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Abstract. In this paper, we review some recent results on the nonlinear dy-

namics of delayed differential equation models describing the interaction be-

tween tumor cells and effector cells of the immune system, in which the delays
represent times necessary for molecule production, proliferation, differentiation

of cells, transport, etc. First we consider a tumor-immune system interaction
model with a single delay and present results on the existence and local sta-

bility of equilibria as well as the existence of Hopf bifurcation in the model

when the delay varies. Second we investigate a tumor-immune system interac-
tion model with two delays and show that the model undergoes various possible

bifurcations including Hopf, Bautin, Fold-Hopf (zero-Hopf), and Hopf-Hopf bi-

furcations. Finally we discuss a tumor-immune system interaction model with
three delays and demonstrate that the model exhibits more complex behaviors

including chaos. Numerical simulations are provided to illustrate the nonlin-

ear dynamics of the delayed tumor-immune system interaction models. More
interesting issues and questions on modeling and analyzing tumor-immune dy-

namics are given in the discussion section.
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1. Introduction. Cancer is one of the most dangerous killers of humankind in
the new century. According to a World Health Organization report in 2018 (WHO
[121]), every year millions of people die from cancer throughout the world. A recent
study found that in some countries cancer has overtaken heart disease as the leading
cause of death (Dagenais et al. [32]). It is believed that immunological deficiency
is one of the main causes of a remarkably high incidence of neoplasia. Studies show
that about ten percent of patients who have spontaneous immunodeficiency diseases
may develop cancer (Melief and Schwartz [88]).

To understand how the immune system affects cancer development and progres-
sion is one of the most important and challenging questions in immunology and
cancer research (Schreiber et al. [106]). Based on an emerging understanding of the
cellular basis of transplantation and tumor immunity, Burnet [23] and Thomas [112]
reported that lymphocytes were responsible for eliminating continuously arising
nascent transformed cells and introduced the concept cancer immunosurveillance.
On one hand, recent studies suggest that innate and adaptive immune cell types,
effector molecules, and pathways can suppress tumor growth by destroying cancer
cells or inhibiting their outgrowth. On the other hand, the immune system can also
promote tumor progression either by selecting for tumor cells that are more fit to
survive in an immunocompetent host or by establishing conditions within the tumor
microenvironment that facilitate tumor outgrowth (Dunn et al. [45], Matsushita
et al. [86], Mohme et al. [91], Pardoll et al. [95], Schreiber et al. [106], Vesely
et al. [114]). The dual host-protective and tumor-promoting actions of immunity
are referred to as cancer immunoediting, which has three processes: elimination
(immunity functions as an extrinsic tumor suppressor in naive hosts); equilibrium
(expansion of transformed cells is held in check by immunity); and escape (tumor
cells attenuate immune responses and grow into cancers) (Dunn [44, 45], Koebel et
al. [71], Schreiber et al. [106]), see Figure 1.

In order to simulate the host’s own immune response to destroy and eliminate
tumor cells, various types of mathematical models have been proposed, see for
example Adam and Bellomo [3], Arciero et al. [8], Byrne et al. [24], de Pillis et
al. [35], Dritschel et al. [43], Frascoli et al. [52], Hu and Jang [64], Kirschner
and Panetta [70], Kuznetsov et al. [74], Lejeune et al. [78], Nani and Freedman
[92], Nikolopoulou et al. [93], Owen and Sherratt [94], Robertson-Tessi et al. [100],
Stepanova [109], and the references cited therein. We refer to reviews by Anderson
and Maini [7], Cristini et al. [31], dePillis et al. [34], Eftimie et al. [47], Freedman
[53], Friedman [54], Konstorum et al. [72], Mahlbacher et al. [84], Szymańska et
al. [110], Wilkie [120] and the references cited therein on modeling tumor-immune
system interactions and tumor growth, proceedings of d’Onofrio et al. [41] and
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Figure 1. Three processes in cancer immunoediting: (a) Elimi-
nation corresponds to immunosurveillance; (b) Equilibrium rep-
resents the process by which the immune system iteratively selects
and/or promotes the generation of tumor cell variants with increas-
ing capacities to survive immune attack; (c) Escape is the process
wherein the immunologically sculpted tumor expands in an uncon-
trolled manner in the immunocompetent host. Adapted from Dunn
[44].

Eladdadi et al. [48], and a monograph of Kuang et al. [73] on this subject. However,
it is almost impossible to construct realistic models due to the complexity of the
processes involved, thus it is feasible to propose simple low dimensional models
which are capable of displaying some of the essential immunological phenomena.
Two-dimensional ODE models for the interaction of tumor cells and effector cells
of the immune system have been extensively used (Adam [2], Albert et al. [5],
DeLisi and Rescigno [33], d’Onofrio [37, 38, 39], Sotolongo et al. [107]). The
basic modeling idea is to assume that effector cells attack tumor cells and their
proliferation is stimulated, in turn, by the presence of tumor cells. However, tumor
cells also induce a loss of effector cells, and there is an influx of effector cells, whose
intensity may depend on the size of the tumor (see Figure 2).

Tumor cells
T(t)

Immune 
effector cells

E(t)

cooperation
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destruction 

inactivation 

reproduction

influx

Figure 2. Scheme of the essential mechanisms of interaction be-
tween the tumor cells and immune effector cells.
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Delayed responses are very crucial and important for the tumor and immune
system interaction, just as Asachenkov et al. [10] and Mayer et al. [87] pointed
out that the delays should be taken into account to describe the times necessary
for molecule production, proliferation, differentiation of cells, transport, etc. In
fact, tumor and immune system interaction models with delay have been studied
considerably, in particular two-dimensional delay differential equations model, see
Abdulrashid et al. [1], Asachenkov et al. [10], Banerjee and Sarkar [11], Barbarossa
et al. [12], Bi et al. [13, 14, 15, 16], Bodnar and Foryś [18], Buric [22], Dong et
al. [36], d’Onofrio [37, 38, 39], d’Onofrio and Gandolfi [40], d’Onofrio et al. [42],
Galach [56], Grossman and Berke [57], Khajanchi and Banerjee [69], Liu et al. [81],
Mayer et al. [87], Mendonça et al. [90], Piotrowska [96], Piotrowska and Foryś [97],
Rordriguez-Perez et al. [101], Villasana and Radunskaya [115], Yu and Wei [126],
Yu et al. [127, 128], and the references cited therein.

Delay differential equations exhibit very richer bifurcation phenomena, including
Hopf bifurcation (Hale and Verduyn Lunel [62], Hassard et al. [63], Faria and
Magalhães [49], Guo and Wu [60]), Bautin bifurcation (Bi and Ruan [13], Ion [66]),
Bogdanov-Takens bifurcation (Faria and Magalhães [50], Xiao and Ruan [125]),
Fold-Hopf (zero-Hopf) bifurcation (Choi and LeBlanc [27], Guo et al. [59], Jiang
et al. [67], Jiang and Wang [68], Wu and Wang [122]), Hopf-Hopf bifurcation
(Campbell and Belair [25], Bruno and Bélair [21], Wu and Wang [124]), and triple
zero singularities (Campbell and Yuan [26], LeBlanc [77]). In applications it is
usually interesting but difficult to show that a specific biological or physical model
undergoes any of these bifurcations in particular the degenerate ones.

The goal of this paper is to review some recent results on the nonlinear dynamics
of delayed differential equation models describing the interaction between tumor
cells and effector cells of the immune system. First we consider a tumor-immune
system interaction model with a single delay, which is a reduced model of Kuznetsov
et al. [74] with a single delay and was considered by Ga lach [56] and Bi and Xiao
[15], and present results on the existence and local stability of equilibria as well as
the existence of Hopf bifurcation in the model when the delay varies. Second we
investigate a tumor-immune system interaction model with two delays, which is a
generalized model of d’Onofrio et al. [42] and was studied by Bi and Ruan [13],
and show that the model undergoes various possible bifurcations including Hopf,
Bautin, Fold-Hopf (zero-Hopf), and Hopf-Hopf bifurcations. Finally we discuss a
tumor-immune system interaction model with three delays, which was proposed
by Mayer et al. [87] and analyzed by Bi et al. [14], and demonstrate that the
model exhibits more complex behaviors including chaos. Numerical simulations
are provided to illustrate the nonlinear dynamics of the delayed tumor-immune
system interaction models. Some interesting issues and questions on modeling and
analyzing tumor-immune dynamics are given in the discussion section.

2. Dynamics in a tumor-immune system interaction model with a delay.

2.1. The reduced model of Kuznetsov et al. [74] with a delay. To de-
velop schemes for immunotherapy or its combination with other therapy methods
directed at lowering tumor mass, heightening tumor immunogenicity, and removal
of immunosuppression induced in an organism in the process of tumor growth,
Kuznetsov et al. [74] construct a model for the interaction between effector cells
and a growing immunogenic tumor in vivo involving unbound effector cells, un-
bound tumor cells, effector cell-tumor cell complexes, inactivated effector cells, and
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lethally hit tumor cells. Based on some experimental observations and approxima-
tions, Kuznetsov et al. [74] further suggested that their original five-dimensional
system can be reduced to the following two-dimensional system:1

dT

dt
= aT (t)(1− bT (t))− nT (t)E(t),

dE

dt
= s+

pT (t)E(t)

g + T (t)
−mE(t)T (t)− dE(t),

(1)

where T (t) and E(t) are the density of tumor cells and immune effector cells at
time t, respectively; the parameter a is the maximal growth rate of the tumor
cell population; the maximal carrying capacity of the biological environment for
tumor cells (i.e. the maximum number of cells due, for example, to competition
for resources such as oxygen, glucose, etc.) is b−1; n describes the effect of effector
cells on the growth of tumor cells; s is the “normal” (non-enhanced by tumor
cells presence) rate of flow of mature effector cells into the region of tumor cells
localization; d is a positive constants representing the rate of elimination of effector

cells; the Michaelis-Menten-Monon function pT (t)E(t)
g+T (t) characterizes the rate at which

cytotoxic effector cells accumulate in the region of tumor cell localization due to the
presence of the tumor in which p and g are positive constants; and m represents the
effect of tumor cells on the growth of effector cells. By comparing the model with
experimental data, Kuznetsov et al. [74] derived numerical estimates of parameters
describing processes that cannot be measured in vivo. Local and global bifurcations
were calculated for realistic values of the parameters. For a large set of parameters
Kuznetsov et al. [74] predicted that the course of tumor growth and its clinical
manifestation have a recurrent profile with a 3- to 4-month cycle, similar to patterns
seen in certain leukemias.

Variants of model (1) with delay have been constructed and studied in the lit-
erature. For example, Ga lach [56] assumed that, in the equation for E(t), the

Michaelis-Menten-Monon function pT (t)E(t)
g+T (t) is replaced by the Lotka-Volterra func-

tion pT (t)E(t). Rescaling the parameters by

σ =
s

n
, ζ =

p−m
n

, α =
a

n
, β = b, δ =

d

n

and incorporating a time delay τ into the term ζE(t)T (t) of the E-equation, Ga lach
[56] considered the following delayed model:

dT

dt
= αT (t)(1− βT (t))− T (t)E(t),

dE

dt
= σ + ζE(t− τ)T (t− τ)− δE(t),

(2)

where τ > 0 is a constant meaning that the immune system needs some time to
develop a suitable response after the recognition of tumor cells. Ga lach [56] studied
the stability of equilibria and the existence of periodic solutions induced by Hopf
bifurcation in his delayed model. Bi and Xiao [15] gave the general formula for the
direction of Hopf bifurcation, the estimation formula for periods and stability of
bifurcated periodic solutions. They also obtained conditions for the global existence
of periodic solutions bifurcating from Hopf bifurcations and presented numerical
simulations to illustrate the obtained results.

1In order to be consistent with the models in sections 2 and 3, the order of the two equations
(4a) and (4b) of Kuznetsov et al. [74] is interchanged in model (1).
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Table 1. Existence and stability chart for the ODE model (Ga lach [56])

Sign of ζ Conditions P0 P1 P2

ζ > 0
αδ < σ stable – –
αδ > σ unstable – stable

ζ < 0
α(βδ − ζ)2 + 4βζσ < 0 stable – –

α(βδ − ζ)2 + 4βζσ > 0
αδ > σ unstable – stable
αδ < σ

stable unstable stable
ζ + βδ < 0

2.2. Analysis of the ODE model (Ga lach [56]). Note that ζ = p−m
n , so the

sign of ζ depends on the relation between p and m : If the stimulation coefficient p
of the immune system exceeds the neutralization coefficient m of effector cells in the
process of the formation of effector cell-tumor cell complexes, then ζ > 0; otherwise
ζ < 0. The sign of ζ will in fact affect the number of equilibria and their stabilities.

The ODE version of model (2) has up to three equilibria: the tumor-free (semitriv-
ial) equilibrium P0 = (0, σδ ) and two possible tumor-present (positive) equilibria:

P1 =

(
α(βδ + ζ) +

√
∆

2αβζ
,
−α(βδ − ζ)−

√
∆

2ζ

)
,

P2 =

(
α(βδ + ζ)−

√
∆

2αβζ
,
−α(βδ − ζ) +

√
∆

2ζ

)
,

where ∆ = α2(βδ − ζ)2 + 4αβζσ. Ga lach [56] analyzed the existence and stability
of these equilibria, which can be summarized in Table 1.

2.3. Linear analysis of the delayed model. Since the delay does not affect the
existence of equilibria, the number and existence of equilibria for the delayed model
(2) are same for the ODE model as listed in Table 1. In the case when

ζ > 0, αδ > σ, (3)

the delay model (2) also has two equilibria: the tumor-free (semitrivial) equilibrium
P0 and the positive equilibrium P2.Ga lach [56] and Bi and Xiao [15] briefly discussed
the stability of these two equilibria, here we provide some details.

For an equilibrium P ∗ = (T ∗, E∗) of the delay model (2), let

x(t) = T (t)− T ∗, y(t) = E(t)− E∗.
Then the linearized system at P ∗ takes the following form:

d

dt

(
x(t)
y(t)

)
=

[
−αβT ∗ −T ∗

0 −δ

](
x(t)
y(t)

)
+

[
0 0
ζE∗ −ζT ∗

](
x(t− τ)
y(t− τ)

)
.

(4)
The characteristic equation is given by

λ2 + (δ + αβT ∗)λ+ δαβT ∗ + [−ζT ∗λ+ ζαT ∗(1− 2βT ∗)]e−λτ = 0. (5)

Before considering the stability of the equilibria, we recall some results from Ruan
[102]. Consider a second-order transcendental polynomial equation of the form:

λ2 + pλ+ r + (sλ+ q)e−λτ = 0, (6)

where p, r, q, s are real numbers. Now we make the following assumptions:

(H1) p+ s > 0;
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(H2) q + r > 0;
(H3) s2 − p2 + 2r < 0 and r2 − q2 > 0 or (s2 − p2 + 2r)2 < 4(r2 − q2);
(H4) r2 − q2 < 0 or s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2);
(H5) r2 − q2 > 0, s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 > 4(r2 − q2).

Define

τ±j =
1

ω±
arccos

{
q(ω2
± − r)− psω2

±
s2ω2
± + q2

}
+

2jπ

ω±
, j = 0, 1, 2, · · · , (7)

where

ω2
± =

1

2
(s2 − p2 + 2r)± 1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 . (8)

We have the following theorem about the distribution of the characteristic roots of
equation (6) (Ruan [102]).

Lemma 2.1. Let τ±j (j = 0, 1, 2, · · · ) be defined by (7).

(i) If (H1)-(H3) hold, then all roots of equation (6) have negative real parts for
all τ ≥ 0;

(ii) If (H1), (H2) and (H4) hold, then when τ ∈ [0, τ+
0 ) all roots of equation

(6) have negative real parts, when τ = τ+
0 equation (6) has a pair of purely

imaginary roots ±iω+, and when τ > τ+
0 equation (6) has at least one root

with positive real part;
(iii) If (H1), (H2) and (H5) hold, then there is a positive integer k such that

0 < τ+
0 < τ−0 < τ+

1 < · · · < τ−k−1 < τ+
k ,

when

τ ∈ [0, τ+
0 ), (τ−0 , τ

+
1 ), · · · , (τ−k−1, τ

+
k ),

all roots of equation (6) have negative real parts, and when

τ ∈ [τ+
0 , τ

−
0 ), [τ+

1 , τ
−
1 ), · · · , [τ+

k−1, τ
−
k−1) and τ > τ+

k ,

equation (6) has at least one root with positive real part.

At the tumor-free equilibrium P0, the characteristic equation (5) reduces to

λ2 + (δ + αβT ∗)λ+ δαβT ∗ = (λ+ δ)(λ+ αβT ∗) = 0.

The eigenvalues are λ1 = δ < 0 and λ2 = −αβT ∗ < 0. Thus, we have the following
result.

Proposition 1. Under the conditions (3), the tumor-free equilibrium P0 = (0, σδ )
of the delay model (2) is asymptotically stable for all delay τ ≥ 0.

At the positive equilibrium P2 = (T2, E2) =
(
α(βδ+ζ)−

√
∆

2αβζ , −α(βδ−ζ)+
√

∆
2ζ

)
, the

characteristic equation takes the form of equation (6) with

p = δ + αβT2 > 0, r = δαβT2 > 0,
s = −ζT2 < 0, q = ζαT2(1− 2βT2).

Condition (H1) yields p+ s = δ + (αβ − ζ)T2 > 0 if

αβ > ζ. (9)

Condition (H2) implies q + r = αT2(δβ + ζ − 2βT2) > 0 if

δβ + ζ − 2βT2 > 0 (10)
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By (H3), we have

s2 − p2 + 2r = ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2,

r2 − q2 = δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2,

(s2 − p2 + 2r)2 − 4(r2 − q2) = [ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2]2

−4[δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2].

Therefore, following the arguments in Ruan [102, 103], we have the following results
on the stability and Hopf bifurcation in the delay model (2).

Theorem 2.2. Assume that the conditions (3), (9), (10) are satisfied.

(i) If

ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2 < 0, (11)

and

δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 > 0 (12)

or

[ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2]2

−4[δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2] < 0, (13)

then the positive equilibrium P2 of the delay model (2) is asymptotically stable
for all delay τ ≥ 0;

(ii) If

δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 < 0 (14)

or

ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2 > 0 (15)

and

[ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2]2

−4[δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2] = 0, (16)

then the positive equilibrium P2 of the delay model (2) is asymptotically stable
for τ ∈ [0, τ+

0 ) and unstable for τ > τ+
0 ; a Hopf bifurcation occurs at P2 when

τ = τ+
0 and a family of periodic solutions bifurcates from P2 when τ passes

through τ+
0 which is defined by (7);

(iii) If (12), (15) and

[ζ2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2 + 2δαβT2]2

−4[δ2α2β2T 2
2 − ζ2α2T 2

2 (1− 2βT2)2] > 0 (17)

hold, then stability switch occurs at P2; that is, P2 is asymptotically stable
when

τ ∈ [0, τ+
0 ), (τ−0 , τ

+
1 ), · · · , (τ−k−1, τ

+
k ),

and unstable when

τ ∈ [τ+
0 , τ

−
0 ), [τ+

1 , τ
−
1 ), · · · , [τ+

k−1, τ
−
k−1) and τ > τ+

k .

Bi and Xiao [15] studied the direction of the Hopf bifurcation and stability of
the bifurcated periodic solutions as well as the existence of global Hopf bifurcation
at the positive equilibrium P2.
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Remark 1. In Theorem 2.2, only the case when ζ > 0 was considered. From Table
1, one can see that when ζ < 0 there are up to three equilibria and one expects that
Bogdanov-Takens bifurcation may occur when

α(βδ − ζ)2 + 4βζσ = 0,

that is, when the two positive equilibria coalesce to a unique degenerate equilibrium

Pc = (Tc, Ec) =

(
α(βδ + ζ)

2αβζ
,
−α(βδ − ζ)

2ζ

)
,

which may be studied by using the results of Faria and Magalhaés [50] and following
the procedure of Xiao and Ruan [125].

Remark 2. We only considered a simplified version (2) of the Kuznetsov et al.’s
model with delay. Recently, Bi et al. [16] incorporated a time delay into the original
model (1) of Kuznetsov et al. [74]:

dT

dt
= aT (t)(1− bT (t))− nT (t)E(t)

dE

dt
= s+

pT (t)E(t)

g + T (t)
−mE(t− τ)T (t− τ)− dE(t)

(18)

and obtained some results. We believe that model (18) exhibits much more complex
dynamical properties which deserve further consideration.

2.4. Numerical simulations. We provide the simulations of Hopf bifurcation at
P2 using the parameter values in [74]. Take σ = 0.1181, ζ = 0.0031, δ = 0.3743,
α = 1.636, β = 0.002, then system (2) has a tumor-free equilibrium P0 = (0, 0.3155)
and a positive equilibrium P2 = (92.1911, 1.33435), which is locally stable. A Hopf
bifurcation occurs when τ0 = 1.8760, P0 becomes unstable when τ0 > 1.8760, and
there is a periodic solution bifurcated from P2 (see Fig. 3).
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Figure 3. (a) Solution trajectories converge to the stable equilib-
rium P2 = (92.1911, 1.3344); (b) Periodic solutions bifurcated from
the positive equilibrium when τ = 2.0 > τ0.
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3. Bifurcations in a tumor-immune system interaction model with two
delays.

3.1. The generalized model of d’Onofrio et al. [42]. Based on the ODE
models of Sotolongo-Costa et al. [107] and d’Onofrio [37] and the DDE model of
d’Onofrio et al. [42], Bi and Ruan [13] proposed the following tumor and immune
system interaction model with two delays:

dT

dt
= T (t)[ν(T (t− τ))− φ(T (t), E(t))]

dE

dt
= β(T (t− ρ))E(t)− µ(T (t))E(t) + σq(E(t)),

(19)

where T (t) and E(t) are the density of tumor cells and immune effector cells at time
t, respectively. ρ is a positive constant, ν(T ), β(T ), µ(T ), q(T ) ∈ Cr(R), φ(T,E) ∈
Cr(R,R), r ≥ 5, are interpreted as follows:

(i) ν(T ) describes the relative baseline growth of tumor cells and satisfies 0 <
ν(0) ≤ +∞, ν′(T ) ≤ 0, lim

T→0+
Tν(T ) = 0, and in some relevant cases, we shall

suppose that there exists a 0 < T̄ ≤ +∞ such that ν(T̄ ) = 0. Prototype
examples include the exponential growth ν(T ) = k > 0 (Wheldon [118]); the
Gompertz growth ν(T ) = k ln(a/T ) (Laird [76]); the logistic growth ν(T ) =
k(1− (T/a)n) (Marusic et al. [85]); etc. We assume that there is a time delay
τ ≥ 0 in the proliferation of tumor cells (Mayer et al. [87], d’Onofrio and
Gandolfi [40]).

