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ON A NETWORK MODEL OF TWO COMPETITORS WITH
APPLICATIONS TO THE INVASION AND COMPETITION OF

AEDES ALBOPICTUS AND AEDES AEGYPTI MOSQUITOES IN
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Abstract. Based on the invasion of the Aedes albopictus mosquitoes and the competition
between Ae. albopictus and Ae. aegypti mosquitoes in the United States, we consider a two-species
competition model in a network, that is, with discrete Laplacian diffusion. In the case of weak-strong
competition where the invasive competitor is stronger than the local one, it is shown that solutions
converge uniformly to the semipositive equilibrium such that the invasive species survives while
the local species becomes extinct, and vice versa. In the case of weak-weak competition, solutions
converge uniformly to the positive equilibrium such that both invasive and local species coexist. By
using numerical simulations, we apply the two-species competition model in a network to explain
the invasion and competition of Ae. Albopictus and Ae. Aegypti mosquitoes in the United States. It
also indicates that discrete Laplacian diffusion induces different spreading speeds in different invasive
directions.
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1. Introduction. The two prominent mosquito species, Aedes aegypti and Ae.
albopictus, are the primary vectors that transmit several arboviral diseases, including
chikungunya, dengue fever, yellow fever, and Zika (CDC [5], Kraemer et al. [21]).
The world is presently experiencing a series of major outbreaks of these vector-borne
diseases, so it is very important and necessary to understand the current distribu-
tions and movements of these mosquito vectors for successful surveillance and control
programs. As a species with worldwide tropical and subtropical distribution, the Ae.
aegypti mosquito is an insect intimately involved in the life of human beings. Whereas
the Ae. albopictus mosquito, a most invasive species native to the tropical and sub-
tropical areas of Southeast Asia, has spread recently to many countries (including the
United States) through international travel along with the global transport of goods
(Kamal et al. [20], Kraemer et al. [22]).

Ae. aegypti mosquito has been present in the United States since the 17th century
(Eisen and Moore [7]). Ae. albopictus was first recorded in Harris County, Texas
in 1985 (Sprenger and Wuithiranyagool [39]) and in northern counties in Florida
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930 ZUHAN LIU, CANRONG TIAN, AND SHIGUI RUAN

(a) (b)

Fig. 1. Maps showing the reported occurrence of Aedes mosquitoes by county between January
1995 and December 2016 in the United States. (a) Ae. aegypti and (b) Ae. albopictus (Hahn et
al. [13]).

in 1986 (Peacock et al. [35]). This mosquito subsequently proliferated throughout
much of the eastern United States and continues to expand its range (Kraemer et
al. [22]). By 2008, Ae. albopictus had spread to 36 states and continued to expand its
range (Enserink [8]). There exists between Ae. aegypti and Ae. albopictus an inter-
specific competition among mosquito larvae on larval, adult, and life-table traits,
which affects primarily larva-to-adult survivorship and the larval development time
(Noden et al. [30]). The wide spread of Ae. albopictus has been detected with a major
decline of the local Ae. aegypti population in the southern continental United States
(Hobbs, Hughes, and Eichold II [16], O'Meara et al. [31]). Since 1995, Ae. aegypti
has been reported in 220 counties in 28 states and the District of Columbia, and Ae.
albopictus in 1,368 counties in 40 states and the District of Columbia (Hahn et al. [13];
see Figure 1).

The spreading of invasive species is a central topic in ecology. Many mathemat-
ical models described by differential equations have been proposed to describe this
phenomenon (Lockwood, Hoopes, and Marchetti [25], Shigesada and Kawasaki [36]).
By using Laplacian operators to describe the random population diffusion, reaction-
diffusion equations have been used to understand the spreading of species through
the investigation of a traveling wave; see, for example, Aronson and Weinberger [2, 3],
Fisher [9], Liang and Zhao [23], Skellam [37], Weinberger, Lewis, and Li [42], and the
references therein. Besides its effect on traveling wave speed, random diffusion has
also been found to play an important role in other ecological processes. For instance,
Zhang et al. [43] provided rigorous experimental tests to show that random diffusion
could drive the total population to its exceed carrying capacity. Lou and Zhou [27]
used mathematical models to show that random diffusion determines the survival or
extinction of species.

