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In this paper we propose a reaction-diffusion system with two distributed delays to stim- 
ulate the growth of plankton communities in the lakes/oceans in which the plankton feeds 
on a limiting nutrient supplied at a constant rate. The limiting nutrient is partially recycled 
after the death of the organisms and a distributed delay is used to model nutrient recycling. 
The second delay is involved in the growth response of the plankton to nutrient uptake. We 
first show that there are oscillations (Hopf bifurcations) in the delay model induced by the 
second delay. Then we study Turing (diffusion-driven) instability of the reaction-diffusion 
system with delay. Finally, it is shown that if the delay model has a stable periodic solu- 
tion, then the corresponding reaction-diffusion model with delay has a family of travelling 
waves. 

1. Introduction 

The effect of nutrient recycling on stability of ecosystems has been extensively studied (see 
Beretta et al., 1990; Nisbet & Gurney, 1976). Nisbet & Gurney (1976) regarded nutrient 
recycling as an instantaneous term, thus neglecting the time required to regenerate nutrient 
from dead biomass by bacterial decomposition. However, a delay in nutrient recycling 
is always present in a natural system and it increases when temperature decreases (see 
(Whittaker, 1975)). In order to simulate the growth of planktonic communities of unicell- 
ular algae in the lakes, Beretta et al. (1990) constructed a chemostat-type model in which 
the plankton feeds on a limiting nutrient supplied at a constant rate. They assumed that the 
limiting nutrient is partially recycled after the death of the organisms and used a distributed 
delay to model nutrient recycling. 

It has been observed in chemostat experiments that there is a delay in growth response 
even when the limiting nutrient is at undetectable small concentration (see (Caperon, 
1969)). In a previous paper (Ruan, 1995a), we incorporated a discrete delay in the growth 
response of the species to nutrient uptake in the model of Beretta et al. (1990) and studied 
the effect of delays on the stability and persistence of the delay model. Further study of this 
model is carried out in (He & Ruan, 1998). Beretta & Takeuchi (1994) used another dis- 
tributed delay to describe the delayed growth response, namely, they considered a system 
of two retarded functional differential equations with two distributed delays. They inves- 
tigated the global stability of the positive equilibrium by using the Liapunov functionals 
method. See He, Ruan & Xia (1998) for related work. 

In the lakes/oceans, plankton population movement is subject to many factors, such as 
currents and turbulent lateral diffusion, to name a few. Thus, it is more realistic to use 
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reaction-diffusion equations to model the dynamics of plankton-nutrient interaction, cf. 
(Levin & Segel, 1976; Mimura, 1979; Okubo, 1980; Ruan, 1995b), etc. The object of 
the present paper is to propose a reactiondiffusion plankton model with delayed growth 
response and delayed nutrient recycling, that is, a reaction-diffusion system with two dis- 
tributed (infinite) delays. This kind of system has been studied by many authors; we refer 
to (Kuang & Smith, 1993; Pao, 1996; Ruan & Wu, 1994) and references cited therein. 

In studying morphogenesis, Turing (1952) considered reaction-diffusion equations of 
two chemicals and found that diffusion could destabilize an otherwise stable equilibrium. 
This leads to non-uniform spatial patterns which could then generate biological patterns by 
gene activation. This kind of instability is usually called Turing instability (Murray, 1989) 
or di~sion-driven instability (Okubo, 1980). For reviews and related work on Turing in- 
stability and spatial pattern formation, we refer to (Levin & Segel, 1985; Murray, 1989). 
Turing instability in reaction-diffusion systems with delay was first considered by Levin & 
Segel(1985). Recently, Choudhury & Fosser (1996) studied Turing instability in reaction- 
diffusion predator-prey models with distributed delay in the interspecies interaction terms. 
They derived necessary and sufficient conditions for Turing instability and found that these 
conditions are different from the classical conditions without delay. Gourley (1996) also . 
studied instability of a predator-prey model with delay and spatial averaging. 

Systems of reactiondiffusion equations from applied sciences such as chemistry, 
epidemiology and neurophysiology possess travelling wave solutions; for a survey see 
(Volpert et al., 1994). More recently, travelling wave solutions have been established for 
reactiondiffusion equations with delay; we refer to (Bonilla & Lifi&n, 1984; B&ton, 1990; 
Cavani, 1988; Gopalsamy, 1986; Gourley & Britton, 1996; de Oliveira, 1994; Rey & 
Mackey, 1992; Schaaf, 1987; Zou & Wu, 1997), etc. 