(ii) φ(T,E) models the loss rate of tumor cells due to the attack by effector cells of
the immune system and satisfies φ(T, 0) = 0, φ(0, E) > 0, ∂Tφ(T,E) ≤ 0 and
∂Eφ(T,E) > 0. An example is the Beddington-DeAngelis function φ(T,E) =

aE
1+bT+cE (Huisman and De Boer [65] and d’Onofrio [37]), where a is the rate
or possibility of successful removal of tumor cells by immunity effector cells,
1/b is a saturation constant, and c scales the impact of immune response.

(iii) β(T ) represents the tumor-stimulated proliferation rate of the effector cells
and satisfies β(T ) ≥ 0, β(0) = 0 and β′(T ) ≥ 0. The Michaelis-Menten-
Monod function β(T ) = aT

m+T has been used (Kuznetsov et al. [74]). A time

delay ρ ≥ 0 is introduced into β(x) to reflect the process of effector cells
growth with respect to stimulus by the tumor cells growth (d’Onofrio et al.
[42]).

(iv) The term σq(T ) > 0 describes the influx of effector cells of the immune system
in the tumor in situ which may depend on the tumor size. It is assumed that
q(0) = 1 and q′(T ) < 0 for T � 1 (d’Onofrio et al. [42]).

(v) µ(T ) is the loss rate of immune effector cells due to the interaction with tumor
cells and satisfies µ(T ) > 0, µ′(T ) > 0 (d’Onofrio et al. [42]).

When φ(T,E) = φ(T )π(E) and τ = ρ = 0 model (19) reduces to the model
considered by d’Onofrio [37, 38, 39] who studied the local stability of the equilib-
ria and the uniqueness of stable limit cycles. When τ = 0, ρ 6= 0, model (19)
becomes the delay model proposed in d’Onofrio et al. [42], in which the stability
of equilibria and the onset of sustained oscillations through Hopf bifurcations were
investigated. Thus, model (19) can be regarded as an extension of the models of
d’Onofrio [37, 38, 39], d’Onofrio et al. [42] and Mayer et al. [87].
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3.2. Bifurcation analysis. In this subsection, we present the analyses and results
from Bi and Ruan [13] on the nonlinear dynamics of the tumor-immune system
interaction model (19).

Model (19) has the following possible equilibria:

(1) Tumor-free equilibrium P1(0, E1), where E1 = σ+θ
µ(0) ;

(2) Positive equilibria P k2 (T k2 , E
k
2 ) (T k2 , E

k
2 6= 0, k ∈ Z), which are the intersecting

points of the nullclines ν(T ) = φ(T,E) and E(β(T )− µ(T )) + σq(T ) + θ = 0.

T k2 and Ek2 satisfy ν(T k2 ) = φ(T k2 , E
k
2 ), Ek2 =

σq(Tk2 )+θ

µ(Tk2 )−β(Tk2 )
;

(3) Immune-free equilibrium P3(T3, 0) for σq(T3) > 0, θ ≥ 0.

Firstly, the linearized system of (19) can be obtained as (x(t) = T (t)−Ti, y(t) =
E(t)− Ei)

x′(t) = Tiν
′(Ti)x(t− τ) + (−Tiφ′T (Ti, Ei) + (ν(Ti)− φ(Ti, Ei)))x(t)

− Tiφ′E(Ti, Ei)y(t),

y′(t) = Eiβ
′(Ti)x(t− ρ) + (σq′(Ti)− Eiµ′(Ti))x(t) + (β(Ti)− µ(Ti))y(t),

(20)

where (Ti, Ei) are the coordinates of the equilibrium Pi, i = 1, 2, 3. It is well known
that the stability of Pi depends on the distribution of characteristic roots of (20).
We now analyze the stability of the equilibria Pi(i = 1, 2, 3) of (19) separately.

3.2.1. Tumor-Free Equilibrium. The linearized system (20) at the tumor-free equi-
librium P1(0, E1) becomes{

x′(t) = (ν(0)− φ(0, E1))x(t)

y′(t) = E1β
′(0)x(t− ρ) + (σq′(0)− E1µ

′(0))x(t)− µ(0)y(t).
(21)

Since σ > 0, then for any initial point (T ′0, E
′
0) with T ′0 > 0, E′0 > 0, the condition

for the asymptotic annihilation of T is

ν(0) < φ(0, E1).

Then y′ → −µ(0)y, that is y → 0.
From the above analysis, we have the following results.

Theorem 3.1. For system (19), we have the following conclusions:

(i) If ν(0) < φ (0, E1) , then the tumor-free equilibrium P1 is a stable node.
(ii) If ν(0) > φ (0, E1), then the tumor-free equilibrium P1 is a saddle.

The results in Theorem 3.1 indicate that when the influx rate σ of the immune
effect cells is not zero, if the relative growth rate of tumor cells is less than their
loss rate due to the attraction by immune effector cells (ν(0) < φ (0, E1)), then
tumor cells will die out. Otherwise (ν(0) > φ (0, E1)), the tumor-free equilibrium
is unstable and tumor cells will appear either at the immune-free equilibrium or
at the tumor-present equilibrium. These results also show that the stability of the
tumor-free equilibrium P1 will not change for all values of τ ≥ 0 and ρ ≥ 0; that is,
Hopf bifurcation will not occur at the tumor-free equilibrium P1 in the absence of
immunotherapy.

3.2.2. Positive Equilibria. The linearized system (20) at a positive equilibrium P2

(T2, E2) of (19) takes the form{
x′(t) = a11x(t− τ)− a12x(t)− a13y(t)

y′(t) = a21x(t− ρ) + a22x(t) + a23y(t),
(22)
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where

a11 = T2ν
′(T2) < 0, a12 = T2φ

′
T (T2, E2) ≤ 0,

a13 = T2φ
′
E(T2, E2) > 0, a21 = β′(T2)E2 ≥ 0,

a22 = σq′(T2)− µ′(T2)E2, a23 = β(T2)− µ(T2) = −σq(T2)
E2

< 0.

Then the characteristic equation of (22) is

λ2 +A1λ+A2 + (B1λ+B21)e−λτ +B22e
−λρ = 0, (23)

where

A1 = a12 − a23 = T2φ
′
T (T2, E2)− β(T2) + µ(T2),

A2 = a13a22 − a12a23

= T2(φ′E(T2, E2)(σq′(T2)− µ′(T2)E2)− (β(T2)− µ(T2))φ′T (T2, E2)),

B1 = −a11 = −T2ν
′(T2) > 0,

B21 = a11a23 = −σT2q(T2)ν′(T2)

E2
> 0,

B22 = a13a21 = T2E2φ
′
E(T2, E2)β′(T2) ≥ 0.

Let

f1 = T2φ
′
T (T2, E2)− β(T2) + µ(T2)− T2ν

′(T2),
f2 = T2φ

′
T (T2, E2)− β(T2) + µ(T2) + T2ν

′(T2),
f3 = T2(φ′E(x2, E2)(σq′(T2)− µ′(T2)E2 + E2β

′(T2))
+(β(T2)− µ(T2))(ν′(T2)− φ′T (T2, E2))),

f4 = T2(φ′E(T2, E2)(σq′(T2)− µ′(T2)E2 − E2β
′(T2))

−(β(T2)− µ(T2))(ν′(T2) + φ′T (T2, E2)))
f5 = 2T2(φ′E(T2, E2)(σq′(T2)− µ′(T2)E2) + (β(T2)− µ(T2))φ′T (T2, E2))
f6 = T2(E2φ

′
E(T2, E2)β′(T2) + (β(T2)− µ(T2))φ′T (T2, E2)).

In the following, we consider the case τ = ρ, then the characteristic equation of (22)
is

λ2 +A1λ+A2 + (B1λ+B2)e−λτ = 0, (24)

Define

ω2
± =

1

2

[
(f5 − f1f2)±

√
(f1f2)2 + 2f5f1f2 + 4f2

6

]
. (25)

and

τ±j =


1
ω±

(
2jπ + arccos

{
(f6+f1f2)ω2

±−f5f6
(f1+x2ν′(x2))2ω2

±±f2
6

})
if f6f1 + x2ν

′(x2)(f6 − ω2
± + f5) > 0,

1
ω±

(
(2j + 2)π − arccos

{
(f6+f1f2)ω2

±−f5f6
(f1+x2ν′(x2))2ω2

±±f2
6

})
if f6f1 + x2ν

′(x2)(f6 − ω2
± + f5) < 0.

(26)

We have the following stability results.

Theorem 3.2. Let τ±j (j = 1, 2 · · · ) be defined by (26) and assume that

f1 > 0, f3 > 0. (27)
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(i) If

f5 − f1f2 < 0, f3f4 > 0 or f5 − f1f2 < 4f3f4, (28)

then the positive equilibrium P2(T2, E2) of (19) is asymptotically stable for all
τ ≥ 0;

(ii) If

f3f4 < 0 or f5 − f1f2 > 0 and (f5 − f1f2)2 = 4f3f4, (29)

then P2(T2, E2) is stable for all τ ∈ (0, τ+
0 ) and unstable for τ > τ0;

(iii) If

f5 − f1f2 > 0, f3f4 > 0 and (f5 − f1f2)2 > 4f3f4, (30)

then there is a positive integer k such that P2(T2, E2) is stable for

τ ∈ [0, τ+
0 ) ∪ [τ−0 , τ

+
1 ) ∪ · · · ∪ [τ−k−1, τ

+
k ),

and unstable for

τ ∈ [τ+
0 , τ

−
0 ) ∪ [τ+

1 , τ
−
1 ) ∪ · · · ∪ [τ+

k−1, τ
−
k−1);

(iv) If f2
5 < f2

6 hold, then system (19) undergoes a Hopf bifurcation at the positive
equilibrium P2(T2, E2) as τ = τ+

k such that τk 6= τl for any nonnegative integer
number s 6= l.

In order to analyze the stability of the positive equilibria of model (19), we use
the functions proposed in d’Onofrio [37] as an example, that is, ν(T ) = 1.636(1 −
0.002T ), φ(T,E) = E, β(T ) = 1.131T

20.19+T , σq(T ) = 0.1181, µ(T ) = 0.00311T +

0.3743. Then (19) has a tumor-free equilibrium P1(0, 0.315522), which is a saddle
and three positive equilibria: a microscopic equilibrium point P 1

2 (8.18971, 1.6092)
which is locally asymptotically stable, an unstable saddle P 2

2 (267.798, 0.759765),
and a macroscopic equilibrium point P 3

2 (447.134, 0.17298) which is also locally
asymptotically stable. Since the stability of the saddle does not change with small
perturbation, we only analyze the stability regions of the two stable equilibria
P 1

2 (8.18971, 1.6092) and P 3
2 (447.134, 0.17298) as follows.

(a) For the equilibrium P 1
2 (8.18971, 1.6092), we know that a11 = −0.0268, a12 =

0, a13 = 1.6902, a21 = 0.0456, a22 = −0.005 and a23 = −0.0734, then A1 =
0.0734, A2 = −0.008451, B1 = 0.0268, B2 = 0.07904 and ω2 = 0.0685379. It
is obvious that A1 > B1, B2 > |A2|, and B2A1 + B1(ω2

± − A2) = 0.00786484 > 0.

If B2 varies from 0, then the stability region is when B2 reaches τ = τ+
0 . The stable

region is illustrated by the blue shadowed areas bounded by the dashed lines in Fig.
4(a). In this case B2 = 0.07904, then we can obtain that the equilibrium is stable
as τ < 1.27248.

(b) For the equilibrium (447.134, 0.172977), we know that a11 = −1.46302, a12 =
0, a13 = 0.172977, a21 = 0.000169, a22 = −0.000537958 and a23 = −0.68275, then
A1 = −0.68275, A2 = −0.00009, B1 = 1.46302, B2 = 0.998906 and ω2 = 2.1403.
It is obvious that A1 < B1, B2 > |A2|, and B2A1 +B1(ω2

± −A2) = 2.44943 > 0. if

B2 varies from 0, then the stability region is when B2 reaches τ = τ+
0 , The stable

regions are illustrated by the blue shadowed areas bounded by the dashed lines in
Fig. 4(b). Since B2 = 0.998906, then we can see that the equilibrium is stable as
τ < 0.476779.
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Figure 4. The stability regions of the equilibria (a)
P 1

2 (8.18971, 1.6092) and (b) P 3
2 (447.134, 0.17298) with blue

dashed lines in the (B2, τ)-parameter plane.

3.2.3. Hopf Bifurcation. In order to further consider Hopf bifurcation at the positive
equilibrium P2(T2, E2), let a = τ − τk. Then a = 0 is a Hopf bifurcation value of
equation (19) with τ = ρ. Set t̄ = τt, x̄1 = x1−T2, x̄2 = x2−E2, dropping the bars,
then (19) can be written as a functional differential equation in C = C([−1, 0),R2)
as follows

x′(t) = La(xt) +R(a, xt), (31)

where x(t) = (x1, x2)T ∈ R2, La : C → R2 is defined by

La(φ) = (τk + a)

(
−a12 −a13

a22 a23

)(
φ1(0)
φ2(0)

)
+ (τk + a)

(
a11 0
a21 0

)(
φ1(−1)
φ2(−1)

)
,

in which aij are defined in subsection 3.2.2, R : R × C → R2 denotes the higher
order terms.

By the Riesz representation theorem, there exists a bounded variation matrix
η(θ, a), whose components are functions of bounded variation in θ ∈ [−τ0, 0] such
that

Laφ =

∫ 0

−1

dη(θ, 0)φ(θ) for φ ∈ C. (32)

In fact, we can choose

η(θ, a) = (τk + a)

(
−a12 −a13

a22 a23

)
δ(θ)− (τk + a)

(
a11 0
a21 0

)
δ(θ + 1), (33)

where δ is defined by δ(θ) =

{
0, θ 6= 0
1, θ = 0.

For ϕ ∈ C1([−1, 0],R3), define

A(a)ϕ =

{
dϕ
dθ , θ ∈ [−1, 0)∫ 0

−1
dη(a, s)ϕ(s), θ = 0

and R(a)ϕ =

{
0, θ ∈ [−1, 0)
R(a, ϕ), θ = 0.

Then (31) can be written as

x′t = A(a)xt +R(a)xt, (34)
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where xt(t) = x(t+ θ) for θ ∈ [−1, 0]. For ϕ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

{
−dψdθ , s ∈ (0, 1]∫ 0

−1
dηT (t, 0)ψ(−t), s = 0

and a bilinear inner product

〈ψ(s), ϕ(θ)〉 = ψ(0)ϕ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ
T

(ξ − θ)dη(θ)ϕ(ξ)dξ,

where η(θ) = η(θ, 0), then A(0) and A∗ are adjoint operators. By the analysis
in last subsection, we know that ±iωτk are eigenvalues of A(0), thus they are
also eigenvalues of A∗. We first need to compute the eigenvectors of A(0) and A∗

corresponding to iωτk and −iωτk, respectively. For A(0), it is easy to obtain that
the eigenvector basis of iω0 is p(θ) = (1, α)T eiωθτk and p∗(θ) = D(1, α∗)T eisωτk ,

where α = a21e
−iωτk+a22
iω−a23 , α∗ = a13

iω+a23
. In order to assure 〈p∗(θ), p(θ)〉 = 1, we have

D =
(
1 + αα∗ − τk(a21α

∗ + a11)eiωτk
)−1

. (35)

In the following, we will compute the coordinates on the center manifold Ca at
a = 0. Let xt be the solution of (31) when a = 0. Define z = 〈p∗, xt〉, W (t, θ) =
xt(θ) − 2Re{z(t)p(θ)}. On the center manifold C0, W (t, θ) = W (z(t), z(t), θ) with
the form

W (z(t), z(t), θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · ·

For the solution xt ∈ C0 of (31), we have

z′(t) = iωτkz + g(z, z, a), (36)

where

g(z, z) =
g20(θ)

2
z2 + g11(θ)zz +

g02(θ)

2
z2 +

g30(θ)

6
z3 +

g21(θ)

2
z2z +

g12(θ)

2
zz2

+
g03(θ)

6
z3 +

g31(θ)

6
z3z +

g40(θ)

24
z4 +

g31(θ)

4
z3z +

g22(θ)

6
z2z2

+
g13(θ)

4
zz3 +

g04(θ)

24
z4 +

g41(θ)

24
z4z +

g32(θ)

12
z3z2 + · · · .

(37)

The coefficients gij(θ) are given by

g20 =τkD

[
∂φ(T2, E2)

∂T
+
T2

2

∂2φ(T2, E2)

∂T 2
+

(
∂φ(T2, E2)

∂E
+ T2

∂2φ(T2, E2)

∂T∂E

)
α

+

(
T2
∂2φ(T2, E2)

∂E2

)
α2 +

1

2
(σq′′(T2)− µ′′(T2)E2)α∗ − µ′(T2)α∗α

+
T2

2
ν′′(T2)e−2iωτk + ν′(T2)e−iωτk

+
E2

2
β′′(T2)α∗e−2iωτk + α∗αβ′(T2)e−iωτk

]
,

g11 =τkD

[
2
∂φ(T2, E2)

∂T
+ T2

∂2φ(T2, E2)

∂T 2
+

(
∂φ(T2, E2)

∂E
+ T2

∂2φ(T2, E2)

∂T∂E

)
(α+ α)

+

(
2T2

∂2φ(T2, E2)

∂E2

)
αα+ (σq′′(T2)− µ′′(T2)E2)α∗ − µ′(T2)α∗(α+ α)
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+ T2ν
′′(T2) + ν′(T2)(e−iωτk + eiωτk)

+ E2β
′′(T2)α∗ + α∗β′(T2)(e−iωτkα+ eiωτkα)

]
,

g02 =τkD

[
∂φ(T2, E2)

∂T
+ T2

∂2φ(T2, E2)

2∂T 2
+

(
∂φ(T2, E2)

∂E
+ T2

∂2φ(T2, E2)

∂T∂y

)
α

+

(
T2
∂2φ(T2, E2)

∂E2

)
α2 +

1

2
(σq′′(T2)− µ′′(T2)E2)α∗ − µ′(T2)α∗α

+
T2

2
ν′′(T2)e2iωτk + ν′(T2)eiωτk +

E2

2
β′′(T2)α∗e2iωτk + α∗αβ′(T2)eiωτk

]
,

g21 =τkD

[
3e11 + (2α+ α)e12 + (α2 + 2αα)e13 + 3α2αe14 + 3α∗e21

+ α∗(2α+ α)e22 +
T2

2
ν(3)(T2)e−iωτk +

ν′′(T2)

2
(e−2iωτk + 2)

+
α∗

2
β(3)(T2)e−iωτk +

α∗

2
β′′(T2)(αe−2iωτk + 2α)

+ d12

(
W

(1)
20 (0)

2
α+

W
(2)
20 (0)

2
+ αW

(1)
11 (0) +W

(2)
11 (0)

)
+ d11(W

(1)
20 (0) + 2W

(1)
11 (0)) + d13(W

(2)
20 (0)α+ 2αW

(2)
11 (0))

+ d21α∗(W
(1)
20 (0) + 2W

(1)
11 (0))

+ d22α∗

(
W

(1)
20 (0)

2
α+

W
(2)
20 (0)

2
+W

(1)
11 (0)α+W

(2)
11 (0)

)

+
T2

2
ν′′(T2)

(
W

(1)
20 (−1)eiωτk + 2W

(1)
11 (−1)e−iωτk

)
+ ν′(T2)

(
W

(1)
20 (−1)

2
+
W

(1)
20 (0)

2
eiωτk +W

(1)
11 (−1) + e−iωτkW

(1)
11 (0)

)
+
y2

2
β′′(x2)α∗

(
W

(1)
20 (−1)eiωτk + 2W

(1)
11 (−1)e−iωτk

)
+ α∗β′(x2)

(
W

(1)
20 (−1)α+ 2W

(1)
11 (−1)α+W

(2)
20 (0)eiωτk + 2W

(2)
11 (0)e−iωτk

)]
,

g12 =τkD

[
3e11 + (α+ 2α)e12 + (α2 + 2αα)e13 + 3αα2e14 + 3α∗e21

+ α∗(α+ 2α)e22 +
T2

2
ν(3)(T2)eiωτk +

ν′′(x2)

2
(e2iωτk + 2) +

α∗

2
β(3)(T2)eiωτk

+
α∗

2
β′′(T2)(αe2iωτk + 2α)

+ d12

(
W

(1)
02 (0)

2
α+

W
(2)
02 (0)

2
+ αW

(1)
11 (0) +W

(2)
11 (0)

)
+ d11(W

(1)
02 (0) + 2W

(1)
11 (0)) + d13(W

(2)
02 (0)α+ 2αW

(2)
11 (0))
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+ d21α∗(W
(1)
02 (0) + 2W

(1)
11 (0))

+ d22α∗

(
W

(1)
02 (0)

2
α+

W
(2)
02 (0)

2
+W

(1)
11 (0)α+W

(2)
11 (0)

)

+
T2

2
ν′′(T2)

(
W

(1)
02 (−1)e−iωτk + 2W

(1)
11 (−1)eiωτk

)
+ ν′(T2)

(
W

(1)
02 (−1)

2
+
W

(1)
02 (0)

2
e−iωτk +W

(1)
11 (−1) + eiωτkW

(1)
11 (0)

