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A THREE-TROPHIC-LEVEL MODEL OF PLANKTON
DYNAMICS WITH NUTRIENT RECYCLING

SHIGUI RUAN

ABSTRACT. A three-trophic-level model of plankton dy-
namics with instantaneous nutrient recycling is considered.
The model consists of autotrophic phytoplankton, herbivorous
zooplankton, carnivorous zooplankton and dissolved limiting
nutrient. Conditions are derived such that one or more com-
ponents of the populations tend to extinction. Persistence
criteria for the model are also obtained. As well, the bifur-
cation of periodic solutions from one of the coordinate plane
into the positive cone is studied.

1. Introduction. To date several attempts to model nutrient plank-
ton dynamics have been made. Early models tended to concentrate on
the interaction of phytoplankton and zooplankton only. More recently,
models have become more holistic by attempting to embrace a larger
portion of our knowledge of the components of the ecosystem and the
flow of materials between these components. Williams [41] provided the
conceptual background for a plankton dynamics model incorporating
bacteria, protozoans and dissolved organic matter. Evans and Parslow
[13] presented a model of phytoplankton-zooplankton-nitrogen dynam-
ics in a seasonably varying mixed layer. They showed how the seasonal
recurrence of plankton cycles, in particular the spring bloom, is driven
by the interaction of physical mixing with removal by grazers. DeAnge-
lis, Bartell and Brenkert [9] studied the effects of nutrient recycling and
food-chain length on resilience of a plankton model consisting of car-
nivore, herbivore, autotroph, detritus and nutrient. Fasham, Ducklow
and McKelvie [14] constructed a simple but realistic model of plank-
ton and nutrient dynamics of the oceanic mixed layer that includes the
major plankton groups (plankton, zooplankton, bacteria) and the ma-
jor forms of nitrogen (new and recycled inorganic forms, dissolved and
particular organic forms).

An ecological system is virtually never totally closed to material fluxes
from the outside; these are generally inputs of nutrients to the system,
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as well as losses from the system. Recently, Wroblewski, Sarmiento
and Flier] [44] introduced a closed two-trophic-level food chain model
which they used to study plankton densities in different ocean layers.
Busenberg et al. [1] studied the stability of the model constructed
by Wroblewski et al., and pursued the biological implications of the
stability results and of the existence of stable oscillatory states. In [35],
based on the model built by Wroblewski et al., we considered three open
models consisting of phytoplankton, zooplankton and dissolved limiting
nutrient with a constant input concentration of the limiting nutrient
and different constant washout rates, a periodic input concentration
and a constant washout rate, a constant input concentration and a
periodic washout rate, respectively. Persistence and bifurcation were
discussed.

In the present paper, we consider a three-trophic-level food chain
model with instantaneous nutrient recycling, which consists of au-
totrophic phytoplankton, herbivorous zooplankton, carnivorous zoo-
plankton and dissolved limiting nutrient. We suppose that the car-
nivorous zooplankton (Z;) feeds on the herbivorous zooplankton (Z,),
in turn the herbivorous zooplankton feeds upon the autotrophic phy-
toplankton (P), and only phytoplankton takes nutrient (N) directly.
All dead carnivorous zooplankton, herbivorous zooplankton and phy-
toplankton recycled back into nutrient. We will consider the question
of extinction and persistence of the three trophic level model. 1t is
also shown that coexistence of all components may occur in the form
of bifurcating periodic solutions. Similar three-trophic-level chemostat
type models have been studied by Butler, Hsu and Waltman [3], Keener
[26], (see also Butler and Wolkowicz [6], Wolkowicz [43] and Waltman
[40]).

F)—[7]—[&]

N

NO [N ] D(N, P, 21, Z5)

FIGURE 1. A three trophic level food chain for plankton dynamics
with limit nutrient recycling. NO is the input rate of nutrient, D is

the washout rate.
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In our discussion, persistence is a central concept. We utilize the
definitions of persistence developed by Butler, Freedman and Waltman
[2] and Freedman and Moson [16]. A component z(t) of a given
system is said to be persistent if for any z(0) > 0 it follows that
liminf,_,o z(¢) > 0. If there exists § > 0 such that liminf;_, z(t) > §,
then z(t) is said to be uniformly persistent. A system is (uniformly)
persistent if each component is (uniformly) persistent. Persistence in
biological systems has been discussed by many authors. We refer in
particular to persistence in four-dimensional models, (see Butler and
Wolkowicz [6], So and Freedman [37], Freedman, So and Waltman
[19], Freedman and Rai [17], Kumar and Freedman [31], Kirlinger
[27], Takeuchi [39] and Zaghrout [45]). For the existence of periodic
solutions in the four-dimensional models, we refer to Butler, Hsu and
Waltman [3], Keener [26], and Freedman, So and Waltman [19].

