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a b s t r a c t 

Population persistence and extinction are the most important issues in ecosystems. In the 

past a few decades, various deterministic and stochastic mathematical models with Allee 

effect have been extensively studied. However, in both population and disease dynamics, 

the question of how structural transitions caused by internal or external environmental 

noise emerge has not been fully elucidated. In this paper, we introduce a semi-analytical 

method to explore the asymptotically convergent behavior of a stochastic avian influenza 

model with Allee effect. First, by introducing noise to the model, we observe numerically a 

significant transition from bistability to monostability. Next, a corresponding Fokker-Planck 

(FPK) equation is obtained to analytically describe the probability density distributions 

with long time evolution in order to reveal the transition characteristics. Ratio of the ap- 

proximately convergent probabilities for the two key equilibria derived from the FPK equa- 

tion confirms the stability transition observed by previous numerical simulations. More- 

over, bifurcation analysis in two important parameters demonstrates that noise not only 

reduces the parametric zone of sustaining bistability but also drives the system to exhibit 

different monostabilities, which correspond numerically to population persistence and ex- 

tinction at different parametric intervals, respectively. Furthermore, noise induces higher 

probabilities for the system to sustain persistence instead of extinction in this model. Our 

results could provide some suggestions to improve wildlife species survival in more realis- 

tic situations where noise exists. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Since ecological balance is becoming more and more important in the development of living beings, determining the

persistence-extinction threshold of different populations has been one of the dominant topics in modeling population dy-

namics and infectious diseases. Persistence-extinction transition occurs in investigating many biological and ecological pro-

cesses, such as disease outbreaks, species competition and predation [1] , resource management, and so on [2] . Influenza

A viruses are well known as fatal agents to cause infections in wildlife including birds, which can also be transmitted be-

tween humans and birds directly as well as indirectly. Various mathematical models have been developed to analyze the
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Fig. 1. The flowchart of the SI avian influenza epidemic model. 
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epidemiological characteristics of avian influenza and to provide efficient control measures in order to reduce mortality [3 ,

4] . 

As one of the main sources for transmitting diseases to humans, avian populations are often assumed to experience a

natural phenomenon called Allee effect [5] . Due to the strength and prevalence of Allee effect in natural animal popula-

tions [6-10] , many population models with the Allee effect have been proposed and analyzed. Hilker et al. [11] constructed

models with a strong Allee effect and observed rich dynamics including the existence of homoclinic loops with eventual

host extinction. Friedman et al. [12] considered an epidemic model for a fatal disease in a population with Allee effect and

obtained conditions leading to host persistence or extinction. 

However, population dynamics are always coupled with various types of environmental noise in the real world. The

environment factors vary randomly and could be stochastic [13] . In fact, stochastic population systems driven by Brownian

motion have been employed to address the transition of persistence-extinction [14-18] . Ghanbari et al. [19] studied an avian-

human influenza model perturbed by environmental white noise. Zhang et al. [20] discussed the dynamics of a stochastic

avian-human influenza epidemic model with mutation. Krstic and Jovanovic [21] focused on a one-dimensional stochastic

differential equation (SDE) model with the Allee effect and explored the existence, uniqueness and asymptotic stability of

solutions, including situations where populations went extinct. Jovanovi ́c and Krstic [22] also gave sufficient conditions for

the population extinction by using a one-dimensional stochastic time-dependent delay population model with the Allee

effect. Recently, Bashkirtseva [23] focused on a phenomenological Hassell mathematical model with Allee effect and found

that the persistence zone can decrease and even disappear under random noise. Those results demonstrated that noise

could lead to population extinction. Hence, whether noise induces species persistence or extinction and how an underlying

structural transition occurs deserves to be elucidated systemically. Fig. 1 . 

Based on the above discussions, we attempt to introduce stochastic perturbations into an avian influenza model with

Allee effect and investigate how random disturbances affect dynamic behaviors of the model. The paper is organized as

follows. In Section 2, an avian influenza epidemic model with Allee effect but without noise and its dynamics are presented.