Let N (t, x) and P (t, x) denote the densities of nutrient and plankton at time t and loca- 
tion X, where 0 < t < 00, -oo < x < 00. Let di > 0 denote the diffusion coefficients 
(i = 1,2). Consider the following reaction-diffusion plankton model with delayed nutrient 
recycling: 

dN a2N t 
4 - 

at= ax2 
+ D(N” - wt, xl) - ap(t, x>f (W, x>) + y1 

s 
F(t - t)-P(t, x) dt, 

--oL) 

s 

t 
W - QfUW, x)) dt 

-00 I 

under the initial value conditions 

N(O, x> = a,<09 xl, P(O, x) = @(O, x), 0 E (-oo,O], 
where 4 and $ are 

We suppose that 
positive continuous functions. 
all parameters are positive. They are interpreted as follows: 

(1.2) 

a - maximal nutrient uptake rate for the plankton 
NO - input concentration of the nutrient 
D - washout rate of the nutrient 

Y - plankton mortality rate 

Yl - nutrient recycle rate after the death of the plankton, yl < y  

a1 - maximal conversion rate of the nutrient into planktonic biomass. 
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The function f(N) describes the 
lowing general hypotheses on f(N) , 

nutrient uptake rate of plankton. We assume the fol- 

(1) f(N) is non-negative, increasing, and vanishes when there is no nutrient; 
(2) there is a saturation effect when the nutrient is very abundant. 

That is, f(N) is a continuously differentiable function defined on [0, oo) and 

f(0) = 0, g > 0, lim f(N) = 1. 
N+OO 

These hypotheses are satisfied by the Michaelis-Menton function 

(13 

where K > 0 is the half-saturation constant or Michaelis-Menten constant. 
The delay kernels F and G are non-negative bounded functions defined on [0, 00). Let F 

describe the contribution of the plankton population dead in the past to the nutrient recycled 
at time t and G describe the delayed growth response of the plankton. The presence of the 
distributed time delays must not affect the equilibrium values, so we normalize the kernels 
such that 

J 

00 

s 

00 
F(s)ds = G(s)ds = 1. (14 

0 0 

In particular, the so-called weak kernel ae-‘ys and strong kernel cx2seSaS, a > 0 are 
frequently used in biological modelling; see (Cushing, 1977; MacDonald, 1978). 

A special case of system (1.1) is the following delay system: 

dN 2 
- = D(N” 
dt 

- N) 7 aPf (N) + y1 
s 

F(t - W(t) dt, 
--M - VW 

s 

t 
G(t - z)f (N(t))dt 9 

-co 1 
W) 

Note that a positive equilibrium of the delay system (1 S) is a spatial homogeneous steady 
state of the reactiondiffusion system (1.1). Thus, if 

y + D < al and f-’ 9 

then system (1 .l) has a uniform steady state E* = (N*, P*) with 

N* = D(N” - N*) 

af (NY - y1 l 

(13 

In this paper, we first consider a special case, namely the delay model (1.5). By using 
the (average) delay involved in the growth response term as a bifurcation parameter, it is 
shown that when the delay is changed by a critical value, the positive equilibrium loses its 
stability and a Hopf bifurcation occurs, that is, a family of periodic solutions exists. Then 
we consider the delayed reaction-diffusion system (1.1). It is found that the diffusion can 
drive the spatial homogeneous steady state to unstable, that is, Turing instability occurs. 
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Finally, suppose that the set of bifurcating periodic solutions of the delay system (1 S) is 
orbitally asymptotically stable, then the corresponding delayed reaction-diffusion system 
(1.1) has a family of travelling waves. This is a generalization of the results of Koppel 
& Howard (1973) on classical reaction-diffusion systems and of de Oliveira (1994) on 
reaction-diffusion systems with finite delay. 

2. Delay Induced Oscillations 

First we consider the delay model (1.5), a special case of system (1.1). Suppose that 

F(s) = ae+, a > 0, G(s) = /Ye -Bs, p > 0. We have the following delay system: 

dN t 
- = D(N” 
dt 

- w - aw W) + Yl 
/ 

ae-cr(t-r) P(z) dz, 

s 

t 

-00 
/3eepct’yf(N(r)) d,]. 

(2-l) 

The characteristic equation of the linearized system of (2.1) at the positive equilibrium 
E* = (N*, P*) is 

A4 + c1(/m3 + c2(#w2 + c3(B)i + c4(B) = 09 (2.2) 

where 

cl(B)=~+~+D+aP*f’(N*), 

c2@) =@ + (a + &(D + aP*f’(N*)), 

C3(B) =@(D -t aP* f ‘(N*)) + a/Q + D)P* f’(N*), 

c4(B) = aPa1 P*f ‘(N*)[af (N*) - yl]. 