The paper is organized as follows. In the next section, we describe the
model. In Section 3, we study questions of extinction and persistence.
In Section 4 the bifurcation analysis is carried out. The final section
contains a discussion.

2. The model. The compartmental model used for a food chain
consisting of autotrophic phytoplankton (P), herbivorous zooplankton
(Z1), carnivorous zooplankton (Z;) and dissolved limiting nutrient (NV),
is given by

dN o _ _ N _ __-AP

+ (1 - o)bZ. —Z12—+ P+eZy + uZ
2€+Zlg Y 1T HsL2

dP N

- = -  _ecZi(1 - =APy _

7 =¥ ey all-e) -+ D)P

2.1)

dz, _ AP zz

W = Z]_ [60(1 € ) (5 + D)] bZz m

dZ, z2

£z - 21 _(u+D
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N(O) 20, P(O) >0, Zl(o) >0, ZZ(O) >0,

where all parameters are positive and are interpreted as follows:
N° - input nutrient concentration rate
D - washout rate
a — maximal growth rate of the autotrophic phytoplankton
k - (Michaelis-Menten) half saturation constant
6 — herbivorous zooplankton resource conversion rate
o — carnivorous zooplankton resource conversion rate
¢ — maximal herbivorous zooplankton ingestion rate
b -~ maximal carnivorous zooplankton ingestion rate
A — rate at which saturation is achieved with decreasing phyto-
plankton level
£ — (Holling Type III) half saturation constant
~ — phytoplankton death rate
€ — herbivorous death rate
i — carnivorous death rate.

We specify a constant input rate of dissolved limiting nutrient NO,
as well as a loss rate D. The uptake kinetics of the limiting nutrient is
described by a Michaelis-Menten function or Holling Type II functional
response (see Holling [23])

k+N’
where k is the Michaelis-Menten half-saturation constant. This uptake
rate was proposed by Dugdale [11] and has been widely employed (see
Busenberg et al. [1], Hallam [22] and Wroblewski et al. [44]). Various
laboratory and field experiments indicate that this uptake response
is reasonably appropriate for nitrate, ammonium and phosphate (see
Rogers and McCarthy [34] and the references cited therein).

Marine copepods show an increasing ingestion rate as food concentra-
tions increase. The functional form of this response has generally been
assumed as the Michaelis-Menten or Holling Type II showing a satu-
ration of the ingestion rate with high prey concentrations. Commonly,
Ivlev’s functional response formulation (see Ivlev [25])

1-— e—AP

is used to describe the herbivorous zooplankton grazing in curving-
fitting and modelling (see Wroblewski et al. [44]), where X is the rate
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at which saturation is achieved with increasing phytoplankton level
(per unit concentration).

The carnivorous zooplankton consumption of herbivorous zooplank-
ton is modeled as Holling type III functional response (see Holling [23]
and DeAngelis et al. [9])

z;
e+ 2%’

where £ is a Holling type III half-saturation constant. The represen-
tation is appropriate for situations in which the rate of predation per
capita prey tends to become smaller as the biomass of prey decreases,
which may often occur if there are refuges for the prey.

During consumption, only fractions of phytoplankton and herbivo-
rous zooplankton removed from the resource compartments, 6, § < 1,
and o, o < 1, are assumed to be assimilated by the consumers herbi-
vore and carnivore respectively, the remains go directly to the dissolved
limiting nutrient. Two other losses of biotic components are also mod-
eled: (1) direct losses from autotrophic phytoplankton, herbivorous
zooplankton and carnivorous zooplankton with loss rates 4, € and p
respectively, to the dissolved limiting nutrient; and (2) removal of bi-
otic components from the system (DP, DZ,, and DZ;) resulting from
washout, harvesting or burial in deep sediments, for example.

Note that E; = (N?,0,0,0) is always an equilibrium for system (2.1).