In Section 3, we show preliminarily that noise leads to a stability transition from bistability to monostability and explain

the results by using the corresponding Fokker-Planck (FPK) equation. In Sections 4–6, noise-induced transitions from the

perspective of two key parameters are studied, respectively. The results indicate that under increasing noise, the system

seems to be monostable rather than bistable. Moreover, the parametric zone where the population stays only persistent in

the disturbed system becomes larger compared with the undisturbed one. 

2. The avian influenza model with Allee effect and without noise perturbation 

To study the influence of noise perturbations on the dynamic behaviors, we first consider a well-defined avian influenza

model with Allee effect from Liu et al. [24] as a basic description of a bird population infected by influenza A virus. In the

two-dimensional model, the avian population is divided into two groups: susceptible and infective at time t, denoted by

S a (t) and I a (t), respectively. Besides, the following assumptions have been made: 

1) Susceptible avian population is subjected to logistic growth and Allee effect; 

2) An infected avian keeps in the state of disease and cannot recover; 

3) The incidence rate between the susceptible avian and the infective avian is bilinear. 

Based on the above assumptions, we have the following SI avian influenza model (denoted as Model A): 

dS a 

dt 
= r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
− βa S a I a = F 1 ( S a , I a ) 

dI a 

dt 
= βa S a I a − ( μa + δa ) I a = F 2 ( S a , I a ) (1) 

where r a is the intrinsic growth rate, M a is the maximal carrying capacity, m a is the critical carrying capacity of the avian

population, βa is the transmission rate from infective avian to susceptible avian, μa is the natural death rate of the avian

population, δa is the disease-related death rate of the infected avian. 
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Fig. 2. The bifurcation diagram of S a versus two key parameters. Parameters are set by δa = 4 × 10 −4 , r a = 5 × 10 −3 , M a = 50 0 0 , m a = 80 0 . ( A ) βa varies 

from 1 × 10 −8 to 5 × 10 −7 and μa varies from 1 × 10 −5 to 1 × 10 −3 ; ( B ) μa = 2 . 6 × 10 −4 ; ( C ) βa = 2 . 1 × 10 −7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Defining the basic reproduction number by 

R = 

βa ( M a + m a )( μa + δa ) 

( μa + δa ) 
2 + M a m a β2 

a 

Three disease-free equilibria of Model A can be deduced as E 0 = ( 0 , 0 ) , E 1 = ( m a , 0 ) and E 2 = ( M a , 0 ) . If R > 1, that is,

m a < 

μa + δa 

βa 
< M a , a unique endemic equilibrium can also be given by E 3 = (S ∗, I ∗) , where 

S ∗ = 

μa + δa 

βa 
, I ∗ = 

r a 

βa 

M a m a β2 
a + ( μa + δa ) 

2 

M a m a β2 
a 

( R − 1 ) 

The parameters δa , r a , M a and m a are from [24] . The disease-induced death rate of the infected avian is δa = 4 × 10 −4

per day and the intrinsic growth rate of the avian population is r a = 5 × 10 −3 per day. Besides, the maximal and critical

carrying capacities of the avian population are M a = 50 0 0 and m a = 800 , respectively. All parameters are selected based on

the biological facts, for example, the natural death rate μa is set by assuming that the wild avian can survive about 8 years

(see [24] for more details). 

Considering the expression of E 3 , we fix δa , r a , M a and m a , and consider two key parameters βa and μa . The bifurcation

diagram of Model A depicting the steady state solution of S a with respect to two parameters βa and μa is shown in Fig. 2 .

