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The classical susceptible-infectious-recovered (SIR) model, originated from the seminal papers of Ross
[51] and Ross and Hudson [52,53] in 1916–1917 and the fundamental contributions of Kermack and
McKendrick [36–38] in 1927–1932, describes the transmission of infectious diseases between susceptible
and infective individuals and provides the basic framework for almost all later epidemic models, includ-
ing stochastic epidemic models using Monte Carlo simulations or individual-based models (IBM). In this
paper, by defining the rules of contacts between susceptible and infective individuals, the rules of trans-
mission of diseases through these contacts, and the time of transmission during contacts, we provide
detailed comparisons between the classical deterministic SIR model and the IBM stochastic simulations
of the model. More specifically, for the purpose of numerical and stochastic simulations we distinguish
two types of transmission processes: that initiated by susceptible individuals and that driven by infective
individuals. Our analysis and simulations demonstrate that in both cases the IBM converges to the clas-
sical SIR model only in some particular situations. In general, the classical and individual-based SIR mod-
els are significantly different. Our study reveals that the timing of transmission in a contact at the
individual level plays a crucial role in determining the transmission dynamics of an infectious disease
at the population level.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical modeling in epidemiology started with the
pioneering work of Bernoulli [10] in 1760 in which he aimed at
evaluating the effectiveness of inoculation against smallpox. The
model of Bernoulli described the susceptible and recovered classes
and already incorporated the chronological age of individuals (see
[20,21]). The susceptible-infectious-recovered (SIR) model as we
know today takes its origin in the fundamental works on ‘‘a priori
pathometry’’ by Ross [51] and Ross and Hudson [52,53] in 1916–
1917 in which a system of ordinary differential equations was used
to describe the transmission of infectious diseases between sus-
ceptible and infected individuals. In 1927–1933, Kermack and
McKendrick [36–38] extended Ross’s ideas and model, proposed
the cross quadratic term bIS linking the sizes of the susceptible
(S) and infective (I) populations from a probabilistic analysis of
the microscopic interactions between infective agents and/or
vectors and hosts in the dynamics of contacts, and established
the threshold theorem. Since then epidemic models have been
extensively developed in several directions, we refer to the mono-
graphs of Bailey [7], Bartlett [9], Muench [45], Anderson and May
[4], Busenberg and Cooke [13], Capasso [14], Murray [46], Daley
and Gani [16], Mode and Sleeman [47], Brauer and Castillo-Chavez
[11], Diekmann and Heesterbeek [19], Thieme [59], and Keeling
and Rohani [35] on these topics.

In order to focus on the dynamical properties of an infectious
disease itself, here we neglect the demography, namely the birth
and death processes, and the immigration/emigration process.
The classical SIR model takes the following form [4]:

S0 ¼ �b SI
N

I0 ¼ b SI
N � gRI

R0 ¼ gRI;

8><>: ð1:1Þ

where SðtÞ is the number of susceptible individuals, IðtÞ is the num-
ber of infective individuals (i.e. individuals who are infected and
capable to transmit the disease), RðtÞ is the number of recovered
individuals at time t, respectively, and N is the total number of
individuals in the population. The parameter b > 0 is called the
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infection rate (i.e. the contact rate times the probability of infection,
see [59]), and gR > 0 is the recovery rate (i.e. the rate at which infec-
tive individuals recover). The SIR model has been used successfully
to describe several epidemics (see for example [15]), but as far as
we understand, this rate of infection is only derived empirically,
namely by comparison of the model with real data.

When one neglects the demography, an epidemic model be-
comes a combination of the following aspects:

(a) a rule of contacts between individuals;
(b) a rule of transmission per contact;
(c) a rule of development of the infection at the level of

individuals.

Since the development of an infection is not instantaneous, rule
(c) can be described by introducing a latency between the trans-
mission of the pathogen and the moment at which an exposed
individual becomes capable to transmit the infection (namely be-
comes infective). This latency can be described by using either an
extra exposed class (when the time of latency follows an exponen-
tial law), which leads to SEIR models, or an age of infection (i.e. the
time since infection), which leads to age-structured models, we re-
fer to [61,60,33,59,41] for details on this topic. In this article, we
will neglect the aspect (c) and focus only on (a) and (b).

In an epidemic of an infectious disease, the graph of contact
plays a crucial role in the transmission of the disease. It is usually
admitted (see [4,30]) that the SIR model (1.1) is derived by using a
‘‘fully mixed’’ population. This means that all individuals have the
same probability to contact with any other individuals in the pop-
ulation. Here we will see that even with a fully mixed population,
the SIR model may fail to reproduce the dynamics of the epidemic.
Actually we will see that more sophisticated models are needed to
understand the dynamical property of an epidemic.

Of course in most epidemics, the contacts between individu-
als will arise only locally in space. Therefore more general
graphs of contact are needed, we refer to [26,48,24,25,43,8]
(and references therein) for more information on this subject.
Actually the space can be incorporated by using different ap-
proaches: it can be regarded as a continuous domain (see
[50,54,55]) or again as a network (see [6] and references there-
in). In this article, we will neglect the space in order to focus on
the classical SIR model.

Stochastic individual-based models (IBM) have been exten-
sively used to investigate threshold conditions and to evaluate
the efficacy of disease control measures in which each host is
viewed as an individual agent whose status changes based on
probabilistic events occurring over time. IBM are particularly suit-
able to describe the transmission of infectious diseases in a small
population in which the individual behavior plays an important
role in the spread of diseases [18,29,40,34]. Studies have been per-
formed to compare different types of IBM. For instance, [57] com-
pared two different types of individual-based models, one assumes
random mixing without repetition of contacts and the other as-
sumes that the same contacts repeat day-by-day. They tested
and compared how the total size of an outbreak differs between
these model types depending on the key parameters such as trans-
mission probability, number of contacts per day, duration of the
infectious period, different levels of clustering and varying propor-
tions of repetitive contacts. If the number of contacts per day is
high or if the per-contact transmission probability is high, as seen
in typical childhood diseases such as measles, they showed that
random mixing models provide acceptable estimates of the total
outbreak size. If the number of daily contacts or the transmission
probability is low, such as the infection of meticillin-resistant
Staphylococcus aureus (MRSA), they found that particular consider-
ation should be given to the actual structure of potentially
contagious contacts when designing the model. See also the com-
parison of a stochastic agent-based model and a structured meta-
population stochastic model for the progression of a baseline
pandemic event in Italy by Ajelli et al. [1].

We should mention that the Gillespie algorithm or Doob-Gilles-
pie algorithm (see [22,23,27,28]) provides a method to run random
Monte-Carlo simulations associated to ordinary differential equa-
tions (see [5,39]). This method was successfully used for chemical
or biochemical systems of reactions. In epidemics, we will see in
this article that changing the moment of pathogen’s transmission
from the beginning to the end of contact may influence the dynam-
ical property of the equations.

The main issue to be addressed in this article is the comparison
between the classical deterministic SIR model and its computer
stochastic versions. The stochastic models will be derived by using
Monte Carlo simulations or IBM. The increase in behavioral details
provided by IBM, however, leads to much greater computational
intensity and much greater difficulty in analyzing the significance
of parameters. Some comparisons between deterministic models
and IBM have been performed by Pascual and Levin [49] (in the
context of predator–prey), D’Agata et al. [17] (in the context of epi-
demics), Hinow et al. [32] (in the context of cell population dynam-
ics), and Sharkey [56] (in the context of epidemics in networks).
But as we will see, even with rather simple rules (a) and (b), the
comparison between the SIR model (1.1) and the IBM derived from
these stochastic rules (at the individual level) is not clear in gen-
eral. Actually we will see that more general classes of SIR models
are necessary to derive a comparison with the IBM.