3. Extinction and persistence. In this section we change the
variables in system (2.1) to nondimensional form. Let
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After dropping the bars, system (2.1) becomes

dN -AP
7 =1-N- aPk:+N +(1-8)cZi(1—-e")
Z2
+(1-0)bZ; — = 7+ Z2 +YP +eZ, + pZ,

dP N

— =aP —— —cZi(1-e*P)—(y+1)P
dz, -ap

dt Z1[6C(1 e ) (E + 1)] bZs —— T Z2
dZ, 22

N(0)>0, P0)>0, Zi(0)>0, 2(0)>0.

Note that for system (3.1), the equilibrium E; assumes the form
E, =(1,0,0,0).

Lemma 3.1. The w limit set of any solution of the initial value
problem (3.1) lies in the hyperplane N+ P+ Z; + Z, = 1.

Proof. Let X(t) = N(t) + P(t) + Z1(t) + Z2(t), then

>(t
B _i_wp), w020
dt
and the lemma, follows. o

Note that the positive cone in (N, P, Z,, Z3)-plane is positively in-
variant. Lemma 3.1 implies the boundedness of solutions of system
(3.1).

Put

(3.2) 01 = —a 02 = 03 —_
v+1 bc p+1
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In the following we give criteria for autotrophic phytoplankton or
herbivorous zooplankton or carnivorous zooplankton or all of them to
become extinct.

Proposition 3.2. If
(3.3) [o0b— (p+1)](1-65) <O,
then lim;_, o Z5(t) = 0.

Proof. From the fourth equation of system (3.1), we have that

iz 7
et [t
2Ty 22 Lo ob—(u+1)
ob—~ (p+1)
SZ2_£TZf—(1—03)'

Since there are no invariant sets such that Z; > 0 is constant, the
conclusion follows. o

If one of the inequalities b < p + 1 and 63 > 1 holds, but not both,
then (3.3) holds. Hence Proposition 3.2 indicates that if the growth
rate of the carnivorous zooplankton is less than or equal to its loss
rate, or if the parameter 03 is greater than or equal to one, than the
carnivorous zooplankton population will die out.

Proposition 3.3. If
(34) [6c— (e +1](1 - 62) <0,

then lim;_, o Z1(t) = 0 and consequently lim;_, o, Z3(t) = 0.

Proof. By the third equation of (3.1) we have

% < Zyfbe(l — e=P) — (e +1)]



536 ) S. RUAN

= Zi[bc - (e +1)] [1— Ll ]

bc—(e+1)
< Zyfbe - (e + 1)I(1 - 62).

Since there are no invariant sets such that Z; > 0 is constant, Z;(t) — 0
as t — oo. In view of the fourth equation of (3.1), Z;(t) — 0 implies
Z,(t) — 0 as t — oo. This completes the proof. a

Similarly, Proposition 3.3 shows that if the growth rate of the her-
bivorous zooplankton is less than or equal to its loss rate (death rate
plus washout rate), or the parameter 6, is greater than or equal to one,
than the herbivorous zooplankton population, and hence the carnivo-
rous zooplankton population will become extinct.

Proposition 3.4. If
(3.5) [a—(v+1))(1-6) <0,

then lim;_,o P(t)=0 and consequently lim;_, oo Z1(t) =lim¢—,o0 Z2(t) =
0.

Proof. Similar to the proof of Proposition 3.3, we have
dP aN
@ <F [k+N "(7+1)]
a
< —_
<P [1+k (7+1)]

_pa=(y+) . k(y+1)
=P [1 a—('r+1)]

_pa—(+1) o

which completes the proof. o

This result demonstrates that if the maximum growth rate of phyto-
plankton is less than or equal to its loss rate, or the parameter 6, is
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greater than or equal to one, then the phytoplankton, the herbivorous
zooplankton and the carnivorous zooplankton will all become extinct.

From Proposition 3.4 we have the following

Proposition 3.5. If (3.5) holds, then

tlili{.lo (N(t), P(t), Z1(t), Zz(t)) = F;.

If any of the inequalities (3.3), (3.4) and (3.5) holds, persistence
cannot occur in system (3.1). From now on, we always assume that
the inverse inequalities of (3.3), (3.4) and (3.5) hold, i.e.