By the Routh-Hurwitz criterion, the equilibrium E* is locally stable if 

Cl(B) ’ 09 

c4(B) ’ 09 

Cl (B)c2(B) - c3(B) > 09 

cl (~)k2(/%3(~) - cl (i3)c4(/91 - &p) ’ O* 

Clearly, the first two hold. The third inequality holds if y is not sufficiently large. Thus, the 
equilibrium is locally stable if the last inequality also holds. We want to know if there is a 
Hopf bifurcation at E* when the delays are changed. It is known that (Beretta et al., 1990; 
Ruan, 1995a) the delay in the nutrient recycling term does not have a destabilizing effect. 
So we choose p, the delay in the growth term, as a bifurcation parameter. Define 

#(p) = cl (B)[c2(/%3(p) - cl (/%4(/3)1 - &i% (23 

Then the local stability condition of E* is e(p) > 0. 
Let hi (i = 1,2,3,4) be the roots of the characteristic equation (2.2). Then we have 

hl+~2+h3+~4=-Cl(~), 
hlh2 + AlA3 + AlA4 + A2;13 + k2k4 + A3k4 =c2(/9), 

klA2h3 + hh-3A4 + h-2A3k4 + AlA2k4 = --c3(/9), 
(24 

hA2A3k4 =c4(p)- 
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If there exists PO E Iw = (-00, 00) such that 4 (PO) = 0, then by the Routh-Hurwitz 
criterion there is at least one root, say ht , such that Reht = 0. From the fourth equation 
of (2.4) it follows that Imht = 00 # 0, and hence there is another root, say AZ, such that 
A2 = hl . Since #(p) is a polynomial, it is a continuous function of its roots, ht and )L2 are 
complex conjugate for /3 E (/?I, 82) which includes PO. Therefore, at PO, equations (2.4) 
become 

A3 + A4 = -cl(B)9 wo” + A3A4 = c2(B>, 

+$3 + k4) = --c30, @3h4 = c4w 

(23 

If A3 and A4 are complex conjugate, from (2.5)1 it follows that 2ReA3 = -cl (p). If h-3 
and A4 are real, from (2.5)1,4 it follows that h3 < 0 and A4 < 0. Thus, when p = PO, the 
characteristic equation (2.2) has a pair of purely imaginary roots hl and A2, and a pair of 
other roots A3 and A4 with negative real part. To check if a Hopf bifurcation occurs, we 
need to verify the transversality condition. After some calculations it follows that 

w 

$[ReA1921a, = -2[c2c4 + (c”,‘c, _ zc3)2] @ 
l 

1 PO 

W) 

The above analysis can be summarized as follows. 

THEOREM 2.1 Suppose that the inequalities in (1.6) hold. If $(B) > 0, then the equilib- 
rium E* of system (1.1) is locally asymptotically stable. If there exists PO E R such that 
NBo> = 0 and WldB is non-zero at PO, then as /? passes through the critical value DO, a 
Hopf bifurcation occurs at E*. 

Notice that the average time delay is defined as T = l/p; see (MacDonald, 1978). 
By the Hopf bifurcation theorem (Marsden & McCracken, 1976), a family of periodic 
solutions exists for values of T = l/p near TO = 1 //JO. By using the algorithm in (Hassard 
et al., 1981), we can determine the stability of the bifurcating periodic solutions; see (Ruan 
& Wolkowicz, 1996). 

Choose f(N) = m N/(K + N) and parameter values m = 1, K = 585, D = 
O*OS, No = 3*66, a = 4.25, y = 0*58, yt = 0.12, al = 3.45, a = 0.45. By Theorem 
2.1, there is a critical value PO = 0.17, the equilibrium E* = (1=38,0*26) is locally sta- 
ble when T = l//3 < TO = l/& = l/0*17, that is, when /? > 0.17; when p passes 
through the critical value /?o = 0.17, a Hopf bifurcation occurs at the equilibrium E*; 
when T > TO, that is when p K PO, there is a periodic solution. Our numerical simulation 
indicates that an orbitally stable limit cycle exists for /? slight less than PO = 0.17 (see Fig. 
1). In the following, we make an assumption: 

(H) The bifurcating periodic solutions are orbitally asymptotically stable. 

3. Diffusion-driven instability 

Recall that if @(p) > 0, then the equilibrium E* of the delay system (2.1) is stable. Now 
we shall determine the stability of E” as a homogeneous solution of the reaction-diffusion 
system (1.1). We want to see if the diffusion coefficients induce instability; that is, if Turing 
instability occurs to model (1.1). 
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FIG. 1. With p = 0.1425, there is an orbitally stable limit cycle attracting two trajectories. One trajectory has 
initial values outside the limit cycle, another has initial values inside the limit cycle near the equilibrium. 