However, in the above-mentioned studies Laplacian operators were used to de-
scribe movements of the species where the direction of diffusion is isotropic, i.e., the
probability of moving to any direction is equal. In population dynamics, species can
often sense and respond to local environmental cues and resources by moving toward
favorable habitats, and these movements usually depend upon a combination of local
biotic and abiotic factors such as stream, climate, and food. Hence, the probabilities
of moving toward all directions are not equal. In fact there are some field observa-
tions showing that the direction of biological invasion is not isotropic. Maidana and
Yang [29] studied the propagation of West Nile virus from New York City to California
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ON A NETWORK MODEL OF TWO COMPETITORS 931

and observed that the virus moved northward 187km, but southward 1100km. After
being established in Florida in 1986, the Ae. albopictus mosquito was more likely to
move northward and westward than southward and eastward because the eastern and
southern habitats are the sea.

We plan to consider anisotropic random diffusion and our approach is to consider
a few directions depending on different routines, where each routine is a connection
of two discrete habitats. In the previous investigations of patch dynamics, Liao and
Lou [24] used discrete diffusion to study two discrete habitats that are connected
by one routine. Gourley and Ruan [12] divided the whole mosquito community into
several patches where each patch is a pool with mosquito eggs living there. In modeling
the transmission dynamics of infectious disease, unweighted networks have been used
to describe the heterogeneous contact rate (Pastor-Satorras et al. [34]). Grigoryan,
Lin, and Yang [10] investigated the dynamical behavior of weighted networks. Inspired
by these approaches, we divide the habitats into a finite number of vertices where the
adjacent two vertices are connected by an edge. Thus we regard the habitats of
mosquitoes as a weighted network.

In this paper, we use discrete Laplacian operators defined on a network to describe
the movements of mosquitoes in each vertex which depend on the topological structure
of the network. For this purpose, we take into account the dispersed anisotropy and
introduce the theoretic graph notions. Recall that a undirected graph G = (V,E)
contains a set V = \{ 1, 2, . . . , n\} of vertices and a set E of edges (x, y) connecting
vertex x and vertex y. G is called a finite-dimensional graph if it has a finite number
of edges and vertices. G is called connected if for every pair of vertices x and y, there
exists a sequence (called a path) of vertices x = x0, x1, . . . , xn = y such that xj - 1 and
xj are connected by an edge (called adjacent) for j = 1, . . . , n. If vertex y is adjacent
to vertex x, we write y \sim x. A graph is weighted if each adjacent x and y is assigned
a weight function \omega xy. Here \omega : V \times V \rightarrow [0,\infty ) satisfies that \omega xy = \omega yx and \omega xy > 0
if and only if x \sim y.

For a finite subset \Omega \subset V, let \partial \Omega denote the boundary of \Omega and \Omega 0 denote the
interior of \Omega , which are defined by

(1.1) \partial \Omega := \{ x \in \Omega : \exists y \in \Omega c such that y is adjacent to x\} , \Omega 0 := \Omega \setminus \partial \Omega ,

respectively. Throughout this paper, G = (V,E) is assumed to be a connected undi-
rected weighted finite-dimensional graph with no self-loops.

