a fixed earlier time t − τ , rather than at the present time t. In
a more realistic model the delay effect should be an average over past populations.
This results in an equation with a distributed delay or an infinite delay. The first
work using a logistic equation with distributed delay was by Volterra (1934) with
extensions by Kostitzin (1939). In the 1930’s, many experiments were performed
with laboratory populations of some species of small organisms with short gen-
eration time. Attempts to apply logistic models to these experiments were often
unsuccessful because populations died out. One of the causes was the pollution
of the closed environment by waste products and dead organisms. Volterra (1934)
used an integral term or a distributed delay term to examine a cumulative effect in
the death rate of a species, depending on the population at all times from the start
of the experiment. The model is an integro-differential equation

(9.1)
dx

dt
= rx

[
1− 1

K

∫ t

−∞
G(t− s)x(s)dx

]
,

where G(t), called the delay kernel, is a weighting factor which indicates how much
emphasis should be given to the size of the population at earlier times to determine
the present effect on resource availability. Usually the delay kernel is normalized
so that ∫ ∞

0

G(u)du = 1.

In this way we ensure that for equation (9.1) the equilibrium of the instantaneous
logistic equation (1.3) remains an equilibrium in the presence of time delay. If G(u)
is the Dirac function δ(τ − t), where

∫ ∞

−∞
δ(τ − s)f(s)ds = f(τ),

then equation (9.1) reduces to the discrete delay logistic equation

dx

dt
= rx(t)

[
1− 1

K

∫ t

−∞
δ(t− τ − s)x(s)dx

]
= rx(t)

[
1− x(t− τ)

K

]
.

The average delay for the kernel is defined as

T =
∫ ∞

0

uG(u)du.
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Figure 13. (a) Weak delay kernel and (b) strong delay kernel.

It follows that if G(u) = δ(u − τ), then T = τ , the discrete delay. We usually use
the Gamma distribution delay kernel

(9.2) G(u) =
αnun−1e−αu

(n− 1)!
, n = 1, 2, . . .

where α > 0 is a constant, n an integer, with the average delay T = n/α. Two
special cases,

G(u) = αe−αu (n = 1), G(u) = α2ue−αu; (n = 2),

are called weak delay kernel and strong delay kernel, respectively. The weak ker-
nel qualitatively indicates that the maximum weighted response of the growth rate
is due to current population density while past densities have (exponentially) de-
creasing influence. On the other hand the strong kernel means that the maximum
influence on growth rate response at any time t is due to population density at the
previous time t− T (see Fig. 13).

The initial value for the integro-differential equation (9.1) is

(9.3) x(θ) = φ(θ) ≥ 0,−∞ < θ ≤ 0,

where φ(θ) is continuous on (−∞, 0]. Following Volterra (1931) or Miller (1971),
we can obtain existence, uniqueness, continuity and continuation about solutions
to such a kind of integro-differential equations.

An equilibrium x∗ of equation (9.1) is called stable if given any ε > 0 there
exists a δ = δ(ε) > 0 such that |φ(t) − x∗| ≤ δ for t ∈ (−∞, 0] implies that any
solution x(t) of (9.1) and (9.3) exists and satisfies |x(t)− x∗| < ε for all t ≥ 0. If in
addition there exists a constant δ0 > 0 such that |φ(t)−x∗| ≤ δ on (−∞, 0] implies
lim

t→∞
x(t) = x∗, then x∗ is called asymptotically stable.

9.1. Weak Kernel. To determine the stability of x∗ = K, let us first consider the
equation with a weak kernel, i.e.,

(9.4)
dx

dt
= rx(t)

[
1− 1

K

∫ t

−∞
αe−α(t−s)x(s)ds

]
.
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Using the linear chain trick (Fargue (1973) and MacDonald (1978)), define

(9.5) y(t) =
∫ t

−∞
αe−α(t−s)x(s)ds.

Then the scalar integro-differential equation (9.4) is equivalent to the following
system of two ordinary differential equations

(9.6)
dx
dt

= rx(t)
[
1− 1

K y(t)
]
,

dy
dt

= αx(t)− αy(t).

Notice that the positive equilibrium of system (9.6) is (x∗, y∗) = (K, K). To de-
termine the stability of (x∗, y∗), let X = x − x∗, Y = y − y∗. The characteristic
equation of the linearized system is given by

(9.7) λ2 + αλ + αr = 0,

which has roots

λ1,2 = −α

2
± 1

2

√
α2 − 4αr.

Therefore, Reλ1,2 < 0, which implies that x∗ = K is locally asymptotically stable.
In fact, x∗ = K is globally stable. Rewrite (9.1) as follows:

(9.8)
dx
dt

= − r
K x(t)(y(t)− y∗),

dy
dt

= α(x(t)− x∗)− α(y(t)− y∗).

Choose a Liapunov function as follows

(9.9) V (x, y) = x− x∗ − x∗ ln
x

x∗
+

r

2αK
(y − y∗)2.

Along the solutions of (9.8), we have

dV

dt
=

dx

dt

x− x∗

x
+

r

αK
(y − y∗)

dy

dt
= − r

K
(y − y∗)2 < 0.

Since the positive quadrant is invariant, it follows that solutions of system (9.8),
and hence of (9.1), approach (x∗, y∗) as t →∞. Therefore, x(t) → x∗ as t →∞.

The above analysis can be summarized as the following theorem.

Theorem 7. The positive equilibrium x∗ = K of the logistic equation (9.1) with a
weak kernel is globally stable (see Fig. 14).