)
+
y2

2
β′′(x2)α∗

(
W

(1)
02 (−1)e−iωτk + 2W

(1)
11 (−1)e+iωτk

)
+ α∗β′(x2)

(
W

(1)
02 (−1)α+ 2W

(1)
11 (−1)α+W

(2)
02 (0)e−iωτk + 2W

(2)
11 (0)eiωτk

)]
,

g30 =τkD

[
e11 + αe12 + α2e13 + α3e14 + α∗e21 + α∗αe22 +

T2

6
ν(3)(T2)e−3iωτk

+
ν′′(T2)

2
αe−2iωτk +

y2α∗

6
β(3)(x2)e−3iωτk +

α∗

2
β′′(T2)αe−2iωτk

+ d11W
(1)
20 (0) + d12

(
W

(1)
20 (0)

2
α+

W
(2)
20 (0)

2

)
+ d13W

(1)
20 (0)α

+ d22α∗

(
W

(1)
20 (0)

2
α+

W
(2)
20 (0)

2

)
+ d21α∗W

(1)
20 (0)

+ T2ν
′′(x2)W

(2)
20 (−1)e−iωτk + ν′(T2)(W

(1)
20 (−1) +W

(1)
20 (0)e−iωτk)

+
E2

2
β′′(T2)α∗W

(1)
20 (−1)e−iωτk + α∗β′(T2)(W

(1)
20 (−1)α+W

(0)
20 (0)e−iωτk)

]
,

g03 =τkD

[
e11 + αe12 + α2e13 + α3e14 + α∗e21 + α∗αe22 +

T2

6
ν(3)(T2)e3iωτk

+
ν′′(T2)

2
αe2iωτk +

E2α∗

6
β(3)(T2)e3iωτk +

α∗

2
β′′(T2)αe2iωτk + d11W

(1)
02 (0)

+ d12

(
W

(1)
02 (0)

2
α+

W
(2)
02 (0)

2

)
+ d13W

(1)
02 (0)α

+ d22α∗

(
W

(1)
02 (0)

2
α+

W
(2)
02 (0)

2

)
+ d21α∗W

(1)
02 (0)

+ T2ν
′′(T2)W

(2)
02 (−1)eiωτk + ν′(T2)(W

(1)
02 (−1) +W

(1)
02 (0)eiωτk)

+
E2

2
β′′(T2)α∗W

(1)
02 (−1)eiωτk + α∗β′(T2)(W

(1)
20 (−1)α+W

(0)
02 (0)eiωτk)

]
,

in which

d11 = ∂φ(T2,E2)
∂T + 1

2
T2∂

2φ(T2,E2)
∂T 2 , d12 = ∂φ(T2,E2)

∂E + T2
∂2φ(T2,E2)
∂T∂E ,

d13 = T2
∂2φ(T2,E2)

∂E2 , d21 = 1
2 (σq′′(T2)− µ′′(T2)E2),

d22 = −µ′(T2),

e11 = 1
2
∂2φ(T2,E2)

∂T 2 + T2

6
∂3φ(T2,E2)

∂T 3 , e12 = ∂2φ(T2,E2)
∂T∂E + T2

2
∂3φ(T2,E2)
∂T 2∂E ,

e13 = 1
2
∂2φ(T2,E2)

∂E2 + T2

2
∂3φ(T2,E2)
∂T∂E2 , e14 = T2

6
∂3φ(T2,E2)

∂E3 ,

e21 = σq(3)(T2)−µ(3)(T2)E2

6 , e22 = −µ
′′(T2)

2 .

(38)
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Similarly we can give the expressions of g31, g22, g40 and g32, then all useful gij are
given.

Noting that xt = (x1t(θ), x2t(θ)) = W (t, θ)+zp(θ)+zp(θ) and q(θ) = (1, α)T eiωθ

and recalling (36), one has

g(z, z) = p∗(0)R(0, z, z). (39)

Inserting (x1t, y2t) into (39) and comparing the coefficients of zizj(i+ j ≥ 2) with
that of (37), we obtain all gij(i + j ≥ 2). Thus, (36) can be transformed into an
equation of the form

z′(t) = λ1(a)z + 1
2C1(a)z2z + 1

12C2(a)z3z2 + (o|z|5), (40)

where λ1(a) = iωτk + aλ′(0) + (o|a|3) with λ(a) being a smooth function and

C1(0) = i
2ω (g20g11 − 2|g11|2 − 1

3 |g02|2) + 1
2g21,

C2(0) = Re{g32}+ 1
ω Im

{
g20ḡ31 − g11(4g31 + 3ḡ22)− 1

3g02(g40 + ḡ13)
−g30g12)}+ 1

ω2 Re
{
g20(ḡ11(3g12 − ḡ30) + g02(ḡ12 − 1

3g30) + g03ḡ02))
}

+ 1
ω2 Re

{
g11(ḡ02( 5

3 ḡ30 + 3g12) + 1
3 ḡ03g02 − 4g11g30)

}
+ 3
ω2 Im{g20g11}Im{g21}+ 1

ω3 Im{ḡ02g11(ḡ2
02 − 3ḡ20g11 − 4g2

11)}
+ 1
ω3 Im{g20g11}(3Re{g11g20} − 2|g02|2).

Let z = reiθ. Then (40) can be written as
dr

dt
= arReλ′(0) +

1

2
r3Re{C1(0)}+

1

12
r5Re{C2(0)}+ h.o.t.

dθ

dt
= ωτk + aImλ′(0) +

1

2
r2Im{C1(0)}+

1

12
r4Im{C2(0)}+ h.o.t.

(41)

Hence

dr

dθ
=

arRe{λ′(0)}+ 1
2r

3Re{C1(0)}+ 1
12r

5Re{C2(0)}+ h.o.t.

ωτk + aIm{λ′(0)}+ 1
2r

2Im{C1(0)}+ 1
12r

4Im{C2(0)}+ h.o.t.

=
1

A(τk, a)

(
aRe{λ′(0)}r +B(τk, a)r3 + C(τk, a)r5

)
+ h.o.t.,

(42)

where A(τk, a) = ωτk + aIm{λ′(0)},

B(τk, a) =
1

2
Re{C1(0)} − Im{C1(0)}Re{λ′(0)}a

2A(τk, a)

and

C(τk, a) =
Re{C2(0)}

12
− Re{C1(0)}Im{C1(0)}

4A(τk, a)

− aReλ′(0)

12A(τk, a)

(
Im{C2(0)} − 3Im2{C1(0)}

A(τk, a)

)
.

Let

r(θ, r0) = r1(θ)r0 + r2(θ)r2
0 + r3(θ)r3

0 + r4(θ)r4
0 + r5(θ)r5

0 +O(r6
0)

be a solution of (42) satisfying r(0, r0) = r0. Then r1(0) = 1, ri(0) = 0 for i ≥ 2.
Inserting the above into (42), we have

r′1(θ)r0 + r′2(θ)r2
0 + r′3(θ)r3

0 + r′4(θ)r4
0 + r′5(θ)r5

0 +O(r6
0)

=
1

A(τk, a)

(
aRe{λ′(0)}r +B(τk, a)r3 + C(τk, a)r5

)
+ h.o.t.
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Thus r′2(θ) = 0, r′4(θ) = 0 and

r′1(θ) =
aRe{λ′(0)}
A(τk, a)

, r′3(θ) =
B(τk, a)

A(τk, a)
, r′5(θ) =

C(τk, a)

A(τk, a)
.

Hence

r1(θ) =
aRe{λ′(0)}
A(τk, a)

θ + 1, r2(θ) = 0, r4(θ) = 0,

r3(θ) =
B(τk, a)

A(τk, a)
θ, r5(θ) =

C(τk, a)

A(τk, a)
θ.

Then the Poincaré map P (r0) = r(2π, r0) has the form:

P (r0) =

(
2aRe{λ′(0)}π
A(τk, a)

+ 1

)
r0 +

2πB(τk, a)

A(τk, a)
r3
0 +

2πC(τk, a)

A(τk, a)
r5
0 +O(r7

0). (43)

Near r0 = 0, the map has a unique fixed point

r∗0 =

√
−aRe{λ′(0)}
B(τk, a)

(1 +O(|a|)). (44)

We can compute the period of the bifurcated periodic solution as follows

T (τk, a) =

∫ 2π

0

dθ

A(τk, a) + 1
2 Im{C1(0)}r2 + h.o.t.

=
1

A(τk, a)

∫ 2π

0

(
1 +

Im{C1(0)}Re{λ′(0)}a
2A(τk, a)B(τk, a)

)
dθ + o(|a|)

=
2π

ωτk
(1 +N(τk)a+ o(|a|)) ,

(45)

where

N(τk) =
Im{C1(0)}Re{λ′(0)} − Re{C1(0)}Im{λ′(0)}

ωτkRe{C1(0)}
.

Then we can obtain the following result from the above analysis and Hassard et al.
[63].

Theorem 3.3. If Re{C1(0)} 6= 0, then system (19) has a branch of Hopf bifurcated
solutions for τ = τk+a with a satisfying aRe{λ′(0)}B(τk, a) < 0. Also the bifurcated
periodic solutions have the following properties:

(i) they are orbitally stable (resp., unstable) if Re{C1(0)} < 0 (resp., Re{C1(0)} >
0);

(ii) the bifurcated periodic solution is supercritical (resp., subcritical) if Re{C1(0)}
Re{λ′(0)} >

0 (resp., Re{C1(0)}
Re{λ′(0)} < 0);

(iii) the period of the bifurcated periodic solution is 2π
ωτk

as a = 0, the period

T (τk, a) is increasing in parameter a (resp., decreasing) if N(τk) > 0 (resp.,
N(τk) < 0).

3.2.4. Bautin Bifurcation. The Bautin bifurcation of an equilibrium in a two-
parameter family of differential equations is a bifurcation at which the critical equi-
librium has a pair of purely imaginary eigenvalues and the first Lyapunov coefficient
for the Hopf bifurcation vanishes (Kuznetsov [75]). This phenomenon is also called
the generalized Hopf bifurcation. For system (19), Theorem 3.3 implies that it un-
dergoes Hopf bifurcation if Re{C1(0)} 6= 0. If Re{C1(0)} = 0 but Re{C2(0)} 6= 0,
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then Bautin bifurcation occurs, which will be analyzed in this subsection. Just as
in the previous subsection, we can obtain (40), and (41) can be written as

dr

dt
= arReλ′(0) +

1

2
r3Re{C1(a)}+

1

12
r5Re{C2(0)}+ h.o.t.

dθ

dt
= ωτk + aImλ′(0) +

1

2
r3Im{C1(a)}+

1

12
r5Im{C2(0)}+ h.o.t.

(46)

Similarly, we have the Poincaré map P (r0) = r(2π, r0) of the form

P (r0) =

(
2aRe{λ′(0)}π
A(τk, a)

+ 1

)
r0 +

2πB̄(τk, a)

A(τk, a)
r3
0 +

2πC̄(τk, a)

A(τk, a)
r5
0 +O(r7

0), (47)

where

B̄(τk, a) =
1

2
Re{C1(a)} − Im{C1(a)}Re{λ′(0)}a

2A(τk, a)
,

C̄(τk, a) =
Re{C2(0)}

12
− Re{C1(a)}Im{C1(a)}

4A(τk, a)

− aReλ′(0)

12A(τk, a)

(
Im{C2(0)} − 3Im2{C1(a)}

A(τk, a)

)
.

Since C1(a) is a continuously differentiable function of the parameter a, we have

P (r0) = r0 +
1

A(τk, a)

(
2aRe{λ′(0)}πr0 + 2πB̄(τk, a)r3

0 + 2πC̄(τk, a)r5
0

)
+O(r7

0).

(48)
Hence the number of periodic solutions of system (40) equals the number of positive
fixed points of the Poincaré map P (r0). Now we analyze the distribution of roots
of P (r0) = r0. To find fixed points of P (r0) = r0 is equivalent to find positive roots
of

P1(r0)
∆
=
A(τk, a)

πr0
(P (r0)− r0) = α0 + α1r

2
0 + α2r

4
0 +O(a2, r5

0) = 0, (49)

which can have zero, one or two positive solutions of r0, these solutions are branched
from the trivial solution, where

α0 = 2aRe{λ′(0)}, α1 = Re{C1(a)},

α2 =
1

6

(
Re{C2(0)} − Re{λ′(0)}Im{C2(0)}a

ωτk

)
− Re{C1(a)}Im{C1(a)}

4ωτk
.

We will give conditions for the existence of positive solutions as follows. The implicit
function theorem implies that a unique function r2 = − α1

2α2
(1+O(α1)) ≡ r2

0(a) exists

such that P ′
1r20

(a, r2
0(a)) = 0, then we have

P1(a, r2) =
1

2α2
(2α0α2 − α2

1 +O(α3
1)). (50)

Substituting α0, α1, α2 into (50) yields

P1(a, r0(a)) = 2Re{λ′(0)}a− 3Re{C1(a)}2
2Re{C2(0)} +O(C1(a)

3
)

= α0 − 3α2
1

2Re{C2(0)} +O(C1(a)
3
).

Let P1(a, r2
0(a))

∆
= M(a). Noting P ′

1r20
(a, 0) = α1(a), P1(a, 0) = α0(a), we obtain

the following results for α2(a) > 0:
(1) For |a| � 1, P1(a, r0) has no positive solution if one of the following two cases

holds: (I) M(a) > 0; (II) α0(a) ≥ 0, α1(a) ≥ 0, M(a) ≤ 0.
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(2) For |a| � 1, P1(a, r0) has one positive root if one of the following two cases
holds: (I) α0(a) = 0, α1(a) < 0, M(a) < 0; (II) α0(a) < 0, M(a) < 0.

(3) For |a| � 1, P1(a, r0) has two positive roots as α0(a) > 0, α1(a) < 0, M(a) <
0 and the two roots become one as M(a) = 0, α0(a) > 0 and α1(a) < 0.

Define

D′1 = {M(a) > 0}
⋃
{α0(a) ≥ 0, α1(a) ≥ 0,M(a) ≤ 0},

D′2 = {α0(a) = 0, α1(a) < 0, M(a) < 0}
⋃
{α0(a) < 0, M(a) < 0},

D′3 = {α0(a) > 0, α1(a) < 0,M(a) < 0},
l = {α0(a) > 0, α1(a) < 0,M(a) = 0},
D′21 = {α0(a) < 0, α1(a) > 0, M(a) < 0},
D′22 = {α0(a) < 0, α1(a) < 0, M(a) < 0}.

That is, l : α0 =
3α2

1

2Re{C2(0)} , α1 < 0. Recalling the first equation of (46), the above

analysis can be summarized as follows:
(a) If (α0, α1) ∈ D′1, (49) has no positive root, which means that system (40) has

no periodic solution in a sufficiently small neighborhood of the unstable equilibrium
z = 0.

(b) If (α0, α1) ∈ D′2, (49) has only one positive root, which means that system
(40) has one periodic solution in a sufficiently small neighborhood of the stable
equilibrium z = 0. The periodic solution is stable as (α0, α1) ∈ D′22 and unstable
as (α0, α1) ∈ D′21.

(c) If (α0, α1) ∈ D′3, (49) has two positive roots, which means that system (40)
has two periodic solutions in a sufficiently small neighborhood of the unstable equi-
librium z = 0, one is stable and the other is unstable.
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Figure 5. The bifurcation diagram for system (40). (a) α2 > 0.
(b) α2 < 0.

Therefore, we can summarize the above discussions as follows.

Theorem 3.4. If Re{C1(0)} = 0 but Re{C2(0)} 6= 0, then (19) undergoes a Bautin
bifurcation for τ = τk + a. On the (α0, α1)-parameter plane, the half-parabola l and
the line l1 : α0 = 0 are bifurcation curves. When α2 > 0, the bifurcations are
outlined as follows:

(i) On the (α0, α1)-parameter plane, if a point (α0, α1) crosses the positive α1-axis
from the region D′1 to the region D′2, then (40) undergoes Hopf bifurcation and
an unstable periodic solution Γ1 with period T1 bifurcates from z = 0. When
the point (α0, α1) crosses D′2 counterclockwise in D′21, the periodic solution
Γ1 expands with the same periodic T1, and Γ1 attaches the maximum when
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(α0, α1) reaches the negative α0-axis. When (α0, α1) crosses the negative α0-
axis from D′21 to D′22, then the stability of Γ1 changes from unstable to stable,
meanwhile, the period changes from T1 to T2, at the same time, an unstable
periodic solution Γ2 bifurcates from Γ1 and locates inside Γ1, where

T1 =
2π

ωτk

(
1 +N1(τk)a+ o(|a|2)

)
,

T2 =
2π

ωτk

(
1 +N2(τk) + o(|a|, |C1(a)|2)

)
,

N1(τk) =
Re{λ′(0)}Im{C1(a)} − Re{C1(a)}Im{λ′(0)}

ωτkRe{C1(a)}
,

and

N2(τk) =
3Re{C1(a)}Im{C1(a)} − Im{λ′(0)}Re{C2(0)}a

ωτkRe{C2(0)}
.

(ii) On the (α0, α1)-parameter plane, if a point (α0, α1) crosses the negative α1-
axis from the region D′2 to the region D′3, then (40) undergoes Hopf bifurcation
and an unstable periodic solution Γ3 with period T1 bifurcates from z = 0, Γ2

coincides with Γ3 and disappears, which means that there are two periodic
solutions in D′3, one is stable with period T2 and the other is unstable with
period T1.

(iii) On the (α0, α1)-parameter plane, if a point (α0, α1) goes from region D′3 to l,
the two periodic solutions of (40) coincide to become one; If the point (α0, α1)
crosses the line l to D′1, the new periodic solution of (40) disappears, that is if
a point (α0, α1) crosses the region D′3 to the region D′1, then periodic solutions
of (40) undergo saddle-node bifurcation, that is, a saddle-node type periodic
solution bifurcated from the trivial solution z = 0.

Similarly bifurcation results can be obtained for the case α2 < 0.

3.2.5. Fold-Hopf (Zero-Hopf) Bifurcation. In this subsection we explore the possi-
bility that the characteristic equation (23) of the linearized system (22) at a positive
equilibrium P2(T2, E2) has a simple zero eigenvalue and a pair of purely imaginary
eigenvalues; that is, the existence of Fold-Hop (zero-Hopf) bifurcation of the dou-
ble delayed model (19) at P2. Note that the condition for the existence of a limit
cycle does not exist anymore, so we have to use different approaches to handle
this singularity (Wu and Wang [123]). First, we find the condition under which
the characteristic equation of (22) has a simple zero eigenvalue. Second, under
this condition, we consider the existence of a pair of purely imaginary eigenvalues
and the distribution of the remaining eigenvalues of the characteristic equation of
(22). Hence, we obtain the conditions for the existence of a Fold-Hopf (zero-Hopf)
bifurcation.

Let ωi (ω > 0) be a root of (23). Plugging it into (23) and separating the real
and imaginary parts, we obtain that{

−ω2 +A2 +B22 cos(ρω) = −ωB1 sin(τω)−B21 cos(τω),
ωA1 −B22 sin(ρω) = −ωB1 cos(τω) +B21 sin(τω).

(51)

(i) If τ = ρ = 0, A1 + B1 > 0, and A2 + B21 + B22 = 0, then the characteristic
equation (23) has a zero root and a negative root. In order to discuss Fold-Hopf
bifurcation, we make the following assumption:

(H1) A1 +B1 > 0, A2 +B21 +B22 = 0.
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(ii) If τ = 0, ρ > 0, and assumption (H1) holds, then system (51) reduces to

−ω2 −B22 = −B22 cos(ρω),

ω(A1 +B1) = B22 sin(ρω).

Squaring both sides and adding them together yields

ω4 + b0ω
2 = 0,

where

b0 = (A1 +B1)2 + 2B22. (52)

We know that if b0 ≥ 0, then (23) has a simple root zero and all other roots
have negative real parts for all ρ ≥ 0; If b0 < 0, note that in this case B22 < 0,
then (23) has a simple root zero and a pair of purely imaginary roots ±iω+ at
ρ = ρ+

j , j = 0, 1, 2, · · · , where

ω+ =
√
−b0

and

ρ+
j =

1

ω+

(
2(j + 1)π + arcsin

ω+(A1 +B1)

B22

)
. (53)

One can also obtain that

Re

(
dλ

dρ

)−1 ∣∣∣∣
ρ=ρ+j

=
±|b0|
B2

22

.

Hence, we have the following results on the stability of the equilibrium P2(T2, E2).

Theorem 3.5. Let assumption (H1) hold and ρ+
j , j = 0, 1, 2, · · · , be defined by

(53).

(a) If b0 ≥ 0, then P2 is stable for all ρ ≥ 0;
(b) If b0 < 0, then P2 is stable for all ρ ∈ [0, ρ+

0 ), unstable for ρ > ρ+
0 , and system

(19) (with τ = 0, ρ > 0) undergoes a Fold-Hopf bifurcation at P2 as ρ passes
through ρ+

0 .

(iii) If τ > 0, ρ > 0, squaring both sides of (51) and adding them up gives

2B22(A1ω sin(ωρ)+(ω2−A2) cos(ωρ)) = ω4 +(A2
1−B2

1−2A2)ω2 +A2
2 +B2

22−B2
21.

Assuming B22 6= 0 and noticing that A2 + B21 + B22 = 0, the above equation can
be rewritten as follows:

A1ω sin(ωρ) + (ω2 −A2) cos(ωρ) =
ω4 + (A2

1 −B2
1 − 2A2)ω2 − 2A2B22

2B22
.

Define

F (ω) =
ω4 + (A2

1 −B2
1 − 2A2)ω2 − 2A2B22

2B22

√
A2

1ω
2 + (ω2 −A2)2

,

G(ω) =
A1ω sin(ωρ) + (ω2 −A2) cos(ωρ)√

A2
1ω

2 + (ω2 −A2)2

for any ρ ≥ 0. To consider the existence of the purely imaginary eigenvalue iω of the
characteristic equation (22), we now need to discuss the existence of the positive
solutions of the following equation

F (ω) = G(ω) (54)

and make the second assumption as follows.
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(H2) A2 > 0.

