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Oscillations in Plankton Models with Nutrient Recycling
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Plankton}nutrient interaction models with both instantaneous and delayed nutrient recycling
are considered. The system consists of three components: autotrophic phytoplankton, herbi-
vorous zooplankton and dissolved limiting nutrient. Local stability of the equilibria is
analysed. It is shown that the positive equilibrium loses its stability when the nutrient input
concentration passes through a critical value and the Hopf bifurcation occurs that induces
oscillations of the populations. Numerical simulations are carried out to illustrate the obtained
results.
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Introduction

An important di!erence between a chemostat situ-
ation and a lake situation is that lakes generally
have a residence time of nutrient and sediments
measured in years (see Powell & Richerson, 1985).
This means that in models of natural systems the
regeneration of nutrient due to bacterial de-
composition of the dead biomass must be con-
sidered (see Svirezhev and Logofet, 1983).

The e!ect of nutrient recycling on ecosystem
stability has been extensively studied for closed
systems. Usually, nutrient recycling is considered
as an instantaneous term, thus the time required to
regenerate nutrient from dead biomass by bacterial
decomposition is neglected. In a natural system,
such a delay is always present and increases as
temperature decreases (Whittaker, 1975).

Beretta et al. (1990) considered an open system
with a single species feeding on a limiting nutrient
which is partially recycled after the death of the
organisms. They inserted a distributed delay in
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the recycling term in order to study its e!ect on
the stability of the positive equilibrium. Bischi
(1992) studied the e!ects of the time delay in-
volved in nutrient recycling on resilience, that is,
the rate at which a system returns to a stable
steady state following a perturbation. Bischi
showed that when a system is characterized by
oscillatory behavior, an increase in the distrib-
uted time delay can have a stabilizing e!ect. This
is a counterintuitive result, because in general it
has been found that the introduction of time
delays is a destabilizing process, in the sense that
increasing the time delay could cause a stable
equilibrium to become unstable and/or cause the
populations to #uctuate (see Cushing, 1977). Re-
cently, Beretta & Takeuchi (1994a, b) and He
& Ruan (1998) studied the global stability of this
model by applying the Liapunov functional
method. For other related work, we refer to He
et al. (1998), Ruan (1995) and the references cited
therein. Freedman & Xu (1993) extended the
single species model in Beretta et al. (1990) to
a competition model of chemostat-type with
delayed nutrient recycling. They developed per-
sistence and extinction criteria for the competing
( 2001 Academic Press



16 S. RUAN
populations. The global stability of the chemo-
stat-type competition models with nutrient recy-
cling has been investigated in Ruan and He (1998).

In the last two decades, numerous plankton
models with instantaneous nutrient recycling
have been proposed (see Busenberg et al., 1990;
DeAngelis et al., 1989; Evan & Parslow, 1985;
Fasham, 1993; Fasham et al., 1990; Franks et al.,
1986; Henderson & Steele, 1995; Nisbet & Gur-
ney, 1976; Nisbet et al., 1983; Ruan, 1993; Steele
& Henderson, 1981, 1992; Sarmiento et al., 1993;
Truscott & Brindley, 1994; Wroblewski et al.
1988). In 1995, Beretta et al. and Ruan & Wol-
kowicz (1995) simultaneously proposed a plank-
ton-nutrient model with delayed nutrient
recycling. The system is consisted of autotrophic
phyto-plankton, herbivorous zooplankton and
dissolved limiting nutrient. Distributed delays
are used to describe the contribution of phyto-
plankton and zooplankton that died in the past
to the nutrient recycled at the present time. While
Beretta et al. (1995) were interested in bounded-
ness and local stability of the system, Ruan
& Wolkowicz (1995) gave uniform persistence
criteria for the system. In this paper, we "rst con-
sider the model with instantaneous nutrient re-
cycling and analyse the local stability of the
equilibria. By choosing N0, the nutrient input con-
centration, as a bifurcation parameter, it is shown
that the positive equilibrium loses its stability
when N0 passes through a critical value and
a family of periodic solutions bifurcates from the
positive equilibrium via the Hopf bifurcation.
Then, we consider the model with delayed nutrient
recycling and observe similar oscillations in the
plankton populations. Numerical simulations are
given to illustrate the results and observations.