In Fig. 2 A, βa and μa vary from 1 × 10 −8 to 5 × 10 −7 and 1 × 10 −5 to 1 × 10 −3 , respectively. Here, E 0 = ( 0 , 0 ) is always stable

(blue dots) while E 1 = ( m a , 0 ) is always unstable (red dots). Meanwhile, E 2 = ( M a , 0 ) becomes unstable with a larger βa or a

smaller μa . Once parameters satisfy m a < 

μa + δa 

βa 
< M a the endemic equilibrium E 3 = (S ∗, I ∗) emerges (a corresponding slop-

ing plane occurs). Previous study of [24] has already verified that if m a + M a 
2 ≤ μa + δa 

βa 
< M a , then E 3 is globally asymptotically

stable. If m a < 

μa + δa 

βa 
< 

m a + M a 
2 , then E 3 becomes unstable. Fig. 2 A also shows that E 3 becomes unstable with a larger βa or

a smaller μa and only remains stable within a certain area. Specifically, Figs. 2 B and 2 C present the bifurcation diagram of

S a versus βa or μa , with μa = 2 . 6 × 10 −4 and βa = 2 . 1 × 10 −7 respectively. 
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3. Preliminary analysis of the model with noise perturbations 

Due to the existence of inevitable environmental fluctuations in the real world, noise is introduced into Model A in order

to study the population dynamics. In this paper, we consider the effect of fluctuations by stochastically perturbing the rates

of the two sub-populations along time. Consequently, for a population vector X = ( S a , I a ) 
T , we have 

dX 

dt 
= F ( x ) → 

dX 

dt 
= F ( x ) + ζ

where ζ is the noise force from the fluctuations and it can often be deemed to Gaussian and white noise: 〈 ζ (t) ζ ( t ′ ) 〉 =
2 Dδ( t − t ′ ) . D is the diffusion coefficient tensor (matrix) measuring the level of noise strength. Then we obtain Model B as

follows: 

dS a 

dt 
= r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
− βa S a I a + ζ

dI a 

dt 
= βa S a I a − ( μa + δa ) I a + ζ (2) 

In the following, parameters δa , r a , M a and m a in Model B are set to be the same as in section 2 . To explore whether

noise changes the bistability of model A, we focus on the parametric zone where the two parameters βa and μa satisfy the

following condition: 

m a + M a 

2 

≤ μa + δa 

βa 
< M a 

under which model A is bistable with two stable steady states E 0 and E 3 , respectively. 

In order to explore the effects of noise on Model A, we compare the final convergence of both models under the same

initial conditions. By assuming that the wild avian can survive about 8 years, the natural death rate is μa = 3 . 4246 × 10 −4 

per day. The transmission rate is set to be βa = 2 . 44 × 10 −7 . Here, we screen 100 pairs of initial values by even distribution

with S a between 0 and 40 0 0 and I a between 0 and 25,0 0 0, respectively. The numerical simulations of S a with respect to

time are given in Fig. 3 . The Euler-Maruyama (EM) method [25] (see Supplemental A for detailed information) is adopted for

analyzing the characteristics of Model B. Additionally, the non-positive values of S a due to the stochastic noise is truncated

and set to zero in aim to fit the realism. As we can see, Model A eventually converges to two equilibria, E 0 representing

population extinction and E 3 represents population persistence ( Fig. 3 A). In fact, the stability region for the stable steady

state E 3 is relatively larger than that for E 0 , which implies that the probability of converging to E 3 is higher than to E 0 .

While considering Model B, we observe totally different phenomena ( Fig. 3 B-C). When noise is weak, the value S a starts

to fluctuate in a small region ( Fig. 3 B). By enhancing the intensity of noise, all values of S a fall into the neighborhood of

zero; namely, the preceding high populations fail to maintain ( Fig. 3 C). It is interesting to note that noise brings a change

to stability of Model A, this explains the emergence of monostability (population extinction in this case) in the real world

instead of bistability shown in the deterministic Model A. 

Since noise can cause stability transition as shown in Fig. 3 , we aim to explicitly elucidate the stability behaviors of

Model B based on the two parameters, βa and μa , and the noise intensity D . 