The paper is organized as follows. In Section 2 we make some
assumptions about the rules of contacts between susceptible and
infective individuals, the rules of transmission of diseases through
these contacts, and the time of transmission during contacts. In
Section 3 we analyze the transmission driven only by susceptible
individuals and compare the numerical simulations between the
classical SIR model and the IBM. In Section 4, the transmission dri-
ven only by infective individuals is modeled and analyzed. Our
analysis and simulations demonstrate that in both cases, the IBM
converges to the classical SIR model only in some particular situa-
tions. In general, the classical SIR model and the IBM are signifi-
cantly different. A brief discussion is given in Section 5.

2. Rules of contacts and transmission

In this section we present the stochastic process describing con-
tacts between individuals. This process will lead to the construc-
tion of a simple deterministic model. The contacts are supposed
to be arbitrarily given at an initial time, and in order to describe
the evolution of the contacts with time, we will use the following
rules.

We would like to point out that the evolution of the contact net-
work is indeed dynamic since it changes with time. We define the
rules of contacts, the rules of transmission, and the time of trans-
mission for the purpose of numerical and stochastic simulations
of the SIR model. These rules may not affect the outcome of an epi-
demic from a deterministic modeling point of view. However, they
are important in numerical and stochastic simulations and produce
dramatically different results.

2.1. Rules of contacts

Firstly, we make some assumptions on the rules of contacts.

(a) At any time each individual has initiated exactly one contact
with an individual in the population (possibly himself).

(b) The duration of a contact follows an exponential law and the
average duration of a contact is TC > 0.



Fig. 1. Diagram of the contact network at a given time t P 0. The first S-individual
(S1) only contacts with himself. The second S-individual (S2) chooses to contact with
a third S-individual (S3) who in turn contacts with an I-individual (I5). I5 contacts
another I-individual (I4) who in turn chooses S2 for contact.
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(c) At the end of a given contact the initiating individual
randomly chooses a new individual within the population
and the duration for this contact is determined.

The rules of contacts are chosen to be as simple as possible,
since our goal is to obtain a comparison between an epidemic
model using the above rules for contacts and the usual SI model.
The duration of a given contact is the time from when the contact
begins until the individual who initiated the contact concludes it
and begins a new contact. Therefore the average contact duration
TC > 0 can be estimated in practice. Indeed, mC ¼ 1=TC is the aver-
age number of contacts per unit of time.

In real epidemics, participants may have no choice on contact.
Here the terminology ‘‘choose’’ or ‘‘initiate’’ means an individual
of one type (either S or I type) is tracked through a time course
of paired-contact with other individuals. In the following we will
consider the extreme case where one follows either only the
susceptible-individuals (abbr. S-individuals) or only the infec-
tious-individuals (abbr. I-individuals). As we will see the model
outcomes can be very different if the probability of transmission
depends on the class of individuals that is tracked.

To further clarify the terminology, the above assumption also
means that the graph of contact (in which the nodes or vertices
are the individuals) is oriented. Moreover, we assume that each
individual has one and only one outward arrow (possibly directed
to himself) and at the end of a given oriented contact the new
partner is chosen randomly (within the population). Oriented
graphs have been used previously in the literature to describe
epidemics (see for example [44]). The definition of ‘‘choose’’ or
‘‘initiate’’ is contextual in the description of the graph (or the
IBM).

In this model, an S-individual may have many contacts directed
to him, in particular many directed contacts from an I-individual
and vice versa. The directed network approach may look at first
more complicated, but it provides an advantage to construct an
associated mathematical model to the epidemic considered (i.e.
to evaluate the contacts between S and I individuals). One may also
observe that similar treatment can be used for disease involving a
criss-cross transmission between two populations (e.g. malaria,
nosocomial infections, etc.). In such a situation, the probability of
transmission may depend on which population is transmitting
the pathogen. But the mathematical model associated with the
problem will remain similar to the ones constructed here. There-
fore, here it makes sense to look at the population divided into
two subpopulations S and I.

In order to describe the epidemics, we will classify the popula-
tion into the class S of susceptible individuals (i.e. capable to be-
come infected by contact) and the class I of infective individuals
(i.e. capable to transmit the disease by contact). The transmission
can only occur at the end of a contact between an S-individual
and an I-individual. Moreover, we use the following rules of trans-
mission. In order to take into account new infections, it will be
appropriate to distinguish two processes:

(i) an S-individual chooses an I-individual for a contact;
(ii) an I-individual chooses an S-individual for a contact.

Depending on the disease, there may be an asymmetry between
these processes and an important difference in their likelihood of
leading to disease transmission. For example, if the infection is
severe enough to immobilize infective individuals, then the trans-
mission can only take place when susceptible individuals initiate
contacts with infective individuals. On the other hand, for the
common seasonal diseases, such as influenza, infected individuals
continue to initiate contacts and they are very likely to play an
important role in the transmission of the diseases.
As a first attempt to model this process, we first distinguish the
number SC of S-individuals who choose a contact with an infective
individual, the number SF of S-individuals who choose a contact
with a susceptible individual, the number IC of I-individuals who
choose a contact with a susceptible individual, and the number IF

of I-individuals who choose a contact with an infective individual.
A diagram of the contact network is given in Fig. 1. The arrows are
pointing the individuals who are chosen for the contact.
T1; T2; . . . ; T5 are the times remaining to the end of the contact
for each individual. For this graph of contacts, Sc; Sf ; Ic; If

� �
¼

ð1;2;1;1Þ. The individuals in Sc and Ic can be spotted by finding
the arrows between susceptible and infective nodes.

Under the Rules of contacts, we obtain the following model

S0C ¼ mC
I

SþI SC þ SFð Þ � mCSC

S0F ¼ mC
S

SþI SC þ SFð Þ � mCSF

I0C ¼ mC
S

SþI IC þ IFð Þ � mCIC

I0F ¼ mC
I

SþI IC þ IFð Þ � mCIF

8>>>><>>>>: ð2:1Þ

with

S ¼ SC þ SF and I ¼ IC þ IF :

In system (2.1), the fraction SðtÞ
SðtÞþIðtÞ (resp. IðtÞ

SðtÞþIðtÞ) is the probability

(in a ‘‘well mixed’’ population) that an individual initiates a new
contact (resp. stops a contact) to a susceptible individual (resp.
an infective) at a given time t. The quantity mCSCðtÞ (resp.
mCSF ; mCIC ; mCIF) is the flux of individuals interrupting a contact at
time t in the class of SC (resp. SF ; IC ; IF). Thus, in the absence of
new infections, the rate that susceptible individuals forming new
contacts is mC SC þ SFð Þ. So the rate at which susceptible individuals
form new contacts with infective individuals is mC

I
SþI SC þ SFð Þ, the

flux into SC . Similarly, the flux into SF is mC
S

SþI SC þ SFð Þ. The equa-

tions for I0C and I0F can be explained similarly.
The following lemma is readily proved.

Lemma 2.1. For solutions of system (2.1), SðtÞ and IðtÞ are constant
and

SCðtÞ; SFðtÞ; ICðtÞ; IFðtÞð Þ ! SI
Sþ I

;
S2

Sþ I
;

SI
Sþ I

;
I2

Sþ I

 !
as t ! þ1;

where the convergence is exponential.

The comparison between the ODE model (2.1) and Monte Carlo
simulations of the model is given in Fig. 2. Here a Monte Carlo sim-
ulation means we run a stochastic computer program where we
make a simulation of the above assumptions for N individuals. In
this figure we fix mc ¼ 1; I ¼ N=3, S ¼ 2N=3; Ic ¼ 0 and Sc ¼ S at time
t ¼ 0. Moreover, the number of individuals N varied from N ¼ 200
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Fig. 2. The comparison between solutions of the ordinary differential equation model (2.1) and Monte Carlo simulations of the model. The solutions of the stochastic model
converge to the equilibrium solutions of the ODE model. Here mc ¼ 1; I ¼ N=3; S ¼ 2N=3; Ic ¼ 0 and Sc ¼ S at time t ¼ 0. (a) N ¼ 200 and (b) N ¼ 2000.
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in (a) up to N ¼ 2000 in (b). Therefore, when N increases the solu-
tions ScðtÞ and IcðtÞ of the stochastic simulations converge to the
trajectories of the ordinary differential equation model (2.1).