(A1) a>y+1and 6 <1.
(Az) bc>e+1and by <1.
(A3) ob>p+1andb; <1.

Denote

Hy={(N,P,Z,,Z2) € R | P=2, = 2, =0},
Hiz = {(N’PaZI’ZZ) € Ri l Zy =23 =O},
Hygs = {(N,P,2,,2,) € Ry | Z, = 0}.

Clearly E; = (1,0,0,0) is globally asymptotically stable in Int H;,
which denotes the interior of Hy, and E,; is hyperbolic if (see Freedman
and So [18, p. 80])

1 v+1

(3.6) k+1 >

If the autotrophic phytoplankton is at the top trophic level, we have
the subsystem

dN N

E—I—N_apk-{-_N +vP
(3.7) P N

a =Pl gy -0+l
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System (3.7) has an interior equilibrium (N, P), where

k(y+1) -p_a-—(k+1)("/+1)
a—(y+1)’ T a-(y+1)

provided a > 4+ 1. Choosing a Liapunov function V; (N, P) as follows

N=

N x __'y+1 P _
k+z a 1 y—P
VN,P=/ 1L dr+—— ~——d
NP = [ y+i)s v W
k+zx

it is not difficult to prove that (NN, P) is globally asymptotically stable in
the N— P plane (see Ruan [33]), that is, system (3.1) has an equilibrium
E; = (N, P,0,0) which is globally asymptotically stable with respect
to Int Hy9, and E; is hyperbolic if

_ap (e+])
(3.8) 1-eP > £

If the herbivorous zooplankton Z; is at the highest trophic level, we
have the following subsystem

dN N ~AP
d—t = 1—N—-aP m -+ (1 6)CZ1(1 e )+")’P+€Zl
dP N
3.9 — = - - — e~ Py _
(3.9) o aP TN cZy(l—-e )= (y+1)P
P = Z1fee1 - ) - e+ 1))

System (3.9) has an interior equilibrium (N, P, Z) if 6¢ > £ + 1, where

1ln éc

P= X T be—(e+1)

Zl is the positive solution, satisfies Z<1 —ﬁ, of the quadratic equation

5((1-‘)’—'1) ~
2_ (=T -7 +k+

§
e+1

(3.10)

+P [(a—v-1)1~-P)—k(y+1)] =0,




A THREE-TROPHIC-LEVEL MODEL 539

and Z\i =1- P — Z,. Hence system (3.1) has an equilibrium E3 =
(N, P, Z,,0). Define a Liapunov function

~ Ay 7. %
N dot [. bc(l—e= M) - (e+1) /~ z zzl dz.
P

—X
l—e—M Z

The derivative of V along trajectories of (3.9) is

% NNN (1 -N- aPkNN+(1+6)czl(1—e"\P) +7P+5Z1)
- P Kr =
+[6e(1-¢F) - e+ V)| ;=5 o o = (r+1)] =71}
P _ N N
+ =2 plbe(1 - e ) ~ (e+1)] [——k+ -]
Define ¢1(N), ¢2(P) and 12(P) as follows
k
¢1(N)=(k+TN)2’ 0<& <1,
$2(P) =X 2P, 0< &<,
N 1+ A3 P)eMsP—1
P2 (P) = _[k‘-:-ﬁ - (v+ )] ( (1162‘5\531’)2 , 0<é&<1,
such that
N N .
bc(1— e F) — (e + 1) = bepa(P)(P - P),
P N ~ ~
— [kiﬁ - (7+1)] — ¢Zy = yo(P)(P - P).
Then
dV,

T - S +aPa (N - FY?
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+[N+(1 —8)e7 2P) 4 asogy () 222 L)

k+N] - (N~N)(P-P)

+5le+ (1 -8l - PPV -F)(21- 7o)
— bcga(P)y2(P)(P—P)?

+(1- 6)cN

NN¢2(P)(P-ﬁ)(Z1—Z1)

=WSwWT,

where W = (N — N,P-PB,z, - Zl) and the matrix S = (3;;)ax3 is
defined as

s =~ (1+aPy(N)),

822 = —6cdz(P)a(P),
833 =0,

832 = 821 = % [% + (1—6)621?%32 + a6c¢1(N) 1P—¢:'(f\2 - k:,N] ’

813 = 831 = —‘[5 + (1= 8)c(1 - e_'\P)],

NN

1
823 = 832 = 5(1 —6)c

¢2(P).