Definition 1.1. For a function u : \Omega 0 \rightarrow \BbbR , the discrete Laplacian \Delta \omega is defined
by

\Delta \omega u(x) :=
\sum 

y\sim x, y\in \Omega 0

[u(y) - u(x)]\omega xy.(1.2)

Definition 1.2. For a function D\omega : \Omega 0 \rightarrow [0,\infty ), the degree D\omega (x) is defined
by

D\omega (x) :=
\sum 

y\sim x, y\in \Omega 0

\omega xy.(1.3)
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932 ZUHAN LIU, CANRONG TIAN, AND SHIGUI RUAN

We consider the following two-species competition model in a network:\left\{         
\partial U1

\partial t  - D1\Delta \omega U1 = r1U1(1 - U1

K1
) - \~a1U1U2, (x, t) \in \Omega 0 \times (0,+\infty ),

\partial U2

\partial t  - D2\Delta \omega U2 = r2U2(1 - U2

K2
) - \~a2U1U2, (x, t) \in \Omega 0 \times (0,+\infty ),

U1(x, t) = U2(x, t) = 0, (x, t) \in \partial \Omega \times [0,+\infty ),

U1(x, 0) = u10(x) \geq ( \not \equiv )0, U2(x, 0) = u20(x) \geq (\not \equiv )0, x \in \Omega 0.

(1.4)

The biological meanings of (1.4) are described as follows: U1(x, t) represents the
density of the local species (Ae. aegypti) and U2(x, t) represents the density of the
invasive species (Ae. albopictus) at space location x and time t, respectively. These two
species have a competition relation; D1 and D2 are the discrete Laplacian diffusion
rates of the two species, respectively; r1 and r2 are the intrinsic growth rates of
the two species, respectively; and K1 and K2 are the carrying capacities of the two
species, respectively; and \~a1 and \~a2 are the interspecific competition rates. \Delta \omega is the
discrete Laplacian operator defined in (1.2). \Omega 0 and \partial \Omega are interior and boundary of
the graph \Omega defined in (1.1). Here the habitats of two mosquitoes are discretized to
several patches, where each patch is described by a vertex of graph.

In order to minimize the number of parameters involved in the model, we intro-
duce the dimensionless variables. Set

u1 =
1

K1
U1, u2 =

1

K2
U2, \=t = r1t.(1.5)

Then omitting the bar of t, system (1.4) is rewritten as follows:\left\{         
\partial u1

\partial t  - d1\Delta \omega u1 = u1(1 - u1  - a1u2), (x, t) \in \Omega 0 \times (0,+\infty ),
\partial u2

\partial t  - d2\Delta \omega u2 = u2(r  - a2u1  - ru2), (x, t) \in \Omega 0 \times (0,+\infty ),

u1(x, t) = u2(x, t) = 0, (x, t) \in \partial \Omega \times [0,+\infty ),

u1(x, 0) = u10(x) \geq ( \not \equiv )0, u2(x, 0) = u20(x) \geq ( \not \equiv )0, x \in \Omega 0,

(1.6)

where a1 = K2\~a1

r1
, r = r2

r1
, a2 = K1\~a2

r1
, d1 = D1

r1
, d2 = D2

r1
.

Our main purpose in this paper is to study the influence of the discrete Laplacian
diffusion on the asymptotic behavior of the competition system (1.6). He and Ni [15]
studied system (1.6) with classical Laplacian diffusion in heterogeneous environments.
For weak-strong competition (a1 > 1 and a2 < r) and strong-weak competition (a1 <
1 and a2 > r), solutions of system (1.6) with classical Laplacian diffusion converge
globally asymptotically to the semipositive equilibria (0, 1) and (1, 0), respectively. For
weak-weak competition (a1 < 1 and a2 < r), solutions of system (1.6) with classical
Laplacian diffusion converge globally asymptotically to a unique positive equilibrium.
For the corresponding ordinary differential equation (ODE) model with week-weak
competition, the global stability was shown in Brown [4]. Some of the results for
a reaction-diffusion system were also proved in Zhou and Pao [44] under restricted
initial conditions. Goh [11] and Hsu [18] used a Liapunov functional method to study
the global dynamics of some ODE models. The extension of a Liapunov functional
method to Lotka--Volterra systems with a classical Laplacian operator was discussed
in Hastings [14] and Hsu [19]. We will extend the global stability results from the
Laplacian diffusion system to the discrete Laplacian diffusion system. Moreover, we
will use numerical simulations to illustrate the short time behavior of solutions before
they converge to the positive equilibrium. We would like to mention that the discrete
Laplacian diffusion in problem (1.6) causes the spreading speed not to be the same in
all directions at the initial invasive stage.
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ON A NETWORK MODEL OF TWO COMPETITORS 933