We now specify the rules for disease transmission.
Fig. 3. Time of transmission. (a) Transmission occurs at the beginning of a contact
as assumed in the classical SIR model and (b) transmission occurs at the end of a
contact as assumed in the new SIR model. In general, transmission can occur at any
moment in between.
2.2. Rules of transmission

We make assumptions about the rules of transmission: During a
given contact between an S-individual and an I-individual, the
probability of transmission is

(a) pS 2 0;1½ � if the contact was initiated by an S-individual;
(b) pI 2 0;1½ � if the contact was initiated by an I-individual.

We would like to make some remarks about pS and pI . It is
important to understand that the word ‘‘choosing’’ here serves only
to construct the diagram of contact. For most cases (i.e. for non
vector-borne diseases) there is no reason to assume that the trans-
mission is oriented. Therefore, for non vector-borne diseases it will
be natural to assume that pS ¼ pI . Nevertheless in order to count
the number of contacts between S- and I-individuals it will be con-
venient to keep the word ‘‘choosing’’. For vector-borne or sexually
transmitted diseases, pS and pI might be different. For example, it
has been reported that [31] the man-to-woman transmission rate
of HIV/AIDS is different from the woman-to-man transmission
rate. Also, in hospitals the contamination rate of health care work-
ers and the colonization rate of patients for nosocomial infection
are usually different. Thus, for the sake of generality we assume
that pS and pI are different.

The next two sections are divided according to the following
special cases:

(i) pS > 0 and pI ¼ 0 (which will be called transmission driven
by the susceptibles);

(ii) pS ¼ 0 and pI > 0 (which will be called transmission driven
by infectives).

One may observe that case (i) actually corresponds to the fact
that the contact initiated by I-individuals plays no role in the trans-
mission. Therefore assumption (i) is also equivalent to supposing
that only S-individuals are initiating contacts. Case (ii) is similar
and this assumption is also equivalent to assuming that only I-indi-
viduals are initiating contacts. As we will see, even if these two
cases look symmetric at first, these two scenarios are fairly differ-
ent in terms of mathematical models. We also would like to note
that pS and pI are used as the probabilities for all contacts during
a simulation.

2.3. Time of transmission

Finally we would like to address the issue on the time of trans-
mission during a given contact. For a given contact between a sus-
ceptible individual and an infective individual, the transmission of
the disease occurs (with a probability pS or pI) only at one of the
following two moments:

(c) the beginning of the contact;
(d) the end of the contact.

This is illustrated in Fig. 3. In subsections 3.4 and 4.4 (on numer-
ical simulations), we will examine the following two ‘‘extreme’’
cases. With the notations of Fig. 3, case ðcÞ describes the situation
where t� ¼ t1 while case ðdÞ corresponds to the situation where
t� ¼ t2 . Both cases may look very similar at first, in reality they
are not. As we will see in Sections 3.4 and 4.4, case ðcÞ corresponds
to the classical SIR model (1.1) while case ðdÞ describes new classes
of SIR models which will be presented in Sections 3 and 4.

3. Transmission driven only by S-individuals

Under the Rules of contacts and Rules of transmission, we fur-
ther assume that

pS > 0 and pI ¼ 0:
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In addition we assume that the transmission occurs at the end of
the contact period (i.e. Time of transmission (d) is satisfied). By
combining these assumptions and using model (2.1), we obtain
the following epidemic model

S0C ¼ mC
I

SþI SC þ SF � pSSCð Þ � SC

� �
S0F ¼ mC

S
SþI SC þ SF � pSSCð Þ � SF

� �
I0 ¼ mCpSSC ;

8>>><>>>: ð3:1Þ

which yields

S0 ¼ �mCpSSC

I0 ¼ mCpSSC :

The terms in Eqs. (3.1) involving pS come from the fact that the rates
at which new contacts of susceptible individuals and infective indi-
viduals have changed due to the inclusion of disease transmission in
( 3.1). The flux of S-individuals ending a contact at time t and in con-
tact with an infective individual is mCSC . Therefore the flux of S-indi-
viduals becoming infected must be pSmCSC . The rate at which
susceptible ones are forming new contacts is now mC SC þ SF � pSSCð Þ.

3.1. Model with recovery

We consider the case that the population is divided into three
groups: susceptible S, infective I, and recovered R. We also assume
that only susceptible individuals initiate the contact.

Assumption 3.1. The duration of an infection follows an expo-
nential law and the average duration of an infection is TR > 0.

Under the above assumption, the rate at which I-individuals are
recovering is gR :¼ 1

TR
and we obtain the following model

S0C ¼ mC
I
N SF þ 1� pSð ÞSC½ � � SC
� �

S0F ¼ mC
SþR

N SF þ ð1� pSÞSC½ � � SF
� �

I0 ¼ mCpSSC � gRI

R0 ¼ gRI;

8>>><>>>: ð3:2Þ

where N ¼ Sþ I þ R. The fluxes between the compartments of the
model (3.2 ) are described in Fig. 4.

The parameters and state variables of the model are listed in
Table 1.

3.2. Asymptotic behavior

Set s ¼ S=N; i ¼ I=N; r ¼ R=N; sc ¼ Sc=N, and sf :¼ Sf =N. Then
model (3.2) is equivalent to

s0c ¼ mc i s� pSscð Þ � scf g
s0f ¼ mc ðsþ rÞ s� pSscð Þ � sf

� �
i0 ¼ mcpSsc � gRi

r0 ¼ gRi:

8>>>><>>>>: ð3:3Þ
Fig. 4. The flux diagram of model (3.2).
By summing up the first two equations in system (3.3) we obtain
the following model

s0 ¼ �mcpSsc

i0 ¼ mcpSsc � gRi

r0 ¼ gRi

s0c ¼ mc i s� pSscð Þ � scf g

8>>><>>>: ð3:4Þ

with sð0ÞP 0; ið0ÞP 0; rð0ÞP 0 and

sð0Þ þ ið0Þ þ rð0Þ ¼ 1 and scð0Þ 2 0; sð0Þ½ �: ð3:5Þ

Now consider �sc ¼ sc
s which is the probability (or the fraction) of S-

individuals in contact with an I-individual within the population
of S-individuals. By using the first equation of systems (3.3) and
(3.4), we have

�s0c ¼
s0c
s
� sc

s
s0

s
¼ mc

1
s

i s� pSscð Þ � scf g þ sc

s
mcpSsc

s
¼ mc i 1� pS�scð Þ � �sc þ pS�s

2
c

� �
:

Hence

�s0c ¼ mc i� �scð Þ 1� pS�scð Þ: ð3:6Þ

So we obtain the following system

s0 ¼ �mcpS�scs

i0 ¼ mcpS�scs� gRi

r0 ¼ gRi
�s0c ¼ mc i� �scð Þ 1� pS�scð Þ;

8>>><>>>: ð3:7Þ

where the initial values satisfy

sð0Þ ¼ s0 P 0; ið0Þ ¼ i0 P 0; rð0Þ ¼ r0 P 0 and �scð0Þ ¼ �sc0

2 0;1½ Þ

with s0 þ i0 þ r0 ¼ 1. We can also see that

sðtÞ þ iðtÞ þ rðtÞ ¼ 1; 8t P 0: ð3:8Þ

Moreover, we have the following inequality

�s0cðtÞ 6 mcð1� �scðtÞÞð1� pS�scðtÞÞ

whenever �scðtÞ 6 1. Hence we deduce that

�scðtÞ 2 ð0;1Þ; 8t > 0: ð3:9Þ

The last tool to complete the description of the asymptotic behavior
is the following equality

d
dt

sþ i� gR

pSmc
½lnð1� pS�scÞ þ lnðsÞ�

� 	
¼ 0: ð3:10Þ

Remark 3.2. The model does not coincide with the classical SIR
model. Indeed, if gR ¼ 0 then we have sþ i ¼ 1 (for both models), it
is clear that the equations

�s0c ¼ mc i� �scð Þ 1� pS�scð Þ

and

i0 ¼ bð1� iÞi

do not coincide. If gR > 0, Eq. (3.10) provides a formula for �sc which
is not proportional to i.