The Model

The plankton model with delayed nutrient re-
cycling consists of three interacting components,
herbivorous zooplankton (Z), autotrophic phyto-
plankton (P) and dissolved limiting nutrient (N),
and is given by the following equations:

dN
dt

"D(N0!N)!aPu(N)

#(1!d)cZw(P)
#c
1P

t

~=

F(t!s)P(s) ds

#e
1P

t

~=

G (t!s)Z(s) ds, (1)

dP
dt

"aPu(N)!cZw(P)!(c#D
1
)P,

dZ
dt

"Z[dcw(P)!(e#D
2
)],

where all parameters are positive and are inter-
preted as follows:

a2maximal nutrient uptake rate for the phyto-
plankton

c*maximal zooplankton ingestion rate
N02input concentration of the nutrient
D*washout rate of the system
D

1
*washout rate of the phytoplankton

D
2
*washout rate of the zooplankton

c*phytoplankton mortality rate
e*zooplankton death rate
c
1
*nutrient recycle rate after the death of the

phytoplankton, c
1
)c

e
1
*nutrient recycle rate after the death of the

zooplankton, e
1
)e

d*the fraction of zooplankton nutrient con-
version, 0(d)1.

The function u(N) describes the nutrient uptake
rate of phytoplankton and satis"es the following
general hypotheses (Hale & Somolinos, 1983):

(i) the function is nonnegative, increasing and
vanishes when there is no nutrient;

(ii) there is a saturation e!ect when the nutri-
ent is very abundant.

That is, u(N) is a continuous function de"ned on
[0,R) and satis"es

u (0)"0,
du
dN

'0 and lim
N?=

u(N)"1. (2)

In particular, this kind of function includes
Holling's type II (Holling, 1959) or the Michaelis}
Menten function (Wroblewski & Richman, 1987)

u (N)"
N

k#N
, (3)
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where k is the half-saturation constant or
Michaelis}Menten constant.

The function w(P) represents the response
function describing herbivore grazing. It is also
assumed that w(P) is continuous on [0,R) and
satis"es

w(0)"0,
dw
dP

'0. (4)

Usually, Ivlev's (1961) functional response formu-
lation

w(P)"1!e~jP (5)

is used to describe the zooplankton grazing,
where j is the rate at which saturation is achieved
with increasing phytoplankton levels (per unit
concentration). Alternatively, Mayzaud and
Poulet formulation (Mayzaud & Poulet, 1978)

w(P)"jP(1!e~jP) (6)

is also used to describe the food-acclimatized
herbivore grazing (Wroblewski & Richman,
1987).

The delay-kernels F(s) and G(s) are non-
negative bounded functions de"ned on [0,R)
and describe the contribution of phytoplankton
and zooplankton that died in the past to the
nutrient recycled at time t. We assume that only
fractions of the dead phytoplankton (c

1
) and the

dead zooplankton (e
1
) are recycled into dissolved

nutrient. The presence of the distributed time
delay must not a!ect the equilibrium values, so
we normalize the kernels such that

P
=

0

F(s) ds"1, P
=

0

G(s) ds"1.

According to MacDonald (1978), we de"ne the
average time lag as

¹"P
=

0

sF(s) ds.

In particular, the exponential kernel

an`1

n!
sne~as, a'0
is usually used (see Cushing, 1977), where n is
a nonnegative integer and a is linked to the mean
time delay by

¹"

n#1
a

.

During consumption, only a fraction of the
biomass removed from the resources compart-
ment, d (d)1), is assumed to be assimilated by
the consumer. The remainder goes directly to the
dissolved nutrient. Besides the loss related to
consumption, a second phytoplankton loss term,
!cP, represents loss due to extracellular release
and senescent cell autolysis and sinking. The
zooplankton dynamics includes growth as as-
similated ingested ration and a loss rate (e) due to
high-level predation, physiological death, etc.
The parameters D,D

1
, D

2
are the washout rates

(or removal rates, di!usive rates) of biotic compo-
nents from the system resulting from washout,
di!usion, harvesting, burial in deep sediments,
soluble metabolic loss or cell sinking, for
example. Those processes in general do not take
place for the same amount of time, so we assume
that D,D

1
, D

2
are di!erent.

System (1) with initial conditions

N(0)"N
0
*0, P(s)"t(s), Z(s)"t(s),

!R(s)0,

where /, t: (!R, 0]P[0,R) are bounded and
continuous functions, possesses unique non-
negative solutions continuously dependent on
parameters and initial data (see Cushing, 1977).