The result indicates that if the delay kernel is a weak kernel, the logistic equation
with distributed delay has properties similar to the instantaneous logistic equation.
We shall see that the logistic equation with a strong kernel exhibits richer dynamics
similar to the logistic equation with a constant delay.
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Figure 14. The steady state of the integrodifferential equation
(9.1) is globally stable. Here r = 0.15,K = 1.00.

9.2. Strong Kernel. Consider the logistic equation (9.1) with a strong kernel, i.e.,

(9.10)
dx

dt
= rx(t)

[
1− 1

K

∫ t

−∞
α2(t− s)e−α(t−s)x(t− s)ds

]
.

To use the linear chain trick, define

y(t) =
∫ t

−∞
αe−α(t−s)x(s)dx, z(t) =

∫ t

−∞
α2(t− s)e−α(t−s)x(s)ds.

Then equation (9.10) is equivalent to the system

(9.11)

dx
dt

= rx(t)
(
1− 1

K z(t)
)
,

dy
dt

= αx(t)− αy(t),

dz
dt

= αy(t)− αz(t),

which has a positive equilibrium (x∗, y∗, ε∗) = (K, K, K). Considering the lineariza-
tion of (9.11) at (x∗, y∗, z∗), we obtain the characteristic equation

(9.12) λ3 + a1λ
2 + a2λ + a3 = 0,

where
a1 = 2α, a2 = α2, a3 = rα2.

The Routh-Hurwitz criterion says that all roots of the equation (9.12) have negative
real parts if and only if the following inequalities hold:

(9.13) a1 > 0, a3 > 0, a1a2 − a3 > 0.

Clearly, a1 = 2α > 0, a3 = rα2 > 0. The last inequality becomes

(9.14) α >
r

2
.

Thus, the equilibrium x∗ = K is stable if α > r/2 and unstable if α < r/2. Note
that the average delay of the strong kernel is defined as T = 2/α. Inequality (9.14)
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Figure 15. The steady state x∗ = K of the integrodifferential
equation (9.10) losses stability and a Hopf bifurcation occurs when
α changes from 0.65 to 0.065. Here r = 0.15,K = 1.00.

then becomes

(9.15) T <
4
r
.

Therefore, the equilibrium x∗ = K is stable for “short delays” (T < 4/r) and is
unstable for “long delays” (T > 4/r).

When T = T0 = 4/r, (9.12) has a negative real root λ1 = −r and a pair of purely
imaginary roots λ2,3 = ±i r

2 . Denote by

λ(T ) = µ(T ) + iν(T )

the complex eigenvalue of (9.12) such that u(T0) = 0, ν(T0) = r/2. We can verify
that

(9.16)
dµ

dT

∣∣∣∣∣
T= 4

r

=
8
5
r2 > 0.

The transversality condition (9.16) thus implies that system (9.11) and hence equa-
tion (9.10) exhibits a Hopf bifurcation as the average delay T passes through the
critical value T0 = 4/r (Marsden and McKraeken (1976)).

We thus have the following theorem regarding equation (9.10).

Theorem 8. The positive equilibrium x∗ = K of equation (9.10) is asymptotically
stable if the average delay T = 2/α < 4/r and unstable if T > 4/r. When T = 4/r,
a Hopf bifurcation occurs at x∗ = K and a family of periodic solutions bifurcates
from x∗ = K, the period of the bifurcating solutions is π

ν0
= 2π

r , and the periodic
solutions exist for T > 4/r and are orbitally stable.

Thus, the logistic equation with a strong delay kernel, just like the logistic equa-
tion with a discrete delay, exhibits a typical bifurcation phenomenon. As the (aver-
age) delay is increased through a critical value the positive equilibrium passes from
stability to instability, accompanied by the appearance of stable periodic solutions
(see Fig. 15).
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9.3. General Kernel. Now consider the stability of the equilibrium x∗ = K for
the integrodifferential equation (9.1) with a general kernel. Let X = x−K. Then
(9.1) can be written as

dX

dt
= −r

∫ t

−∞
G(t− s)X(s)ds + rX(t)

∫ t

−∞
G(t− s)X(s)ds.

The linearized equation about x = K is given by

(9.17)
dX

dt
= −r

∫ t

−∞
G(t− s)X(s)ds

and the characteristic equation takes the form

(9.18) λ + r

∫ ∞

0

G(s)e−λsds = 0.

If all eigenvalues of the characteristic equation (9.18) have negative real parts,
then the solution X = 0 of (9.17), that is, the equilibrium x∗ = K of (9.1), is
asymptotically stable.

Theorem 9. If ∫ ∞

0

sG(s)ds <
1
r
,

then x∗ = K of (9.1) is asymptotically stable.

Proof. Since the roots of (9.18) coincide with the zeros of the function

g(λ) = λ + r

∫ ∞

0

G(s)e−λsds,

we may apply the argument principle to g(λ) along the contour Γ = Γ(a, ε) that
constitutes the boundary of the region

{λ| ε ≤ Reλ ≤ a, −a ≤ Im ≤ a, 0 < ε < a}.
Since the zeros of g(λ) are isolated, we may choose a and ε so that no zeros of
g(λ) lie on Γ. The argument principle now states that the number of zeros of g(λ)
contained in the region bounded by Γ is equal to the number of times g(λ) wraps
Γ around the origin as λ traverses Γ. (A zero of g(λ) of multiplicity m is counted
m times.) Thus, it suffices to show for all small ε > 0 and all large a > r, that g(λ)
does not encircle 0 as λ traverses Γ(a, ε).

Along the segment of Γ given by λ = a + iν, −a ≤ µ ≤ a, we have

g(a + iν) = a + iν + r

∫ ∞

0

G(s)e−(a+iν)sds.