If S is negative definite for all (N,P,Z,) € Hy23, then E3 is globally
asymptotically stable with respect to Hy23 (see Freedman and So [18]).
Now we introduce the following assumption

(A4) The equilibrium E3 = (N, P, Z;,0) is globally asymptotically
stable with respect to Hjo3.

Similarly, if the inequality
72 p+1

3.1 >
(3.11) (+23 ob
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holds, F5 is hyperbolic.

Remark. Inequalities (3.6), (3.8) and (3.11) imply the inequalities
a>~v+1, 6c>¢e+1and ob > p+ 1, respectively.

Now we state the main result of this section.

Theorem 3.6. Suppose that assumptions (A,)-(A,) and inequali-
ties (3.6), (3.8) and (3.11) hold. Then system (3.1) exhibits uniform
persistence.

Proof. By Lemma 3.1, the system (3.1) is dissipative. Now M =
{E\, E2, E3} is an isolated covering. Inequality (3.6) implies that E,is
hyperbolic, so E; is a saddle point. Since E; is globally asymptotically
stable with respect to Hj, it follows that H; C W+(E,) (the stable set
of E1), hence W+(E )N R4 = 0.

E, is also a saddle point and is globally asymptotically stable with
respect to Hjz, and it has a one-dimensional unstable manifold whose
direction is out of the plane Hjj, hence W+(Ez) N R4 = 0. Similar
statements apply to Ej.

The global asymptotic stability of F,,F, and F3 with respect to
H,, Hi2 and Hjo3 respectively also implies that the boundary flow is
isolated and acyclic with M. Therefore, by Theorem 3.1 of Butler and
Waltman [5], uniform persistence follows. o

Theorem 3.6 shows that if near the boundary equilibria E;, E;
and Ej, the growth rates of phytoplankton, herbivorous zooplankton
and carnivorous zooplankton are positive, respectively, and all the
parameters 0;,0; and 03 are less than one, then all components have
long term survival.

By Theorem 5 of Hutson [24], we have the following result.

Theorem 3.7. Under the hypothesis of Theorem 3.6, the system
(3.1) has an interior equilibrium E* = (N*, P*,Z{,Z3).
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4. Coexistence. We can use Lemma 3.1 to eliminate one variable
from system (3.1).

dP = aP [a(l—P Z1 Zz)

-(v+ 1)] —cZy(1-e*F)

dt 1+4k-P-2, -
dz, _ _-AP z3
(4.1) = = Zi[be(t —e ) = (e+1)] = bZ; —= i+ 22
dZ: 22
d_t2 _Zz["b - (p+1)].

Since every trajectory is asymptotic to its w limit set, it is sufficient
to analyze the system (4.1). Lemma 3.1 implies that trajectories which
form the positive w limit set of any solution of (3.1) are solutions of
(4.1) satisfying 0 < P, 2,22 < 1.

Now we consider subsystem (3.9), the special case Z; = 0 in (3.1).
After dropping subscripts we have

dN N __-p
E—-l N apk-l-_N+(1 §)cZ(1—e *?)+yP+eZ
aP _L__ APy _
@2) @ = aP TN cZl-e)-(v+1)P
Y — Zse(1 ~ e P) — ( + 1),

N@©)>0, P(0)>0, Z(0)>0.

System (4.2) inherits from the larger system (3.1) the properties that
the positive octant is positively invariant, that a < y+1or 8, > 1
forces lim¢_,oc P(t) = 0 (and hence lim; . Z(t) = 0) that 6c < e+1 or
02 <1 forces lim;—, o Z(t) = 0, and that the w limit set of any solution
of (4.2) lies in the set A; = {(N,P,Z)IN+P+2Z=1,N >0, P >0,
Z > 0}. Hence, it suffices to analyze the system

dP _ P a(l-P-2)
d ~ |1+k-P-2Z
dz

i Z[bc(1 — e ) = (e +1)).

—(v+ 1)] —cZ(1—-e?F)
(4.3)
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Note that we may restrict our attention to the triangular region A; =
{(P,2)|0< P, Z, P+ Z < 1}. The critical points on the boundary of
A, for (4.3) are

C1=(0,0), Cp=(1-86,0).