Suppose that F(s) and G (s) are weak kernels as given in Section 2. Define 

t 
R(t, x) = s t 

ae-a(t-r)P(r, x) dz, Q@, x) = s pe-B(t-‘) f (N(t, x)) dt. 
-00 -00 

Then system (1.1) is equivalent to the following system 

aN a2N 

at= a3 4 - + D(N” - ML x)> - aw, x>f 

ap a2P -x 
at 

d2- ax2 + P(t, x>[-(I-’ + D> + al Q(t, x)], 

dR 
- =a[P(t, x) - R(t, x)], at 

N(t, x>) + YEW, x>, 

(3.1) 

aQ 
at =P[f UW 0 - Q<t, x)1. 

The positive equilibrium of the system (3.1) is E* = (N*, P*, R*, Q*) with R* = P*, 
Q* = f (N*); N* and P* are given by (1.7). Let 

Ul = N-N*, u2 = P - P*, u3 = R-R*, u4 = Q - Q*. 62) 
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The linearized system of (3.1) at E* has the form 

au1 a2241 
dl - at= 3x2 - [D+aP*f'(N*)h -af(N*)u2+ y1u3, 

au2 a2u2 
d2- at= a3 + al P*u4, 

au3 

at =au2 - au39 

au4 
at = Bf’w*>ul - pu4. 

Let 

(33 

W a1 

u2 a2 - ( i ( u3 - a3 1 cos(kx) euf , 

u4 a4 

where k is the wavenumber in the x-direction and v is the frequency. Thus, we have the 
characteristic equation 

v4 + bl(k2)u3 + b2(k2)u2 + b3(k2)u + b4(k2> = 0, (3.4) 

b1(k2) = (4 + d2)k2 + a + /3 + D + aP* f’(N*), 

b2(k2> = dMk2>2 + [(a + /3)(dl + d2) - d2(D + aP* f’(N*))]k2 

+@ + (a + /ND + aP* f’(N*)), 

b3(k2> = &W + B>(k2)2 + [a/V4 + d2> + &(a + p)(D + a P* f ‘(N*))]k2 

+@(D +aP*f’(N*)) +ap(y + D)P*f’(N*), 

b4(k2) = cxj?dld2(k2)2 + @d2(D + aP* f ‘(N*))k2 

+@a1 P*f ‘(N*)bf (N*) - Yll* 

By the Routh-Hurwitz criterion, diffusion-driven instability or Turing instability occurs 
only if one of the following conditions is violated: 

(0 h (k2> > 0, 
(ii) b4(k2) > 0, 
(iii) bl (k2)b2(k2) - b3(k2) > 0, 
(iv) b1(k2)[b2(k2)b3(k2) - bl (k2)b4(k2)] - b3(k2) > 0. 

Notice that hi(O) = ci (/3) (i = 1,2, 3,4). Clearly, (i) and (ii) cannot be violated; (iii) also 
cannot be violated if cl (&2(p) - c&3) > 0. To check (iv), denote 

H(k2) = bl (k2)[b2(k2)b3(k2) - bl (k2)b4(k2)] - b;(k2), 

which is a fifth-order polynomial in k2 and can be written as 

H(k2) = al(k2)’ +a~(k~)~ + a3(k2)3 +a4(k2j2 i-adk2) +as, (3.3 
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where (A = D+aP* f ‘(W), B = a/?(y+D)P* f ‘(N*), C = c@al P* f’(N*)[af (N*)- 
Yll> 

3 
a1 = (a + B)(dl + d2)W2, 

a2 = (a + 8>2dd; + (a + ~>2d;(d1 + d2)2 + A(a + jY)(dl + d2)d; 

+A@ + B>(dl + d&W; + A(a + ,6)dld; - (a! + ,6)“d;, 

a3 = A2@ + /W; + A2(a + B)dd; + (a + 8>3(d1 + d2)d; 

+A@ + B)dld; + @(a + #Wl + d2)d,2 + @(a! + p)(dl + d2)3 

+A@ + 8)2(d~ + d2)2d2 + A2@ + b)(dl + d2)d; + B(dl + d2)dld2 

+2A@ + 8>2(4 + ddd, 2 - A@ + B)2d; - Mw + Pm1 + d2Mld2, 

a4 = A2@ + B2d; + A3(a + /?)d,2 + A3(dl + d2)d; + ~@(a + /I)2d; 