Since a > 0, it follows that∣∣∣∣
∫ ∞

0

G(s)e−(a+iν)sds

∣∣∣∣ ≤
∫ ∞

0

G(s)ds = 1.

Because a > r, we may conclude that every real value assumed by g(λ) along this
segment must be positive. Along the segment of Γ given by λ = µ + ia, ε ≤ µ ≤ a,

we have

g(µ + ia) = µ + ia + r

∫ ∞

0

G(s)e−(µ+ia)sds.
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A similar argument shows g(λ) to assume no real value along this path. In fact,
Img(µ + ia) is always positive here. Similarly, one can show that Img(µ − ia) is
negative along the segment λ = µ− ia, ε ≤ µ ≤ a. By continuity, g(λ) must assume
at least one positive real value (and no negative values) as λ travels clockwise from
ε + ia to ε− ia along Γ.

Finally, consider the path traced out as λ = ε+ iν increases from ε− ia to ε+ ia.

Under the assumption, Img(ε+iν) is seen to increase monotonically with ν. In fact,

d

dν
Img(ε + iν) =

d

dν

[
ν + r

∫ ∞

0

G(s)e−εs sin(νs)ds
]

= 1 + r

∫ ∞

0

sG(s)e−εs cos(νs)ds

≥ 1− r

∫ ∞

0

sG(s)ds

> 0.

It follows immediately that g(λ) assumes precisely one real value along this last
segment of Γ. Since no zero of g(λ) lies on Γ, that real value is non-zero. Assuming
it to be negative, g(λ) would have wrapped Γ once about the origin, predicting
exactly one zero λ0 of g(λ) inside the region bounded by Γ. Since α and G are
real, the zeros of g(λ) occur in complex conjugate pairs, forcing λ0 to be real.
This, however, is a contradiction since the positivity of α shows g(λ) to have no
real positive zeros. Thus, the real value assumed by g(λ) along this last segment
must be positive. Therefore, g(λ) does not encircle the origin. This completes the
proof. ¤

9.4. Remarks. In studying the local stability of equation (9.1) with weak and
strong kernels, we applied the so-called linear chain trick to transform the scalar
intergrodifferential equation into equivalent a system of first order ordinary dif-
ferential equations and obtained the characteristic equations (9.7) and (9.12). It
should be pointed out that these characteristic equations can be derived directly
from the characteristic equation (9.18). If G is a weak kernel, then (9.18) becomes

λ + r

∫ ∞

0

αe−(λ+α)sds = λ +
αr

λ + α
= 0,

which is equation (9.7). If G is a strong kernel, then (9.18) becomes

λ + r

∫ ∞

0

α2se−(λ+α)sds = λ +
α2r

(λ + α)2
= 0,

which is equation (9.12).
One of the varieties of equation (9.1) is the following equation

(9.19)
dx

dt
= x(t)

[
a− bx(t)− c

∫ t

−∞
G(t− s)x(s)ds

]
.

where a > 0, b ≥ 0, c ≥ 0, b + c 6= 0. Stability and bifurcation of equation (9.19)
have been studied by many researchers. We refer to Miller (1966), Cushing (1977a),
MacDonald (1978) and references cited therein. See Corollary 13.
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It should be pointed out that bifurcations can occur in equation (9.19) when other
coefficients (not necessarily the average delay) are chosen as bifurcation parameters.
For example, Landman (1980) showed that the exists a positive a∗ such that for
a = a∗, a steady state becomes unstable and oscillatory solutions bifurcate for a

near a∗. See also Simpson (1980).

10. Periodicity

If the environment is not temporally constant (e.g., seasonal effects of weather,
food supplies, mating habits, etc.), then the parameters become time dependent. It
has been suggested by Nicholson (1933) that any periodic change of climate tends
to impose its period upon oscillations of internal origin or to cause such oscillations
to have a harmonic relation to periodic climatic changes. Pianka (1974) discussed
the relevance of periodic environment to evolutionary theory.

10.1. Periodic Delay Models. Nisbet and Gurney (1976) considered a periodic
delay logistic equation and carried out a numerical study of the influence of the
periodicity in r and K on the intrinsic oscillations of the equation such as those
caused by the time delay. Rosen (1987) noted the existence of a relation between
the period of the periodic carrying capacity and the delay of the logistic equation.
Zhang and Gopalsamy (1990) assumed that the intrinsic growth rate and the car-
rying capacity are periodic functions of a period ω and that the delay is an integer
multiple of the period of the environment. Namely, they considered the periodic
delay differential equation of the form

(10.1)
dx

dt
= r(t)x(t)

[
1− x(t− nω)

K(t)

]
,

where r(t+ω) = r(t),K(t+ω) = K(t) for all t ≥ 0. They proved the following result
on the existence of a unique positive periodic solution of equation (10.1) which is
globally attractive with respect to all other positive solutions.

Theorem 10. Suppose that

(10.2)
∫ nω

0

r(s)ds ≤ 3
2
.

Then the periodic delay logistic equation (10.1) has a unique positive solution x∗(t)
and all other solutions of (10.1) corresponding to initial conditions of the form

x(θ) = φ(θ) ≥ 0, φ(0) > 0; φ ∈ C[−nω, 0]

satisfy

(10.3) lim
t→∞

|x(t)− x∗(t)| = 0.

Following the techniques of Zhang and Gopalsamy (1990), quite a few papers
have been produced by re-considering the delayed models which appeared in the
previous sections with the assumption that the coefficients are periodic. See, for
example, the periodic Nicholson’s blowflies model (3.1) (Saker and Agarwal (2002)),
the periodic Allee effect models (4.1)(Lalli and Zhang (1994)) and (4.2) (Yan and
Feng (2003)), the periodic food-limited model (5.3) (Gopalsamy et al. (1990a)), the
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periodic Wazewska-Czyzewska and Lasota model (6.2) (Greaf et al. (1996)), etc.
In all these papers, the delays are assumed to be integral multiples of periods of
the environment. The coincidence degree theory (Gaines and Mawhin (1977)) has
also been used to establish the existence of periodic solutions in periodic models
with general periodic delays. However uniqueness is not guaranteed and stability
can be obtained only when the delays are constant (Li (1998)).