As for the classical SIR model, equality (3.10) is the main tool to
determine the limits of the s and r components in model (3.7). The
equilibria of system (3.7) satisfy

s� þ r� ¼ 1 and i� ¼ �s�c ¼ 0



Table 1
List of parameters and variables of the model.

Symbol Interpretation

mC Rate of contact
gR Rate of recovery
TC ¼ 1=mC Average duration of contacts
TR ¼ 1=gR Average duration of infection
pS Probability of infection at the end of a contact whenever a

susceptible chooses an infective
pI Probability of infection at the end of a contact whenever an

infective chooses a susceptible
SC Number of susceptibles in contact with an infective
SF Number of susceptibles contact free with an infective
IC Number of infectives in contact with a susceptible
IF Number of infectives contact free with a susceptible
S :¼ SC þ SF Number of susceptibles
I :¼ IC þ IF Number of infectives
R Number of recovereds
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By using the previous observations (3.8)–(3.10), we obtain the fol-
lowing proposition.

Proposition 3.3. Assume that pS 2 0;1ð Þ; mc > 0;gR > 0, and further
suppose that

s0 > 0 and i0 > 0:

Then all solutions of model (3.7) and their limits satisfy the following
property for initial values with i0 > 0

lim
t!þ1

sðtÞ
iðtÞ
rðtÞ
�scðtÞ

0BBB@
1CCCA ¼

s�

0
r�

0

0BBB@
1CCCA

with the equilibrium satisfying

s� þ r� ¼ 1

and s� being the unique solution in 0; gR
pSmc

� i
of the equation

s� � gR

pSmc
lnðs�Þ ¼ s0 þ i0 �

gR

pSmc
½lnð1� pS�sc0Þ þ lnðs0Þ�

� 	
: ð3:11Þ
Proof. Since t ! sðtÞ is decreasing and t ! rðtÞ is increasing, and
both functions are bounded by 1, we deduce that both functions
converge (when t goes to þ1), respectively, to s� P 0 and r� P 0.
Moreover, since sþ iþ r ¼ 1 we deduce that t ! iðtÞ also converges
(when t goes to þ1) to some i� P 0. Now by using the r-equation
one deduces that i� ¼ 0 (otherwise rðtÞ would be unbounded).
Moreover, by using (3.10) one deduces that s� > 0 and satisfies

(3.11). Now it remains to prove that s� belongs to 0; gR
pSmc

� i
. Assume

that

s� >
gR

pSmc
: ð3:12Þ

Without loss of generality we assume that i0 > 0 and �sc0 > 0. Other-
wise if �sc0 ¼ 0, since i0 > 0 and

�s0c ¼ mc i� �scð Þ 1� pS�scð Þ;

replacing ði0;�sc0Þ by any iðtÞ;�scðtÞð Þ for t > 0 we obtain the desired
property.

Next by using the i-equation in (3.7) we obtain

i0 P gR �sc � ið Þ;
�s0c ¼ mc i� �scð Þ 1� pS�scð Þ:

(
We deduce that
ðiðtÞ;�scðtÞÞP xðtÞ; yðtÞð Þ; 8t P 0;

where ðx; yÞ is the solution of the monotone system (see [58])

x0 ¼ gR y� xð Þ
y0 ¼ mc x� yð Þ 1� pSyð Þ

�
ð3:13Þ

with

xð0Þ ¼ i0 > 0 and yð0Þ ¼ �sc0 > 0:

Set

e ¼min i0;�sc0ð Þ:

We conclude that

lim
t!þ1

iðtÞP e and lim
t!þ1

�scðtÞP e;

since e; eð Þ is an equilibrium of system (3.13), we obtain a contradic-
tion with the fact that

lim
t!þ1

iðtÞ ¼ lim
t!þ1

�scðtÞ ¼ 0:

This completes the proof. h
3.3. Comparison with the classical SIR model

Let bS > 0 and gR > 0 be fixed. Set mc ¼ 1
e ; pS ¼ bSe, where

e 2 0; b�1
S

� 

is a small parameter. By using this rescaling, system

(3.7) becomes the following system parameterized by e:

s0e ¼ �bS�scese

i0e ¼ bS�scese � gRie
r0e ¼ gRie
�s0ce ¼ 1

e ie � �sceð Þ 1� bSe�sceð Þ

8>>><>>>: ð3:14Þ

with

seð0Þ ¼ s0 > 0; ieð0Þ ¼ i0 > 0; rð0Þ ¼ r0 P 0 and �sccð0Þ ¼ �sc0

2 0;1½ Þ:

Indeed when e goes to 0 we obtain a singular perturbation problem.
The main question to be addressed in this section is the conver-

gence of the first three components of the system.
Now consider the classical SIR model

s0 ¼ bSis

i0 ¼ bSis� gRi

r0 ¼ gRi

8><>: ð3:15Þ

with

sð0Þ ¼ s0 > 0; ið0Þ ¼ i0 > 0; rð0Þ ¼ r0 P 0:

Recall now the classical result of the SIR model (see [30]). By using
the fact that

d
dt

sþ i� gR

bS
lnðsÞ

� �
¼ 0 ð3:16Þ

and the same argument as above one has the following result.

Proposition 3.4. Assume that

s0 > 0 and i0 > 0;

then

lim
t!þ1

sðtÞ
iðtÞ
rðtÞ

0B@
1CA ¼ s�

0
r�

0B@
1CA;

where s� is the unique solution in 0; gR
bS

� i
of the equation
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s� � gR

bS
lnðs�Þ ¼ s0 þ i0 �

gR

bS
lnðs0Þ�

� 	
: ð3:17Þ

The main result of this section is the following theorem on the
convergence of the solution.
Theorem 3.5 (Uniform convergence in time). Under the above
assumptions, if

seð0Þ ¼ sð0Þ > 0; ieð0Þ ¼ ið0Þ > 0; reðtÞ ¼ rð0ÞP 0;

then

seðtÞ
ieðtÞ
reðtÞ

0B@
1CA! sðtÞ

iðtÞ
rðtÞ

0B@
1CA

as e! 0 uniformly with respect to t in 0;þ1½ Þ.
In other word, for each constant d > 0, we can find be ¼ be dð Þ > 0,

such that

seðtÞ � sðtÞj j 6 d; ieðtÞ � iðtÞj j 6 d and reðtÞ � rðtÞj j 6 d

for each e 2 0; be� 

and each t P 0.

In order to prove this result, we start with a convergence result
for a finite time.