+A@ + Pj2d; + @(a + /B2(4 + dd2 + A(a + p)3(dl + d2)d2 

+C(a + B)(dl + dd2 + ABd&l + d2) + 3Aaj?(a + j!?)(dl + d2)2 

+2A2@ + /3>2(4 + 4) + ABdld2 + C(a + jV)dld2 

-@((II + ,@2dld2 - Wl + dd2 - AU/~@ + ,@d,2 - AC@@ + /3)dld2, 

a5 = 3A201B@ + /V(dl + 4) + A3(a + /3)d2 + A2Bd2 + 2Ac@(a + /Q2(d1 + d2) 

+A2@ + /V3dz + C(a + ,Q2(4 + d2) + MB@ + /3)(dl + d2) 

+B+(dl + d2) - 2A(a + /V(dl + d2) - ABd2(a + ,6) 

-2C(a + PM + 4) - 2A2@&(a + p), 

a6 = A2B@ + /% + AB@ + 8>2 + A3@(a + /3) + A2ap(cl! + jV)2 + Aa2/12(a + j?) 

+B@@ + B) - A2C - B2 - C(a + /Q2 - 2AC(a + j3) - AB@. 

Notice that al > 0, so H(k2) + 00 as k2 + 00. The first derivative of H with respect to 
k2 is 

dH 

dk 2 
= Sal (k2)4 + 4a2(k2)3 + 3a3(k2)2 + 2a4(k2) + a5. (3.6) 

To find the local extrema of H (k2), we need to find the roots of the equation dH/dk2 = 0, 
which can be written as 

(k2)4 + p(k2)3 + q(k2)2 + r(k2) + s = 0, (3.7) 

4a2 3a 3 2a4 a5 
P=G, 

1 
q=z, 

1 
r=g 

1 
s=<. 

1 

Choose a, b and add (ak2 + b)2 to both sides of (3.7), such that 

[(k2)2 + ip(k2) + t912 = (ak2 + b)2, (3.8) 

where 0 is a real root of the cubic equation 

tw3 - 4qe2 + 2(pr - 4s)8 - p2s + 4qs - r2 = 0. (3.9) 
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Thus, equation (3.7) is equivalent to a system of two quadratic equations: 

(k2>2 + <$ p + a)k2 + (0 + b) = 0, (k2)2 + (ip - a)k2 + (0 - b) = 0, (3.10) 

from which we can find the possible local extrema: 

By using the second derivative 

k2 192 =-f(;p+a)ff((;p+a)2-4(8+b))f, 

k2 1 1 
394 = -&P -a)f$((~p-a)2-4(e-L#. 

(3.11) 

d2H 

d(k2)2 
= 20al(k2)3 + 12a2(k2)2 + 6a3k2 + 2414, 

we can determine the concavity of H (k2). Denote the local minimum by k&, (one of kf). 
For diffusive instability, we require that 

k;, > 0 (3.12) 

and 

H(k;,) < 0. (3.13) 

Notice that H(0) = #(p). One can see that #(p) > 0, the stability criterion of E”, is 
exactly H(0) > 0. Now we can state the following result. 

THEOREM 3.1 Turing (diffusion-driven) instability occurs if H(0) = #(/3) > 0, 
k;, > 0 and H(kL,) c 0. 

Choose f(N) = mNI(K + N) and parameter values m = 1, K = 5.85, D = 
35.77, No = 3.66, a = 1620, y = 0.58, yr = 0.12, al = 190, Q! = 0.45, /S = 8. We 
can verify that H(0) = 4 (p) > 0, which implies that the equilibrium of the delay model 
(2.1) is stable. With the choice of dl = 1, d2 = 5, the numerical computation indicates 
that the conditions in Theorem 3.1 are satisfied (see Fig. 2). 

4. Travelling wave solutions 

In this section, we suppose that there exists PO E IR such that @(PO) = 0 and d@/dp is 
non-zero at PO. Then by Theorem 2.1 there is a periodic solution, say (~1 (t), p&)), to 
the delay equations (2.1) bifurcating from E* as /3 passes through the critical value /30. We 
also assume that the assumption (H) holds, that is, (~1 (t), pz(t)) is orbitally asymptotically 
stable. Furthermore, assume that the period of (p&), pz(t)) is o := w(B). 