Instantaneous Nutrient Recycling

We "rst assume that F(s)"G(s)"d(s), the
Dirac delta function, that is, we neglect the time
delays involved in the nutrient recycling process.
System (1) becomes a set of three ordinary di!er-
ential equations (Ruan, 1993)

dN
dt

"D (N0!N)!aPu(N)#(1!d)cZw(P)

#c
1
P#e

1
Z,
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dP
dt

"aPu(N)!cZw(P)!(c#D
1
)P, (7)

dZ
dt

"Z[dcw(P)!(e#D
2
)]

and the initial conditions become

N(0)"N
0
*0, P(0)"P

0
*0, Z(0)"Z

0
*0.

(8)

Adding all the three equations, we can see that

d
dt

(N#P#Z)"DN0!DN#c
1
P#e

1
Z

!cP!D
1
P!eZ!D

2
Z

)!D
0
((N#P#Z)#DN0) ,

where D
0
"min MD,D

1
,D

2
N. It follows that the

solutions are bounded.

Proposition 3.1. All solutions of system (7) under
(8) are bounded.

Notice that the boundary equilibrium
E
0
"(N0, 0, 0) always exists. To determine the

local stability of E
0
, we consider the Jacobian

matrix of the linearized system at E
0
,

M
0
"A

!D !au(N0)#c
1

e
1

0 au(N0)!(c#D
1
) 0

0 0 !(e#D
2
)B .

The eigenvalues of M
0

are

y
1
"!D(0, y

2
"au(N0)!(c#D

1
),

y
3
"!(e#D

2
)(0.
Hence, the local stability of E
0

can be deter-
mined.

Proposition 3.2. If

au (N0)!(c#D
1
)(0, (9)

then E
0
"(N0, 0, 0) is asymptotically stable.

Note that inequality (9) is equivalent to

a(c#D
1

and N0(u~1A
c#D

1
a B .

Recall that a is the maximal nutrient uptake rate
of the phytoplankton and N0 is the input concen-
tration of the nutrient. Proposition 3.2 indicates
that if the maximal nutrient uptake rate of the
phytoplankton population is less then its loss
rate (c#D

1
) and there is not enough nutrient

input into the system, than the phytoplankton
population and therefore the zooplankton popu-
lation cannot survive. Hence, to have the instabil-
ity of E

0
, we assume that

a'c#D
1

and N0'u~1A
c#D

1
a B. (10)

It then follows that y
2
'0 and E

0
is an unstable

saddle, the (N, Z)-plane is the stable manifold
and the P-axis is the unstable manifold.

The inequalities in eqn (10) also imply the
existence of the boundary steady state
E
1
"(N

1
, P

1
, 0), where

N
1
"u~1A

c#D
1

a B , P
1
"

D (N0!N
1
)

c#D
1
!c

1

.

If E
1

exists, then the second inequality in eqn (10)
implies that

N0'N
1
.

The Jacobian matrix at E
1

is
M
1
"A

!D!aP
1
u@(N

1
) !au(N

1
)#c

1
(1!d)cw(P

1
)#e

1
aP

1
u@ (N

1
) 0 !cw(P

1
)

0 0 dcw (P
1
)!(e

1
#D

2
)B.
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Let y
1
, y

2
and y

3
be the three eigenvalues of the

matrix M
1
. Then we can see that

Re y
1,2

"!(D#aP
1
u@ (N

1
))(0,

y
3
"dcw(P

1
)!(e

1
#D

2
)

and state the following result about the stability
of E

1
.

Proposition 3.3. If

dcw (P
1
)!(e

1
#D

2
)(0, (11)

then E
1
"(N

1
, P

1
, 0) is asymptotically stable.

Taking the biological meanings of the para-
meters involved in the inequality (11) into consid-
eration, Proposition 3.3 then implies that if the
growth rate of the zooplankton population is less
than its loss rate, then only the phytoplankton
population can survive on the nutrient, the
zooplankton will die out. Again, to have the
instability of E

1
, we assume that

dc'e
1
#D

2
and P

1
'w~1A

e
1
#D

2
dc B . (12)

Hence, y
3
'0 and E

1
is also an unstable saddle,

the (N, P)-plane is the stable manifold and the
Z-axis is the unstable manifold. Moreover, if the
inequalities in eqn (9) are satis"ed, then there
exists an interior steady state E*"(N*, P*, Z*)
with

P*"w~1A
e
1
#D

2
dc B . (13)

Notice that the second inequality in eqns (12) and
(13) imply that

P
1
'P*.