Now we have

F (0) = G(0) = − A2

|A2|
, F ′(0) = G′(0) = 0,

F ′′(0) =
A2

1(A2 +B22)−A2(2A2 + 2B22 +B2
1)

A2|A2|B22
, G′′(0) =

(A1 +A2ρ)2

A2|A2|
,

and the following results (Wu and Wang [123]).

Lemma 3.6. Let assumptions (H1) and (H2) hold.

(i) Let B22 > 0. Assume F ′′(0) < 0, then (54) always has at least one positive

solution for any ρ ≥ 0; Assume F ′′(0) > 0, (a) if F ′′(0) >
A2

1

A2|A2| , then

there exist ρ∗ > 0 and ρ∗∗ > ρ∗ such that (54) has no positive solutions for
ρ ∈ [0, ρ∗), one positive solution for ρ ∈ [ρ∗, ρ∗∗] and two or more positive

solutions for ρ > ρ∗∗; (b) if F ′′(0) <
A2

1

A2|A2| , then (54) always has positive

solutions for any ρ ≥ 0 if A1 ≥ 0 and has positive solutions for ρ small and
large but no solutions in between if A1 < 0.

(ii) Let B22 < 0. Assume F ′′(0) < 0, then Eq.(54) has no positive solutions for any

ρ ≥ 0; Assume F ′′(0) > 0, (a) if F ′′(0) >
A2

1

A2|A2| , then there exist ρ∗ > 0 and

ρ∗∗ > ρ∗ such that (54) has one positive solution for ρ ∈ [0, ρ∗), no positive
solutions for ρ ∈ (ρ∗, ρ∗∗) and at least one positive solution for ρ > ρ∗∗; (b)

if F ′′(0) <
A2

1

A2|A2| , and (1) A1 > 0 then there exist ρ∗ > 0 such that (54)

has no positive solutions for any ρ ∈ [0, ρ∗) and at least one positive solution
for ρ > ρ∗; and (2) A1 < 0, then (54) has no positive roots for small ρ,
as ρ increases positive root appears, as ρ continues to increase, positive root
disappears, and for all ρ big enough there are always positive roots.

Now from (51), solving for sin(τω) and cos(τω) we have

sin(τω) = `1(ω) := −−A1B21ω+A2B1ω+B1B22ω cos(ρω)−B1ω
3+B21B22 sin(ρω)

B2
1ω

2+B2
21

,

cos(τω) = `2(ω) := −A1B1ω
2+A2B21−B1B22ω sin(ρω)+B21B22 cos(ρω)−B21ω

2

B2
1ω

2+B2
21

.

Let ρ̄ ≥ 0 be such that (54) has positive solution(s). Without loss of generality,
suppose that equation (54) has n positives solutions ω1 < ω2 < · · · < ωn. For each
j = 1, 2, · · · , n, define

τj =

{
1
ωj

arccos `2(ωj) if `1(ωj) ≥ 0,
1
ωj

(2π − arccos `2(ωj)) if `1(ωj) < 0

and let
τ+ = min {τj : j = 1, 2, · · · , n} ≥ 0. (55)

Let λ(τ, ρ̄) = σ(τ, ρ̄) + iω(τ, ρ̄) to be the solution of (23) such that σ(τ+, ρ̄) = 0
and ω(τ+, ρ̄) = ωk, respectively. Differentiating both sides of (23) with respect to
τ yields (

dλ

dτ

)−1

=
(2λ+A1)eλτ −B22ρ̄e

λ(τ−ρ̄) −B21τ −B1(λτ − 1)

λ(B1λ+B21)
.

Denote

σ′(τ+, ρ̄) = Re

(
dλ

dτ

)−1 ∣∣∣∣
τ=τ+

. (56)
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We have the following results.

Theorem 3.7. Assume that (H1) and (H2) hold. Let b0 be defined in (52) and
ρ+

0 be defined in (53). Also let τ+ > 0 and σ′(τ+, ρ̄) be defined by (55) and (56),
respectively.

(i) Let B22 > 0.
(a) If F ′′(0) < 0, then P2 is stable for all ρ ∈ [0, ρ̄] and τ ∈ [0, τ+); If

σ′(τ+, ρ̄) > 0, then model (19) undergoes a Fold-Hopf bifurcation at P2

when ρ = ρ̄ and τ passes through τ+;
(b) If F ′′(0) > 0,

(1) when F ′′(0) >
A2

1

A2|A2| , then there exists ρ∗ > 0 such that P2 is stable

for all ρ ∈ [0, ρ̄) and τ ≥ 0; For any ρ ≥ ρ∗, P2 is stable for all
ρ ∈ [0, ρ̄] and τ ∈ [0, τ+); If σ′(τ+, ρ) > 0, model (19) undergoes a
Fold-Hopf bifurcation at P2 when ρ = ρ̄ and τ passes through τ+;

(2) when F ′′(0) <
A2

1

A2|A2| and A1 ≥ 0, then for any ρ̄ > 0, P2 is stable for

all ρ ∈ [0, ρ̄] and τ ∈ [0, τ+); If σ′(τ+, ρ̄) > 0, model (19) undergoes
a Fold-Hopf bifurcation at P2 when ρ = ρ̄ and τ passes through τ+;
If A1 < 0, then there exist 0 < ρ∗ < ρ∗∗ such that P2 is stable for
all ρ ∈ (ρ∗, ρ∗∗) and τ ≥ 0. For any ρ ∈ (0, ρ∗] and ρ ≥ ρ∗∗, P2

is stable for all ρ ∈ [0, ρ̄] and τ ∈ [0, τ+); If σ′(τ+, ρ) > 0, model
(19) undergoes a Fold-Hopf bifurcation at E when ρ = ρ̄ and τ passes
through τ+.

(ii) Let B22 < 0.
(a) If F ′′(0) < 0, then P2 is stable for all ρ ≥ 0 and τ ≥ 0;
(b) If F ′′(0) > 0,

(1) when F ′′(0) >
A2

1

A2|A2| and b0 < 0, then for any ρ̄ < min{ρ∗, ρ+
0 }, P2

is stable for all ρ ∈ [0, ρ̄] and τ ∈ [0, τ+); If σ′(τ+, ρ̄) > 0, model (19)
undergoes a Fold-Hopf bifurcation at P2 when ρ = ρ̄ and τ passes
through τ+;

(2) when F ′′(0) <
A2

1

A2|A2| and b0 < 0, if A1 > 0, then P2 is stable for all

ρ ∈ [0, ρ̄] and τ ≥ 0.

In order to derive the normal form of Fold-Hopf bifurcation in model (19) under
the above assumptions, let

f1(z, u, v) = a11z + a12u+ a13v +
∑

i+j+k=2,3

a
(1)
ijkz

iujvk +O(|w|4),

f2(z, u, v) = a21z + a22u+ a23v +
∑

i+j+k=2,3

a
(2)
ijkz

iujvk +O(|w|4).

Let X = (u, v)T . Then the linearized system (22) at the equilibrium P2 can be
written as

X ′(t) = AX(t) + B1X(t− τ) + B2X(t− ρ) + F (X(t− τ), X(t− ρ), X(t)), (57)

where

A =

(
a12 a13

a22 a23

)
,B1 =

(
a11 0
0 0

)
,B2 =

(
0 0
a21 0

)
,

F (X(t− τ), X(t− ρ), X(t)) =
∑

i+j+k=2,3

(
a

(1)
ijku

i(t− τ)uj(t)v(t)k

a
(2)
ijku

i(t− ρ)uj(t)v(t)k

)
+O(|X|4).
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Theorem 3.7 implies that if (H1), (H2) and certain conditions hold, then system
(22) undergoes a Fold-Hopf bifurcation at P2 as τ passes through τ+ when ρ = ρ̄.
From (H1), we have

a11 = a∗11 ≡
a13(a22 − a21)− a12a23

a23

provided a23 6= 0 (If a23 = 0, one can assume a21 = a22 provided a13 6= 0). Now we
use a11 and τ as bifurcation parameters to study Fold-Hopf bifurcation of (19). Let

a11 = a∗11 + µ1, τ = τ+ + µ2, Bµ1
=
(
a∗11+µ1 0

0 0

)
.

For simplicity, we still use a11 and τ to denote a∗11 and τ+, respectively. Without
loss of generality, assume that τ > ρ̄ and µ2 < τ+ − ρ̄ since the case τ < ρ̄ can be
treated similarly. Now µ = (µ1, µ2) is the bifurcation parameter of the following
system

X ′(t) = AX(t)+Bµ1X(t−τ−µ2)+B2X(t−ρ)+F (X(t−τ−µ2), X(t−ρ), X(t)), (58)

where Bµ1
=

(
a11 + µ1 0

0 0

)
. System (58) can be written as

Ẋ(t) = L(µ)Xt + F (Xt),

where

L(µ)ϕ =

∫ 0

−τ
dη(θ, µ)ϕ(θ), ∀ϕ ∈ C = C([−τ, 0),C2),

η(θ, ν) = Aδ(θ) + Bµ1
δ(τ + µ2) + B2δ(ρ),

F (Xt) = F (X(t− τ), X(t− ρ), X(t)).

The Taylor expansion of F takes the form

F (ϕ) =
1

2!
F2(ϕ) +

1

3!
F3(ϕ) +O(‖ϕ‖4),

where

1

2!
F2(ϕ) =

∑
i+j+k=2

(
a

(1)
ijkx

i(t− τ)xj(t)yk(t)

a
(2)
ijkx

i(t− ρ)xj(t)yk(t)

)
,

1

3!
F3(ϕ) =

∑
i+j+k=3

(
a

(1)
ijkx

i(t− τ)xj(t)yk(t)

a
(2)
ijkx

i(t− ρ)xj(t)yk(t)

)
.

Take the enlarged space of C
BC = {ϕ : [−τ, 0]→ C2 : ϕ is continuous on [−τ, 0), ∃ lim

θ→0−
ϕ(θ) ∈ C2}.

Then the elements of BC can be expressed as ψ = ϕ+X0ν, ϕ ∈ C, ν ∈ C2 and

X0(θ) =

{
0, −τ ≤ θ < 0,
I, θ = 0,

where I is the identity matrix in C and the norm of BC is |ϕ+X0ν| = |ϕ|∞+|ν|. Let
C1 = C1([−τ, 0),C2). Then the infinitesimal generator Aµ : C1 → BC associated
with L is given by

Aµϕ = ϕ̇+X0[L(µ)ϕ− ϕ̇(0)] =

{
ϕ̇, if − τ ≤ θ < 0,∫ 0

−τ dη(t, µ)ϕ(t), if θ = 0,
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and its adjoint is given by

A∗µψ =

{
−ψ̇, if 0 < s ≤ τ,∫ τ

0
ψ(−t)dη(t, µ), if s = 0,

for ∀ψ ∈ C1∗, where C1∗ = C1((0, τ ],C2∗). Let C′ = C((0, τ ],C2∗) and define a
bilinear inner product between C and C′ by

〈ψ,ϕ〉 = ψ(0)ϕ(0) +

∫ 0

−τ
ψ(ξ + τ)B1ϕ(ξ)dξ +

∫ 0

−ρ
ψ(ξ + ρ)B2ϕ(ξ)dξ.

We know that ±iω and 0 are eigenvalues of A0 and A∗0. Now we compute eigen-
vectors of A0 associated with iω and 0, and eigenvectors of A∗0 associated with −iω
and 0, respectively. Let ϕ1(θ) = (σ, 1)T eiωθ, ϕ2(s) = (α, 1)T be eigenvectors of A0

associated with iω and 0, respectively. Then A0ϕ1(θ) = iωϕ1(θ) and A0ϕ2 = 0. It
follows from the definition of A0 that

(iωI − A− B1e
−iτω − B2e

−iρω)q1(0) = 0, (A + B1 + B2)q2 = 0,

from which we obtain σ = − e
iρω(−a23+iω)
a21+eiρωa22

and α = a13
a11+a12

.

Similarly, we can find eigenvectors ψ1(s) and ψ2(s) of A∗0 associated with −iω
and 0, respectively, as follows

ψ1(s) =
1

D1
(γ, 1)eiωs, ψ2(s) =

1

D2
(β, 1),

where β = −a23a13
, γ = −a23+ωi

a13
with D1 and D2 being constants to be determined

such that
〈
ψ̄1(s), q1(θ)

〉
= 1. In fact,

D1 = γ
(
σ̄ + a11στe

iτω
)

+ a21ρ̄σ̄e
iρω + 1, D2 = αa11βτ + αa21ρ+ αβ + 1.

Let P be spanned by q1, q̄1, q2 and P∗ by p1, p̄1, p2. Then C can be decomposed as

C = P⊕Q where Q = {ϕ ∈ C : 〈ψ,ϕ〉 = 0,∀ψ ∈ P∗}.
Define Q1 = Q ∩ C1. Let Φ(θ) = (ϕ1(θ), ϕ̄1(θ), ϕ2(s)) and Ψ(s) = (ψ̄1(s), ψ1(s),
ψ2(s))T . Then

Φ̇ = ΦJ, Ψ̇ = −JΨ, 〈Ψ,Φ〉 = I, where J = diag(iτω,−iτω, 0).

We can verify that the pairing 〈Ψ,Φ〉 = I is equivalent to the following identities

ψ̄1(0)φ1(0) +
∫ 0

−τ ψ̄1(t+ τ)B1φ1(t)dt+
∫ 0

−ρ ψ̄1(t+ ρ)B2φ1(t)dt = 1,

ψ2(0)φ2(0) +
∫ 0

−τ ψ2(t+ τ)B1φ2(t)dt+
∫ 0

−ρ ψ2(t+ ρ)B2φ2(t)dt = 1,

ψ̄1(0)φ̄1(0) +
∫ 0

−τ ψ̄1(t+ τ)B1φ̄1(t)dt+
∫ 0

−ρ ψ̄1(t+ ρ)B2φ̄1(t)dt = 0,

ψ̄1(0)φ2(0) +
∫ 0

−τ ψ̄1(t+ τ)B1φ2(t)dt+
∫ 0

−ρ ψ̄1(t+ ρ)B2φ2(t)dt = 0,

ψ2(0)φ1(0) +
∫ 0

−τ ψ̄2(t+ τ)B1φ1(t)dt+
∫ 0

−ρ ψ2(t+ ρ)B2φ1(t)dt = 0,

ψ2(0)φ̄1(0) +
∫ 0

−τ ψ̄2(t+ τ)B1φ̄1(t)dt+
∫ 0

−ρ ψ2(t+ ρ)B2φ̄1(t)dt = 0,

respectively.
Define the projection π : BC → P by

π(ϕ+X0µ) = Φ[(Ψ, ϕ) + Ψ(0)µ].

Write X = Φx+ y, namely

u1(θ) = σeiωθx1 + σ̄e−iωθx2 + αx3 + y1(θ), u2(θ) = eiωθx1 + e−iωθx2 + x3 + y2(θ).
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Then (58) can be decomposed as

ẋ = Jx+ Ψ(0)F (Φx+ y, µ),

ẏ = AQ1y + (I − π)X0F (Φx+ y, µ),

which can be further rewritten as

ẋ = Jx+ 1
2f

1
2 (x, y, µ) + 1

3!f
1
3 (x, y, µ) +O(|µ|(|x|2 + |y|2) + |µ|2(|x|+ |y|)),

ẏ = AQ1y + 1
2f

2
2 (x, y, µ) + 1

3!f
2
3 (x, y, µ) +O(|µ|(|x|2 + |y|2) + |µ|2(|x|+ |y|)), (59)

where

f1
2 (x, y, µ) = Ψ(0)[(L(µ)− L(0))(Φx+ y) + F2(Φx+ y, µ)],

f2
2 (x, y, µ) = (I − π)X0[(L(µ)− L(0))(Φx+ y) + F2(Φx+ y, µ)],

f1
j (x, y, µ) = Ψ(0)Fj(Φx+ y, µ),

f2
j (x, y, µ) = (I − π)X0Fj(Φx+ y, µ), j = 3, 4, · · · .

By the normal form theory of Faria and Magalhães [49, 50], on the center manifold
system (59) can be transformed into the following normal form

ẋ = Jx+
1

2
g1

2(x, 0, µ) +
1

3!
g1

3(x, 0, µ) +O(|µ||x|2 + |µ|2|x|), (60)

where g1
j (x, 0, µ) are homogeneous polynomials of degree j in (x, µ). Let Y be a

normed space and j, p ∈ N. Let

V pj (Y ) =

{ ∑
|q|=j

cqx
q : q ∈ Nq0, cq ∈ Y

}
with norm |

∑
|q|=j cqx

q| =
∑
|q|=j |cq|Y . Define Mj to be the operator in V 5

j (C2 ×
kerπ) with the range in the same space by

Mj(p, h) = (M1
j p,M

2
j h),

where

M1
j p = [J, p(·, µ)](x) = Dxp(x, µ)Jx− Jp(x, µ) = iω

x1
∂p1
∂x1
− x2

∂p1
∂x2
− p1

x1
∂p2
∂x1
− x2

∂p2
∂x2

+ p2

x1
∂p3
∂x1
− x2

∂p3
∂x2

 ,

M2
j h = M2

j h(x, µ) = Dxh(x, µ)−AQ1h(x, µ),

with p(x, µ) ∈ V 5
j (C), h(x, µ) ∈ V 5

j (kerπ). One can check that

V 5
j (C3) = Im(M1

j )⊕Ker(M1
j )

and

Ker(M1
j ) = {µpxqek : (q, λ̄) = λk, k = 1, 2, 3, q ∈ N3

0, |(p, q)| = j},
where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T are the base of C3. By the above
decompositions, g1

2(x, 0, µ) and g1
3(x, 0, µ) can be expressed as

g1
2(x, 0, µ) = Projker(M1

2 )f
1
2 (x, 0, µ) = ProjS1

f1
2 (x, 0, µ) +O(|µ|2),

g1
3(x, 0, µ) = Projker(M1

3 )f̃
1
3 (x, 0, µ) = ProjS2

f̃1
3 (x, 0, 0) +O(|µ|2|x|),

where

f̃1
3 (x, 0, µ) = f1

3 (x, 0, µ) +
3

2
[(Dxf

1
2 )(x, 0, µ)U1

2 (x, µ) + (Dyf
1
2 )(x, 0, µ)U2

2 (x, µ)].
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Here U1
2 and U2

2 are determined by

U1
2 (x, µ) = (M1

2 )−1ProjIm(M1
2 )f

1
2 (x, 0, µ) = (M1

2 )−1f1
2 (x, 0, µ),

(M2
2U

2
2 )(x, µ) = f2

2 (x, 0, µ),

and S1 and S2 are spanned, respectively, by (see [122] for details)

µix1e1, x1x3e1, µix2e2, x2x3e2, x1x2e3, µix3e3, x2
3e3, i = 1, 2,

and

x2
1x2e1, x1x

2
3e1, x1x

2
2e2, x2x

2
3e2, x1x2x3e3, x3

3e3.

For simplicity, write

1

2!
F2(Φx+ y, µ) =

∑
i+j+k=2

(
A

(1)
ijk

A
(2)
ijk

)
xi1x

j
2x
k
3

+

3∑
j=1

2∑
k=1

(B(1)
jk

B
(2)
jk

)
xjyk(0) +

(
C

(1)
jk

0

)
xjyk(−τ) +

(
0

C
(2)
jk

)
xjyk(−ρ)


+

2∑
j=1

[(
D

(1)
j

D
(2)
j

)
y2
j (0) +

(
E

(1)
j

0

)
y2
j (−τ) +

(
0

E
(2)
j

)
y2
j (−ρ)

]

+

2∑
j=1

2∑
k=1

[(
F

(1)
jk

0

)
yj(0)yk(−τ) +

(
0

F
(2)
jk

)
yj(0)yk(−ρ)

]
and

1

3!
F3(Φx, 0) =

∑
i+j+k=3

(
A

(1)
ijk

A
(2)
ijk

)
xi1x

j
2x
k
3 .

Let

Ψ(0) =

ψ̄11 ψ̄12

ψ11 ψ12

ψ21 ψ22

 .

Then we have
1

2
g1

2(x, 0, µ) =
1

2
ProjS1

f1
2 (x, 0, µ)

=
1

2
ProjS1

Ψ(0)F2(Φx, µ) + h.o.t.

=

 θ1x1 + α
(1)
101x1x3

θ̄1x2 + ᾱ
(1)
101x2x3

θ2x3 + α
(2)
110x1x2 + α

(2)
002x

2
3

+ h.o.t.

where

θ1 = e−iτωσγ̄
D̄1

µ1 − ieiτωσωγ̄a11
D̄1

µ2, θ2 = αβµ1

D2
,

α
(1)
101 = ψ̄11A

(1)
101 + ψ̄12A

(2)
101, α

(2)
110 = ψ21A

(1)
110 + ψ22A

(2)
110,

α
(2)
002 = ψ21A

(1)
002 + ψ22A

(2)
002.

Next we compute g1
3(x, 0, µ). Note that

1

6
g1

3(x, 0, µ) =
1

6
Projker(M1

2 )f̃
1
3 (x, 0, µ)
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=
1

6
ProjS2

f̃1
3 (x, 0, 0) +O(|x||µ|2 + |x|2|µ|),

=
1

6
ProjS2

f1
3 (x, 0, 0) +

1

4
ProjS2

[(Dxf
1
2 )(x, 0, 0)U1

2 (x, 0)

+(Dyf
1
2 )(x, 0, 0)U2

2 (x, 0)] +O(|µ|2|x|+ |µ||x|2).

First we have

1

3!
ProjS2

f1
3 (x, 0, 0) =

1

3!
ProjS2

Ψ(0)F3(Φx, 0) + h.o.t.

=

α
(1)
210x

2
1x2 + α

(1)
102x1x

2
3

ᾱ
(1)
210x1x

2
2 + ᾱ

(1)
102x2x

2
3

α
(2)
111x1x2x3 + α

(2)
003x

3
3

+ h.o.t.

where

α
(1)
210 = ψ̄11F

(1)
210 + ψ̄12F

(2)
210, α

(1)
102 = ψ̄11F

(1)
102 + ψ̄12F

(2)
102,

α
(2)
111 = ψ21F

(1)
111 + ψ22F

(2)
111, α

(2)
003 = ψ21F

(1)
003 + ψ22F

(2)
003.