To search travelling wave solutions of the equivalent system (3.1), let 

Nk X) = N(z), P(t, x) = P(z), R(t, x) = R(z), Q(t, x) = QcZ), (4.1) 

where z = kx + ct, c is the velocity of the wave and k is the wavenumber. The equations 
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FIG. 2. With dl = 1, d2 = 5, H(k*) becomes negative for a finite range of k* > 0. 

in travelling wave form are 

dN 
- =k2d1 

d2N 

’ dz -j-p + D(NO - N(z)) - aP(z)f W(z)) + )M(z), 

dP 2 

’ dz 
2 -=k d2dz2 dP + P(z>[-(Y + D> +ale(z)l, 

dR 
c- 

dz 
=4-P(z) - R(z)19 

dQ cx =BLf W(z)) - QW 

Use the translation (3.2) once more, we have 

du1 d2u1 
’ dz 

- = k2dl dz2 - - [D $- P*f’W*)h - af (N*)u2 + ylu3 - af’(N*)u1U2, 

dU2 
2 du 2 

’ dz 
- = k2d2 dz2 + al P*u4 + al u2u4, 

du3 
c-& =au2 - au3, 

du CL- & - pf’(N*)ul - p”4’ 

Introducing two new variables 

dW dU2 
us 

= ’ dz 
-, &j=c-, 

dz 
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we have 

du 
cl = ug, 

dz 
du 2 

c- = l-46, 
dz 
du 3 

c- =cuQ - cw3, 
dz 

du 
c$ = Bf’w*)w - pu4, 

k2 
de z = Wdl)oD + p*f’W*)lw + af (N*h - yu43 + ~5 + af ‘(N*)uw), 

k2 du6 
z = (cld2)[ -alP*u4 + u(j - alu2u4]. 

Denote u = COl(Ul, u2, u3, u4), w = col(u5, u6). Then the above system can be writen in 
the following abstract form: 

dv 
%i 

= Av + Bw, 
dw 

k2= = tCw + G(v), (44 

0 0 0 0 

A= 
0 0 0 0 
0 Qf --Q! 0 

Bf’(N*) 0 0 -B 

G(v) = 
(CldlW + P*f’w*ml + (clddaf (WV2 - wA)YlV3 + (clddaf ‘Wh v2 

--@/dz)alP*v4 - @/d2blv2v4 > 

. 

If k2 = 0 in (4.4), then w = -C-‘G(V) and cdvldz = Au - BC-‘G(V), that is, 

dv 
2 

dz 
= -[D + P* f ‘(N*)]vl - af (N*)v2 + ~1213 - af ‘(N*)vl v2, 

dv2 
c- 

dz 
= al P*v4 + al v2v4, 

dJJ3 
c- =a212 - cw3, 

dz 

dv 
c- d; = Bf’(N*h - pv49 

W) 

dv 
c- 

dz 
= F(v). (4.6) 

This is the same system as in (4.2) with k2 = 0. By assumption, for c = 1, system (4.4) 
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has a periodic solution with period o = o(p), then with T = z/c, c # 1, system (4.6) 
takes the form 

dv/dz = F(v), (43 

which has a periodic solution of period o. Thus, for c # 1, system (4.6) has a periodic 
solution of period cw. 

Fix c = 0 0 0 0 co and denote the cocll-periodic solution of (4.4) by u” = col(v, , u2, v3, Q). 
Hence, the degenerate case of (4.4) with k2 = 0 has a coo-periodic solution v = u”, w = 
w”, where w” = col(codvy/dz, codt&dz). Let 6 = w - w”. Then (4.4)~ becomes 

p1 d dw 0 

dz 
= Ct + G(u) + Cw” - kzz. (4.8) 

Denote 

Go9 R3) = {flf E CUR R3>, f(t + 4 = f(OL 
N[uO, PI = M-J E G(),<w, R3), Ilu - uOll < PI, 

where Ilull = maxogtGcoo I I u(t) I IR3. The following lemma is useful in estimating the solu- 
tions. 

LEMMA 4.1 (Rozhkov, 1975) If C has no eigenvalue with zero real part, then the equa- 
tion 

has a unique cow-periodic solution for each f E C,,,(IE& W2) and 0 K k2 c k$ for some 
kg E (0, 00). If this solution is denoted by e = Hk (f ), then the linear operator Hk is 
uniformly bounded: 

llHk(f)II G Kllf II9 

where the constant K > 0 is independent of k2 and f. 

If we fix u E N[u”, p], then by Lemma 4.1, there exists ki E (0, oo) such that (4.8) has 
a unique coo-periodic solution 

dw 0 

( = Hk G(u) + Cw” - k2z 
> 

for 0 < k2 < kz and 

0 

G(u)+Cw’-k2$- 
/I /I 

dw 0 

< K G(u) - G(u’) - kZz 

3G 
<K 

II II 
&u”) llu”ll + Kk2 < Klp + &k2. 

Thus, if p and k2 are small enough, IIt I I is small too; if u is close to u”, then the unique 
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cow-periodic solution w of (4.8) close to w” corresponds to v, represented by the operator 
nk defined by 

W = nk(v). 