Lemma 3.6. Let s > 0. Then

seðtÞ
ieðtÞ
reðtÞ

0B@
1CA! sðtÞ

iðtÞ
rðtÞ

0B@
1CA

as e! 0 uniformly with respect to t in 0; s½ �.
Proof. Let s > 0 be fixed. It is clear the

ieðtÞ þ seðtÞ 6 1; 8t 2 0; s½ �;

and by construction we have

0 6 secðtÞ 6 1 and 0 6 iecðtÞ 6 1:

We also have

s0e ¼ �bS�scese

i0e ¼ bS�scese � gRie
r0e ¼ gRie:

Thus

i0eðtÞ


 

þ s0eðtÞ



 

þ r0eðtÞ


 

 6 2 bS þ gRð Þ; 8t 2 0; s½ �:

Therefore, by the Arzela–Ascoli theorem, for each sequence en ! 0
we find a subsequence (denoted with the same index) such that

senðtÞ ! sðtÞ; ien ðtÞ ! iðtÞ and ren ðtÞ ! rðtÞ as n! þ1;

uniformly with respect to t in 0; s½ �. Moreover,

�s0ce ¼
1
e

ie � �sceð Þ 1� bSe�sceð Þ:

¼ 1
e

ie 1� bSe�sceð Þ � �sce 1� bSe�sceð Þ½ �;

so

�s0ce ¼ �
1
e

�sce þ
1
e

ie � bSe �sce � �s2
ce

� �� 

:

Therefore,
�secðtÞ ¼ e�
t
e�sc0 þ

Z t

0

1
e

e�
ðt�lÞ

e ieðlÞdl�
Z t

0
e�
ðt�lÞ

e bS �sceðlÞ � �s2
ceðlÞ

� 

dl:

SinceZ t

0

1
en

e�
1
en
ðt�lÞien ðlÞdl! iðtÞ as n! þ1 in L1 0; sð Þ

and

e�
t
en�sc0 �

Z t

0
e�

1
en
ðt�lÞbS �sceðlÞ � �s2

ceðlÞ
� 


dl! 0 as n! 0 in L1 0; sð Þ;

the result follows. h

Proof of Theorem 3.5. The proof is to combine the (monotone)
convergence of t ! sðtÞ and t ! rðtÞ, Lemma 3.6, and the conver-
gence of the equilibrium as e! 0 (i.e. formula (3.11) and formula
(3.17)). h

3.4. Numerical simulations

In order to compare these models numerically we consider
some extreme cases. The codes used for the numerical simulations
can be downloaded at http://www.math.u-bordeaux1.fr/pmagal/
SIR/SIR.htm.

Actually the IBM are rather delicate to run since some parame-
ters and terms need to be more specific. Here we specify the rules
of transmission between an S-individual and an I-individual.

Assumption 3.7. We further assume that
(a) (New SIR Model) For a given pair of ðS; IÞ-individuals in con-
tact, if the individual initiating the contact is an S-individual,
then the transmission only occurs at the end of the contact
with the probability pS.

(b) (Classical SIR Model) For a given pair of ðS; IÞ-individuals in
contact, if the individual initiating the contact is an S-indi-
vidual, then the transmission only occurs at the beginning
of the contact with the probability pS.

We will use Assumption 3.7 (a) to run an IBM (called IBM11

here) which corresponds to model (3.2), while Assumption 3.7
(b) will be used to run an IBM (called IBM21 here) which corre-
sponds to the classical SIR model (1.1). There are four cases in total
which are summarized in Table 2. The two other cases will be stud-
ied in subsection 4.4. As we will see, replacing one model by the
other might lead to a large bias in the prediction. Therefore one
must be very careful in using IBM to simulate an epidemic.

3.4.1. Simulations with a fully random graph of connection at time
t ¼ 0

In Fig. 5 we compare the new SIR model (3.2) and the classical
SIR model (1.1) with b ¼ bS ¼ pS=TC fixed. The initial value
SC ¼ SI=N at time t ¼ 0, therefore the contacts are assumed to be
already stabilized. We observe large bias in comparing both mod-
els. The deviation is confirmed in the numerical simulations of the
IBM in Fig. 5. As predicted by Theorem 3.5, we first observe numer-
ically the convergence of solutions of the new SIR model (3.2) to
the solutions of the classical SIR model (1.1) when the average time
of contact TC goes to zero. Note that the curve of RðtÞ, the number
of recovered individuals, is influenced by the parameter TC . Let R1
be the limit of RðtÞ when t goes to þ1. Recall that R1 is the total
number of cases produced by an epidemic. We can see that R1 is
influenced by the parameter TC . In Fig. 5(a) the total numbers of
cases of the new SIR model (3.2) and the classical SIR model (1.1)
are fairly different. Here S ¼ 0:9; I ¼ 0:1; Sc ¼ SI=ðSþ I þ RÞ at time

http://www.math.u-bordeaux1.fr/pmagal/SIR/SIR.htm
http://www.math.u-bordeaux1.fr/pmagal/SIR/SIR.htm


Table 2
List of four IBMs.

Transmission driven by S Transmission driven by I

End of contact IBM11(First new SIR) IBM12 (Second new SIR)
Beginning of contact IBM21 (Classical SIR) IBM22 (Classical SIR)
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t ¼ 0. TR ¼ 5 and bS ¼ 0:1 were fixed. In (a) (resp. (b)), TC ¼ 10 and
pS ¼ bSTC ¼ 1 (resp. TC ¼ 1 and pS ¼ bSTC ¼ 0:1) were fixed.
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Fig. 5. Comparison of the new SIR model (3.2) (dotted curves) and classical SIR model
t ¼ 0. TR ¼ 5 and bS ¼ 0:1 were fixed. (a) TC ¼ 10 and pS ¼ bSTC ¼ 1. (b) TC ¼ 1 and pS ¼ b
of the classical SIR model.
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Fig. 6. Comparison of simulations of the IBM (solid curves), the new SIR model
b ¼ bS; I ¼ ð1=10ÞN; S ¼ ð9=10ÞN with Sc ¼ SI=ðSþ I þ RÞ at time t ¼ 0. TC ¼ 5; TR ¼ 5; bS ¼
the IBM11 was run to simulate the transmission at the end of the contact for N ¼ 100
transmission at the beginning of the contact for N ¼ 100 and N ¼ 10;000, respectively.
Comparisons of the IBM, the new SIR model (3.2), and the
classical SIR model (1.1) are presented in Fig. 6. Here
I ¼ ð1=10ÞN; S ¼ ð9=10ÞN, with Sc ¼ SI=ðSþ I þ RÞ at time t ¼ 0.
TC ¼ 5; TR ¼ 5; bS ¼ 0:2 and pS ¼ bSTC ¼ 1 were fixed.
mc ¼ 1=TC ¼ 1=5; mR ¼ 1=TR ¼ 1=5. N (the total number of individu-
als in the IBM) varies from N ¼ 100 in (a) and (c) to N ¼ 10;000 in
(b) and (d). In (a) (resp. (b)) the IBM11 was run to simulate the
transmission at the end of the contact for N ¼ 100 (resp.
N ¼ 10;000). In (c) (resp. (d)) the IBM21 was run to simulate the
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(1.1) (dashed curves) with b ¼ bS ¼ pS=TC ; S ¼ 0:9; I ¼ 0:1; Sc ¼ SI=ðSþ I þ RÞ at time

STC ¼ 0:1. In both cases the solutions of the new SIR model converge to the solutions
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(3.2) (dotted curves), and the classical SIR model (1.1) (dashed curves) with
0:2 and pS ¼ bSTC ¼ 1 were fixed. mc ¼ 1=TC ¼ 1=5; mR ¼ 1=TR ¼ 1=5. In (a) and (b)
and N ¼ 10;000, respectively. In (c) and (d) the IBM21 was run to simulate the



34 P. Magal, S. Ruan / Mathematical Biosciences 250 (2014) 26–40
transmission at the beginning of the contact for N ¼ 100 (resp.
N ¼ 10;000).