The variational matrix of (4.2) takes the form

m m
M= 11 12 ,
m21 Ma2

where
_a(l-P-2) akP P
M= R Poz ([Q+k-P_zp (D -eAzeT,
_ akP ~\P
me=-grE_pozpg 0T

may = 6cAZe P,

maz = 6c(1 —e™*F) — (e +1).

At C) = (0,0), the variational matrix has the form

( a-GHDia-8)
M, = 1+k )
0 —(e+1)

Thus, if a < v+ 1 or 8; > 1, C; is an asymptotically stable critical
point, and if @ > v+ 1 and 6; < 1 (which we are assuming), then C, is
a saddle point.

At C; = (1 —6,,0), M takes the form

_ ak(l —-91) _ ak(l - 01) —e(1
M= | T EvEE T wmree

0 [6c — (e + 1)](1 — 62€*01)

—_ e“A(l_ol))

For C; to be biologically meaningful, i.e., to be in the positive quadrant,
it must be the case that 0 < 6; < 1. So if 6,e*%: > 1, C; is an
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asymptotically stable critical point, if 0 < 62e* < 1, C; is a saddle
point.

Let (P, Z.) be a critical point in the interior of Ag, i.e.

a(l - Pc - Zc) APy
(44) Pc [T"'k——Pc—Zc (’)’ + 1)] CZc(l e ) = 0,

(4.5) bc(l—e*P)—(e+1)=0.
From (4.5) we have that

1t

(4.6) Po=1-y g,

if 02 <1,

80 we are assuming that Z, > 0 satisfies (4.4) and it may be rewritten
as the following

ASk(y + 1) (; ln% — 0, - zc) - [(Ak - a)Z, -

a

1
X In -0—2] (E + 1)01

If 6; > (1/)\)1In(1/6;), i.e. 62e*® > 1, (4.4) has no positive solution.
Thus if C> is asymptotically stable, there is no interior critical point.
If 6229 < 1, then (4.4) has precisely one positive solution Z,.

The variational matrix at (P,, Z.) has the form

[ Zel(e+1)02¢* —eA6+c51n ] \
0266A(1—-§1n%)
(k+§ln31;_ c)2 (k+§ln31;—zc)2 5
bcAZ,

If o > e, ie. 1—(1/2)In(1/62) > 0, the determinant of Mj is
positive, then the stability of (P, Z.) depends on the trace of M3, i.e.,
if

Z[(c +1)82¢* —cA6 + cbln -51;] ak

4.7
(47) (- IhaE  ~Gtrihi-z)’
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(P., Z;) is asymptotically stable.

System (4.3) is different from the Gause-type predator-prey systems
described by Kuang and Freedman [30], and the chemostat type sys-
tems investigated by Cheng [7], Liou and Cheng [32], Ding [10] and
Kuang [28]. The uniqueness theorems about the limit cycle and the
methods utilized there do not seem to work for system (4.3). However,
by a result of Erle [12], we know that system (4.3) has at most a fi-
nite number of limit cycles and if (P,, Z,) is unstable, (4.3) must have
at least one asymptotically stable limit cycle. We make the following
assumption (see Butler, Hsu and Waltman [3] and Freedman, So and
Waltman [19]).

(As) There exists a limit cycle for system (4.3) which has a Floquet
multiplier strictly less than one.

Let (P(t),Z1(t)) be a periodic solution of period 7 of system (4.3)
which is given by (As) for the parameters a,k,v,¢,\, 8 and ¢. Then
(P(t), Z1(t),0) is a solution of system (4.1) for any choice of parameters
b,0,¢ and u. Now fix b,o and u and define

_ab [T Z}(6)
h(€) = — A Hle(ﬁ)dg’

where £ will be treated as a bifurcation parameter.

Let T" be the orbit corresponding to the solution (P(t), Z1(t),0). Let
Q be a two-dimensional local transverse section of I, let Wy and W, be
open subsets of §2. For each value of ¢, the Poincaré map T : Wy — W
exists. For a given periodic orbit, the linearization about the periodic
orbit and the linearization of the Poincaré map about the fixed point
corresponding to I' are related, which is precisely made in the following
statement.