Since f2(x, 0, 0) = Ψ(0)F2(Φx, 0), we have

U1
2 (x, 0) = U1

2 (x, µ)|µ=0 = (M1
2 )−1ProjIm(M1

2 )f
1
2 (x, 0, 0)

= 2(M1
2 )−1ProjIm(M1

2 )

2∑
j=1

[(
ψ̄1jA

(j)
200

ψ1jA
(j)
200

ψ2jA
(j)
200

)
x2

1 +

(
ψ̄1jA

(j)
020

ψ1jA
(j)
020

ψ2jA
(j)
020

)
x2

2 + 2

(
ψ̄1jA

(j)
002

ψ1jA
(j)
002

ψ2jA
(j)
002

)
x2

3

+

(
ψ̄1jA

(j)
110

ψ1jA
(j)
110

ψ2jA
(j)
110

)
x1x2 +

(
ψ̄1jA

(j)
101

ψ1jA
(j)
101

ψ2jA
(j)
101

)
x1x3 +

(
ψ̄1jA

(j)
011

ψ1jA
(j)
011

ψ2jA
(j)
011

)
x2x3

]

=
1

3iω

2∑
j=1

[(
6ψ̄1jA

(j)
200

2ψ1jA
(j)
200

3ψ2jA
(j)
200

)
x2

1 +

(
−2ψ̄1jA

(j)
020

−6ψ1jA
(j)
020

−3ψ2jA
(j)
020

)
x2

2 +

(
−6ψ̄1jA

(j)
002

6ψ1jA
(j)
002

0

)
x2

3

+

(
−6ψ̄1jA

(j)
110

6ψ1jA
(j)
110

0

)
x1x2 +

(
0

3ψ1jA
(j)
101

6ψ2jA
(j)
101

)
x1x3 +

(
−3ψ̄1jA

(j)
011

0

−6ψ2jA
(j)
011

)
x2x3

]
.

We also have

1

4
ProjS2

[(Dxf
1
2 (x, 0, 0))U1

2 (x, 0)] =

β
(1)
210x

2
1x2 + β

(1)
102x1x

2
3

β̄
(1)
210x1x

2
2 + β̄

(1)
012x2x

2
3

β
(2)
111x1x2x3 + β

(2)
003x

3
3

+ h.o.t.

where

β
(1)
210 =− i

12ω
[12(ψ11A

(1)
110 + ψ12A

(2)
110)(ψ̄11A

(1)
110 + ψ̄12A

(2)
110) + 12(ψ̄11A

(1)
200

+ ψ̄12A
(2)
200)× (ψ̄11A

(1)
110 + ψ̄12A

(2)
110)− 12(2ψ̄11A

(1)
200

+ 2ψ̄12A
(2)
200)(ψ̄11A

(1)
110 + ψ̄12A

(2)
110) + 4(ψ11A

(1)
200 + ψ12A

(2)
200)

(2ψ̄11A
(1)
020 + 2ψ̄12A

(2)
020) + 6(ψ21A

(1)
200 + ψ22A

(2)
200)(ψ̄11A

(1)
011 + ψ̄12A

(2)
011)],

β
(1)
102 =− i

12ω
[6(ψ11A

(1)
101 + ψ12A

(2)
101)(ψ̄11A

(1)
011 + ψ̄12A

(2)
011) + 12(ψ21A

(1)
101 + ψ22A

(2)
101)

× (2ψ̄11A
(1)
002 + 2ψ̄12A

(2)
002) + 12(ψ11A

(1)
002 + ψ12A

(2)
002)(ψ̄11A

(1)
110 + ψ̄12A

(2)
110)

− 12(ψ̄11A
(1)
002 + ψ̄12A

(2)
002)(2ψ̄11A

(1)
200 + 2ψ̄12A

(2)
200)],
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β
(2)
111 =− i

6ω
[−6(ψ21A

(1)
101 + ψ22A

(2)
101)(ψ̄11A

(1)
110 + ψ̄12A

(2)
110)− 6(ψ21A

(1)
200 + ψ22A

(2)
200)

× (ψ̄11A
(1)
011 + ψ̄12A

(2)
011) + 6(ψ21A

(1)
020 + ψ22A

(2)
020)(ψ11A

(1)
101 + ψ12A

(2)
101)

+ 6(ψ21A
(1)
011 + ψ22A

(2)
011)(ψ11A

(1)
110 + ψ12A

(2)
110)],

β
(2)
003 =− i

36ω
[36(ψ11A

(1)
002 + ψ12A

(2)
002)(ψ21A

(1)
011 + ψ22A

(2)
011)− 36(ψ21A

(1)
101

+ ψ22A
(2)
101)(ψ̄11A

(1)
002 + ψ̄12A

(2)
002)].

Finally we compute the last term of the third order. This is the most difficult
part since its computation involves solving linear systems with singular coefficient
matrices. Define h = h(x)(θ) = U2

2 (x, 0) and write

h(θ) =

(
h(1)(θ)
h(2)(θ)

)
= h200x

2
1 + h020x

2
2 + h002x

2
3 + h110x1x2 + h101x1x3 + h011x2x3,

where h200, h020, h002, h110, h101, h011 ∈ Q1. The coefficients of h are determined by
(M2

2h)(x) = f2
2 (x, 0, 0), which is equivalent to

DxhJx−AQ1(h) = (I − π)X0F2(Φx, 0).

Applying the definitions of AQ1 and π, we obtain

ḣ−DxhJx = Φ(θ)Ψ(0)F2(Φx, 0), ḣ(0)− Lh = F2(Φx, 0),

where ḣ denotes the derivative of h(θ) in θ. Comparing the coefficients of x2
1, x

2
2, x

2
3,

x1x2, x1x3, x2x3, we have that h̄020 = h200, h̄011 = h101 and that h200, h101, h110, h002

satisfy the following differential equations, respectively,{
ḣ200 − 2iωh200 = 2Φ(θ)Ψ(0)A200,

ḣ200(0)− L(h200) = 2A200,
(61){

ḣ101 − iωh101 = 2Φ(θ)Ψ(0)A101,

ḣ101(0)− L(h101) = 2A101,
(62){

ḣ110 = 2Φ(θ)Ψ(0)A110,

ḣ110(0)− L(h110) = 2A110,
(63){

ḣ002 = 2Φ(θ)Ψ(0)A002,

ḣ002(0)− L(h002) = 2A002,
(64)

where Aijk =
(A(1)

ijk

A
(2)
ijk

)
. Thus, we have

1

4
ProjS2

Dyf
1
2 |y=0,µ=0U

2
2 =

γ
(1)
210x

2
1x2 + γ

(1)
102x1x

2
3

γ̄
(1)
210x1x

2
2 + γ̄

(1)
102x2x

2
3

γ
(2)
111x1x2x3 + γ

(2)
003x

3
3


where

γ
(1)
210 =ψ̄11(h

(1)
110(0)B

(1)
11 + h

(1)
200(0)B

(1)
21 + h

(2)
110(0)B

(1)
12 + h

(2)
200(0)B

(1)
22 + C

(1)
11 h

(1)
110(−τ)

+ C
(1)
21 h

(1)
200(−τ) + C

(1)
12 h

(2)
110(−τ) + C

(1)
22 h

(2)
200(−τ) + C

(2)
11 h

(1)
110(−ρ)

+ C
(2)
21 h

(1)
200(−ρ) + C

(2)
12 h

(2)
110(−ρ) + C

(2)
22 h

(2)
200(−ρ)) + ψ̄12(h

(1)
110(0)B

(2)
11

+ h
(1)
200(0)B

(2)
21 + h

(2)
110(0)B

(2)
12 + h

(2)
200(0)B

(2)
22 ),
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γ
(1)
102 =ψ̄11(h

(1)
002(0)B

(1)
11 + h

(1)
101(0)B

(1)
31 + h

(2)
002(0)B

(1)
12 + h

(2)
101(0)B

(1)
32 + C

(1)
11 h

(1)
002(−τ)

+ C
(1)
31 h

(1)
101(−τ) + C

(1)
12 h

(2)
002(−τ) + C

(1)
32 h

(2)
101(−τ) + C

(2)
11 h

(1)
002(−ρ)

+ C
(2)
31 h

(1)
101(−ρ) + C

(2)
12 h

(2)
002(−ρ) + C

(2)
32 h

(2)
101(−ρ)) + ψ̄12(h

(1)
002(0)B

(2)
11

+ h
(1)
101(0)B

(2)
31 + h

(2)
002(0)B

(2)
12 + h

(2)
101(0)B

(2)
32 ),

γ
(2)
111 =ψ21(h

(1)
011(0)B

(1)
11 + h

(1)
101(0)B

(1)
21 + h

(1)
110(0)B

(1)
31 + h

(2)
011(0)B

(1)
12 + h

(2)
101(0)B

(1)
22

+ h
(2)
110(0)B

(1)
32 + C

(1)
11 h

(1)
011(−τ) + C

(1)
21 h

(1)
101(−τ) + C

(1)
31 h

(1)
110(−τ)

+ C
(1)
12 h

(2)
011(−τ) + C

(1)
22 h

(2)
101(−τ) + C

(1)
32 h

(2)
110(−τ) + h

(2)
101(0)B

(2)
2,2

+ C
(2)
11 h

(1)
011(−ρ) + C

(2)
21 h

(1)
101(−ρ) + C

(2)
31 h

(1)
110(−ρ) + C

(2)
12 h

(2)
011(−ρ)

+ C
(2)
22 h2101(−ρ) + C

(2)
32 h

(2)
110(−ρ)) + ψ22(h

(1)
011(0)B

(2)
11

+ h
(1)
101(0)B

(2)
21 + h

(1)
110(0)B

(2)
31 + h

(2)
011(0)B

(2)
12 + h

(2)
101(0)B

(2)
22 + h

(2)
110(0)B

(2)
32 ),

γ
(2)
003 =ψ21(h

(1)
002(0)B

(1)
31 + h

(2)
002(0)B

(1)
32 + C

(1)
31 h

(1)
002(−τ) + C

(1)
32 h

(2)
002(−τ)

+ C
(2)
31 h

(1)
002(−ρ) + C

(2)
32 h

(2)
002(−ρ)) + ψ22(h

(1)
002(0)B

(2)
31 + h

(2)
002(0)B

(2)
32 ).

To compute hijk, we recall the following result.

Lemma 3.8 (Kuznetsov [75]). For a linear system Mw = v where M is a singular
n× n matrix, there is a unique solution for the following bordered system(

M q
p 0

)(
w

u

)
=

(
v

0

)
where p, q satisfy the following conditions

Mq = 0, pM = 0, (p, q) = 1, (p, v) = 0

where (·, ·) is defined by

(x, y) =

n∑
j=1

xjyj , x = (x1, · · · , xn), y = (y1, · · · , yn)T .

Write the unique solution as w = M INV v.

Using Lemma 3.8, we can compute the rest of h101(θ), h110(θ) and h002(θ) and
obtain that (see Wu and Wang [123])

h200(θ) =2e2iωθ

∫ θ

0

e−2iωtΦ(t)Ψ(0)A200dt+ c200e
2iωθ,

h101(θ) =2eiωθ
∫ θ

0

e−iωtΦ(t)Ψ(0)A101dt+ c101e
iωθ,

h110(θ) =2

∫ θ

0

Φ(t)Ψ(0)A110dt

+ (L(1))INV
[
(Φ(0)Ψ(0)− I)A110 + B1

∫ 0

−1

Φ(t)Ψ(0)A110dt

]
,



TUMOR-IMMUNE SYSTEM INTERACTION MODELS WITH DELAYS 573

h002(θ) =2

∫ θ

0

Φ(t)Ψ(0)A002dt

+ (L(1))INV
[
(Φ(0)Ψ(0)− I)A002 + B1

∫ 0

−1

Φ(t)Ψ(0)A002dt

]
,

where

c200 =2(2iωI − L(e2iωθ))−1 [(I − Φ(0)Ψ(0))A200

+ B1

∫ 0

−τ
e−2iω(t+τ)Φ(t)Ψ(0)A200dt

+B2

∫ 0

−ρ
e−2iω(t+ρ)Φ(t)Ψ(0)A200dt

]
,

c101 =2(L(1))INV [(Φ(0)Ψ(0)− I)A110

+B1

∫ 0

−τ
Φ(t)Ψ(0)A110dt+ 2B2

∫ 0

−ρ
Φ(t)Ψ(0)dt

]
.

Putting these results together, we have

1

6
g1

3(x, 0, µ) =

(α1
210 + β1

210 + γ1
210)x2

1x2 + (α1
102 + β1

102 + γ1
102)x1x

2
3

(ᾱ1
210 + β̄1

210 + γ̄1
210)x1x

2
2 + (ᾱ1

102 + β̄1
102 + γ̄1

102)x2x
2
3

(α2
111 + β2

111 + γ2
111)x1x2x3 + (α2

003 + β2
003 + γ2

003)x3
3


+O(|µ|2|x|+ |µ||x|2).

So we can express system (60) as the following truncated normal form

ẋ1 = θ1x1 + α1
101x1x3 + (α1

210 + β1
210 + γ1

210)x2
1x2

+(α1
102β

1
102 + γ1

102)x1x
2
3,

ẋ2 = θ̄1x2 + ᾱ1
101x2x3 + (ᾱ1

210 + β̄1
210 + γ̄1

210)x1x
2
2

+(ᾱ1
102 + β̄1

102 + γ̄1
102)x2x

2
3,

ẋ3 = θ2x3 + α2
110x1x2 + α2

002x
2
3 + (α2

111 + β2
111 + γ2

111)x1x2x3

+(α2
003 + β2

003 + γ2
003)x3

3

(65)

after truncating higher order terms. Since x1 = x̄2, through the change of variables
x1 = w1− iw2, x2 = w1 + iw2, x3 = w3, and then a change to cylindrical coordinates
according to w1 = r cos ξ, w2 = r sin ξ, w3 = ζ, system (65) becomes

ṙ = α1(µ)r + β11rζ + β30r
3 + β12rζ

2 + h.o.t.,

ζ̇ = α2(µ)ζ + γ20r
2 + γ02ζ

2 + γ21r
2ζ + γ03ζ

3 + h.o.t.,

ξ̇ = −ω + Im[θ1]ζ + h.o.t.,

where

α1(µ) = Re[θ1], β11 = Re[α1
110], β30 = Re[α1

210 + β1
210 + γ1

210],

β12 = Re[α1
102 + β1

102 + γ1
102], α2(µ) = θ2, γ20 = α2

110, γ02 = α2
002

γ21 = α2
111 + β2

111 + γ2
111, γ03 = α2

003 + β2
003 + γ2

003,

Since the third equation describes a rotation around the ζ-axis, it is irrelevant and
omitted. Hence, we obtain an amplitude system in the (r, ζ)-plane up to the third
order {

ṙ = α1r + β11rζ + β30r
3 + β12rζ

2 + h.o.t.,

ζ̇ = α2ζ + γ20r
2 + γ02ζ

2 + γ21r
2ζ + γ03ζ

3 + h.o.t..
(66)

Therefore, we have the following result.
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Theorem 3.9. Under the assumptions (H1), (H2), and the conditions for Fold-
Hopf bifurcation given in Theorem 3.7, model (19) near the equilibrium P2 is locally
topologically equivalent to system (66) near the origin.

3.2.6. Hopf-Hopf Bifurcation. In the following, we consider Hopf-Hopf bifurca-
tion in the tumor-immune system interaction model (19). Note that the eigenvalues
±iωj , j = 1, 2, of (24) are simple. On the other hand, we know that A(a) has simple
eigenvalues λ1(a) and λ2(a) with λi(0) = iωj , j = 1, 2. We also know A(a) has two
eigenvectors p1(a, θ) and p2(a, θ) corresponding to the eigenvalues λ1(a) and λ2(a)
and the adjoint eigenvectors qj(a, θ), j = 1, 2, corresponding to the eigenvalues

λ̄j(a). Suppose pj(θ)
∆
= pj(0, θ), qj(θ)

∆
= qj(0, θ), j = 1, 2, are the eigenvectors of

A(0) and A∗(0), respectively, then

pj(θ) = (1, γj)
T eiωjτkθ, qj(ξ) = Dj(1, βj)

T eiωjτkξ,

where γj = a21e
−iωjτk+a22
iωj−a23 , βj = a23

iωj+a23
and

Dj = (1 + γjβj + τk(a21βj + a11)eiωjτk)−1. (67)

Define zj = 〈qj , X〉, j = 1, 2, W (t, θ) = Xt(θ) − 2Re{z1(t)q1(θ) + z2(t)q2(θ)},
where z = (z1, z2) ∈ Ca, zj and z̄j are the local coordinates for Ca in the direction
of qj and q̄j , j = 1, 2. If Xt ∈ Ca is a solution of (34), then on the center manifold
Ca, one has the normal form

z′ = Λz(t) + g(z, a), (68)

where Λ = diag(iω1τk, iω2τk),

g(z, a) = (g1(z, a), g2(z, a))T = (
∑

i+j+k+l≥2

1

i!j!l!k!
g1
ijkl,

∑
i+j+k+l≥2

1

i!j!l!k!
g2
ijkl)

T .

(69)
In order to derive the concrete expressions for gijkl, i+ j+ k+ l ≥ 2. We will use

the normal form and the center manifold theory in Hassard et al. [63] and derive
the explicit formulae determining these properties at the critical value of a = 0.
From last section, we know that at a = 0,

zj(t) = < q∗, x′t >= iωjzj(t) + q∗j
TR(W + 2Re{z1q1 + z2q2})

∆
= iωjzj(t) + g(z1, z1, z2, z2), j = 1, 2,

where g(z1, z1, z2, z2) = (g1(z, a), g2(z, a))T , z = (z1, z2)T . Thus,

gj(z, a) = q∗j
TR0(W + 2Re{z1q1 + z2q2}), (70)

where R0(z1, z2) = R(0, z1, z2). Noting xt = (x1t(θ), x2t(θ)) = W (t, θ) + z1q(θ) +

z1q(θ) + z2q(θ) + z2q(θ) and qj(θ) = (1, βj)
T eiωθ, comparing the coefficients of (70)

and (69), gijkl can be obtained as follows:

g1
2000 = τkD[d11 + d12β1 + d13β

2
1 + x2ν

′′(x2)
2 e−2iω1τk + ν′(x2)e−iω1τk ],

g1
0200 = τkD[d11 + d12β1 + d13β2

1 + x2ν
′′(x2)
2 e2iω1τk + ν′(x2)eiω1τk ],

g1
0020 = τkD[d11 + d12β2 + d13β

2
2 + x2ν

′′(x2)
2 e−2iω2τk + ν′(x2)e−iω2τk ],
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g1
0002 = τkD[d11 + d12β2 + d13β2

2 + x2ν
′′(x2)
2 e2iω2τk + ν′(x2)eiω2τk ],

g1
1100 = τkD[2d11 + d12(β1 + β1) + 2d13β1β1 + x2ν

′′(x2)
+ν′(x2)(eiω1τk + e−iω1τk)],

g1
1010 = τkD[2d11 + d12(β2 + β1) + 2d13β1β2 + x2ν

′′(x2)e−i(ω1+ω2)τk

+ν′(x2)(e−iω2τk + e−iω1τk)],

g1
1001 = τkD[2d11 + d12(β2 + β1) + 2d13β1β2 + x2ν

′′(x2)ei(ω2−ω1)τk

+ν′(x2)(eiω2τk + e−iω1τk)],

g1
0110 = τkD[2d11 + d12(β1 + β2) + 2d13β2β1 + x2ν

′′(x2)ei(ω1−ω2)τk

+ν′(x2)(e−iω2τk + eiω1τk)],

g1
0101 = τkD[2d11 + d12(β1 + β2) + 2d13β2β1 + x2ν

′′(x2)ei(ω1+ω2)τk

+ν′(x2)(eiω2τk + eiω1τk)],

g1
0011 = τkD[2d11 + d12(β2 + β2) + 2d13β2β2 + x2ν

′′(x2)
+ν′(x2)(e−iω2τk + eiω2τk)],

g1
2100 = τkD[d11(W

(1)
2000 + 2W

(1)
1100) + d12( 1

2W
(1)
2000β1 + 1

2W
(2)
2000 +W

(1)
1100β1

+W
(2)
1100) + d13(β1W

(2)
2000 + 2β1W

(1)
1100)

+x2ν
′′(x2)
2 (W

(1)
2000(−1)eiω1τk + 2W

(1)
1100e

−iω1τk)

+ν′(x2)( 1
2W

(1)
2000e

iω1τk + 1
2W

(1)
2000(−1) +W

(1)
1100(−1) +W

(1)
1100e

−iω1τk)

+3e11 + e12(β1 + 2β1) + e13(2β1β1 + β2
1) + 3e14β1β

2
1

+x2ν
(3)(x2)
2 e−iω1τk + ν′′(x2)

2 (e−2iω1τk + 2)],

g1
1011 = τkD[2d11(W

(1)
0011 +W

(1)
1010 +W

(1)
1001) + 2d13(β1W

(2)
0011 + β2W

(2)
1010

+β2W
(2)
1001) + d12(W

(2)
0011 +W

(2)
1010 +W

(2)
1001 + β2W

(1)
1001+

β1W
(1)
0011 + β2W

(1)
1010) + x2ν

′′(x2)(W
(1)
0011(−1)e−iω1τk+

W
(1)
1010(−1)eiω2τk +W

(1)
1001(−1)e−iω2τk)

+ν′(x2)(W
(1)
0011e

−iω1τk +W
(1)
1010e

iω2τk +W
(1)
1001e

−iω2τk +W
(1)
0011(−1)