The rest of the article is organized as follows. In section 2 we introduce the discrete
maximum principle. In section 3, we prove the global existence and uniqueness of
solutions to system (1.6). In section 4, we investigate the global stability of solutions
to the system according to different competitive strengths. In section 5 we carry out
numerical simulations to confirm our analytical findings and illustrate the small time
dynamical behavior. We also apply our model to simulate and interpret the invasion of
Ae. albopictus mosquitoes and the competition between Ae. aegypti and Ae. albopictus
in the United States. A discussion and conclusions are given in section 6.

2. Discrete maximum principle. In this section, we present the well-known
maximum principle and strong maximum principle for scalar discrete Laplacian equa-
tions.

Lemma 2.1 (maximum principle). Suppose that d > 0 and K are constants.
For any T > 0, assume that u(x, t) is continuous with respect to t in \Omega \times [0, T ], is
differentiable with respect to t in \Omega \times (0, T ], and satisfies\left\{     

\partial u
\partial t  - d\Delta \omega u+Ku \geq 0, (x, t) \in \Omega 0 \times (0, T ],

u(x, t) \geq 0, (x, t) \in \partial \Omega \times [0, T ],

u(x, 0) \geq 0, x \in \Omega 0.

(2.1)

Then u(x, t) \geq 0 in \Omega \times [0, T ].

Lemma 2.2 (strong maximum principle). Suppose that d > 0 and K are con-
stants. For any T > 0, assume that u(x, t) is continuous with respect to t in \Omega \times [0, T ],
is differentiable with respect to t in \Omega \times (0, T ], and satisfies (2.1). If u(x\ast , 0) > 0 for
some x\ast \in \Omega 0, then u(x, t) > 0 in \Omega 0 \times (0, T ].

Proof. Note that u(x, t) \geq 0 in \Omega \times [0, T ] by the above maximum principle. By
(2.1), we have \biggl( 

\partial u

\partial t
 - d\Delta \omega u+Ku

\biggr) 
| (x\ast ,t) \geq 0.(2.2)

Plugging (1.2) and (1.3) into (2.2), we have

\partial u(x\ast , t)

\partial t
\geq 

\sum 
y\sim x\ast , y\in \Omega 0

d[u(y, t) - u(x\ast , t)]\omega x\ast y  - Ku(x\ast , t)

\geq  - 
\sum 

y\sim x\ast , y\in \Omega 0

d\omega x\ast yu(x
\ast , t) - Ku(x\ast , t)

\geq  - (dD\omega (x
\ast ) +K)u(x\ast , t) for t \in (0, T ].

(2.3)

Since u(x\ast , 0) > 0, (2.3) implies that

u(x\ast , t) \geq u(x\ast , 0)e - (dD\omega (x\ast )+K)t > 0 for t \in (0, T ].(2.4)

We prove the lemma by contradiction. We first consider the case where K > 0. If
u(x, t) > 0 in \Omega 0 \times (0, T ] cannot hold, there would exist a point (x0, t0) \in \Omega 0 \times (0, T ]
such that u(x0, t0) = min\Omega 0\times (0,T ] u(x, t) = 0. By (2.1), we have\biggl( 

\partial u

\partial t
 - d\Delta \omega u+Ku

\biggr) 
| (x0,t0) \geq 0.(2.5)

Since u is differentiable with respect to t in \Omega \times (0, T ], it follows that \partial u
\partial t | (x0,t0) \leq 0.
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934 ZUHAN LIU, CANRONG TIAN, AND SHIGUI RUAN

Thus (2.5) implies that

\Delta \omega u(x0, t0) \leq 
1

d

\biggl( 
\partial u

\partial t
| (x0,t0) +Ku(x0, t0)

\biggr) 
\leq 0.(2.6)

By (1.2), we also have \Delta \omega u| (x0,t0) \geq 0. Thus, we have

\Delta \omega u(x0, t0) = 0, i.e.,
\sum 

y\sim x, y\in \Omega 0

\omega xyu(y, t0) = 0.