Lemma 4.1. The spectrum of the linearization of the Poincaré map
union {1} is equal to the spectrum of the linearization of the solution
map defined by

Q(Poa Z]‘.)’ Zg) = (P(T)’ ZI(T), Z2(T))’
where
PO)=P°, Z:(0)=2], Z(0)=2;
and T is the period of the periodic solution map.
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As a consequence, to show that one Floquet multiplier passes from
inside to outside the unit circle is equivalent to show that an eigenvalue
of the linearization of the Poincaré map passes from inside to the
outside the unit circle. For this, we need the following bifurcation
theorem in Marsden and McCracken [33] (see also [8]).

Lemma 4.2. Let W be an open neighborhood of 0 € R? and I be
an open interval about 0 € R. Let ®, : W — R™ be such that the
map (v,z) — ®,(z) is a C* map (k > 1) from I x W to R?, and
such that ®,(0) = 0 for all v € I. Define L, to be the differential map
d®,(0) and suppose that all eigenvalues of L, lie inside the unit circle
of the complex plane for v < 0. Assume that there is a real, simple
eigenvalue £(v) of L, such that £(0) = 1 and (d¢/dv)(0) > 0. Let vo
be the eigenvector corresponding to £(0). Then there is a C*~1 curve C
of fized points of @ : (v,z) — (v,®y(x)) near (0,0) in I x R? which
together with the points (v,0) are the only fized points of ® near (0,0).
The curve C i3 tangent to vo at (0,0) in I x RZ.

The following theorem is the main result of this section.

Theorem 4.3. Let a,k,v,¢,),6,,b,0 and p be fixred so that (A;),
(A2), the first inequality of (As), and (As) hold. Then there exists a
number £* such that for £ < £*, |€* — ¢| sufficiently small, system (3.1)
has a periodic orbit in RY arbitrarily near the plane N+ P+ 2, =1,
Za = 0.

Proof. The proof is heavily dependent upon the techniques used by
Butler, Hsu and Waltman [3] and Freedman, So and Waltman [19].
Let (P(t), Z1(t)) be the unique periodic solution of (4.3), the Floquet
exponents are 0 and —a < 0. Let £* be an undetermined constant, and
let v = £* — £. Let T" be the orbit associated with the periodic solution
(P(t), Z1(t),0) when ¢ = £*. Fix a point zo € I' and let £ be the
transverse section to I' at zp, identifying zo with 0 € R?, Let &, be
the Poincaré map associated with the periodic solution (P(t), Z,(t),0)
from v near 0. From the analytic dependence of the vector field defined
by (4.3) on its parameters, it follows that the solutions are analytic in
parameters and initial conditions, and so is the Poincaré map. Hence
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there is a neighborhood Wy of z¢ in € such that for all v sufficiently
close to zero, ®, is defined on Wy.

Now we study the spectrum of L,, = d®,(0) by examining the Floquet
multipliers of the corresponding system of differential equations. The
variational matrix associated with the linearization of (4.1) takes the
form

fp(P(t), Z1(8),0)  fz,(P(t), Z1(1),0)  fz,(P(2), Z1(2),0)

2
ScAZe= P() Sc(1—e~*F) — (e+1) _ll-)i-Zéz
1 3
obZ}
0 0 m - (,Uz+1)

where dP/dt = f(P, Z1,2;) in (4.1). The two-dimensional system

Pt P(t
4 (PO _ (PO
dt \ 2,(t) Z(t)
has one Floquet multiplier equal to 1 since (P(t), Z1(t))T is a periodic
solution and one multiplier inside the unit circle, call it e~%, by the

hypothesis (As). The third Floquet multiplier of the full system has
the form exp[h(€) — (u + 1)].

Since h(0) = b > (1 + 1) by assumption (A3) and
ob T 2
o<y [0,

if £ is sufficiently large, h(f) is arbitrarily small. Note that h(¢) is
continuous and decreasing with £, there is a unique value £* such that
h(€*) = p+ 1. Note also that

dh _ ob [T Z2(()
/o (£ +22(¢))?

7R
in particular, when r passes through 0, i.e., £ passes through ¢*, h(¢)
crosses the value u + 1 non-tangentially, and

d¢ < 0,

Be” ey — Bh ey R ~(ut1)
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as r = h(€) — (u + 1) passes through zero. Thus (de”/dv)(0) > 0
(where v = £* — £), so the Floquet multiplier passes through the unit
circle transversally.