Freedman and Wu (1992) considered the following single-species model with a
general periodic delay

(10.4)
dx

dt
= x(t)[a(t)− b(t)x(t) + c(t)x(t− τ(t))],

where the net birth rate a(t) > 0, the self-inhibition rate b(t) > 0, the reproduction
rate c(t) ≥ 0, and the delay τ(t) ≥ 0 are continuously differentiable, ω-periodic
functions on (−∞,∞). This model represents the case that when the population
size is small, growth is proportional to the size, and when the population size is not
so small, the positive feedback is a(t) + c(t)x(t− τ(t)) while the negative feedback
is b(t)x(t). Such circumstance could arise when the resources are plentiful and the
reproduction at time t is by individuals of at least age τ(t) units of time. Using
fixed point theorem and Razuminkin technique, they proved the following theorem.

Theorem 11. Suppose that the equation

a(t)− b(t)K(t) + c(t)K(t− τ(t)) = 0

has a positive, ω-periodic, continuously differentiable solution K(t). Then equa-
tion (10.4) has a positive ω-periodic solution Q(t). Moreover, if b(t) > c(t)Q(t −
τ(t))/Q(t) for all t ∈ [0, ω], then Q(t) is globally asymptotically stable with respect
to positive solutions of (10.4).

Notice that in equation (10.4), b(t) has to be greater than zero. So Theorem 11
does not apply to the periodic delay logistic equation

(10.5)
dx

dt
= r(t)x(t)

[
1− x(t− τ(t))

K(t)

]

where τ(t) a positive periodic function. As Schley and Gourley (2000) showed, the
periodic delays can have either a stabilizing effect or a destabilizing one, depending
on the frequency of the periodic perturbation. It is still an open problem to study
the dynamics, such as existence, uniqueness and stability of periodic solutions and
bifurcations, for the periodic delay logistic equation (10.5).

10.2. Integrodifferential Equations. Periodic logistic equations with distrib-
uted delay have been systematically studied in Cushing (1977a). Bardi and Schi-
affino (1982) considered the integrodifferential equation (9.1) when the coefficients
are periodic, that is,

(10.6)
dx

dt
= x(t)

[
a(t)− b(t)x(t)− c(t)

∫ t

−∞
G(t− s)x(s)ds

]
.

where a > 0, b > 0, c ≥ 0 are ω-periodic continuous functions on R and G ≥ 0 is a
normalized kernel. Let Cω = Cω(R, R) denote the Banach space of all ω-periodic
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continuous functions endowed with the usual supremum norm ‖x‖ = sup |x(t)|. For
a ∈ Cω, define the average of a as

〈a〉 =
1
ω

∫ ω

0

a(s)ds.

The convolution of the kernel G and a bounded function f is defined by

(G ∗ f)(t) =
∫ t

−∞
G(t− s)f(s)ds.

Observe that an ω-periodic solution of (10.6) is a fixed point of the operator
B : Γ → Cω defined by

(Bx)(t) = u(t), t ∈ R,

where Γ = {x ∈ Cω : 〈a − c(G ∗ x)〉 > 0}. Since 〈a〉 > 0, x(t) ≡ 0 belongs to Γ,

that is, Γ is not empty. Define

u0(t) = (B0)(t).

Claim I. If x1 and x2 belong to Γ with x1 ≤ x2, then Bx2 ≤ Bx1.

In fact, let αi(t) = a(t)− c(t)(G ∗ xi)(t) and ui(t) = (Bxi)(t) for t ∈ R(i = 1, 2).
Then α1(t) ≥ α2(t). Since αi(t) = u̇i(t)/ui(t) + b(t)ui(t), we have 〈αi〉 = 〈bui〉
because ui(t)(i = 1, 2) are periodic. Thus, we deduce [〈bu1〉 ≥ 〈bu2〉 and for some
t0 ∈ R, u2(t0) ≤ u1(t0). Setting v(t) = u1(t)− u2(t), we have

v̇(t) ≥ (α1(t)− b(t)(u1(t) + u2(t)))v(t),

which implies that v(t) ≥ 0 for all t ≥ t0. By the periodicity of v(t), we have
Bx2 ≤ Bx1.

Claim II. If v and c belong to Cω, then 〈c(G ∗ v)〉 = 〈v(G ∗ c)〉.
In fact, if we define G(t) = 0 for t < 0, we have

〈c(G ∗ v)〉 =
+∞∑

j=−∞

∫ ω

0

c(t)
∫ (j+1)ω

jω

G(t− s)v(s)dsdt

=
+∞∑

j=−∞

∫ ω

0

c(t)
∫ ω

0

G(t− s− jω)v(s)dsdt

=
+∞∑

j=−∞

∫ ω

0

v(t)
∫ (1−j)ω

−jω

G(t− s)c(s)dsdt

= 〈v(G ∗ c)〉.

Claim III. Let z be a bounded continuous function on R. Then

lim inf
t→∞

(G ∗ z)(t) ≥ lim inf
t→∞

z(t); lim sup
t→∞

(G ∗ z)(t) ≤ lim sup
t→∞

z(t).
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We only prove the first inequality. Let l = lim inft→∞ z(t). Choose ε > 0 and
pick tε such that z(t) > l − ε for any t > tε. If t > tε, we have

(G ∗ z)(t) =
∫ tε

−∞
G(t− s)z(s)ds +

∫ t

tε

G(t− s)z(s)ds

≥ inf
t

z(t)
∫ tε

−∞
G(t− s)ds + (l − ε)

∫ t

tε

G(t− s)ds.