Following Rozhkov (1975), we know that the system (4.4) is equivalent to the operator 
equations 

dv 
c- 

dz 
=Av+Bw, w=w’+Itk(v) w9) 

and the following holds: 

II = o(k2), (4.10) 

where o(k2) + 0 as k2 + 0. 
Now we can state and prove the main result on the existence of travelling wave solutions. 

THEOREM 4.2 Suppose that the delay system (2.1) has a bifurcating periodic solution 
(~1 (t), ~2(t)) for p close to the critical value PO which is orbitally asymptotically stable. 
Then there exists ko > 0 such that the delayed reactiondiffusion system (1.1) has a unique 
travelling wave solution 

(N(t, x, k), P(t, x, k)) = (w(z) + N*, 212(z) + p*), 

which is coo-periodic in the variable z = kx + cot, 0 K k K ko. Moreover, 

limb (zh 2f2(z)) = (pl(th p2(0) 
k+O 

uniformly in t andx. 

To prove the theorem, we need the following lemma. 

LEMMA 4.3 (Howard & Koppel, 1973) Let 0 (t) be the fundamental matrix solution 
of the o-periodic system dv/dt = P(t), Q(O) = I. Suppose the Floquet multiplier ma- 
trix Q(w) has 1 as a simple eigenvalue, with corresponding right eigenvector r and left 
eigenvector 1. (Thus, p(t) = cP(t)r is a o-periodic solution of the system, and any other 
w-periodic solution is a multiple of p(t). Also, the equation (0 (t) - I)e = q has a solution 
if and only if I l q = 0 and r -2 # 0 since the eigenvalue 1 is simple. We may assume r and 
2 to be normalized so that 1 Ir 11 = 1 and r l 2 = 1). Let b(t) be a m-periodic vector. Then 

(1) There is a unique value of m such that the system 

dv 
dt 

= P(t>v + mp(t) + b(t) 

has a m-periodic solution. If q(t) is the solution to dv/dt = P(t)v + b(t) with 
q(0) = 0, this value of m is -I l q(w)/o. 

(2) For this value of m there is a unique m-periodic solution pi(t) which satisfies 
2 l PI(O) = 0. 

(3) There are constants kl and k2, independent of b(t), such that m < kl I lb1 I and I Ip1 I I < 
k2llW 
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Proof of Theorem 4.2. We shall prove that the equivalent reaction-diffusion system (3.1) 
has a unique travelling wave solution 

(Q(Z) + N*, 212(z) + P*, 213(z) + R*, v4(d + Q*) 

lim vi(kx + cot) = vF(c&, 
k+oo 

i = 1,2,3,4 

uniformly in t and X. Rewrite (4.9) as follows: 

dv 
C- 

dz 
= Av + &u” + nk(u)) (4.11) 

andsetq=v-v”, c= co + m, Irnl < CO/~. We have 

drl dv dv 0 
m=--- 
dz dz dz 

dv 0 

= L[Aq + Av” + B(I.u’ + Itk(v))] - z 
CO + m 

1 dv 0 

[Aq + Av” + Bw”] + Gfmnk(v) - j-y +O(& 

Notice that dvO/dz = [Av”+Bwo]/co = F(v”) and P(z) = A-BCID = (iW/h)(v”), 
where D = (~G/&J)(v~). It follows that 

drl 1 1 
- = -P(z)rj - 
dz 

;F(vO) + --B[n& + v”) + C-‘Dql 
CO cO CO 

- ;[hk(?j + v”) + Aq] 
cO 

= -P(z)q - 
CO 

;F(v’) + Jk r7, m, k), 
cO 

J(z, 1;7, m, k) = 
1 

--B[X& + V”) + c--q] 
CO 

- ;[BKk(q + v”) + Arll +d& 
cO 

Notice that P(z) is the Jacobi matrix with respect to the cow-periodic solution v” to 
equation (4.6), thus F(v”) (and any of its multiples) is a coo-periodic solution of the linear 
equation 

drl 1 
-E 
dz 

--P(z)v (4.12) 
CO 

To apply Lemma 4.3, define 

and let 7j E N [p]. Since the unique cow-periodic solution of equation (4.6) is orbitally 
asymptotically stable, A = 1 is a simple multiplier. Since (m/c:) F(v”) is a coo-periodic 
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solution of equation 
the equation 

(4.12) and J(z, q, m, k) is coo-periodic 

- 
drl 1 -E 
dz -P(z)V - 

CO 
; F(v”) + J(z, 7, mv k) 
cO 

Lemma 4.3 implies that 

(4.13) 

has a unique cow-periodic solution, say 6, satisfying I . ;i(O) = 0 for a unique value of m, 
say &. Choose ki and p sufficiently small and CO sufficiently large such that 

max{lln(~+ u”> + C-‘WI, llflll, l&>l} < $k2 (4.14) 

and 

(4.15) 

for 0 < k2 < k$ where I? = maxi=r,2(kiIl/coI IlBll, k& IlAll}, kl and k2 are given in 