To analyze the asymptotical stability of Model B, Fokker-Planck (FPK) equation is introduced to reveal the global princi-

ples [26] . Based on the stochastic differential equations (2) , we can deduce the corresponding probability density distribution

equation with noise due to fluctuations as follows: 

∂P ( S a , I a , t ) 

∂t 
= − ∂ 

∂ S a 
[ F 1 ( S a , I a ) P ] − ∂ 

∂ I a 
[ F 2 ( S a , I a ) P ] + D 

(
∂ 2 P 

∂S 2 a 

)
+ D 

(
∂ 2 P 

∂ I 2 a 

)

where P represents the probability density distribution of Model B subjected to S a and I a at time t . D is the diffusion

coefficient tensor or matrix, which is assumed to be homogeneous and isotropic constant for simplicity ( D 11 = D 22 = D and

D 12 = D 21 = 0 ). F 1 and F 2 are shown in Model A (1) . 

Due to the difficulty of finding theoretical solutions for P ( S a , I a , t ) and analytical solutions for its approximate equations

when t → ∞ , we manage to solve P ( S a , I a , t ) numerically by VCell software [27] . Because of the convergence to the first

quadrant for Model A, we designate a calculational area for numerical simulations of the probability density distribution

equation where the equilibria E 0 and E 3 are included, respectively. And we set the boundaries to be no-flow boundary

conditions. Besides, initial value is given by P ( S a , I a , 0 ) = 1 and the long time limit is taken in the numerical simulations so

that the probability density distribution nearly makes no change (for example, t = 30 0 0 0 0 ). 

Fig. 4 illustrates that with various intensities of noise, the steady-state probability density distribution of Model B is

completely different. Specifically, a transition from bistability to monostability emerges when the noise is enhanced. 

At first, when βa = 2 . 44 × 10 −7 and the noise intensity is set low, the probability density distribution shows that most

probability densities that mainly distribute around E 3 transfer finally to the area around E 0 ( Fig. 4 A). Further, when the

noise becomes stronger, as shown in Fig. 4 B, probabilities can hardly gather around E 3 and the system is approximately

considered to be monostable. The same change can also be observed with βa = 2 . 48 × 10 −7 ( Fig. 4 C-D). As a result, when

noise is relatively strong, Model B shows a change of the structure in probability density distribution from bistability to

monostability. 
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Fig. 3. The expression of S a under different noise perturbations. (A ) D = 0 ; (B ) D = 10 ; (C) D = 50 . 

Fig. 4. Probability density distributions of Model B. (A ) βa = 2 . 44 × 10 −7 
, D = 10 ; (B ) βa = 2 . 44 × 10 −7 

, D = 50 ; (C) βa = 2 . 48 × 10 −7 
, D = 10 ; (D ) βa = 2 . 48 ×

10 −7 ,D = 50 . The four insert graphs are the local enlarged distributions when 2500 ≤ βa ≤ 3500. 
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Table 1 

The ratios of probability around E 0 and E 3 for different βa and D values. 

Parameter Condition βa D = 10 D = 50 

P 0 P 3 P 0 + P 3 RoP P 0 P 3 P 0 + P 3 RoP 

m a + M a 
2 

≤ μa + δa 

βa 
< M a 2 . 44 × 10 −7 0.4981 0.4693 0.9674 1.061 0.9956 0.0003581 0.9960 2781 

2 . 48 × 10 −7 0.8377 0.1328 0.9705 6.308 0.9962 0.0001472 0.9963 6777 

Fig. 5. Convergence of S a when βa varies in model A and model B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although Fig. 4 displays the stability transition of Model B from bistability to monostabilty primarily, it is noticeable that

probability densities of two local regions, one containing E 0 and the other containing E 3 , are both decreasing, and at the

same time the corresponding non-zero area becomes larger. Thus, it is necessary to examine the dominant role of the steady

state E 0 when the noise is strong enough. This leads to the comparison of probabilities around E 0 and E 3 . 