Hence,
lim inf
t→∞

(G ∗ z)(t) ≥ l − ε,

which implies the first inequality.

Claim IV. Let u ∈ Γ and let v(t) > 0 be the solution of (10.6). Then

lim inf
t→∞

(v(t)− u(t)) > 0 implies lim inf
t→∞

((Bu)(t)− v(t)) > 0,

lim sup
t→∞

(v(t)− u(t)) < 0 implies lim sup
t→∞

(Bu)(t)− v(t)) < 0.

We prove the first statement. Let w(t) = (Bu)(t), t ∈ R. Then w(t) is a solution
of

ẇ(t) = a(t)w(t)− b(t)w(t)2 − c(t)w(t)(G ∗ u)(t)

while
v̇(t) = a(t)v(t)− b(t)v(t)2 − c(t)v(t)(G ∗ v)(t).

Define z(t) = w(t)− v(t). Then

ż(t) = (a(t)− b(t)w(t)− c(t)(G ∗ u))z(t) + c(t)v(t)(G ∗ (v − u))(t)

= (ẇ(t)/w(t)− b(t)v(t))z(t) + c(t)v(t)(G ∗ (v − u))(t).

Let l = lim inft→∞(v(t) − u(t)). Because of Claim III, there exists a t0 ∈ R, such
that

ż(t) > (ẇ(t)/w(t)− b(t)v(t))z(t) + lc(t)v(t)/2

for all t > t0, that is,

z(t) > z(t0) exp{
∫ t

t0

β(s)ds}+
1
2

∫ t

t0

exp{
∫ t

s

β(θ)dθ}c(s)v(s)ds,

where β = ẇ(t)/w(t) − b(t)v(t). Because ẇ(t)/w(t) is periodic and its average is
zero, b(t)v(t) is positive and bounded, we can see that

∫ t

t0
β(s)ds > γ1− tγ2, where

γ1 and γ2 > 0 are constants. Thus,

z(t) > γ3

∫ t

t0

exp((s− t)γ)ds = (γ3/γ)(1− exp((t0 − t)γ2)),

where γ3 > 0 is a suitable constant. Then lim inft→∞ z(t) ≥ γ3/γ which implies
the first statement.

Theorem 12. Suppose 〈a〉 > 0. If

(10.7) b(t) > (G ∗ c)(t)

for any t ∈ [0, ω], then equation (10.6) has a unique positive ω-periodic solution
x∗(t) which is globally asymptotically stable with respect to all solutions of equation
(10.6) under initial condition x(θ) = φ(θ), θ ∈ (−∞, 0], φ(0) > 0.
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Proof. Since

u̇0(t)/u0(t) = a(t)− b(t)u0(t),

the periodicity of u0(t) and Claim II imply that 〈a〉 = 〈bu0〉 > 〈c(G ∗ u0)〉. As
u0 > 0, we have Bu0 ≤ u0. Therefore, for any v ∈ Cω satisfying 0 < v ≤ u0, we
have 0 < Bu0 ≤ Bv ≤ u0. Hence, the set Γ0 = {v ∈ Cω : 0 < v ≤ u0} ⊂ Γ is
invariant under B. Moreover,

Bu0 ≤ Bv ≤ u0 ⇒ Bu0 ≤ B2v ≤ B2u0 ⇒ B3u0 ≤ B3v ≤ B2u0

and by induction

B2n+1u0 ≤ B2n+1v ≤ B2nu0, B2n+1u0 ≤ B2n+2v ≤ B2n+2u0, n = 0, 1, 2, ...

Since 0 < B20 = Bu0, by Claim I, we know that {B2n+1u0} is increasing and
{B2nu0} is decreasing. Define

un(t) = (Bnu0)(t) = (Bun−1)(t).

Then

u−(t) = lim
n→∞

u2n+1(t) and u+(t) = lim
n→∞

u2n(t)

exist with 0 < u−(t) ≤ u+(t). If we can show that u−(t) = u+(t) = u∗(t), it is easy
to see that u∗(t) is the unique fixed point of B. By the definition, we have

u̇n(t) = (a(t)− c(t)(G ∗ un−1)(t))un(t)− b(t)un(t)2.

By the monotonicity and uniform boundedness of {un} we have the L2−convergence
of both u2n+1 and u2n and their derivatives. Taking the limits, we have

u̇−(t) = (a(t)− c(t)(G ∗ u+)(t))u−(t)− b(t)u−(t)2,

u̇+(t) = (a(t)− c(t)(G ∗ u−)(t))u+(t)− b(t)u+(t)2.

Dividing them by u−(t) and u+(t) respectively, we have

〈a− c(G ∗ u+)− bu−〉 = 〈a− c(G ∗ u−)− bu+〉
followed by the fact that ln u+ and ln u− are periodic. Let v(t) = u+(t) − u−(t).
Then we have 〈c(G ∗ v)〉 = 〈bv〉. Now by Claim II we have 〈c(G ∗ v)〉 = 〈v(G ∗ c)〉.
Hence, 〈v(b − G ∗ c)〉 = 0, which implies that v ≡ 0 by the assumption (10.7).
Therefore, u∗(t) is a unique periodic solution of the equation (10.6).

To prove the global stability, first we show that any solution v(t) of equation
(10.6) satisfies lim inft→∞ v(t) > 0. In fact, we have

v̇(t) < a(t)v(t)− b(t)v(t)2

and

lim sup
t→∞

(v(t)− (Bu)(t)) ≤ 0.