‘We know that the Poincaré map is analytic in parameter and initial
conditions, so (v,z) — ®y(x) is analytic from I x W, &,(0) = 0 for
allv € I and L, = d®,(0) has eigenvalues e~ and e", and crosses the
unit circle non-tangentially as r passes through zero.

Applying Lemma 4.2, we obtain a C! curve C of fixed points of
® : (v,z) — (v, Py(z)) bifurcating from (v,0) at (0,0). For such (v, z),
we have z = ®,(z), so = is a fixed point of the Poincaré map &,,
therefore C correspond to a l-parameter family of periodic solutions
of (4.1) hence (3.1). Since C is tangent to the eigenvector associated
with the eigenvalue 1 of L, = d®(0), the direction of v is transverse
to the P-Z; plane, so C is transverse to the P-Z; plane. It follows that
there is a branch of periodic solutions of (3.1) in the positive octant if
| — €*| = |v| is sufficiently small. This completes the proof. o

5. Discussion. We have considered a three-trophic-level model of
plankton dynamics with instantaneous nutrient recycling, which con-
sists of autotrophic phytoplankton, herbivorous zooplankton, carniv-
orous zooplankton and dissolved limiting nutrient. We suppose that
there are a constant input concentration to the system, and a constant
washout rate from the system.

Firstly we have given criteria for autotrophic phytoplankton or her-
bivorous zooplankton or carnivorous zooplankton or all of them to be-
come extinct. Next we have studied the question of persistence, suf-
ficient conditions are obtained which guarantee the survival of all ele-
ments of the population, which also imply the existence of an interior
equilibrium in the positive cone.

If we interpret the persistence conditions in terms of their counter-
parts for the unscaled model, we gain insight into the biology of the
situation. Conditions (A;) and (3.6) can be interpreted as follows

k
(5.1) a>~v+D, Oh=———<1
No('y-:D -1
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and

NO v+ D
(5.2) Py >—

Conditions (5.1) and (5.2) can be achieved either by increasing N,
the input nutrient concentration rate, by increasing a, the growth
rate of the autotrophic phytoplankton or by decreasing v and D, the
death rate and washout rate of phytoplankton, by decreasing k, the
saturation constant of phytoplankton. Conditions (A;) and (3.8) can
be interpreted as

-AN®
(5.3) sc>e+D, 02=16_E<1
C
and
_ )P €+ D
(5.4) l-e >

These conditions can be achieved either by increasing N, the input nu-
trient concentration rate, by increasing c, the herbivore ingestion rate,
by increasing 6, the herbivore resource conversion rate, by increasing A,
the saturation rate of herbivore or by decreasing £ and D, the herbiv-
orous death rate and washout rate. While conditions (A3) and (3.11)
can be interpreted as

£
(5.5) ob>p+D, b3=—g—<1
NO(;%5 - 1)
and

(5.6)

Similarly, these conditions can be achieved either by increasing N,
the input nutrient concentration rate, by increasing b, the carnivore
ingestion rate, by increasing o, the carnivore resource conversion rate
or by decreasing u and D, the carnivorous death rate and washout rate,
by decreasing ¢, the saturation constant of carnivore.
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According to the predictions of this model, there are a number of
ways to influence the outcome of the plankton-nutrient interactions.
Increasing the input nutrient concentration rate and decreasing the
loss rate are essential to ensure persistence. It is interesting that
for the persistence conditions to be achieved, k and ¢, the saturation
constants of phytoplankton and carnivorous zooplankton, must be
decreased while ], the saturation rate of herbivorous zooplankton, must
be increased. This is because that the herbivore is the intermediate
population that feeds upon the phytoplankton and is in turn fed by
carnivore. A reasonable increase of the saturation rate for the herbivore
is necessary to balance the food chain such that the whole system
exhibits persistence. As Proposition 3.3 shows, if A is too small so
that #; > 1, then not only the herbivore, but also the carnivore will
become extinct.

The extinction results imply that bifurcation can occur. Since
predator-prey system can have an oscillatory tendency, it is natural
to seek oscillatory coexistence of all components of the population. Fi-
nally, under appropriate circumstance, we have shown that coexistence
of the autotroph, herbivore and carnivore occurs in the form of bifur-
cating periodic orbit.

It would be of great interest to investigate the homogeneous Neu-
mann problem and Dirichlet problem for reaction-diffusion models of
plankton nutrient dynamics, we propose to do this in a future paper.
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