Here, we interpret two rectangular areas with length of 30 0 0 and width of 1200 as R 0 and R 3 (probability densities in

the rest area are almost zero), with the corresponding center at E 0 and E 3 , respectively. The probability around E 0 or E 3 can

be regarded as the integral of the probability density within R 0 or R 3 , which is denoted, respectively, by 

P 0 = 

∫ 
( S a , I a ) ∈ R 0 

P ( S a , I a ) and P 3 = 

∫ 
( S a , I a ) ∈ R 3 

P ( S a , I a ) 

Thus, the ratio of probabilities ( RoP ) around E 0 to E 3 can be defined by 

RoP = P 0 / P 3 

If RoP is small enough, then Model B is considered to only approximately converge to E 3 . If RoP is large, then Model

B is regarded as to only approximately converges to E 0 . Otherwise, Model B has two stable steady states. In the following

analysis, we sum up probability densities to replace the integral result within each area. 

Table 1 shows that the RoP makes quite a difference with an increased noise intensity, which indicates that a system

tends to show a completely different stability behavior. When βa = 2 . 44 × 10 −7 , the RoP is 1.061 with a lower noise intensity,

while it turns to 2781 with a higher noise intensity. Additionally, when βa = 2 . 48 × 10 −7 , the RoPs for two noise intensities

are 6.308 and 6777, respectively. This means that most of the probabilities finally transfer to E 0 under stronger noise, which

implies that Model B tends to extinction in this case. Hence, a smaller transmission rate βa or noise intensity D helps Model

B to avoid extinction in this case. 

4. Stability transition of model B on the transmission rate βa 

In Section 3 , it was observed that the noise has changed the final convergence of Model B. More specifically, an increased

noise could lead to stability transition from bistability to monostability for both cases ( βa = 2 . 44 × 10 −7 or βa = 2 . 48 ×
10 −7 ). Given that βa (the transmission rate from infective avian to susceptible avian) is a key parameter in Model B, it

becomes quite necessary to study the impact of noise based on βa . 

Fig. 5 explains the convergence of Model A and Model B for different βa values when parameter μa = 3 . 4246 × 10 −4 

and noise intensity D = 50 . Parameter βa is chosen from 1.485 × 10 -7 to 2.55 × 10 -7 . Here, we exclude two steady states,

E 1 and E 2 , and focus on the other two, E 0 and E 3 , which are both stable in Model A (thinner black lines). In the disturbed

Model B, we assume that RoP < 1, Model B can finally be approximated to converge only to E 3 . While if RoP > 100, Model

B can be approximated to converge only to E 0 . Otherwise, the system is considered to maintain bistable. It is noticeable

that the stability of Model B within both ends (thicker translucent blue or red line) finally changes from bistability to

monostability. When 1.485 × 10 -7 ≤ βa ≤ 2.28 × 10 -7 , E 0 becomes unstable and Model B converges only to E 3 . Oppositely,

when 2.385 × 10 -7 ≤ βa ≤ 2.55 × 10 -7 , E 3 becomes unstable and Model B converges only to E 0 . A detailed stability transition

process is given in Supplemental B (Figure S1) with six distinct βa , respectively. The result shows that the noise motivates
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Fig. 6. The dependence of ratio of probabilities by the transmission rate βa and noise intensity D . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the system to transfer from bistability to monostability, which means a transition from a coexistence of preservation and

extinction to only preservation or extinction. Therefore, Fig. 5 provides a general vision on the effects that the noise brings

to the system. With the presence of noise, stability of Model A could have totally changed and the system tends to be

monostable instead of being bistable. Despite that, Model B could still sustain bistable within quite a small region compared

with that in Model A. In addition, compared with Model A, the existence of noise in Model B is beneficial for the system

to maintain preservation, because the parametric zone for Model B only converging to E 3 has been expanded a lot, which

means a population is more resistant to noise disturbances. 