Choose ε > 0 so that u(t) = u0(t) + ε ∈ Γ. By Claim IV we have

lim inf
t→∞

(v(t)− (Bu)(t)) ≥ ε.
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Since (Bu)(t) is strictly positive and periodic, we have lim inft→∞ v(t) > 0. Thus,
by Claim III, lim inft→∞(u0(t)− v(t)) > 0 and by induction,

lim inf
t→∞

(v(t)− (B2n+1u0)(t)) > 0, lim sup
t→∞

(v(t)− (B2nu0)(t)) < 0.

Given ε > 0, choose n such that

u∗(t)− ε < (B2n+1u0)(t) < (B2nu0)(t) < u∗(t) + ε.

Since (B2n+1u0)(t) < v(t) < (B2nu0)(t) for large t, it follows that the sequence
{Bju} tends to u∗ uniformly as j →∞. ¤

If a, b and c are real positive constants, then condition (10.7) becomes b > c.

This is the main result in Miller (1966).

Corollary 13. If b > c and G satisfies the above assumptions, then the positive
equilibrium x∗ = a/(b + c) of equation (9.19) (with constant coefficient) is globally
stable with respect to positive solutions of (9.19).

For other related work on periodic logistic equations with distributed delay, we
refer to Bardi (1983), Cohen and Rosenblat (1982), Cushing (1977a), Karakostas
(1982) and the references therein.

11. State-Dependent Delays

Let x(t) denote the size of a population at time t. Assume that the number
of births is a function of the population size only. The birth rate is thus density
dependent but not age dependent. Assume that the lifespan L of individuals in
the population is variable and is a function of the current population size. If we
take into account the crowding effects, then L(·) is a decreasing function of the
population size.

Since the population size x(t) is equal to the total number of living individuals,
we have (Bélair (1991))

(11.1) x(t) =
∫ t

t−L[x(t)]

b(x(s))ds.

Differentiating with respect to the time t on both sides of equation (11.1) leads
to a state-dependent delay model of the form

(11.2)
dx

dt
=

b(x(t))− b(x(t− L[x(t)])
1− L′[x(t)] b(x(t− L[x(t)])

.

Note that state-dependent delay equation (11.2) is not equivalent to the integral
equation (11.1). It is clear that every solution of (11.1) is a solution of (11.2) but
the reverse is not true. In fact, any constant function is a solution of (11.2) but
clearly it may not necessarily be a solution of (11.1). The asymptotic behavior of
the solutions of 11.2) has been studied by Bélair (1991). See also Cooke and Huang
(1996).

State-dependent delay models have also been introduced by Kirk et al. (1970)
to model the control of the bone marrow stem cell population which supplies the
circulating red blood cell population. See also Mackey and Milton (1990).
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Figure 16. Numerical simulations for the state-dependent delay
model (11.3) with r = 0.15,K = 1.00 and τ(x) = a + bx2. (i)
a = 5, b = 1.1; and (ii) a = 9.1541, b = 1.1.

Numerical simulations (see Fig. 16) show that the logistic model with a state-
dependent delay

(11.3) x′(t) = rx(t)
[
1− x(t− τ(x(t))

K

]
,

has similar dynamics to the Hutchinson’s model (2.1). Choose r = 0.15,K = 1.00
as in Fig. 3 for the Hutchinson’s model (2.1) and τ(x) = a + bx2. We observe
stability of the equilibrium x = K = 1 for small amplitude of τ(x) and oscillations
about the equilibrium for large amplitude of τ(x) (see Fig. 16).

Recently, great attention has been paid on the study of state-dependent delay
equations. Consider

(11.4) εx′(t) = −x(t) + f(x(t− r(x(t))))

and assume that

(H1) A and B are given positive real numbers and f : [−B, A] → [−B, A] is a
Lipschitz map with xf(x) < 0 for all x ∈ [−B, A], x 6= 0;

(H2) For A and B in (H1), r : [−B, A] → R is a Lipschitz map with r(0) = 1
and r(u) ≥ 0 for all u ∈ [−B, A];

(H2′) B is a positive real number and r : [−B,∞) → R is a locally Lipschitz map
with r(0) = 1, r(u) ≥ 0 for all u ≥ −B and r(−B) = 0;

(H1′) f : R → R is a locally Lipschitz map, and if B is as in (H1′) and A =
sup{|f(u)| : −B ≤ u ≤ 0}, then uf(u) < 0 for all u ∈ [−B,A], u 6= 0.
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A periodic solution x(t) of (11.4) is called an slowly oscillating periodic (SOP)
solution if there exist numbers q1 > 1 and q2 > q1 + 1 such that

x(t)





= 0, t = 0,

< 0, 0 < t < q1,

= 0, t = q1,

> 0, q1 < t < q2,

= 0, t = q2

and x(t + q2) = x(t) for all t. Mallet-Paret and Nussbaum (1992) proved the fol-
lowing theorem.

Theorem 14. Assume that f and r satisfy (H1)-(H2) or (H1′)-(H2′). Suppose
that f is in C1 near 0 and f ′(0) = −k < −1. Let ν0, π/2 < ν0 < π, be the unique
solution of cos ν0 = −1/k and define λ0 = ν0/

√
k2 − 1. Then for each λ > λ0 the

equation
x′(t) = −λx(t) + λf(x(t− r(x(t))))

has an SOP solution xλ(t) such that −B < xλ(t) < A for all t.