Lemma 4.3. Thus, by Lemma 4.3 and (4.10), if Irnl < I?k2, ll7jl I < l?k2, we have 

Ilijll < k2IIJ(Z, 7, m, k)lI G k2 ’ 
I I 

0 
lpll lpQ(q+ 21 ) + c 

-1 
WI 

CO 

+kzlrnl+ llBll lln&f+ u”)ll +kzl& IIAII IITII + l&I 
cO cO 

kk2 ik2 A ik2 A ltk2 
<- 4 + 

qKk2 + qKk2 + 4 < Kk2. (4.16) 

Similarly, we have 

l&l < Kk2. (4.17) 

Define the set 

Sk = {b-h q> : Id < kk2, ll?rll < ik2}, 0 < k2 < k,2 

and a mapping d : Sk -+ Sk by 

d(m,v) = 0% ii)- 

Then d(&) C Sk. To show that the system (4.13) has a unique cow-periodic solution, - 
we need to show that d is a contractive mapping. Let (mj, qj) E Sk, i = 1,2 and write 
Aq=7j1 -7j2, Am = ml - m2. Then 

dA?j 1 Am 
-=-P(z)ATf- 
dz co 

--?-F(u”) + AJ(z, rl, m, k), 
cO 

(4.18) 

where A J = Jk m, ml, k) - J(z, r/2, m2, k). Since lAmI < O(k2), IAJl < O(k2), 
once again by Lemma 4.3, there exist A& and Aij satisfying (4.18) and 

IAfil G W2(ldml + ll~~llh llA6Il < W”(lAml + llA~ll)). 

Therefore, 

II&m, ~1) - 4m2, r/2)11 = IF%, fh> - (h2, 62>11 = IlOh - k2, h - $2>ll 

< ltk2(liil - h2l + llh - fi2llh 
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where p > 0 is a constant. Choose k* sufficiently small such that zk* < f . Thus, we have 

which implies that d is a contractive mapping; this completes the proof. 

5. Discussion 

In this paper we have proposed a plankton model with delayed nutrient recycling in the 
form of a coupled system of reaction-diffusion equations. Two distributed delays are incor- 
porated in the model; one models the nutrient recycling and another describes the delayed 
growth response of the plankton to nutrient uptake. Our model is an extension of the delay 
models studied by Beretta et a2. (1990), Beretta & Takeuchi (1994), He & Ruan (1998), 
He, Ruan and Xia (1998), Ruan (1995a) and of the reactiondiffusion model considered 
by Ruan (1995b). 

We firstly studied the delay model without diffusion and obtained stability criteria for 
the positive equilibrium. The stability conditions depend on the (average) delay involved 
in the growth response of plankton. By using this delay as a bifurcation parameter, it was 
shown that when the delay passes through a critical value, the positive equilibrium loses 
its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurcates 
from the positive equilibrium. Though the stability conditions of the bifurcating periodic 
solutions were not analytically given, numerical simulation was carried out to show that 
with a chosen response function and suitable parameters, a stable limit cycle exists when 
the bifurcation parameter is near its critical value. 

We then considered the reaction-diffusion equations with delays. It has been shown that 
the diffusion could drive the homogeneous steady state to unstable, thus certain Turing- 
type spatial patterns (non-constant stationary solutions) exist. Notice that if the delays are 
neglected, the reactiondiffusion system is globally stable; see (Ruan, 1995b). Therefore, 
we can see that the delays play a very important role in pattern formation. Numerical 
simulation confirmed our observation. 

Finally, corresponding to the orbitally asymptotically stable periodic solutions of the 
delay model, we showed that there is a family of travelling wave solutions to the reaction- 
diffusion system with delay. However, we are unable to determine the stability of the trav- 
elling wave solutions. We conjecture that they are unstable, as observed by Cohen, Hagan 
& Simpson (1979) and with Gourley & Britton (1993) that, for certain classes of models 
with continuous time delay, the low-amplitude periodic steady and travelling wave solu- 
tions which arise via bifurcation from a uniform steady state are unstable. 

We only considered spatial kernels in this paper. As argued by Britton (1990), since 
individuals in the populations are moving, they may not have been at the same point in 
space as at previous times, and hence the nutrient uptake and recycling are not measured 
pointwise in space. This leads to a second convolution (in space) in the integral terms 
in the equations, that is, the kernels are now spatio-temporal kernels. It would be very 
interesting to study the plankton models with non-local effects and we leave this for future 
consideration. 
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