We further delineate Fig. 6 to have a full look on the gradual changes by both the noise intensity D and the transmission

rate βa . On one hand, noise as a major element of the real world plays a significant role in population persistence and

extinction. Model A converges to two stable steady states E 0 and E 3 , respectively, when 

m a + M a 
2 ≤ μa + δa 

βa 
< M a . While in Model

B, RoP is introduced to define the convergent situation. Due to the variance of RoP , the gradient yellow surface indicating

log ( R o P ) by parameter βa and noise intensity D is given in Fig. 6 . The top and bottom horizontal translucent gray planes

represent log (RoP ) = 2 ( RoP = 100 , denoted by plane 1) and log (RoP ) = 0 ( RoP = 1 , denoted by plane 2), respectively. Given

the assumptions we have made, the area of the surface between two planes suggests that Model B maintains bistable.

Moreover, the area above plane 1 or below plane 2 corresponds to the monostability of Model B, with one approximately

converges to E 0 and the other to E 3 respectively. The increases of noise intensity D and βa lead to the gradual increase of

RoP above plane 1. While an increased D and a decreased βa cause the sharp reduction of RoP under plane 2. It implies

that Model B prefers monostability than bistability with noise perturbations. Moreover, when D > 50, the area of bistability

show almost no change, which means that any additional noise could hardly shrink the bistable area. 

On the other hand, the transmission rate βa also contributes to the stability transition. When the transmission rate βa

in Model B increases, the increase of RoP can be observed, which indicates that the stable steady state of Model B changes

from E 3 to E 0 . This could cause population exacerbation and even extinction, as RoP turns pretty high. Moreover, when the

noise intensity D > 50, the system prefers a monostable E 3 for the majority of parameter βa ( 1 . 5 × 10 −7 < βa < 2 . 3 × 10 −7 ),

which implies that noise intends to help the system to avoid extinction from the perspective of parameter βa . 

Therefore, different noise intensity D and transmission rate βa could lead to various convergent situations for Model B,

which can be inspiring for population persistence. 

5. Stability transition of model B on the natural death rate μa 

In section 4 , we explained that monostability of the stochastically endemic equilibrium E 3 exists under certain range of

noise intensity D . Besides, a smaller βa also tends to help persistence. The big difference of stability behavior of Model B

compared with Model A justifies the importance of parameter βa . This leads to our exploration of another parameter μa to

fully understand the dynamics of Model B. 

For the analysis of parameter μa , which relates to the death rate of the infected avian, we set parameters by βa =
2 × 10 −7 , D = 50 and let μa vary from 1 . 9 × 10 −4 to 6 × 10 −4 . As shown in Fig. 7 , Model A still has two stable steady states

E 0 and E 3 (thinner black lines), while the other two steady states E 1 and E 2 are unstable (not shown). Here, we assume that

RoP < 0.13, Model B only approximately converges to E 3 , while when RoP > 1.37, Model B only approximately converges

to E 0 . Otherwise, Model B is considered to be bistable. It is also noteworthy that the stability of Model B within both ends

(thicker translucent blue or red line) finally changes from bistability to monostability, which is similar to what is shown

in Fig. 5 . When μa is relatively small (1.9 × 10 -4 ≤ μa ≤ 2.5 × 10 -4 ), E 3 becomes unstable and Model B converges to E 0 .

Oppositely, when μa is getting larger (3.3 × 10 -4 ≤ μa ≤ 6 × 10 -4 ), E 0 becomes unstable and Model B converges only to E 3 .

A detailed stability transition process is also given in Supplemental C (Figure S2) with six distinct μa , respectively. It is also
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Fig. 7. Convergence of S a when μa varies in model A and model B. 