Mallet-Paret and Nussbaum (1996, 2003) studied the shape of general periodic
solutions of the equation (11.4) and their limiting profile as ε → 0+. We refer to
Arino et al. (1998), Bartha (2003), Kuang and Smith (1992a, 1992b), Mallet-Paret
et al. (1994), Magal and Arino (2000), Walther (2002) for existence of periodic solu-
tions; to Krisztin and Arino (2001) for the existence of two dimensional attractors;
to Louihi et al. (2002) for semigroup property of the solutions; to Bartha (2001) and
Chen (2003) for convergence of solutions, and to Ait Dads and Ezzinbi (2002) and
Li and Kuang (2001) for almost periodic and periodic solutions to state-dependent
delay equations. See also Arino et al. (2001) for a brief review on state-dependent
delay models.

12. Diffusive Models with Delay

Diffusion is a phenomenon by which a group of particles, for example animals,
bacteria, cells, chemicals and so on, spreads as a whole according to the irregular
motion of each particle. When this microscopic irregular movement results in some
macroscopic regular motion of the group, the phenomenon is a diffusion process. In
terms of randomness, diffusion is defined to be a basically irreversible phenomenon
by which particles spread out within a given space according to individual random
motion.

12.1. Fisher Equation. Let u(x, t) represent the population density at location
x and time t and the source term f represents the birth-death process. With the
logistic population growth f = ru(1 − u/K) where r is the linear reproduction
rate and K the carrying capacity of the population, the one-dimensional scalar
reaction-diffusion equation takes the form (Fisher (1937) and Kolmogorov et al.
(1937))

(12.1)
∂u

∂t
= D

∂2u

∂x2
+ ru

(
1− u

K

)
, a < x < b, 0 ≤ t < ∞,
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Figure 17. The traveling front profiles for the Fisher equation
(12.1). Here D = r = K = 1, c = 2.4− 3.0

which is called the Fisher equation or diffusive logistic equation. Fisher (1937) pro-
posed the model to investigate the spread of an advantageous gene in a population.

Recall that for the spatially uniform logistic equation
∂u

∂t
= ru

(
1− u

K

)
,

the equilibrium u = 0 is unstable while the positive equilibrium u = K is glob-
ally stable. How does the introduction of the diffusion affect these conclusion?
The answer depends on the domain and the boundary conditions. (a) In a finite
domain with zero-flux (Neumann) boundary conditions, the conclusions still hold
(Fife (1979) and Britton (1986)). (b) Under the Dirichlet conditions, u = K is no
longer a solution to the problem. In this case the behaviour of solutions depends on
the size of the domain. When the domain is small, u = 0 is asymptotically stable,
but it losses its stability when the domain exceeds a certain size and a non-trivial
steady-state solution becomes asymptotically stable. (c) In an infinite domain the
Fisher equation has travelling wave solutions (see Figure 17).

12.2. Diffusive Equations with Delay. In the last two decades, diffusive biolog-
ical models with delays have been studied extensively and many significant results
have been established. For instance, the diffusive logistic equations with a discrete
delay of the form

(12.2)
∂u(x, t)

∂t
= D

∂2u(x, t)
∂x2

+ ru(x, t)
(

1− u(x, t− τ)
K

)

with either Neumann or Dirichlet boundary conditions have been investigated by
Green and Stech (1981), Lin and Khan (1982), Yoshida (1982), Morita (1984),
Luckhaus (1986), Busenberg and Huang (1996), Feng and Lu (1996), Huang (1998),
Freedman and Zhao (1997), Faria and Huang (2002), etc. The diffusive logistic
equations with a distributed delay of the form

(12.3)
∂u(x, t)

∂t
= D

∂2u(x, t)
∂x2

+ ru(x, t)
[
1− 1

K

∫ t

−∞
G(t− s)u(x, t− s)ds

]
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have been studied by Schiaffino (1979), Simpson (1980), Tesei (1980), Gopalsamy
and Aggarwala (1981), Schiaffino and A. Tesei (1981), Yamada (1993), Bonilla and
Liñán (1984), Redlinger (1985), Britton (1990), Gourley and Britton (1993), Pao
(1997), etc.

Recently, researchers have studied the combined effects of diffusion and various
delays on the dynamics of the models mentioned in previous sections. For exam-
ple, for the food-limited model (5.3) with diffusion, Gourley and Chaplain (2002)
considered the case when the delay is finite. Feng and Lu (2003) assumed that the
time delay in an integral multiple of the period of the environment and considered
the existence of periodic solutions. Davidson and Gourley (2001) studied the model
with infinite delay, and Gourley and So (2002) investigated the dynamics when the
delay is nonlocal.

The diffusive Nicholson’s blowflies equation

(12.4)
∂u

∂t
= d∆u− τu(x, t) + βτu(x, t− 1) exp[−u(x, t− 1)]

with Dirichlet boundary conditions has been investigated by So and Yang (1998).
They studied the global attractivity of the positive steady state of the equation.
Some numerical and bifurcation analysis of this model has been carried out by So,
Wu and Yang (1999) and So and Zou (2001).

Gourley and Ruan (2000) study various local and global aspects of Nicholson’s
blowflies equation with infinite delay
(12.5)
∂u

∂t
= d∆u−τu(x, t)+βτ

(∫ t

−∞
F (t− s)u(x, s) ds

)
exp

(
−

∫ t

−∞
F (t− s)u(x, s) ds

)

for (x, t) ∈ Ω× [0,∞) where Ω is either all of Rn or some finite domain, and where
the kernel satisfies F (t) ≥ 0 and the conditions

(12.6)
∫ ∞

0

F (t) dt = 1 and
∫ ∞

0

t F (t) dt = 1.