In order to illustrate the random fluctuations occurring in IBM11

and IBM21, we provide more numerical simulations of these two
models with 50 runs. For the sake of simplicity, we only plot the
simulations of the recovered class in see Fig. 7. In Fig. 7(a) (resp.
(b)) the IBM11 was run 50 times to simulate the transmission at
the end of the contact for N ¼ 100 (resp. N ¼ 10;000). In Fig. 7(c)
(resp. (d)) the IBM21 was run 50 times to simulate the transmission
at the beginning of the contact for N ¼ 100 (resp. N ¼ 10;000). All
parameter values are the same as in Fig. 6.
3.4.2. Simulations with a non-fully random graph of connection at
time t ¼ 0

In this subsection we run some simulations assuming that
SC ¼ S at time t ¼ 0. This means that all S-individuals choose ran-
domly a contact with an I-individual at t ¼ 0, and for t > 0 all indi-
viduals choose randomly a contact within the all population (i.e.
including the S; I and R individuals). This also means that the con-
tacts are not yet stabilized at time t ¼ 0.

In Fig. 8 we observe a large deviation between the new SIR
model (3.2) and the classical SIR model (1.1), but the former still
predicts the IBM11 when the number of individuals increases; that
is, the solutions of the IBM11 converge to the equilibrium solutions
of the new SIR model (3.2) when the number of individuals in-
creases. In both (a) and (b) the classical SIR model (1.1) (with
b ¼ bS :¼ pS=TC) fails to predict the total number of cases produced
by IBM11 (even when TC ¼ 0:1). The classical SIR model (1.1) can-
not predict this case, because the contacts are not yet stabilized,
and it takes count of the evolution of contacts between individuals.
Here S ¼ 0:9 , I ¼ 0:1; Sc ¼ S at time t ¼ 0. TR ¼ 5 and bS ¼ 0:1 are
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Fig. 7. Simulations of the recovered class in the IMB. In (a) and (b) the IBM11 was run
N ¼ 10;000, respectively. In (c) and (d) the IBM21 was run 50 times to simulate the trans
parameters are the same as in Fig. 6.
fixed. In (a) (resp. (b)) TC ¼ 10 and pS ¼ bSTC ¼ 1 (resp. TC ¼ 0:1
and pS ¼ bSTC ¼ 0:1) are fixed. In (a) and (b), the total number of
individuals is fixed at N ¼ 100 and N ¼ 1000 respectively for the
IBM11. Of course by taking TC smaller enough and pS ¼ bSTC , the to-
tal number of cases will finally be predicted by the classical SIR
model. This question has to be explored further in order to derive
some practical evaluation of the time of contacts and the probabil-
ity of transmission in order to use the classical SIR model.

4. Transmission driven only by I-individuals

4.1. Gain and loss of contacts

Under the Rules of contacts and Rules of transmission, we
assume in addition that

pS ¼ 0 and pI > 0:

This is also equivalent to assuming that only the I-individuals are
building some contacts with other individuals chosen randomly in
the population.

We define SnðtÞ as the number of S-individuals that have been
chosen n times for a contact by I-individuals. So each S-individual
in class Sn has been chosen exactly n times for a contact by exactly
n different infective individuals. The total number of S-individuals
is given by

S :¼
Xþ1
n¼0

Sn: ð4:1Þ

The structured diagram of the population in term of contacts is
given in Fig. 9. Recall that each I-individual chooses at most one S
-individual. Since I-individuals are choosing randomly an
0 50 100 150 200
0

20

40

60

80

100

days

%
 o

f R
ec

ov
er

ed

RIBM
11

0 50 100 150 200
0

20

40

60

80

100

days

%
 o

f R
ec

ov
er

ed

RIBM
21

50 times to simulate the transmission at the end of the contact for N ¼ 100 and
mission at the beginning of the contact for N ¼ 100 and N ¼ 10000, respectively. All
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Fig. 8. Comparison of simulations of the IBM11 (solid curves), the new SIR model (3.2) (dotted curves), and the classical SIR model (1.1) (dashed curves) with b ¼ bS and a non-
fully random graph of connection at time t ¼ 0. Here S ¼ 0:9; I ¼ 0:1; Sc ¼ S at time t ¼ 0. TR ¼ 5 and bS ¼ 0:1 are fixed. (a) TC ¼ 10 and pS ¼ bSTC ¼ 1. (b) TC ¼ 0:1 and
pS ¼ bSTC ¼ 0:1.

Fig. 9. Structured diagram of the population in term of contacts indicating the
number of S-individuals chosen for a contact by I-individuals. Sn is the group of S-
individuals which has been chosen n times by I-individuals, where n ¼ 0;1;2; . . .
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individual in the population at the end of each contact, an S-
individual can be chosen from 0 to a number up to the number
of I-individuals. The arrows are pointing to the group of S-individ-
uals which have been chosen for a contact by I-individuals. S0 is the
group of S-individuals which has not been chosen by I-individuals,
and Sn is the group of S-individuals which has been chosen n times
by I-individuals, where n ¼ 1;2; . . .

In order to present the model, we first consider separately the
following two processes for S-individuals: (1) the gain contacts
with I -individuals; (2) the loss contacts with I-individuals. To
describe the processes, we first make the following assumption.

Gain of contacts: Assume that, at any given time t P 0, each
S-individual can gain at most one contact with an I-individual.

Under this assumption the model describing the gains of
contacts is given by the following infinite system of ordinary differ-
ential equations:

S00 ¼ mc S1ðtÞ½ �
S01 ¼ mc 2S2ðtÞ � S1ðtÞ½ �
S02 ¼ mc 3S3ðtÞ � 2S2ðtÞ½ �
. . .

S0n ¼ mc ðnþ 1ÞSnþ1ðtÞ � nSnðtÞ½ �
. . .

8>>>>>>>><>>>>>>>>:
ð4:2Þ

For S-individuals, the total number of contacts with I-individuals is
given by

Pþ1
n¼0nSnðtÞ and its variation is

d
dt

Xþ1
n¼0

nSnðtÞ ¼ mc
IðtÞ
N

Xþ1
n¼1

n Sn�1ðtÞ � SnðtÞð Þ
" #

¼ mc
IðtÞ
N

Xþ1
n¼0

nþ 1ð ÞSnðtÞ �
Xþ1
n¼1

nSnðtÞ
" #

:

Hence

d
dt

Xþ1
n¼0

nSnðtÞ ¼ mc
IðtÞ
N

SðtÞ:

Now we shall remember that the variation of the number of con-
tacts with I-individuals is mcI. Since by assumption I-individuals
are choosing their new contacts randomly, we shall consider the
probability of finding an S-individual within the population (namely
S
N). Therefore the rate at which S-individuals gain contacts with
I-individuals must be mcI S

N. This fully justifies model (4.2).
We also make the following additional assumption.
Loss of contacts: Assume that, at any given time t P 0, each

S-individual can lose at most one contact with an I-individual.
Then the model describing the loss of contacts of S-individuals
with I-individuals is given by the following infinite system of or-
dinary differential equations:

S00 ¼ mc S1ðtÞ½ �
S01 ¼ mc 2S2ðtÞ � S1ðtÞ½ �
S02 ¼ mc 3S3ðtÞ � 2S2ðtÞ½ �
. . .

S0n ¼ mc ðnþ 1ÞSnþ1ðtÞ � nSnðtÞ½ �
. . .

8>>>>>>>><>>>>>>>>:
ð4:3Þ

Some explanations are in order at this level. Consider an S-individ-
ual with n contacts. Let s1; s2; . . . ; sn be the random variable dura-
tions of contact. Then each random variable si follows an
exponential law with mean 1=mc . Moreover, since s1; s2; . . . ; sn are
independent random variables, the probability is

P s1 2 t;þ1½ Þ; s2 2 t;þ1½ Þ; . . . ; sn 2 t;þ1½ Þð Þ
¼ exp �mctð Þ . . . exp �mctð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

¼ exp �nmctð Þ:
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This justifies the term �mV nSnðtÞ in the model, where mV n is the rate
at which Sn-individuals are losing a contact with an I-individual.