Fig. 8. The dependence of the ratio of probabilities on the death rate μa and noise intensity D . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

worth noting that bistability still exists in a relatively smaller parametric zone (2.5 × 10 -4 < μa < 3.3 × 10 -4 ). Fig. 7 implies

that noise totally changes the stability behavior of Model B, which leads to monostability of the system. Further, Model B

is still bistable within a smaller region compared with Model A. Besides, the existence of noise is beneficial for a system to

maintain only preservation compared to an undisturbed system. Namely, a system can survive under noise within a wider

parametric zone of μa , which is consistent with the results obtained by analyzing βa shown in Section 4 . 

Fig. 8 presents a gradient yellow surface of log ( R o P ) with respect to the noise intensity D and the natural death rate μa .

The top and bottom horizontal translucent gray planes stand for log (RoP ) = log (1 . 37) ( RoP = 1 . 37 , denoted by plane 3) and

log (RoP ) = log(0 . 13) ( RoP = 0 . 13 , denoted by plane 4), respectively. The area of the surface between two planes suggests that

Model B approximately remains bistable. Moreover, the areas above plane 3 and below plane 4 correspond to monostability

of Model B, while one is approximately convergent to E 0 and the other to E 3 , respectively. Fig. 8 shows that noise contributes

to the monostability of Model B. The increase of noise intensity D leads to the decrease of RoP below plane 4 while the area

above plane 3 changes weakly. It indicates that the system may have higher probabilities to sustain around E 3 below plane 4,

while it intends to maintain the original monostability above plane 3. Hence, the region above plane 3 or below plane 4 both

explains that Model B prefers monostability than bistability with noise perturbations. Moreover, the bistability area changes

significantly when D is around 100, from a larger parametric zone of μa when D < 100 (2.4 × 10 -4 ≤ μa ≤ 5.6 × 10 -4 ) to a

narrowed one when D > 100 (2.4 × 10 -4 ≤ μa ≤ 2.8 × 10 -4 ). 

Compared with βa , it is interesting to notice that μa is less sensitive to the noise when D < 100. Besides, when D > 100,

the RoP below plane 4 shows a great reduction when noise becomes stronger. Moreover, when increasing the natural rate

μa , we observe a decrease of RoP , which indicates that the system tends to be stochastically asymptotically stable around

E 3 . It suggests that the system is tending to population persistence as the RoP turns pretty low. In addition, when D > 100,

the system prefers monostability of E 3 for the majority of μa (2.4 × 10 -4 ≤ μa ≤ 5.6 × 10 -4 ), which implies that noise helps

the system to maintain persistence. Therefore, a stronger noise D or a properly larger natural death rate μa may provide a

certain system with persistence, which could offer some underlying suggestions for species protection. 
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Fig. 9. Stability behaviors of model B under random noise by varying parameter βa from 1.5 × 10 -7 to 4.5 × 10 -7 and μa from 1.5 × 10 -4 to 1 × 10 -3 , 

D = 50 . The white area means that the condition m a + M a 
2 

≤ μa + δa 

βa 
< M a (model A has two stable steady states E 0 and E 3 ) is not satisfied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Stability transition of model B on both βa and μa 

In Sections 4 and 5 , the stability transition of Model B was analyzed based on a specific parameter βa or μa . In order to

understand how stability transition may depend on both βa and μa , Fig. 9 is further presented. Here, we focus on the para-

metric zone where Model A has two stable steady states E 0 and E 3 . The assumptions are made as follows: If RoP < 1, then

model B only approximately converges to E 3 ; If RoP > 100, then Model B only approximately converges to E 0 . Otherwise,

model B maintains bistable. 