Gourley (2000) discussed the existence of travelling waves in equation (12.5).
Ruan and Xiao (2003) considered the diffusive integro-differential equation mod-

eling the host-vector interaction
(12.7)

∂u

∂t
(t, x) = d∆u(t, x)− au(t, x) + b[1− u(t, x)]

∫ t

−∞

∫

Ω

F (t− s, x, y)u(s, y)dyds,

where u(t, x) is the normalized spatial density of infectious host at time t ∈ R+ in
location x ∈ Ω, Ω is an open bounded set in RN (N ≤ 3), and the convolution kernel
F (t, s, x, y) is a positive continuous function in its variables t ∈ R, s ∈ R+, x, y ∈ Ω,

which is normalized so that∫ ∞

0

∫

Ω

F (t, s, x, y)dyds = 1.

Ruan and Xiao (2003) studied the stability of the steady states and proved the
following results.

Theorem 15. The following statements hold
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(i) If 0 < b ≤ a, then u0 = 0 is the unique steady state solution of (12.7) in

M = {u ∈ E : 0 ≤ u(x) ≤ 1, x ∈ Ω̄}
and it is globally asymptotically stable in C((−∞, 0];M).

(ii) If 0 ≤ a < b, then there are two steady state solutions in M : u0 = 0 and
u1 = (b−a)/b, where u0 is unstable and u1 is globally asymptotically stable
in C((−∞, 0]; M).

Notice that when F (t, s, x, y) = δ(x− y)δ(t− s− τ), where τ > 0 is a constant,
and u does not depend on the spatial variable, then equation (12.7) becomes the
vector disease model (7.1) and Theorem 15 reduces to Theorem 5 obtained by Cooke
(1978).

When x ∈ (−∞,∞) and the kernel is a local strong kernel, i.e.

(12.8)
∂u

∂t
= d∆u(t, x)− au(t, x) + b[1− u(t, x)]

∫ t

−∞

t− s

τ2
e−

t−s
τ u(s, x)ds,

where (t, x) ∈ R+ × Ω, the existence of traveling waves has been established.

Theorem 16. For any τ > 0 sufficiently small there exist speeds c such that the
system (12.8) has a traveling wave solution connecting u0 = 0 and u1 = (b− a)/b.

The existence of traveling front solutions show that there is a moving zone of
transition from the disease-free state to the infective state.

We refer to the monograph by Wu (1996) for a systematic treatment of partial
differential equations with delay.
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[46] K. Gopalsamy, M. R. S. Kulenović and G. Ladas (1988), Time lags in a “food-limited”

population model, Appl. Anal. 31, 225-237.
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[59] I. Györi and S. I. Trofimchuk (2002), On existence of rapidly oscillatory solutions in the

Nicholson blowflies equation, Nonlinear Analysis - TMA 48, 1033-1042.

[60] K. P. Hadeler (1976), On the stability of the stationary state of a population growth equation

with time-lag, J. Math. Biol. 3, 197-201.



38

[61] K. P. Hadeler and J. Tomiuk (1977), Periodic solutions of difference-differential equations,

Arch. Rational Mech. Anal. 65, 82-95.

[62] J. K. Hale and W. Huang (1993), Global geometry of the stable regions for two delay differ-

ential equations, J. Math. Anal. Appl. 178, 344-362.

[63] J. K. Hale and S. M. Verduyn Lunel (1993), Introduction to Functional Differential Equations,

Applied Mathematical Sciences 99, Springer-Verlag, New York.

[64] T. G. Hallam and J. T. DeJuna (1984), Effects of toxicants on populations: A qualitative

approach III. Environmental and food chain pathways, J. Theor. Biol. 109, 411-429.

[65] B. D. Hassard, N. D. Kazarinoff and Y. H. Wan (1981), Theory and Applications of Hopf

Bifurcation, London Mathematical Society Lecture Note Series 41, Cambridge University Press,

Cambridge.

[66] W. Huang (1998), Global dynamics for a reaction-diffusion equation with time delay, J.

Differential Equations 143, 293-326.

[67] G. E. Hutchinson (1948), Circular cause systems in ecology, Ann. N. Y. Acad. Sci. 50,

221-246.

[68] G. E. Hutchinson (1978), An Introduction to Population Ecology, Yale University Press, New

Haven.

[69] G. S. Jones (1962a), On the nonlinear differential-difference equation f ′(t) = −αf(x− 1)[1+

f(x)], J. Math. Anal. Appl. 4, 440-469.

[70] G. S. Jones (1962b), The existence of periodic solutions of f ′(t) = −αf(x − 1)[1 + f(x)], J.

Math. Anal. Appl. 5, 435-450.

[71] S. Kakutani and L. Markus (1958), On the non-linear difference-differential equation y′(t) =

[A − By(t − τ)]y(t), in “Contributions to the Theory of Nonlinear Oscillations”, Vol. 4, ed. S.

Lefschetz, Princeton University Press, New Jersey, 1-18.

[72] J. Kaplan and J. A. Yorke (1975), On the stability of a periodic solution of a differential

delay equation, SIAM J. Math. Anal. 6, 268-282.

[73] G. Karakostas (1982), The effect of seasonal variations to the delay population equation,

Nonlinear Analysis -TMA 6, 1143-1154.

[74] G. Karakostas, Ch. G. Philos and Y. G. Sficas (1992), Stable steady state of some population

models, J. Dynamics Differential Equations 4, 161-190.

[75] J. Kirk, J. S. Orr and J. Forrest (1970), The role of chalone in the control of the bone marrow

stem cell population, Math. Biosci. 6, 129-143.

[76] R. L. Kitching (1977), Time, resources and population dynamics in insects, Austral. J. Ecol.

2, 31-42.

[77] A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov (1937), Étude de l’équation de le
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