4.2. The SIR model

The SIR model can be derived as before. Taking into account the
fact that the flux of an S-individual losing one contact is given by
mc
Pþ1

n¼1nSnðtÞ, the flux of an S-individual becoming infective is gi-
ven by mcpI

Pþ1
n¼1nSnðtÞ, and using Assumption 3.1 again, we obtain

the following SIR model:

S00 ¼ mc 1�pIð ÞS1ðtÞ� IðtÞ
N S0ðtÞ

h i
þgRS1ðtÞ

S01 ¼ mc
IðtÞ
N S0ðtÞþ 1�pIð Þ2S2ðtÞ�S1ðtÞ� IðtÞ

N S1ðtÞ
h i

þgR½2S2ðtÞ�S1ðtÞ�
. . .

S0n ¼ mc
IðtÞ
N Sn�1ðtÞþ 1�pIð Þðnþ1ÞSnþ1ðtÞ�nSnðtÞ� IðtÞ

N SnðtÞ
h i

þgR½ðnþ1ÞSnþ1ðtÞ�nSnðtÞ�
. . .

I0 ¼ mcpI

Xþ1
n¼1

nSnðtÞ�gRIðtÞ

R0 ¼gRIðtÞ:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
ð4:4Þ

The flowchart of model (4.4) is described in Fig. 10.
One may first observe that the SIR model (4.4) contains the

usual term gRI in both the I-equation and the R-equation. This term
describes the fact that the time spend by individuals in the infec-
tive class follows an exponential law with mean TR ¼ 1=gR. How-
ever, since the I-individuals are becoming R-individuals, the
numbers of Sn-individuals (for n P 1) are also affected by this pro-
cess. Remembering that Sn is the number of S-individuals who have
been chosen n times by an I-individual, the fact that some I-indi-
viduals are leaving will also induce a flux from the class Sn into
the class Sn�1. By using the same idea as the one used above for
the loss of contacts, we deduce that the term gR½ðnþ 1ÞSnþ1ðtÞ
�nSnðtÞ� is needed in the Sn-equation.

By renormalizing the distributions, namely by setting

sn ¼
Sn

N
; i ¼ I

N
and r ¼ R

N
;

we obtain the system

s00 ¼ mc 1�pIð Þs1ðtÞ� iðtÞs0ðtÞ½ �þgR½s1ðtÞ�
s01 ¼ mc iðtÞs0ðtÞþ 1�pIð Þ2s2ðtÞ� s1ðtÞ� iðtÞs1ðtÞ½ �þgR½2s2ðtÞ� s1ðtÞ�
. . .

s0n ¼ mc iðtÞsn�1ðtÞþ 1�pIð Þðnþ1Þsnþ1ðtÞ�nsnðtÞ� iðtÞsnðtÞ½ �þgR ½ðnþ1Þsnþ1ðtÞ�nsnðtÞ�
. . .

i0 ¼ mcpI

Xþ1
n¼1

nsnðtÞ�gRiðtÞ

r0 ¼gRiðtÞ:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð4:5Þ

Moreover, we have

sn P 0; 8n P 0

and

Xþ1
n¼0

sn þ iþ r ¼ 1:

Furthermore, the quantity
Pþ1

n¼0
nsnPþ1

n¼0
sn

is the average number with an I-

individual. Therefore, it is natural to impose that

Xþ1
n¼0

nsn < þ1:

The analysis of model (4.5) will be presented elsewhere. We refer to
[42] for results about the well posedness of similar classes of infi-
nite differential equations.
4.3. Formal singular limit to the classical SIR model

By using again the rescalling

mc ¼
1
e
; pI ¼ bIe;

where e 2 0;b�1
S

� 

is supposed to be a small parameter of the sys-

tem, then system (4.5) can be rewritten as

s00 ¼ 1
e 1�bIeð Þs1ðtÞ� iðtÞs0ðtÞ½ �þgR ½s1ðtÞ�

s01 ¼ 1
e iðtÞs0ðtÞþ 1�bIeð Þ2s2ðtÞ� s1ðtÞ� iðtÞs1ðtÞ½ �þgR½2s2ðtÞ� s1ðtÞ�

. . .

s0n ¼ 1
e iðtÞsn�1ðtÞþ 1�bIeð Þðnþ1Þsnþ1ðtÞ�nsnðtÞ� iðtÞsnðtÞ½ �þgR½ðnþ1Þsnþ1ðtÞ�nsnðtÞ�

. . .

i0 ¼ bI

Xþ1
n¼1

nsnðtÞ�gRiðtÞ

r0 ¼gRiðtÞ:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð4:6Þ

This singular perturbation problem describing the convergence of
the above problem to the classical SIR model turns to be technical
since

ae :¼ 1� bIeð Þ ! 1 as eð> 0Þ ! 0:

Here we consider this problem formally.
Formal singular limit. Set e ¼ 0 in system (4.6). Then we obtain

0 ¼ s1ðtÞ � iðtÞs0½ �
0 ¼ iðtÞs0ðtÞ þ 2s2ðtÞ � s1ðtÞ � iðtÞs1ðtÞ½ �
0 ¼ iðtÞs1ðtÞ þ 3s3ðtÞ � 2s2ðtÞ � iðtÞs2ðtÞ½ �
. . .

0 ¼ iðtÞsn�1ðtÞ þ ðnþ 1Þsnþ1ðtÞ � nsnðtÞ � iðtÞsnðtÞ½ �
. . .

i0 ¼ bI

Xþ1
n¼1

nsnðtÞ � gRiðtÞ

r0 ¼ gRiðtÞ:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð4:7Þ

Hence the susceptible distribution must satisfy

is0 ¼ s1

iþ 1ð Þs1 ¼ is0 þ 2s2

iþ 2ð Þs2 ¼ is1 þ 3s3

. . .

iþ nð Þsn ¼ isn�1 þ ðnþ 1Þsnþ1

. . .

8>>>>>>>><>>>>>>>>:
Therefore, we have

s1¼ is0

s2¼
1
2

iþ1ð Þs1� is0½ � ¼ iþ1ð Þi� i½ �
2

s0¼
i2

2
s0

s3¼
1
3

iþ2ð Þs2� is1½ � ¼1
3

iþ2ð Þ i
2

2
� i2

" #
¼ i3

3!
s0

. . .

sn¼
1
n

iþ n�1ð Þð Þsn�1� isn�2½ � ¼1
n

iþ n�1ð Þð Þ in�1

n�1ð Þ!�
in�1

n�2ð Þ!

" #
¼ in

n!
s0

. . .

By induction we obtain

sn ¼
in

n!
s0; 8n P 0:

Thus the fraction of susceptible is

s :¼
Xþ1
n¼0

sn ¼
Xþ1
n¼0

in

n!
s0 ¼ s0 expðiÞ:



Fig. 10. Flux diagram of model (4.4).
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Since sþ iþ r ¼ 1, we obtain

s0 ¼ s expð�iÞ ¼ 1� i� rð Þ expð�iÞ:

It follows that sn
s is a Poisson distribution with parameter i, which

means that

sn

s
¼ in

n!
expð�iÞ; 8n P 0:

We can interpret the quantity

sn ¼
in

n!
ð1� ðiþ rÞÞ expð�iÞ ð4:8Þ

as the probability that an S-individual has been chosen by n I
-individuals.