+W
(1)
1010(−1) +W

(1)
1001(−1)) + 6e11 + 2e12(β1 + β2 + β2) + 6e14β2β1β2

+2e13(β2β1 + β1β2 + β2β2) + x2ν
(3)(x2)e−iω1τk

+ν′′(x2)(1 + e−i(ω1+ω2)τk + ei(ω2−ω1)τk)],

g2
2000 = τkD[d21 + d22β1 + y2β

′′(x2)
2 e−2iω1τk + β′(x2)β1e

−iω1τk ],

g2
0200 = τkD[d21 + d22β1 + y2β

′′(x2)
2 e2iω1τk + β′(x2)β1e

iω1τk ],

g2
0020 = τkD[d21 + d22β2 + y2β

′′(x2)
2 e−2iω2τk + β′(x2)β2e

−iω2τk ],

g2
0002 = τkD[d21 + d22β2 + y2β

′′(x2)
2 e2iω2τk + β′(x2)β2e

iω2τk ],

g2
1100 = τkD[2d21 + d22(β1 + β1) + y2β

′′(x2) + β′(x2)(β1e
iω1τk + β1e

−iω1τk)],
g2

1010 = τkD[2d21 + d22(β2 + β1) + y2β
′′(x2)e−i(ω1+ω2)τk

+β′(x2)(β1e
−iω2τk + β2e

−iω1τk)],

g2
1001 = τkD[2d21 + d22(β2 + β1) + y2β

′′(x2)ei(ω2−ω1)τk

+β′(x2)(β1e
iω2τk + β2e

−iω1τk)],

g2
0110 = τkD[2d21 + d22(β1 + β2) + y2β

′′(x2)ei(ω1−ω2)τk

+β′(x2)(β1e
−iω2τk + β2e

iω1τk)],

g2
0101 = τkD[2d21 + d22(β1 + β2) + y2β

′′(x2)ei(ω1+ω2)τk

+β′(x2)(β1e
iω2τk + β2e

iω1τk)],

g2
0011 = τkD[2d21 + d22(β2 + β2) + y2β

′′(x2) + β′(x2)(β2e
iω2τk + β2e

−iω2τk)],
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g2
0021 = τkD[d21(W

(1)
0020 + 2W

(1)
0011) + d22( 1

2W
(1)
0020β2 + 1

2W
(2)
0020 +W

(1)
0011β2

+W
(2)
0011) + y2β

′′(x2)
2 (W

(1)
0020(−1)eiω2τk + 2W

(1)
0011(−1)e−iω2τk)

+β′(x2)( 1
2W

(2)
0020e

iω2τk + 1
2β2W

(1)
0020(−1) + β2W

(1)
0011(−1)

+W
(2)
0011e

−iω2τk) + 3e21 + e22(β2 + 2β2) + y2β
(3)(x2)
2 e−iω2τk

+β′′(x2)
2 (β2e

−2iω2τk + 2β2)],

g2
1110 = τkD[2d21(W

(1)
1100 +W

(1)
1010 +W

(1)
0110)

+d22(β2W
(1)
1100 + β1W

(1)
0110 + β1W

(1)
1010 +W

(2)
1100 +W

(2)
0110 +W

(2)
1010)

+β′(x2)(W
(2)
1100e

−iω2τk +W
(2)
1010e

iω1τk +W
(2)
0110e

−iω1τk + β2W
(1)
1100(−1)

+β1W
(1)
1010(−1) + β1W

(1)
0110)

+y2β
′′(x2)(W

(1)
1100(−1)e−iω2τk +W

(1)
1010(−1)eiω1τk +W

(1)
0110(−1)e−iω1τk)

+6e21 + 2e22(β1 + β1 + β2) + y2β
(3)(x2)e−iω2τk

+β′′(x2)(β2 + β1e
−i(ω1+ω2)τk + β1e

i(ω1−ω2)τk)],

where dij and eij are defined in (38). Since W2000, W0020, W1100, W1010, W1001,
W0110, W0101 and W0011 appear in gijkl, i+ j + k+ l = 3, we still need to compute
them. We can see that

W ′ = X ′t − z′1q1 − z′1q1 − z′2q2 − z′2q2

=

A0W − 2Re{q∗T1 (0)R0q1} − 2Re{q∗T2 (0)R0q2}, θ ∈ [−τ, 0)
A0W − 2Re{q∗T1 (0)R0q1} − 2Re{q∗T2 (0)R0q2}

+R0(z1, z1, z2, z2), θ = 0
∆
= A0W +H(z1, z1, z2, z2, θ),

(71)

where

H(z1, z1, z2, z2, θ) =
∑

i+j+k+l≥2

1

i!j!k!l!
Hijklz

i
1z1

jzk2z2
l.

On the other hand, we have W ′ = Wz1z
′
1 +Wz2z

′
2 +Wz′1

z′1 +Wz2z
′
2, then

(A0 − 2iω1τk)W2000(θ) = −H2000(θ),
(A0 − 2iω2)W0020(θ) = −H0020(θ)
A0W1100(θ) = −H1100(θ),
A0W0011(θ) = −H0011(θ)

(72)

and

(A0 − iω1τk − iω2τk)W1010(θ) = −H1010(θ),
(A0 − iω1τk + iω2τk)W1001(θ) = −H1001(θ),
(A0 + iω1τk − iω2τk)W1010(θ) = −H0110(θ),
(A0 + iω1τk + iω2τk)W1001(θ) = −H0101(θ).

From (71), it is easy to see that

H(z1, z1, z2, z2, θ) =− 2Re{q∗T1 (0)R0q1} − 2Re{q∗T2 (0)R0q2}

=− g1(z, z)q1(θ)− g1(z, z)q1(θ)

− g2(z, z)q2(θ)− g2(z, z)q2(θ).

(73)

From the definition of A0, (72) and (73), it follows that

W ′2000 = 2iω1W2000 − g1
2000q1(θ)− g1

0200q1(θ)− g2
0020q2(θ)− g2

0002q2(θ),
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Noting the definition of q(θ), we have

W2000(θ) =
ig1

2000q1(0)

ω1τk
eiω1θτk +

ig1
0200q1(0)

3ω1τk
e−iω1θτk

− ig2
0020q2(0)

(ω2 − 2ω1)τk
eiω2θτk +

ig1
0002q2(0)

(ω2 + 2ω1)τk
e−iω2θτk +Ke2iω1θτk ,

(74)

where K = (K(1),K(2)) ∈ R3 is a constant vector, which still need to be obtained.
The definition of A0 and (73) yield∫ 0

1

dη(θ)W2000(0) = 2iω1W2000(θ)−H2000(0). (75)

From (71), it is easy to obtain H2000(0) as follows

H2000(0) = −g1
2000q1(0)− g1

0200q1(0)− g2
2000q2(0)− g2

0200q2(0) +R0. (76)

Submitting (73) and (76) into (75) and noting ±iω1, ±iω2 are characteristic roots
of (24) but 2iω1 is not, we obtain

K =

(
2ω1i+ a12 + a11e

−2iω1θ, a13

−a22 − a21e
−2iω1θ, 2ω1i− a23

)−1

R0. (77)

From (73), we know that W2000 is obtained. Similarly, we can obtain other Wijkl,
that is, all gijkl are obtained.

Similar to the computation of Hopf bifurcation, we can obtain

g(z, a) =

(
C10(a)z1 + C11(a)|z1|2z1 + C12(a)|z2|2z1 +O(|z|5)
C20(a)z2 + C21(a)|z2|2z2 + C22(a)|z1|2z2 +O(|z|5)

)
where

C10(a) =aλ′1(a),

C20(a) =aλ′2(a),

C11(a) =
1

2
g1

2100 +
i

2ω1
g1

1100g
1
2000 +

i

ω2
(g1

1010g
2
1100 − g1

1001g
2
1100)−

i

4ω1 + 2ω2
g1

0101g
2
0200 −

i

4ω1 − 2ω2
g1

0110g
2
2000 −

i

ω1
|g1

1100|2 −
i

6ω1
|g1

0200|2,

C12(a) =g1
1011 +

i

ω2
(g1

1010g
2
0011 − g1

1001g
2
0011)− i

ω1 + 2ω2
g1

0002g
2
0101

− i

ω1 − 2ω2
g1

0020g
2
1001 +

i

ω1
(g1

2000g
1
0011 − g1

1100g
1
0011

− g1
0011g

2
0110 − g1

0011g
1
1010)− i

2ω1 − ω2
|g1

0110|2 −
i

2ω1 + ω2
|g1

0101|2,

C21(a) =
1

2
g2

0021 +
i

2ω2
g2

0011g
2
0020 +

i

ω1
(g1

0011g
2
1010 − g1

0011g
2
0110)

− i

4ω2 − 2ω1
g1

0020g
2
1001 −

i

4ω2 + 2ω1
g1

0002g
2
0101 −

i

ω2
|g2

0011|2 −
i

6ω2
|g2

0002|2,

C22(a) =g2
1110 +

i

ω1
(g1

1100g
2
1010 − g2

0110g
1
0110)− i

2ω1 + ω2
g2

0200g
1
0101

+
i

2ω1 − ω2
g1

0110g
2
2000 +

i

ω2
(g2

0020g
2
1100 − g2

0011g
2
1100 − g1

1010g
2
1100

− g1
1001g

2
1100) +

i

ω1 − 2ω2
|g2

1001|2 −
i

ω1 + 2ω2
|g2

0101|2,
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where gijkl, i+ j+ k+ l ≥ 2 can be obtained similar as above. As shown in Takens
[111] and Wiggins [119], we assume that the following non-degeneracy conditions are
satisfied: Re{Cij(a)} 6= 0 and Re{C11(a)}Re{C22(a)} − Re{C12(a)}Re{C21(a)} 6=
0, i, j = 1, 2. Let z1 = r1e

iθ1 , z2 = r2e
iθ2 . Then (68) can be changed into

r′1 = aReλ′1(0)r1 + Re{C11(0)}r3
1 + Re{C12(0)}r1r

2
2 +O(‖r1, r2‖)5

r′2 = aReλ′2(0)r2 + Re{C21(0)}r3
2 + Re{C22(0)}r2

1r2 +O(‖r1, r2‖)5

θ′1 = ω1 + aImλ′1(0) + Im{C11(0)}r2
1 + Im{C12(0)}r2

2 +O(‖r1, r2‖)4

θ′2 = ω1 + aImλ′2(0) + Im{C21(0)}r2
2 + Im{C22(0)}r2

1 +O(‖r1, r2‖)4.

Then the truncation of the amplitude equations to the quadratic order is{
θ′1 = ω1 + aImλ′1(0) + Im{C11(0)}r2

1 + Im{C12(0)}r2
2 +O(‖r1, r2‖)4

θ′2 = ω1 + aImλ′2(0) + Im{C21(0)}r2
2 + Im{C22(0)}r2

1 +O(‖r1, r2‖)4,
(78)

and the truncation of the phase equations to the cubic order is{
r′1 = aReλ′1(0)r1 + Re{C11(0)}r3

1 + Re{C12(0)}r1r
2
2 +O(‖r1, r2‖)5

r′2 = aReλ′2(0)r2 + Re{C21(0)}r3
2 + Re{C22(0)}r2

1r2 +O(‖r1, r2‖)5.
(79)

Let r1 = r1√
|Re{C11(0)}|

, r2 = r2√
|Re{C22(0)}|

, dropping the bars, then (79) can be

written as {
r′1 = (µ1 + er2

1 + br2
2)r1

r′2 = (µ2 + cr2
1 + dr2

2)r2.
(80)

where d = Re{C22(a)}
|Re{C22(a)}| = ±1, c = Re{C21(a)}

|Re{C11(a)}| , b = Re{C12(a)}
|Re{C22(a)}| , e = Re{C11(a)}

|Re{C11(a)}| =

±1 and µ1 = aReλ′1(0), µ2 = aReλ′2(0).
Similar to the previous subsection, we know that system (78) determines the

period and direction of the bifurcated solutions. As Guckhenheimer and Holmes
[58] and Choi and LeBlanc [27] pointed out, the possible phase portraits in the
neighborhood of the Hopf-Hopf bifurcation points are classified by the dynamical
behaviors of the phase equations, we only need to study the truncation equation of
phase equations (79) and obtain the following results.

Theorem 3.10. (i) If (80) has an equilibrium (r∗1, 0) (resp., (0, r∗2)), then in
the neighborhood of the positive equilibrium P2, system (19) has a periodic

solution with period T = 2π
ω1τk

(1 − Im{C11}r∗21

2ω1τk
) + o(a) (resp., T = 2π

ω2τk
(1 −

Im{C21}r∗22

2ω2τk
) + o(a)). The stability of the periodic solution is same as that of

the equilibrium.
(ii) If (80) has an equilibrium (r∗1, r∗2) with r∗1 > 0, r∗2 > 0 in the interior of the

positive quadrant, then (19) has quasi-periodic solutions in the neighborhood
of the positive equilibrium P2.

(iii) If (80) has a limit cycle in the interior of the positive quadrant, then (19)
has a three-dimensional invariant torus in the neighborhood of the positive
equilibrium P2.

In order to analyze the qualitative properties of (80), there are four cases to be
considered: (1) e > 0, d > 0; (2) e > 0, d < 0; (3) e < 0, d > 0; (4) e < 0, d < 0.
Here, we only consider the second case, the other cases can be analyzed similarly.
In this case, system (80) takes the form{

r′1 = (µ1 + r2
1 + br2

2)r1

r′2 = (µ2 + cr2
1 − r2

2)r2.
(81)
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It is easy to see that (81) has nonzero equilibria E′1(
√
−µ1, 0) with µ1 < 0, E′2(0,

√
µ2)

with µ2 > 0, and E′3(
√

bµ2+µ1

−1−bc ,
√

µ2−cµ1

1+bc ) with bµ2+µ1

1+bc < 0 and µ2−cµ1

1+bc > 0. The

stability of the equilibria Ei can be determined by the eigenvalues of the linearized
matrix of (81) at E′i :(

µ1 + 3r∗21 + br∗22 , 2br∗1r
∗
1

22r∗1r
∗
1 , µ2 + cr∗21 + 3r∗22

)
. (82)

The determinant of this matrix is

3µ2r
2
1 + 3cr4

1 + bµ2r
2
2 + 9r2

1r
2
2 − 3bcr2

1r
2
2 + 3br4

2 + µ1(µ2 + cr2
1 + 3r2

2)|E′i
and the trace of this matrix is

µ1 + µ2 + 3r2
1 + cr2

1 + 3r2
2 + br2

2|E′i .
Hence, with the help of (82), we know that the Hopf bifurcation can occur only as

µ2 = cµ1, µ1 = −bµ2 and µ2 = µ1(c−1)
cb+1 . It is well known that the signs of b, c, d give

the complex dynamical behaviors of (81), Guckhenheimer and Holmes [58] pointed
out that there are 12 unfolding cases for the nonresonant Hopf-Hopf bifurcation for
E′i, which were summarized in Table 7.5.2 of [58].
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Figure 6. Phase portraits for the case VIa in Table 7.5.2 of [58]:
(a) Bifurcation diagram in (µ1, µ2); (b) Phase portraits of (81).

We choose case VIa in Table 7.5.2 of [58] as an example, that is, e = 1, d = −1, b >
0, c < 0 and −1 − bc > 0. From −1 − bc > 0, it is easy to obtain c < c−1

b+1 < −1
b ,

then the line µ2 = c−1
b+1µ1 must lie between the lines µ2 = cµ1 and µ1 = −bµ2.

As shown in Guckhenheimer and Holmes [58], the partial bifurcation sets and the
phase portraits for the unfoldings of this case are given in Fig. 6.

From Fig. 6, we have the following results.

Theorem 3.11. Assume that Re{C11(a)} > 0, Re{C12(a)} > 0, Re{C21(a)} < 0,
Re{C22(a)} < 0 and Re{C11(a)}Re{C22(a)} > 0 6= Re{C21(a)}Re{C12(a)} then on
the (µ1, µ2)-parameter plane, we have the following results:

(i) If a point (µ1, µ2) crosses the positive µ1-axis from D7 to D1, Hopf bifurca-
tion occurs and a unstable periodic solution Γ1 is bifurcated from the trivial
solution, Γ1 persists for (µ1, µ2) in regions D1 −D5.

(ii) If a point (µ1, µ2) crosses the positive µ2-axis from D1 to D2, another Hopf
bifurcation occurs and a unstable periodic solution Γ2 is bifurcated from the
trivial solution. Γ2 persists for (µ1, µ2) in regions D2 −D6.
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(iii) If a point (µ1, µ2) crosses the line µ2 = cµ1 from D2 to D3, a stable qusa-
periodic solution Θ1 is bifurcated from Γ1, Θ1 persists for (µ1, µ2) in regions
D3 and D4.

(iv) If a point (µ1, µ2) crosses the line (b + 1)µ2 = (c − 1)µ1 from D3 to D4,
a torus Θ2 is bifurcated from Θ1, the bifurcated torus Θ2 exists in a small

neighborhood of (µ1,
(c−1)µ1

b+1 ), when (µ1, µ2) goes anticlockwise in D4, Θ2 will
coincide with Θ1 and disappear.

(v) If a point (µ1, µ2) crosses the line µ1 = −bµ2 from D4 to D5, the quasi-periodic
solution Θ1 coincides with Γ2 and disappears.

(vi) If a point (µ1, µ2) crosses the line µ1 = −bµ2 from D5 to D6, the bifurcated
periodic solution Γ1 coincides with the trivial solution and disappears.

(vii) If a point (µ1, µ2) crosses the line µ1 = −bµ2 from D6 to D7, the bifurcated
periodic solution Γ2 coincides with the trivial solution and disappears.

The bifurcation diagram is given in Fig. 7.
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Figure 7. The bifurcation diagram of (81) on the (µ1, µ2)-plane.

Theorem 3.12. For A2 > 0, system (19) possesses Hopf-Hopf points with frequen-
cies having all possible ratios ω1 : ω2 = m : n, m < n ∈ Z.

3.3. Numerical simulations. To show the results of Theorem 3.3, we still con-
sider the model proposed in d’Onofrio [37] as an example, that is ν(x) = 1.636(1−
0.002x), φ(x, y) = y, β(x) = 1.131x

20.19+x , σq(x) = 0.1181, µ(x) = 0.00311x+0.3743.

It is easy to see ν′′(x) = ∂φ(x,y)
∂x = ∂2φ(x,y)

∂y2 = q′(x) = µ′′(x) = 0. For the mi-

croscopic equilibrium (8.18971, 1.6092), we know that the equilibrium will undergo
Hopf bifurcation when τ = τ+

0 (Fig. 8(a)(b)). Then we have α = −0.0149845 −
0.149707i, α∗ = −1.67819 − 5.98562i and D = 0.511595 − 0.0555238i. Also, g20 =
0.013352−0.0989036i, g11 = 0.0140638−0.104576i, g02 = −0.0332515+0.0830015i.
In order to compute g21, we need give W11 and W20 first. We have

W ′ = x′t − z′p− z′p =

{
A0W − 2Re{p̄T (0)R0p(θ)} θ ∈ [−τ1, 0)
A0W − 2Re{p̄T (0)R0p(θ)}+R0 θ = 0

def
=A0W +H(z, z̄, θ)

(83)
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where

H(z, z) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+H30(θ)

z3

6
+ · · · .

Hence we obtain

W20(θ) =
ig20

ω0
p(0)eiω0θ +

ig02

3ω0
p(0)e−iω0θ +K1e

2iω0θ (84)

Similarly,

W11(θ) =
ig11

ω0
p(0)eiω0θ +

ig11

ω0
p(0)e−iω0θ +K2, (85)

where Ki = (K
(1)
i ,K

(2)
i )T ∈ R2, i = 1, 2 are constant vectors. With the boundary

conditions, we can obtain K1 = (0.281858− 1.72499i,−0.129063 + 0.0178572i) and
K2 = (0.178478− 1.70488i,−0.128644 + 0.0179399i).
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Figure 3.5: (a) The periodic solution (x(t), y(t)) bifurcated from the microscopic equilib-
rium (8.18971, 1.6092) with τ = 0.333814. (b) The corresponding solution x(t) in terms of
time t. (c) The periodic solution (x(t), y(t)) bifurcated from the macroscopic equilibrium
(447.134, 0.172977) as τ = 2.08803. (d) The corresponding solution x(t) in terms of time t.
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Figure 8. (a) The periodic solution (x(t), y(t)) bifurcated from
the microscopic equilibrium (8.18971, 1.6092) with τ = 0.333814.
(b) The corresponding solution x(t) in terms of time t. (c) The
periodic solution (x(t), y(t)) bifurcated from the macroscopic equi-
librium (447.134, 0.172977) as τ = 2.08803. (d) The corresponding
solution x(t) in terms of time t.

Hence

W 1
20(0) = 0.479785− 1.67155i, W 2

20(0) = −− 0.128029− 0.0422056i,

W 1
20(−1) = 0.451428− 1.60976i, W 2

20(−1) = −0.104795− 0.0115331i

and

W 1
11(0) = 0.178478− 1.70488i, W 2

11(0) = −0.138052 + 0.0166747i,

W 1
11(−1) = 0.744189− 1.41978i, W 2

11(−1) = −0.125589− 0.07208i,
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Then g21 = −0.222815 − 0.0610833i and C1(0) = −0.107224 − 0.0832058. Thus,
system (19) has a supercritical Hopf bifurcation at the equilibrium (8.18971, 1.6092)
for τ = τ0, the bifurcating periodic solution is stable.

Similarly, we can discuss the stability of the macroscopic equilibrium point
(447.134, 0.17298). We simulate the periodic solutions bifurcated from the two
stable equilibria (8.18971, 1.6092) and (447.134, 0.172977) with bifurcation param-
eters τk = 2.08803 and τk = 0.333814, respectively (Fig. 8).

For the model proposed in d’Onofrio [37], we can obtain all positive equilibria.
Then the results of Bautin, Fold-Hopf, and Hopf-Hopf bifurcations can be obtained
similarly, we will not provide the details here for the sake of simplicity.