In Fig. 9 , Model B exhibits three different stabilities when noise intensity is set as D = 50 . E 0 becomes stable with an

increased βa or a decreased μa , while E 3 tends to be stable with a decreased βa or an increased μa . The result also matches

the stability transition analysis of βa and μa , shown in Fig. 5 and Fig. 7 , respectively, which emphasizes that noise induces

monostability in Model B. Besides, Model B tends to be bistable in the upper right area. Since the wild avian can survive

about 8 years, the corresponding natural death rate should be around μa = 3 . 4246 × 10 −4 per day, which indicates that the

lower left parametric zone in Fig. 9 is closer to a real biological system. Hence, a disturbance to the system with relatively

small βa or μa can cause stability transition of Model B, from bistability to monostability, and the area where only E 3 being

stable is larger than that with only E 0 , which demonstrates a beneficial effect of noise for Model B to be persistent. 

7. Discussion 

In this paper, the dynamical transition in an avian epidemic model with Allee effect by stochastic perturbation has been

extensively investigated. Numerical simulations were carried out and a crucial change of the system from bistability to

monostability under noise has been observed. We further confirmed the convergent results by introducing an FPK equation

and analyzing the probability density distributions of the stochastic Model B. 

Especially, we defined RoP , which describes the ratio of probabilities around E 0 to E 3 , in order to reveal the underlying

stability transition for the stochastic system. Moreover, from the perspective of two key parameters in the disturbed model,

we proved the following results: firstly, noise induces the stability transition in the disturbed system from bistability to

monostability. Further, there are two different monostabilities for the system, one is E 0 and the other is E 3 . Secondly, noise

shrinks the parametric zone of both parameters where the system remains bistable. Especially when noise is strong enough,

the parametric zone of the bistable system becomes quite small. Thirdly, noise helps the system to escape from being

extinct, which means that the corresponding populations are supposed to have a higher probability to persist. Therefore,

noise not only causes stability transition in the system from bistability to monostability but also helps populations to avoid

extinction to a large extent. In the biological systems, the extinction of avian population due to influenza is rarely observed.

Our models reveal that the avian population tends to persistence under noise, which describes the reality well. 

Our results were obtained with an avian epidemic model and the same analytical method could be used to study the

population dynamics of various population models or transmission dynamics of other epidemic models. Moreover, it is also

worth exploring the effects of noise on those models when limit cycles exist, such as the predator-prey model with Holling

type II functional response [28 , 29] and the Leslie-Gower predator-prey model [30] . 
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Supplemental Information 

Supplemental A 

In this section, we give a brief introduction of the Euler-Maruyama method which was 

applied as our simulation method for Model B. 

An autonomous SDE can often be written as: 

                   (3) 

where  is a random variable for each ,  and  are scalar functions. Besides,  is 

a Brownian motion that depends continuously on . If  and  is constant, then 

the above equation reduces to the ordinary differential equation 

, . 

In order to apply a numerical method to (3) over time interval , the interval is discretized 

by  for some positive integer  and . Also the numerical approximation to 

 will be denoted as . Then the Euler-Maruyama (EM) method takes the following 

form: 

               (4) 
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The step size  for the numerical method is always chosen to be an integer multiple  of 

the increment  for the Brownian path. This ensures that the set of points  on which the 

discretized Brownian path is based contains the points  at which the EM solution is 

computed. As a result, the increment  can be generalized as: 

 

where  is an independent Brownian motion of the form . 
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Figure S1. Probability densities for different values of . ; ; 

; ; ; . 

 

 

 

 

ab
7( ) 1.6 10aA b -= ´ 7( ) 2.2 10aB b -= ´

7( ) 2.24 10aC b -= ´ 7( ) 2.3 10aD b -= ´ 7( ) 2.36 10aE b -= ´ 7( ) 2.5 10aF b -= ´
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Figure S2. Probability densities for different values of . ; ; 

; ; ;  . 

 

aµ
4( ) 2 10aA µ -= ´ 4( ) 2.45 10aB µ -= ´

4( ) 2.55 10aC µ -= ´ 4( ) 2.7 10aD µ -= ´ 4( ) 3.5 10aE µ -= ´ 4( ) 5.3 10aF µ -= ´
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