Since sn is the proportion of S-individuals which have been
chosen by n I-individuals, the average number of contacts per
S-individual isXþ1
n¼1

nsn ¼
Xþ1
n¼0

in

n!
s0

 !
i ¼ si:

Hence, formally as the singular limit, we obtain the SIR type model

s0 ¼ �bIsi

i0 ¼ bIsi� gRi

r0 ¼ gRi:

8><>: ð4:9Þ
4.4. Numerical simulations

In order to perform numerical simulations of system (4.4), we
truncate the system at the order ðn� þ 1Þ > 1. That is, we neglect
the terms S0kðtÞ for k P ðn� þ 2Þ and consider the following system:

S00 ¼ mc 1�pIð ÞS1ðtÞ� IðtÞ
N S0ðtÞ

h i
þgRS1ðtÞ

S01 ¼ mc
IðtÞ
N S0ðtÞþ 1�pIð Þ2S2ðtÞ�S1ðtÞ� IðtÞ

N S1ðtÞ
h i

þgR ½2S2ðtÞ�S1ðtÞ�
. . .

S0n��1 ¼ mc
IðtÞ
N Sn��2ðtÞþ 1�pIð Þn�Sn� ðtÞ�ðn� �1ÞSn��1ðtÞ� IðtÞ

N Sn��1ðtÞ
h i

þgR ½n�Sn� ðtÞ�ðn� �1ÞSn��1ðtÞ�

S0n� ¼ mc
IðtÞ
N Sn��1ðtÞ�n�Sn� ðtÞ� IðtÞ

N Sn� ðtÞ
h i

�gR ½n�Sn� ðtÞ�

I0 ¼ mc pI

Xn�
k¼1

kSkðtÞ�gRIðtÞ

R0 ¼gRIðtÞ:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
ð4:10Þ

At time t ¼ 0, we will take the following initial distributions to sim-
ulate the above model

N > I > 0; R ¼ 0
and

Sn ¼ N
in

n!
expð�iÞð1� iÞ; 8n ¼ 0; . . . ;n�;

with

i ¼ I
N
:

As before, we need to specify further the rules of transmission
between an S-individual and an I-individual.

Assumption 4.1. We further assume that
(a) (New SIR model) For a given pair of ðS; IÞ-individuals in con-
tact, if the individual initiating the contact is an I-individual,
then the transmission only occurs at the end of the contact
with the probability pI .

(b) (Classical SIR Model) For a given pair of ðS; IÞ-individuals in
contact, if the individual initiating the contact is an I-indi-
vidual, then the transmission only occurs at the beginning
of the contact with the probability pI .

We will use Assumption 4.1(a) to run an IBM (called here
IBM12) which corresponds to the new model (4.10), while Assump-
tion 4.1(b) will be used to run an IBM (called here IBM22) which
corresponds to the classical SIR model (1.1). The comparison be-
tween the new model (4.10) and the classical SIR model (1.1) with
b ¼ bI is given in Fig. 11. We can observe numerically the conver-
gence of the new SIR model (4.10) to the classical SIR model
(1.1) when TC goes to zero and pI ¼ bITC . Similarly, we can also
see that the curve of the recovereds is influenced by the parameter
TC . Let R1 the limit of RðtÞwhen t goesþ1. In (a) the total numbers
of cases for the new SIR model (4.10) and the classical SIR model
(1.1) are different. Once again one must be very careful in using
IBM to simulate an epidemic, since replacing one model by the
other might lead to a large bias in prediction. Here
S=N ¼ 0:9; I=N ¼ 0:1; Sc ¼ Ic ¼ SI=N at time t ¼ 0. TR ¼ 10 and
bI ¼ 0:2 are fixed and in (a) (resp. (b)) TC ¼ 5 and pI ¼ bITC ¼ 1
(resp. TC ¼ 0:5 and pI ¼ bITC ¼ 0:1) are also fixed.

The comparisons of the IBM, the new SIR model (4.10), and the
classical SIR model (1.1) are given in Fig. 12. Here S=N ¼ 0:9; I=N ¼
0:1; Sc ¼ Ic ¼ SI=N at time t ¼ 0. TR ¼ 10; bI ¼ 0:2; TC ¼ 5, and
pI ¼ bITC ¼ 1 are fixed. In (a) (resp. (b)) the IBM12 was run to sim-
ulate the transmission at the end of the contact for N ¼ 100 (resp.
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N ¼ 10;000). In (c) (resp. (d)) the IBM22 was run to simulate the
transmission at the beginning of the contact for N ¼ 100 (resp.
N ¼ 10;000).
5. Discussion

Stochastic individual-based models (IBM) use continuum
dynamics to track relatively small numbers of individuals based
on the change rates of time and view individuals as individual
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Fig. 11. Comparison of the new SIR model (4.10) (dotted curves) and the classical SIR mod
the new and classical SIR models are significantly different as time increases. (b) The solu
S=N ¼ 0:9; I=N ¼ 0:1; Sc ¼ Ic ¼ SI=N at time t ¼ 0; TR ¼ 10 and bI ¼ 0:2 (a) TC ¼ 5 and pI ¼
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Fig. 12. Comparison of the IBM (solid curves), the new SIR model (4.10)
b ¼ bI; S=N ¼ 0:9; I=N ¼ 0:1; Sc ¼ Ic ¼ SI=N at time t ¼ 0. TR ¼ 10;bI ¼ 0:2; TC ¼ 5, and pI ¼
at the end of the contact for N ¼ 100 and N ¼ 10000, respectively. In (c) and (d) the IBM
and N ¼ 10000, respectively.
agents whose status changes based on probabilistic events occur-
ring over time. Such models are particularly suitable to describe
the transmission dynamics of infectious diseases in a small popu-
lation in which the individual behavior plays an important role
in the spread of diseases. Most stochastic IBM simulations are
based on the framework of certain deterministic epidemic models,
in particular the classical susceptible-infective-recovered (SIR)
model.

The purpose of this article was to compare the stochastic IBM
and the classical SIR model and to examine how the behavior at
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el (1.1) (dashed curves) with b ¼ bS . (a) The total number of recovered individuals in
tion of the new SIR model converges to the solution of the classical SIR model. Here
bITC ¼ 1. (b) TC ¼ 0:5 and pI ¼ bITC ¼ 0:1
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(dotted curves), and the classical SIR model (1.1) (dashed curves) with
bITC ¼ 1 are fixed. In (a) and (b) the IBM12 was run to simulate the transmission

22 was run to simulate the transmission at the beginning of the contact for N ¼ 100
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the individual level affects the eventual transmission dynamics of
infectious diseases at the population level. We first made some
assumptions about the rules of contacts between susceptible and
infective individuals, the rules of transmission of diseases through
these contacts, and the time of transmission during contacts. For
the sake of comparison, we distinguished two types of transmis-
sion processes: that initiated by susceptible individuals and that
driven by infective individuals. We then studied the transmission
driven only by the susceptible individuals and compared the
numerical simulations between the IBM and the classical SIR mod-
els. The transmission initiated only by infective individuals was
also modeled and analyzed and the comparison of stochastic IBM
simulations and the classical SIR model was presented. Our analy-
sis and simulations demonstrate that the IBM converges to the
classical SIR model only in some particular situations. In general,
the individual-based and the classical SIR models are significantly
different. Moreover, our study reveals that the timing of transmis-
sion in a contact at the individual level plays a crucial role in the
transmission dynamics of a disease at the population level.

Stochastic SIR epidemics models have been studied extensively
and we refer to [2,3,5,12] (and references therein) for details on
stochastic epidemic models. However, as far as we understand
the derivations of most of these stochastic SIR models are not very
clear and poorly understood using individual stochastic rules. This
is left for future consideration.

There are several issues which deserve further investigation.
Firstly, the stochastic process introduced in Section 2 needs to be
studied in detail. Secondly, we assumed that the time of transmis-
sion of diseases was either at the beginning or at the end of a con-
tact, in reality the time of transmission probably occurs at certain
moment between the beginning and the end of a contact. There-
fore, modeling the disease transmission with such a timing of
transmission and comparing these models is useful. Thirdly, both
the spatial structure and the age of infection play very important
roles in the spread of infectious diseases, it will be very interesting
to include these features into the individual stochastic modeling.
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