4. Periodic and chaotic oscillations in a tumor-immune system interac-
tion model with three delays.

4.1. The basic model of Mayer et al. [87]. Let T (t) describe the concentration
of the tumor cells and E(t) measure the concentration of relevant active immune
effector cells at time t, respectively. E(t) may be measured, for example, by the
concentration of certain immune cells, like cytotoxic T-cells, natural killer cells, or
by the concentration of certain antibodies. In 1996, Mayer et al. [87] first proposed
the following tumor and immune system interaction model with two time delays:

dT

dt
= rT (t− τ)− kT (t)E(t)

dE

dt
= f(T (t− δ)) + g(E(t−∆))− dE(t),

(86)

where r is the intrinsic growth rate of the tumor cells and τ ≥ 0 is the time delay in
the proliferation of tumor cells. The term kT (t)E(t) is the inactivation of the tumor
cells by the immune effector cells. The corresponding inactivation term T (t)E(t) in
the equation for E can be neglected since it should be orders of magnitude smaller
than the first two terms, which are given by the nonlinear functions f(T ) and g(E).

The immune competence E(t) is supposed to be constituted by three factors:

(i) The tumor cells trigger processes in the immune system leading to competence
against them. The velocity of this simulation is described by a function f(T )
which is specifically given by

f(T ) =
pTu

mv + T v
,

where p, s, u,m, n are positive constants with u ≥ v. Depending on the pa-
rameters u and v there are three different shapes of the stimulation function
f(T ) illustrated as in Fig. 9(a), (b) and (c). All these functions are bounded
accounting for the fact that the precursor population is limited. The sigmoid
increase in the case u > 1 emphasizes that a small amount of tumor cells
may be more or less ignored by the immune system. This effect is known as
low-zone unresponsiveness. The high-zone unresponsiveness, u < v, is char-
acterized by a decrease of immune response stimulation under high tumor
burden. The parameter p describes the precursor pool size. Assume that this
process is delayed and let δ ≥ 0 be the time delay describing the process of
effector cells growth with respect to stimulus by the tumor cells growth.

(ii) The immune reaction is additionally strengthened by autocatalytic and/or co-
operative reinforcement of immune activation processes. That is, the compe-
tent immune effector cells proliferate and/or stimulate themselves or precursor
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Figure 9. Graphs of f(T ) for three different parameter sets: (a)
u = v = 1; (b) u = v = 5 > 1; (c) u = 1

2 < 1 < v = 2.

cells for increased proliferation or differentiation. The resulting increase rate
of immune competence is described by a function

g(E) =
sEn

cn + En

where n ≥ 1 is a constant. The graph of g(E) is qualitatively similar to Fig.
9(a) (n = 1) or (b) (n > 1). The sigmoid shape takes into account that a
critical number of immune cells may be necessary for realizing the cooperative
and autocatalytic effect. This process is also assumed to be delayed and ∆ ≥ 0
is the time delay appearing in the differentiation of immune effector cells.

(iii) The term −dE(t) models that finite lifetime of the immune competent cells
with a positive death rate constant d.

Mayer et al.[87] did not analyze the delayed model (86). Instead they provided
detailed analysis of the ODE version when all delays are zero. In particular, they
showed that solutions of the model equations correspond to states described by
immunologists as “virgin state,” “immune state” and “state of tolerance.” They
demonstrated that the model successfully replicates the so-called primary and sec-
ondary response and predicts the existence of a threshold level for the amount of
pathogen germs or of transplanted tumor cells below which the host is able to elim-
inate the infectious organism or to reject the tumor graft. They found a long time
coexistence of tumor cells and immune competent cells including damped and un-
damped oscillations of both. They also observed that if the number of transformed
cells or pathogens exceeds definable values the immune system fails to keep the
disease under control. On the other hand, there is an increased chance of tumor
survival despite enhanced immune activity or therapeutically achieved tumor reduc-
tion. Their study demonstrates how the combination of a few proposed nonlinear
interaction rules between the immune system and tumor cells in a very simple model
are able to generate a considerable variety of different kinds of immune responses,
many of which are observed both experimentally and clinically.

In order to study the original delay model (86), Buric et al. [22] and Yu and
Wei [126] expressed the variable of f as a combination of T (t) and T (t − δ), that
is f(aT (t) + (1 − a)T (t − δ)) with a(0 ≤ a ≤ 1) being a constant, and allowed the
function g to depend on the combination of E(t) and E(t −∆), that is g(bE(t) +
(1− b)E(t−∆)), where b(0 ≤ b ≤ 1) is a constant.

(a) When τ = 0, d = 1, u = v = 4, n = 3,m = 1, and c = 1, f(aT (t)+(1−a)T (t−
δ)) = p[aT (t)+(1−a)T (t−δ)]4

1+[aT (t)+(1−a)T (t−δ)]4 , g(bE(t) + (1 − b)E(t − ∆)) = s[bE(t)+(1−b)E(t−∆)]3

1+[bE(t)+(1−b)E(t−∆)]3 ,
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Burić et al. [22] studied the stability of the equilibria and showed that the time
delay could introduce chaotic dynamics in the model.

(b) When τ = 0, u = v = 2m1, n = 2n1,m = 1, and c = 1, f(aT (t)+(1−a)T (t−
δ)) = p[aT (t)+(1−a)T (t−δ)]2m1

1+[aT (t)+(1−a)T (t−δ)]2m1
, g(bE(t)+(1−b)E(t−∆)) = s[bE(t)+(1−b)E(t−∆)]2n1

1+[bE(t)+(1−b)E(t−∆)]2n1
,

Yu and Wei [126] studied the stability switch and Hopf bifurcation of model.

(c) When u = v, d = 1, f(T (t − δ)) = pT (t−δ)u
1+T (t−δ)u , g(E(t − ∆)) = sE(t−∆)n

1+E(t−∆)n ,

recently Mendonça et al. [90] performed detailed linear stability analysis of original
delayed model (86) to investigate possible stability switches induced by the existence
of characteristic delay times of the dynamical processes and showed that stability
switches of stable periodic cycle solutions can be induced by enforcing appropriated
time delays in the tumor cell reproduction as well as in the cooperative immune
response. They also provided numerical simulations of the corresponding set of
delayed differential equations to support the analytical results, showing bifurcations
and quasi-chaotic behavior.

In this section, we present the analyses and results on the periodic and chaotic
oscillations in the delayed model (86) of Mayer et al. [87] obtained by Bi, Ruan and
Zhang [14]. Following Buric et al. [22] and Yu and Wei [126], the variable of f is
expressed as a combination of T (t) and T (t−δ), that is f(aT (t)+(1−a)T (t−δ)) with
a(0 ≤ a ≤ 1) being a constant, meaning that the dependence of the rate of creating
immunocompetent cells not only on the rate of variations of T (t) at the current time
but also on the value of T (t − δ) at an earlier time t − δ. Similarly, the function g
depends on the combination of E(t) and E(t−∆), that is g(bE(t)+(1−b)E(t−∆)),
where b(0 ≤ b ≤ 1) is a constant. Consider the following tumor and immune system
interaction model with three time delays

dT

dt
= rT (t− τ)− kT (t)E(t),

dE

dt
= f(aT (t) + (1− a)T (t− δ)) + g(bE(t) + (1− b)E(t−∆))− dE(t).

(87)

The technique of Adimy et al. [4] is used to study the stability of the positive
equilibrium: it starts by considering the model with one delay and obtain a stable
interval for the delay; fixing the first delay in its stable interval one then introduces
the second delay and obtains a stable interval for it as well; next fix the first two
delays in their stable intervals and determine the stability for the third delay. The
stability of the positive equilibrium is thus obtained when the three delays are
restricted in their corresponding intervals. Further numerical simulations indicate
that the model exhibits long irregular oscillations and chaotic behaviors.

4.2. Local analysis. System (87) has equilibria (0, 0), (0, Ei) and (Ti,
r
k ), where

Ei is the positive root of Eni −sE
n−1
i +1 = 0, and Ti is the positive root of equation

mT vi − pTui + m = 0 with m = dr
k −

srn

kn+rn . The variational system of (87) at an

equilibrium (T0, E0) is

dT

dt
= rT (t− τ)− kE0T (t)− kT0E(t),

dE

dt
= f ′(T0)(aT (t) + (1− a)T (t− δ)) + g′(E0)(bE(t) + (1− b)E(t−∆))− dE(t).

(88)



TUMOR-IMMUNE SYSTEM INTERACTION MODELS WITH DELAYS 585

4.2.1. The Trivial (Virgin State) Equilibrium. For any u, v > 0, n = 1, the first
equation of the variational system of (87) at the trivial equilibrium (0, 0) is

dT

dt
= rT (t− τ).

dE

dt
= f ′(0)T (t) + g′(0)E(t)− dE(t).

(89)

Noting r > 0, from the first equation of (89) it is easy to see that the trivial
equilibrium of (87) is unstable for all τ, δ,∆ ≥ 0. That is, if there is no immune
effector cells, the foreign cells will not die out once they invade, this is an obvious
result.

4.2.2. The Semi-Trivial (Immune State) Equilibrium. For the stability of the
semi-trivial or immune state equilibria (0, Ei), it is easy to see that the characteristic
equation of (88) at (0, Ei) is

(λ− re−λτ + kEi)(λ− g′(Ei)(1− b)e−λ∆ + (d− g′(Ei)b)) = 0, (90)

then the characteristic roots of (90) satisfy

λ+A− re−λτ = 0 or λ+ C1 − C2e
−λ∆ = 0, (91)

where A = kEi > 0, C1 = d(1− nb
1+Eni

), C2 = nd
1+Eni

(1− b) ≥ 0. Define

τj = 2π − 1√
r2 −A2

arccos
A

r
+ 2jπ,

∆j = 2π − 1√
C2

2 − C2
1

arccos
C1

C2
+ 2jπ, j = 0, 1, 2, ...

(92)

One has the following stability and bifurcation results:

Theorem 4.1. (i) Assume that r < A.
(i-1) If C1 > C2, then the semi-trivial equilibrium (0, Ei) of (87) is asymp-

totical stable for all τ ≥ 0, ∆ ≥ 0;
(i-2) If C1 < −C2, then the semi-trivial equilibrium (0, Ei) of (87) is unstable

for ∆ ≥ ∆0, τ ≥ τ0;
(ii) Assume that r > A and −C2 < C1 < C2.

(ii-1) Then the semi-trivial equilibrium (0, Ei) of (87) is unstable for 0 <
τ < σ0, 0 < ∆ < σ0, r

2 − A2 6= C2
2 − C2

1 ; and (87) undergoes Hopf
bifurcation at (0, Ei) as τ = τj, ∆ 6= ∆j or τ 6= τj, ∆ = ∆j, where
τj = 2π − τ0 + 2jπ, ∆j = 2π −∆0 + 2jπ, j = 0, 1, 2 · · · ;

(ii-2) If there is no integer k1 such that r2 −A2 6= k1(C2
2 − C2

1 ), then system
(87) undergoes Hopf-Hopf bifurcation at τ = τj , ∆ = ∆j, j = 0, 1, 2 · · · ;

(ii-3) If there exist integers m2 and n2 such that m2
2(r2−A2) = n2

2(C2
2 −C2

1 ),
then system (87) undergoes m2 : n2 resonant bifurcation at τ = τj , ∆ =
∆j(τj), j = 0, 1, 2 · · · .

Remark 3. If A = r and there exists n such that n = ( rk )n + 1, then (90) has two
zero roots, that is the semi-trivial equilibrium degenerates to the trivial equilibrium.

4.2.3. The Positive (Coexistence) Equilibrium. In this subsection, the stability
and Hopf bifurcation of the positive (coexistence) equilibrium (T ∗, E∗) of (87) is
considered. The following results are on the number of positive equilibria.

Lemma 4.2. Let m = r
k (d− skrn−1

kn+rn ), T1 = v

√
u
v−u , B =

pTu1
1+Tv1

.
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(i) System (87) has only one positive equilibrium ( m
p−m ,

r
k ) when u = v = 1 and

0 < m < p;

(ii) System (87) has only one positive equilibrium ( u

√
m
p−m ,

r
k ) when u = v > 1

and 0 < m < p;
(iii) System (87) has no positive equilibrium when u = v and m < 0 or m ≥ p;
(iv) System (87) has two positive equilibria (T 2∗, rk ) and (T 3∗, rk ) when 0 < u < v

and 0 < m < B, where T 2∗ and T 3∗ are the positive roots of mT v−pTu+m =
0;

(v) As m increases to B, the two positive equilibria (T 2∗, rk ) and (T 3∗, rk ) merge
into one, and as m > B, this positive equilibrium disappears.

In fact, the three different shapes of the stimulation function f(T ) can be il-
lustrated as in Fig. 9(a), (b) and (c), that is, the number of the equilibria are
the intersect points of the horizontal line m = c (constant) and the curve of f(T ).
Hence, the above results are obvious from Fig. 9. Then one can state the following
results.

Theorem 4.3. If 0 < u < v and m = f(T1), then (87) undergoes saddle-node

bifurcation, where m and f(T ) are defined as above and where T1 = v

√
u
v−u .

If the delays τ, δ and ∆ are zero, then the characteristic equation reduces to

λ(λ+ d+ g′(
r

k
)) + kT ∗f ′(T ∗) = 0, (93)

that is, λ1 + λ2 = −(d + g′( rk )) < 0 and λ1λ2 = kT ∗f ′(T ∗), then we have the
following results.

Theorem 4.4. Let τ = δ = ∆ = 0.

(i) When u = v, then the unique positive equilibrium (T ∗, E∗) of (87) is a stable
node.

(ii) When 0 < u < v, (87) has two positive equilibria, (T 1∗, E∗) and (T 2∗, E∗),
where (T 1∗, E∗) is a stable node and (T 2∗, E∗) is a saddle.

When τ, δ,∆ increase from zero, it is possible to have Hopf bifurcation. Hence,
in order to study whether (87) undergoes Hopf bifurcation when the delays τ, δ,∆
increase from zero, the case u = v is considered in the rest of this section. Firstly,
one has the results for the existence of the equilibria as u = v.

Theorem 4.5. Let u = v.

(i) If m = 0, then (87) has two equilibria (0, 0) and (0, rk );
(ii) If m ≥ p or m < 0, then (87) has only one equilibrium (0, 0);

(iii) If 0 < m < p, then (87) has two equilibria (0, 0) and ( m
p−m ,

r
k )(u = v = 1) or

( u

√
m
p−m ,

r
k )(u = v > 1).

The dynamical behavior of the positive equilibrium in case (iii) is important
and difficult and is considered in the following. If u = v and 0 < m < p, m =
k
r (d− skrn−1

kn+rn ), then (87) has only one positive equilibrium (T ∗, E∗) with E∗ = r
k .

The characteristic equation of (88) at (T ∗, E∗) is∣∣∣∣ λ− re−λτ + kE∗, kT ∗

−f ′(T ∗)a− f ′(T ∗)(1− a)e−δλ, λ− (g′(E∗)b− d)− (1− b)g′(E∗)e−∆λ

∣∣∣∣ = 0,

(94)



TUMOR-IMMUNE SYSTEM INTERACTION MODELS WITH DELAYS 587

where (T ∗, E∗) = ( m
p−m ,

r
k ) as u = v = 1 and (T ∗, E∗) = ( u

√
m
p−m ,

r
k ) as u = v > 1

are defined as above. The main results are established in two steps.

Step I. Firstly, consider the case b = 1 and g′(E∗)b = d.
(a) If a = 1, from (94), the characteristic equation of (88) at (T ∗, E∗) is

λ2 + rλ+A1 − λre−λτ = 0, (95)

where A1 = f ′(T ∗)kT ∗ ≥ 0. Noting r = kE∗ ≥ 0, in order to consider the distribu-
tion of the roots of equation (95), we give a result as follows.

Lemma 4.6. Let τ = τ0
j . Then (95) has a pair of purely imaginary roots ±iω0 with

ω2
0 = A1, where τ0

j = 2jπ, j = 0, 1, 2 · · · .

Let λ(τ) = α(τ) + iω(τ) be the root of (95) satisfying α(τ1
±j) = 0, ω(τ1

±j) = ω±,
then we have the following results.

Lemma 4.7. (i) If A1 > 0, then α′(τ0
j ) = 0, α′′(τ0

j ) < 0. Hence, all roots of (95)
have negative real parts except the purely imaginary roots +iω, and all purely
imaginary roots ±iω are obtained as τ0

j = 2jπ, j = 0, 1, 2 · · · .
(ii) There exists a τ ′ < 2π such that (T ∗, E∗) is stable as τ ∈ (0, τ ′).

(b) If a 6= 1, then the characteristic equation (94) is

λ2 + λ(−re−λτ + kE∗) +A1(a+ (1− a)e−λδ) = 0. (96)

From Hopf bifurcation theorem and the results of Ruan [102], we obtain the follow-
ing results.

Theorem 4.8. Assume A1 > 0, if |a − 1
2 | � 1, τ ∈ (0, τ ′), then (96) has purely

imaginary roots ±iωn with δ = δnj , j = 0, 1, 2 · · · , where ωn are the positive roots of

g(ω, h) =ω4 + ω2(2r2 − 2A1a+ 2ωr sinωτ − 2r2 cosωτ)

− 2ωA1ar sinωτ +A2
1a

2(1− h2).

with h = 1−a
a and

δnj =

{
1
ωn

(2π − arccos
ω2
n−aA1+ωnr sinωnτ

A1(1−a) + 2jπ), r > cosωnτ

1
ωn

(arccos
ω2
n−aA1+ωnr sinωnτ

A1(1−a) + 2jπ), r < cosωnτ.
(97)

Moreover, if

2ω cos δω + ωrτ cosω(δ − τ) + r(sin δω − sinω(δ − τ)) 6= 0, (98)

then equation (87) undergoes a Hopf bifurcation at (T ∗, E∗).

Remark 4. The parameter a is to show that the change of E(t) at time t is decided
by the qualities of E(t) not only at time t but also at time t − τ . In fact, it was
chosen a = 1

2 , which shows that the qualities of E(t) at time t and t − τ have the

same effect to the change of E(t). For a < 1
2 , it is easy to obtain g(0, h) < 0, then

(96) has purely imaginary roots obviously, which shows that the change of E(t)
depends more on time t− τ as a < 1

2 . This is relevant to the model of Mayer et al.

[87]. Note that g(ω, 0)|ω=0 = −A2
1 < 0, then one has the following result on Hopf

bifurcation in the original delayed model (86) of Mayer et al. [87].

Corollary 1. If a = 0 and (98) hold, then (87) undergoes a Hopf bifurcation at
(T ∗, E∗).
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Step II. In the second step, consider the more general case g′(E∗)b 6= d. There are
three subcases. (a) ∆ = 0, δ = 0; (b) ∆ = 0, δ 6= 0; (c) ∆τδ 6= 0.

(a) If ∆ = 0, δ = 0, the characteristic equation of (88) at (T ∗, E∗) is

λ2 +B1λ+B2 + (B3λ+B4)e−λτ = 0, (99)

where B1 = r + d − g′(E∗), B2 = r(d − g′(E∗)) + A1, B3 = −r < 0 and B4 =
−r(d− g′(E∗)). First, make the following assumptions:

(H1) B4 +B2 > 0, B3 +B1 > 0.
(H2) B2

3 −B2
1 + 2B2 < 0, B2

2 −B2
4 > 0 or (B2

3 − B2
1 + 2B2)2 < 4(B2

2 − B2
4).

(H3) B2
2 −B2

4 ≤ 0 or B2
3 −B2

1 + 2B2 > 0 and (B2
3 −B2

1 + 2B2)2 = 4(B2
2 −B2

4).
(H4) B2

3 −B2
1 + 2B2 > 0, B2

2 −B2
4 > 0 and (B2

3 − B2
1 + 2B2)2 > 4(B2

2 − B2
4).

Define

ω2
± =

1

2
(B2

3 −B2
1) +B2 ±

√
(B2

3 −B2
1)2

4
+B2(B2

3 −B2
1) +B2

4

and τ±j (j = 0, 1, 2) as functions of ω and other parameters by

τ±j =


1
ω±

(
2jπ + arccos{ (B4−B1B3)ω2

±−B4B2

B2
3ω

2
±±B2

4
}
)
,

if B4B1 +B3(ω2
± −B2) > 0,

1
ω±

(
(2j + 2)π − arccos{ (B4−B1B3)ω2

±−B4B2

B2
3ω

2
±±B2

4
}
)
,

if B4B1 +B3(ω2
± −B2) < 0.

(100)

Using the results of Cooke and Grossman [29], and Ruan [102], one obtains the
following results.

Theorem 4.9. Let (H1) hold and τ±j (j = 1, 2, · · · ) be defined by (100).

(i) If (H2) holds, then the positive equilibrium (T ∗, E∗) of (87) is asymptotically
stable for all τ ≥ 0.

(ii) If (H3) holds, then (T ∗, E∗) is stable for all τ ∈ (0, τ+
0 ) and unstable for

τ > τ+
0 . Moreover, system (87) undergoes Hopf bifurcation at (T ∗, E∗) as

τ = τ+
j , j = 0, 1, 2 · · · .

(iii) If (H4) holds, then there is a positive integer l such that (T ∗, E∗) is stable for

τ ∈ [0, τ+
0 ) ∪ [τ−0 , τ

+
1 ) ∪ · · · ∪ [τ−l−1, τ

+
l )

and unstable for

τ ∈ [τ+
0 , τ

−
0 ) ∪ [τ+

1 , τ
−
1 ) ∪ · · · ∪ [τ+

l−1, τ
−
l−1) ∪ [τ+

l ,∞).

(b) If ∆ = 0, δ 6= 0 (a 6= 1), then the characteristic equation (99) can be written
as

λ2 +B1λ+B2 −A1(1− a) + e−λτ (B3λ+B4) +A1(1− a)e−λδ = 0. (101)

Then one has the following result.

Theorem 4.10. Assume that (H1) holds, if B2
2−B2

4 < 0, τ < τ0, τ0 = min{τ+
0 , τ

′},
then (101) has purely imaginary roots ±iω1n with δ = δnj , j = 0, 1, 2, · · · , where ω1n

are the positive roots of

g1(ω) =(B2 − ω2 −A1(1− a) +B4 cosωτ +B3ω sinωτ)2

+ (B1ω1n +B3ω cosωτ −B4 sinωτ)2 −A2
1(1− a)2

(102)
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and

δnj

=


1
ω1n

(
2π − arccos ω

2−B2+A1(1−a)−B4 cos(ωτ)−B3ω sin(ωτ)
A1(1−a) + 2jπ

)
, sinω1nδ < 0,

1
ω2n

(
arccos ω

2−B2+A1(1−a)−B4 cos(ωτ)−B3ω sin(ωτ)
A1(1−a) + 2jπ

)
, sinω1nδ > 0.