The Jacobian matrix at E* is given by

M*"A
m

11
m

12
m

13
m

21
m

22
m

23
0 m

32
0 B ,
where

m
11
"!D!aP*u@(N*)(0,

m
12
"!au(N*)#(1!d)cZ*w@(P*)#c

1
,

m
13
"(1!d)cw(P*)#e

1
'0,

m
21
"aP*u@(N*)'0, (14)

m
22
"au (N*)!cZ*w@(P*)!(c#D

1
),

m
23
"!cw(P*)(0,

m
32
"dcZ*w@(P*)'0.

The characteristic equation is

y3#a
1
y2#a

2
y#a

3
"0, (15)

where

a
1
"!(m

11
#m

22
),

a
2
"m

11
m

22
!m

12
m

21
!m

23
m

32
, (16)

a
3
"m

11
m

23
m

32
!m

13
m

32
m

21
.

By the Routh}Hurwitz criteria, all roots of eqn
(15) have negative real parts if and only if

a
1
'0, a

3
'0 and a

1
a
2
!a

3
'0.

Assume
m

22
(0,

then a
1
'0, a

3
'0 and

m
12
)!au (N*)#(1!d)cZ*w@(P*)#c

"m
22
!D!1!dcZ*w@(P*)(0.

By the signs of the m
ij
's, we also have

a
1
a
2
!a

3
"!m2

11
m

22
!m

11
m2

22
#m

11
m

12
m

21

#m
22

m
12

m
21

#m
11

m
23

m
32

#m
22

m
23

m
32

'0
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since each term is positive. This yields the follow-
ing result on stability of E*.

Proposition 3.4. ¹he positive steady state E* is
asymptotically stable if

au (N*)(cZ*w@(P*)#(c#D
1
) . (17)

Now assume that the steady state E* is asymp-
totically stable, we would like to know if E* will
lose its stability when one of the parameters
changes. Note that the asymptotic stability of
E* is equivalent to the conditions a

1
'0, a

3
'0

and a
1
a
2
'a

3
. We want to know that when one

of the parameters changes, if the conditions (more
speci"cally if the condition a

1
a
2
'a

3
) will be

violated. Furthermore, we want to determine if
the real part of the roots of the characteristic
eqn (15) changes from negative to zero and to
positive, that is, if the Hopf bifurcation will occur
at E*.

Choose N0, the input of concentration, as the
bifurcation parameter, we can see that if there
exists a critical value N0

c
such that

a
1
(N0

c
)'0, a

1
(N0

c
)a

2
(N0

c
)"a

3
(N0

c
),

[a
1
(N0

c
)a

2
(N0

c
)]@(a@

3
(N0

c
), (18)

then the characteristic equation (15) can be
written as

(y2(N0
c
)#a

2
(N0

c
))(y (N0

c
)#a

1
(N0

c
))"0,

which has roots

y
1,2

(N0
c
)"$iJa

2
(N0

c
), y

3
"!a

1
(N0

c
)(0.

To see if Hopf bifurcation occurs at N
0
"N0

c
, we

need to verify the transversality condition

dRe y
1,2

dN0 K
N

0/N
0
c

O0.

Assume that the pair of conjugate complex roots
of eqn (15) has the form y

1,2
(N0)"k (N0)$
il(N0). Substituting into eqn (15) and calculating
the derivatives, we obtain

A(N0)k@(N0)!B(N0)l@(N0)#C(N0)"0,

(19)

B(N0)k@(N0)#A(N0)l@(N0)#D(N0)"0,

where

A(N0)"3k2(N0)#2a
1
(N0)k (N0)

#a
2
(N0)!3l2 (N0),

B(N0)"6k(N0)l (N0)#2a
1
(N0)l(N0),

C(N0)"k2 (N0)a@
1
(N0)#a@

2
(N0)k (N0)

#a@
3
(N0)!a@

1
(N0)l2(N0),

D(N0)"2k(N0)l (N0)a@
1
(N0)

#a@
2
(N0)l(N0).

Notice that k (N0
c
)"0, l(N0

c
)"Ja

2
(N0

c
), we

have

A(N0
c
)"!2a

2
(N0

c
), B(N0

c
)"2a

1
(N0

c
)Ja

2
(N0

c
) ,

C(N0
c
)"a@

3
(N0

c
)!a@

1
(N0

c
)a

2
(N0

c
),

D(N0
c
)"a@

2
(N0

c
)Ja

2
(N0

c
).

Solving for k@(N0
c
) from system (19), we obtain

dRe y
1,2

dN0 K
N

0/N
0
c

"k@(N0)D
N

0/N
0
c

"!