(103)

Moreover, if

B3ω1nτ cosω1n(δ− τ) + (B4τ −B3) sinω1n(δ− τ)−2ω1n cos δω1n−B1 sin δω1n 6= 0,

then equation (87) undergoes Hopf bifurcation at (T ∗, E∗) as δ = δn.

(c) If ∆τδ 6= 0, the characteristic equation of (88) is

λ2 +B′1λ+B′2 −A1(1− a) + e−λτ (B3λ+B′4 + rB5e
−∆λ)

− (λ+ kE∗)B5e
−∆λ +A1(1− a)e−λδ = 0,

(104)

where B′1 = B1 +B5, B
′
2 = B2 + rB5, B

′
4 = B4 − rB5, and B5 = g′(E∗)(1− b). In

order to study the stability of (T ∗, E∗) for ∆ 6= 0, we introduce a result which can
be proved similarly as Theorem 7 of Adimy et al. [4].

Lemma 4.11. If all roots of equation (101) have negative real parts for τ ∈ (0, τ+
0 )

and δ ∈ (0, δ0), where δ0 = minn∈N{δn0 }, then there exists ∆∗ = ∆(τ, δ) such that
all roots of (104) have negative real parts when ∆ ∈ (0,∆∗(τ, δ)), and the positive
equilibrium (T ∗, E∗) of (87) is locally asymptotically stable.

Lemma 4.11 gives the existence of ∆∗, in fact, one can compute ∆∗ in a similar
way as above for other critical delay values and have the following result.

Theorem 4.12. Assume (H1) and B2
2 < B2

4 hold, if τ < τ0, δ < δ0, then (101)
has purely imaginary roots ±iω2n with ∆ = ∆n

j , j = 0, 1, 2, · · · , where ω2n are the
positive roots of

g3(ω2n)
= (B′2 − ω2

2n −A1(1− a)(1− cosω2nδ)−B5r cosω2n∆ +B5ω2n sinω2n∆)2

+(B′1ω2n + rB5 sinω2n∆− ωB5 cosω2n∆−A1(1− a) sinω2nδ)
2

−B′24 −B2
3ω

2
2n −B2

5r
2 − 2B′4B5r cosω2n∆ + 2B′3B5ω2nr sinω2n∆,

(105)
where

∆n
j =

1
ω2n

(
2π − arccos G(ω2n)

B5(ω2n+r sinω2nτ)2+B5(r cosω2nτ−kE∗)2 + 2jπ
)
, sinω2n∆ < 0

1
ω2n

(
arccos G(ω2n)

B5(ω2n+r sinω2nτ)2+B5(r cosω2nτ−kE∗)2 + 2jπ
)
, sinω2n∆ > 0

(106)

with

G(ω2n) =(A1(1− a) + ω2
2n −B′2)E∗k + ω2

2nB
′
1 +A1(1− a)r cosω2n(δ + τ)

+ cosω2nτ((B3 − r)ω2
2n −A1(1− a)(ek + r)− ekB′4 + rB′2)

+ ω2n sinω2nτ(rB′1 −B3ek −B′4) +B3ω2nr sin 2ω2nτ

−A1(1− a)ω2n sin δω2n + rB′4 cos 2ω2nτ.

(107)
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Moreover, if

−ω(2E∗k +B3rτ) cos δω + (−1 + a)A1δω cos(∆− δ)ω −B5ωrτ cosωτ
+(B3ω −B′4ωτ +B3E

∗kωτ) cosω(∆− τ) + 2ωr cosω(∆ + τ)
+(B3r −B′1E∗k − 2ω2 −B′4rτ) sin ∆ω +A1δE

∗k(1− a) sin(∆− δ)ω
+(B′4E

∗kτ −B3E
∗k +B3ω

2τ) sinω(∆− τ) +B′1r sinω(∆ + τ)
−B5r(1 + E∗kτ) sinωτ −A1(1− a)δr sinω(∆− δ + τ) 6= 0,

(108)

then equation (87) undergoes Hopf bifurcation at (T ∗, E∗).

4.3. Numerical simulations. In this subsection, some numerical simulations are
presented to illustrate the results obtained in section 4.2. Choose two parameter
sets as in Mayer et al. [87], i.e.,
(I): a = 0, b = 0, n = 1, u = v = 1, r = 1.8, k = 3, p = 2, s = 1.5, d = 1;
(II): a = 0, b = 0, n = u = v = k = d = 1, r = 1.2, p = 0.28, s = 2.
From the above analysis one knows that the the trivial and semi-trivial equilibria
are unstable and the positive equilibrium is stable. For τ = 0.3, δ = 0.3, ∆ = 1
the simulations are given in Fig. 10.
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Figure 10. The phase portraits of system (87): (a) with param-
eter set (I); (b) with parameter set (II).

(i) First we simulate the results in Theorems 4.9 and 4.10. Let r = 0.6, k =
1.3, p = 0.3, s = 0.2, d = 0.5, a = 0.1, n = 3, u = 2, v = 2. For this case, (87)
has two equilibria (0, 0) and (1.563, 0.461538). Since (0, 0) is unstable, one only
needs to consider the properties of the positive equilibrium (1.563, 0.461538). If
δ = ∆ = 0, (100) implies that (99) has only a pair of purely imaginary roots ±iω
with ω = 0.416274 as τ0 = 3.8641, and the positive equilibrium (1.563, 0.461538)
is locally stable as τ < τ0. According to Theorem 4.10, the imaginary roots ±iω1n

of (101) are the roots of

− 0.010245− 0.36749ω2 + ω4 + (0.0558983 + 0.36ω2) cos2(3.8641ω)

+ (−0.142236ω + 1.2ω3) sin(3.8641ω) + (0.0558983 + 0.36ω2) sin2(3.8641ω)

+ cos(3.8641ω)(−0.100101 + 0.189143ω2) = 0,

(109)

which are the points of intersection of functions

f(ω) = ω4 − 0.36749ω2 − 0.010245
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and

h(ω) = −(0.0558983 + 0.36ω2) cos2(3.8641ω) + (0.142236ω − 1.2ω3) sin(3.8641ω)

− (0.0558983 + 0.36ω2) sin2(3.8641ω) + cos(3.8641ω)(0.100101− 0.189143ω2).

Then the only one pair of purely imaginary roots are ±0.273i.
When τ = τ0, recalling (103), by a direct computation one has δ0 = 15.1378.

Thus, the positive equilibrium (T ∗, E∗) is stable when τ < τ0, δ < δ0. In fact,
choose delays as τ = 4 < τ0, δ = 20 < δ0, then the positive equilibrium is stable
(Fig. 11(a)(b)). Choose parameters as τ = τ0 = 3.8641, one knows that (87) has
bifurcated periodic solutions (see Fig. 11(c)(d)).
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Figure 11. (a) The converging solutions of system (87) in terms of
t when τ = 4, δ = 20; (b) The solution trajectories of system (87)
spiral toward the positive equilibrium in the (T,E)-plane when
τ = 4, δ = 20; (c) The periodic solutions of system (87) in terms of
t when τ = τ0; (d) The periodic trajectories of system (87) in the
(T,E)-plane.

The dynamical behavior of the positive equilibrium (T ∗, E∗) (stable or unstable)
can be seen in Fig. 12. The critical boundary respects the possible bifurcation
values, which are given by (103). On the other hand, one can see rich dynamical
behaviors of the positive equilibrium as τ( respectively δ) increases, a finite number
of stability switches may occur.

For the above parameters, if a increases from 0.1 to 0.5, the dynamical behavior
of the model does not change compared with Fig. 11. If a keeps increasing from
0.5 to 0.9, then the functions f(ω) and h(ω) have no points of intersection. That is,
when τ < τ0, as a increases to 0.9, there are no characteristic roots passing through
the imaginary axis. Hence, the positive equilibrium (0.26087, 4.14083) of (87) is
stable when τ < τ0 and δ > 0.
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Figure 12. Stability diagram of system (87) on the (τ, δ)-delay
parameter space.

The stable region of the positive equilibrium becomes bigger and bigger when a
increases from 0.1 to 0.5 then to 0.9. Hopf bifurcation may occur when τ and δ are
on the critical boundary; that is, the dynamical behavior of the positive equilibrium
changes when the parameter a from 0 to 1. Thus, it is necessary to consider a in
the model of Mayer et al. [87].

(ii) To simulate the results in Theorem 4.12 using the above parameter set,
one needs to compute the roots of (105). For simplicity, only consider the case
a = 0.1, b = 0.1. Similarly, from Fig. 13 one knows that (105) has two pairs of
imaginary roots ±iω10 and ±iω20 with ω10 = 0.2651 and ω20 = 0.2809. But for
ω10 = 0.2651, there is no ∆ defined in (106) can be found. Hence, the characteristic
equation of (88) has only one pair of purely imaginary roots±iω20 with ∆0 = 2.0592.
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Figure 13. (a) The locations of f(ω) and h(ω) when a = 0.1, b =
0.1. (a) 0.2 < ω < 1.5; (b) 0.26 < ω < 0.3.

Let τ0 = 3.8641, δ0 = 15.1378, ∆0 = 2.0592. From the result in last section,
one knows that the solutions of (87) are stable when τ < τ0, δ < δ0, ∆ < ∆0,
choose τ = 3.8, δ = 13.5, ∆ = 2, the simulations are presented in Fig. 14(a)(b).
If τ = τ0, δ = δ0, ∆ = ∆0, then system (87) undergoes Hopf bifurcation, the
bifurcating periodic solutions can be seen in Fig. 14(c)(d).
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Figure 14. (a) The stable solutions of system (87) when τ =
3.8, δ = 13.5, ∆ = 2; (b) The solution trajectory of system (87)
converges to the positive equilibrium in the (T,E) plane; (c) The
periodic solutions T (t) and E(t) of system (87) in terms of t when
τ = τ0 = 3.8641, δ = δ0 = 15.1378, ∆ = ∆0 = 2.0592; (d) The
periodic trajectories of system (87) in the (T,E) plane.
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Figure 15. The stability diagram of the positive equilibrium for
system (87) in the (τ, δ, ∆) parameter space.

Noting Lemma 4.7, let r = 0.6, k = 1.3, p = 0.3, s = 0.2, d = 0.5, n =
3, u = 2, v = 2. If a = 0.1, b = 0.1, then we know that the positive equilibrium
(1.563, 0.461538) of (87) is stable when τ < τ0, δ < δ0 and ∆ < ∆∗(τ, δ), where

∆∗(τ, δ) =
F (τ, δ)

ω10
arccos

1

(0.6(1− cos(0.2809τ))2 + (0.2809 + 0.6 sin(0.2809τ))2
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with

F (τ, δ) = 10.4869(−0.002547− 0.101124 cos(0.2809τ)2 − 0.133564 sin(0.2809δ)

+ cos(0.2809τ)(0.074559 + 0.133564 sin(0.2809δ))− 0.101124 sin(0.2809τ)2

+ cos(0.2809δ)(−0.0625301− 0.133564 sin(0.2809τ))− 0.109526 sin(0.2809τ)).

With the above parameters, the stable region of (87) is given in Fig. 15 in the
(τ, δ, ∆) parameter space.

(iii) In fact, model (87) exhibits more complicated dynamical behavior than that
observed in Mayer et al. [87]. Now we give more simulations to show the existence
of irregular long periodic oscillations. Ripples can be observed in the figures. If
a 6= 0, b 6= 0, choose parameters set a = 0.5, b = 0.9, n = 3, u = 1, v = 3, r = 2, k =
3, p = 2, s = 1, d = 1.2. Then we have the following simulations with different
values of the time delays τ, δ and ∆.
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Figure 16. (a)(b) The regular periodic oscillations in system (87)
with τ = 0.5, δ = 5,∆ = 8; (c)(d) The irregular long periodic
oscillations in system (87) with τ = 0.5, δ = 15,∆ = 8; (e)(f) The
chaotic solutions in system (87) with τ = 0.5, δ = 50,∆ = 38.
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These simulations demonstrate that the tumor and immune system interaction
model with three time delays exhibits very rich and complex dynamical behaviors.
Although the positive equilibrium is stable when τ < τ0, δ < δ0 and ∆ < ∆0,
but when the delays increase, the dynamical behavior becomes more and more
complex. When we fix the τ = 0.5 and increase δ and ∆ gradually, the dynamical
behavior changes from regular periodic (Fig. 16(a)(b)) to irregular long periodic
(Fig. 16(c)(d)) and finally chaotic (Fig. 16(e)(f)). Therefore, the time delays play a
crucial role in determining the nonlinear dynamics of the tumor and immune system
interaction model (87). Notice that Mayer et al. [87] provided some empirical data
on the number of phenotypically identified natural killer cells (CD16+, CD56+)
versus total tumor size during the course of a metastatic disease (Fibrosarcoma)
which exhibit chaotic behavior: they fluctuate irregularly and unpredictably. Mayer
et al. [87] pointed out that their model is unable to produce any kind of chaotic
behavior since it is only two-dimensional. By modifying their model, we are able
to demonstrate numerically that the two-dimensional model with three delays can
produce chaotic behavior which, in some sense, supports the empirical data provided
by Mayer et al. [87].

5. Discussion. We have reviewed some recent results on the nonlinear dynamics
of two-dimensional differential equations with multiple delays which model the in-
teractions between tumor cells and effector cells of the immune system. In section 2
we discussed a tumor-immune system interaction model with a single delay (which
is a reduced model of Kuznetsov et al. [74] with a single delay and was considered
by Ga lach [56] and Bi and Xiao [15]) and provided results on the existence and
local stability of equilibria as well as the existence of Hopf bifurcation in the model
when the delay varies. In section 3 we studied a tumor-immune system interaction
model with two delays (which is a generalized model of d’Onofrio et al. [42] and was
studied by Bi and Ruan [13]) and demonstrated that the model undergoes various
possible bifurcations including Hopf, Bautin, Fold-Hopf (zero-Hopf), and Hopf-Hopf
bifurcations. In section 4 we considered a tumor-immune system interaction model
with three delays (which was proposed by Mayer et al. [87] and analyzed by Bi et al.
[14]) and showed that the model exhibits more complex behaviors including chaos.
Various numerical simulations were presented to illustrate the nonlinear dynamics
of the delayed tumor-immune system interaction models.

Cancer immunosurveillance functions as an important defense against cancer. If
the immune system can successfully survey the body for tumor cells based on their
acquisition of neoantigens consequent to genetic alterations, these nascent tumor
cells will be destroyed (Pardoll [95]). This is the elimination process of the cancer
immunoediting (Dunn [44, 45]). Our analysis on the existence and stability of the
tumor-free equilibrium in all three models (2), (19) and (87) corresponds to this
elimination process. If tumor cells actively acquire resistant mechanisms that at-
tenuate immune responses, then tumor survival occurs and tumor cells continue to
grow and expand in an uncontrolled manner and may eventually lead to malignan-
cies (Pardoll [95]). This is the escape process of the cancer immunoediting (Dunn
[44, 45]). Our analysis on the immune-free equilibrium P3(T3, 0) of the model (19)
with two delays describes this escape process. There are extensive experiments to
support the existence of the elimination and escape processes because immunodefi-
cient mice develop more carcinogen-induced and spontaneous cancers than wild-type
mice, and tumor cells from immunodeficient mice are more immunogenic than those
from immunocompetent mice (Dunn [44, 45], Schreiber et al. [106]). Koebel et al.
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[71] used a mouse model of primary chemical carcinogenesis to demonstrate that
equilibrium occurs. Their results reveal that the immune system of a naive mouse
can restrain cancer growth for extended time periods, that it, the tumor cells and
effector cells of the immune system coexist for a long time. Our results on the ex-
istence of periodic solutions via bifurcations (Hopf, Bautin, Fold-Hopf (zero-Hopf),
Hopf-Hopf) in all three models describe the equilibrium process. When a stable
periodic orbit exists, it can be understood that the tumor and the immune system
can coexist for a long term although the cancer is not eliminated. The conditions
for the existence of the bifurcations indicate the parameters that are important in
controlling the development and progression of the tumor.

The existence of regular and irregular periodic oscillations in the tumor and
immune interaction model (87) with three delays demonstrates the phenomenon
of long-term tumor relapse which have been observed in some related tumor and
immune system models (d’Onofrio [42], Kirschner and Panetta [70], Kuznetsov et
al. [74]). Cancer dormancy is a state in which cancer cells persist in a host without
significant growth (Wilkie [120]). The regular periodic oscillations describe the
equilibrium process (expansion of transformed cells is held in check by immunity)
of cancer immunoediting in the dual host-protective and tumor-promoting actions
of immunity and support the experimental observations of Koebel et al. [71] that
the immune system of a naive mouse can restrain cancer growth for extended time
periods. The irregular periodic oscillations suggest that with temporarily delay the
immune response may progress the cancer to a more aggressive state.

We should emphasize that the literature on modeling tumor-immune system
interactions is huge, see reviews by Anderson and Maini [7], Cristini et al. [31],
dePillis et al. [34], Eftimie et al. [47], Freedman [53], Friedman [54], Konstorum
et al. [72], Mahlbacher et al. [84], Szymańska et al. [110], Wilkie [120], and
books of d’Onofrio et al. [41], Eladdadi et al. [48], and Kuang et al. [73]. In
order to understand the nonlinear dynamics in particular various bifurcations in
the tumor-immune system interaction models, we focused only on two-dimensional
delay differential equations. There are many interesting issues and questions on
modeling and analyzing tumor-immune dynamics.

(a) The effect of therapies. In analyzing models (2), (19) and (87), the effect
of therapies (chemotherapy, immunotherapy, radiotherapy) was completely ignored
(Abdulrashid et al. [1], Barbarossa et al. [12], d’Onofrio [37, 38, 39], Rordriguez-
Perez et al. [101]). It will be very interesting and challenging to study the effect
of therapies in particular immunotherapy (constant, periodic or impulsive) (Kon-
storum et al. [72]) on the nonlinear dynamics of the tumor and immune system
interaction models with delays (see d’Onofrio et al. [42] for example). In particu-
lar, immunotherapy is now very effective and promising in harnessing the immune
system to battle tumors (Couzin-Frankel [30], Mellman et al. [89]), it will be very
important to help design therapies (constant, periodic or impulsive) and seek for
optimal treatments. From the dynamical system point of view, one particular inter-
esting question is the existence of resonance when periodic chemotherapy (Andersen
and Mackey [6], Webb [116]) is applied to delayed tumor-immune system interaction
models.

(b) Bogdanov-Takens bifurcation. We studied system (19) under the as-
sumption that it has only one positive equilibrium. As Table 1 and the examples
showed such models could have multiple positive equilibria. Correspondingly, the
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systems can exhibit more degenerate bifurcations including Bogdanov-Takens bi-
furcation (see Liu et al. [79] for an ODE model of tumor and immune system
interaction and Xiao and Ruan [125] for a delayed predator-prey model) and higher
codimension bifurcations. In fact, even for the reduced ODE model (1) we expect
that it could exhibit bifurcations of co-dimension three.

(c) Three- and higher-dimensional models with delays. The two-
dimensional models are over-simplified as the tumor-immune system interactions
are very complex and involve more components, more reasonable models should
include three or more variables. For instance, Grossman and Berke [57] proposed
a three-dimensional model with delay consisting of specific precursor T-cells, pro-
liferating cells that are stimulated by antigenic tumor cells, and mature cytotoxic
(killer) cells. Villasana and Radunskaya [115] considered a three-dimensional delay
differential equations model consisting of immune cells, tumor cells during inter-
phase, and population of tumor during mitosis. Dong et al. [36] considered a
three-dimensional model with delay which describes the interactions between effec-
tor cells, cytotoxic T lymphocytes and helper T cells. The techniques and results
used in treating the third-order transcendental equations in Ruan et al. [105] can be
employed to analyze the stability and bifurcations in such three-dimensional models
with delays. Higher-dimensional models with delays can be found in Abdulrashid
et al. [1], Barbarossa et al. [12], Feyissa and Banerjee [51], Qomlaqi et al. [99], Yu
and Wei [126], Yu et al. [127, 128], and the references cited therein.

(d) Age-structured tumor models. Once the growth and proliferation of
tumor cells is concerned, different stages (quiescent phase G0, first gap G1, synthesis
stage S, second gap G2, and mitosis stage M) of the cell-cycle need to be considered
(Vermeulen et al. [113]) and age-structured models play a crucial role in describing
the population dynamics of tumor cells, see for example Arino et al. [9], Billy et al.
[17], Brikci et al. [20], Clairambault et al. [28], Dyson et al. [46], Gabriel et al. [55],
Gyllenberg and Webb [61], Liu et al. [82], Spinelli et al. [108], and the references
cited therein. This also brings various challenges in analyzing (mathematically
and computationally) these age-structured tumor models. For instance, even for
a linear age-structured model of tumor growth with quiescence, Gyllenberg and
Webb [61] observed the existence of periodic solutions which seems to be induced by
Hopf bifurcation. To show the existence of Hopf bifurcation in such age-structured
tumor model, one may apply the recent developed theory in Magal and Ruan [83].
It should be pointed out that the above mentioned age-structured models focused
on the growth and proliferation of tumor cells and did not include the interaction
of tumor cells and the immune system (which is the focus of this review paper).
It becomes interesting to propose reasonable age-structured models to characterize
tumor-immune dynamics.

(e) Combine models with clinical data. A mathematical model is only
suitable to simulate and predict novel treatment protocols if it can fit and predict
the data of known therapies (Brady and Enderling [19], Konstorum et al. [72]).
Thus it is desirable to combine models with clinical data; that is, the models have
to be validated by calibrating the data. The mathematical analysis and numerical
simulation will help in understand the properties of the models. The utmost goal of
using mathematical models to describe the interactions between tumors and immune
system and studying the nonlinear dynamics of these models is to provide scientific
insights on the dynamics of tumor growth and immune response, and to help design
optimal scheduling and dosage of treatment.
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