A (N0
c
)C(N0

c
)#B(N0

c
)D (N0

c
)

A(N0
c
)2#B(N0

c
)2

"

a@
3
(N0

c
)!a@

1
(N0

c
)a

2
(N0

c
)!a

1
(N0

c
)a@

2
(N0

c
)

a2
1
(N0

c
)#a

2
(N0

c
)

'0.
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Thus, the real part of y
1,2

changes from negative
to zero at N0"N0

c
and becomes positive when

N0'N0
c
. Summarizing the above analysis, we

have the following result on the bifurcation of
system (7).

Proposition 3.5. If there exists a positive number
N0

c
such that a

1
(N0

c
)'0, a

1
(N0

c
)a

2
(N0

c
)"a

3
(N0

c
)

and [a
1
(N0

c
)a

2
(N0

c
)]@(a@

3
(N0

c
), then when N0(

N0
c
, the steady state E* is stable; when N0"N0

c
,

E* loses its stability and the Hopf bifurcation oc-
curs at E*; when N0'N0

c
, E* becomes unstable

and a family of periodic solutions bifurcates
from E*.

As an example, we suppose that u(N) is the
Michaelis}Menten function, w(P) is the Ivlev
function, i.e. we consider the following model:

dN
dt

"D (N0!N)!aP
N

k#N

#(1!d)cZ(1!e~jP)#c
1
P#e

1
Z,

dP
dt

"aP
N

k#N
!cZ(1!e~jP)!(c#D

1
)P,

dZ
dt

"Z[dc (1!e~jP)!(e#D
2
)], (20)

where all parameters are positive constants. The
boundary equilibria are E

0
"(N0, 0, 0) and
E
1
"A

(c#D
1
)k

a!(c#D
1
)
,
D(N0!((c#D

1
)k/(a!(c#D

1
))))

c#D
1
!c

1

, 0B
provided

a'c#D
1

and N0'
(c#D

1
)k

a!(c#D
1
)
.

The positive steady state E*"(N*, P*, Z*)
exists if

dc'e#D
2

and

expC!
jD (N0!((c#D

1
)k/(a!(c#D

1
))))

c#D
1
!c

1
D

(

dc!(e#D
2
)

dc
,

where

P*"
1
j

ln
dc

dc!(e#D
2
)
,

Z*"
dP*

e#D
2
Ca

N*
k#N*

!(c#D
1
)D (21)

and N* is the positive root of the equation

D(N*)2#BN*!C"0 (22)

with

B"D(k!N0)#C(c#D
1
!c

1
)

#d(a!c!D
1
)A1!

e
1

e#D
2
BDP*,

C"k GDN0#Cd (c#D
1
)A1!

e
1

e#D
2
B

!(c#D
1
!c

1
)DP*H .
With parameter values given as (see Wrob-
lewski & Richman, 1987)

a"1.0, k"0.2, c"0.1, e"0.1, j"0.5,

D"0.1, D
1
"0.1, D

2
"0.1,

c"0.5, c
1
"0.08, e

1
"0.05, d"0.7,

numerical simulations show that N0
c
"8.4 is

the bifurcation value. When N0"4.0, all three
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components converge to the steady-state values
[Fig. 1(a)] and the positive steady state is stable
[Fig. 1(b)]. When N0"12.5'N0

c
, all three com-

ponents are oscillatory [Fig. 1(c)] and there is
a periodic solution [Fig. 1(d)].

Delayed Nutrient Recycling

In this section, we consider the delay system
(1). By Theorem 4.1 in Ruan & Wolkowicz (1995)
we know that if

P
0

~=
P
s

~=

F(u) duds(R,

P
0

~=
P
s

~=

G(u) duds(R, (23)

then all solutions of system (1) are bounded.
Notice that the boundary equilibrium E

0
"

(N0, 0, 0) always exists. As in Section 3, if the
inequalities in eqn (10) hold, then the boundary
equilibrium E

1
"(N

1
, P

1
, 0) exists, where N

1
and

P
1

are the same as given in Section 3. Further-
more, if the inequalities in eqn (12) hold, then
there is a positive equilibrium E*"(N*, P*, Z*).

To discuss the local stability of the positive
equilibrium E*, we consider a speci"c case. As-
sume that u (N) is the Michaelis}Menten func-
tion, w(P) is the Ivlev function, and F (s) and G (s)
re weak kernels, i.e. we consider the following
model:

dN
dt

"D (N0!N)!aP
N

k#N

#(1!d)cZ(1!e!jP )

#c
1P

t

~=

ae!a(t!s)P(s) ds
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#e
1P

t

~=

be!b(t!s)Z(s) ds, (24)

dP
dt

"aP
N

k#N
!cZ(1!e!jP)!(c#D

1
)P,

dZ
dt

"Z[dc(1!e!jP)!(e#D
2
)],

where all parameters are positive numbers. If

a'c#D
1
, (25)

dc'e#D
2
, (26)

N0'
(c#D

1
)k

a!(c#D
1
)

(27)
FIG. 2. Delayed nutrient recycling.
and

expC!
jD(N0!((c#D

1
)k/(a!(c#D

1
))))

c#D
1
!c

1
D

(

dc!(e#D
2
)

dc
, (28)

then by Theorem 4.5 in Ruan & Wolkowicz
(1995), system (24) is uniformly persistent and
there is a positive equilibrium E*"(N*, P*, Z*),
which is the same equilibrium of system (20)
given by eqns (21) and (22). By using the so-called
&&linear chain trick'' technique (see MacDonald,
1978), the characteristic equation of the lin-
earized system at E* can be written as

y5#b
1
y4#b

2
y3#b

3
y2#b

4
y#b

5
"0, (29)
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where

b
1
"a#b#a

1
,

b
2
"ab#(a#b)a

1
#a

2
,

b
3
"aba

1
#(a#b)a

2
#a

3
#ac

1
m

21
, (30)

b
4
"ab(c

1
m

21
#a

2
)#(a#b)a

3
#be

1
m

21
m

32
,

b
5
"ab(a

3
#c

1
m

21
#e

1
m

21
m

32
) ,

with a
i
(i"1, 2, 3) and m

ij
(i, j"1, 2, 3) de"ned

in eqns (13) and (11).
By using the Routh}Hurwicz criteria, we can

determine the linear stability of the positive equi-
librium E*. Choosing N0 as a bifurcation para-
meter and following a similar analysis as in
Section 3, we can show that E* could lose its
stability when E* passes a critical value N0

c
and

a Hopf bifurcation could occur. Numerical simu-
lations con"rm the observation. With parameter
values chosen as

a"0.02, b"0.01

and all other parameters given in Section 3, nu-
merical simulations are depicted in Fig. 2(a)}(d).
When N0"4.0, all three components tend to the
steady-state values and the equilibrium is stable
[Fig. 2(a) and (b)]. When N0"12.5'N0

c
"8.4,

the three components coexist in an oscillatory
mode [Fig. 2(c) and (d)].
FIG. 3. Instantaneous nutrient recycling II.
Comparing Fig. 1(a) with 2(a), we can see that
for the stable steady state, time delays induce
more transient oscillations. In the case of periodic
solutions [see Figs 1(c) and 2(c)], we can see that
delays in the nutrient recycling make the oscilla-
tions more frequently.

Discussion

We have studied plankton}nutrient models
with both instantaneous and delayed nutrient
recycling. Local stability of the equilibria has
been analysed. By choosing the nutrient input
concentration, N0, as a bifurcation parameter, we
have shown that the positive equilibrium loses its
stability when N0 passes a critical value and
a Hopf bifurcation occurs at the positive equilib-
rium. Recall that the uniform persistence criteria
of the system are given by inequalities (24)}(28).
Conditions (27) and (28) can be rewritten as

N0'
(c#D

1
)k

a!(c#D
1
)

#

c#D
1
!c

1
jD

ln
dc

dc!(e#D
2
)
, (31)

which indicates that the models are nutrient
controlled (see Hallam, 1978). Therefore, if the
nutrient input concentration is su$cient, then the
system is uniformly persistent. However, our
analysis shows that if the input concentration
surpasses a threshold value, the system becomes
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unstable and the plankton populations start to
oscillate. This reminds one of the phenomenon of
the &&paradox of enrichment''.

If the maximal zooplankton ingestion rate, c, is
used as a bifurcation parameter, one can also
observe similar bifurcations. With c"1.25 and
all other parameters the same as in Section 3 for
Fig. 1(a) and (b), numerical simulations are depic-
ted in Fig. 3(a) and (b). This indicates that the
codimension of these bifurcations might be
greater than 1 and the plankton models could
exhibit very interesting and complicated dynam-
ics (see Edwards, 1997; Edwards & Brindley,
1996; Popova et al., 1997; Sche!er, 1991, and the
references therein).
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