The above equation implies that

u(y, t0) = 0 for all y \in \Omega 0 and y \sim x0.(2.7)

On the other hand, since \Omega 0 is connected, for any x \in \Omega 0, there exists a path

x0 \sim x1 \sim \cdot \cdot \cdot \sim xn \equiv x\ast .

By (2.7), we obtain that u(x1, t0) = 0. Employing the above argument repeatly,
we shall induce u(xn, t0) = 0 in order. Therefore, we obtain u(x\ast , t0) = 0, which
contradicts (2.4). In the case of K \leq 0, by performing a transformation w = e - \gamma tu,
we also induce a similar contradiction. The proof is completed.

In view of Lemmas 2.1 and 2.2, we obtain the following comparison principle.

Lemma 2.3 (comparison principle). Suppose that d > 0, \alpha > 0, and \beta > 0 are
constants. For any T > 0, assume that u(x, t) and u(x, t) are continuous with respect
to t in \Omega \times [0, T ], are differentiable with respect to t in \Omega \times (0, T ], and satisfy\left\{           

\partial u
\partial t  - d\Delta \omega u \geq u(\alpha  - \beta u), (x, t) \in \Omega 0 \times (0, T ],
\partial u
\partial t  - d\Delta \omega u \leq u(\alpha  - \beta u), (x, t) \in \Omega 0 \times (0, T ],

u(x, t) \geq 0 \geq u(x, t), (x, t) \in \partial \Omega \times [0, T ],

u(x, 0) \geq u(x, 0), x \in \Omega 0.

(2.8)

Then u(x, t) \geq u(x, t) in \Omega \times [0, T ]. Moreover, if u(x\ast , 0) > u(x\ast , 0) for some x\ast \in \Omega 0,
then u(x, t) > u(x, t) in \Omega 0 \times (0, T ].

3. Existence and uniqueness. For the sake of simplicity, throughout this pa-
per we denote f(u) = (f1(u1, u2), f2(u1, u2)), and here

f1(u1, u2) = u1(1 - u1  - a1u2), f2(u1, u2) = u2(r  - a2u1  - ru2).

Our approach to study the existence of solutions is the method of coupled upper and
lower solutions, which are defined as follows.

Definition 3.1. Suppose that \~ui(x, \cdot ), u\sim i(x, \cdot ) \in C[0, T ](i = 1, 2) are differen-
tiable in (0, T ] for each x \in \Omega 0, a pair of functions \~u = (\~u1, \~u2),u\sim = (u\sim 1, u\sim 2) are
called coupled upper and lower solutions of (1.6) if \~u \geq u\sim \geq 0 and\left\{                           

\partial \~u1

\partial t  - d1\Delta \omega \~u1 \geq f1(\~u1, u\sim 2), (x, t) \in \Omega 0 \times (0, T ],
\partial \~u2

\partial t  - d2\Delta \omega \~u2 \geq f2(u\sim 1, \~u2), (x, t) \in \Omega 0 \times (0, T ],
\partial u\sim 1

\partial t  - d1\Delta \omega u\sim 1 \leq f1(u\sim 1, \~u2), (x, t) \in \Omega 0 \times (0, T ],
\partial u\sim 2

\partial t  - d2\Delta \omega u\sim 2 \leq f2(\~u1, u\sim 2), (x, t) \in \Omega 0 \times (0, T ],

\~u1(x, t), \~u2(x, t) \geq 0, (x, t) \in \partial \Omega \times [0, T ],

u\sim 1(x, t), u\sim 2(x, t) \leq 0, (x, t) \in \partial \Omega \times [0, T ],

\~ui(x, 0) \geq ui0(x), u\sim i(x, 0) \leq ui0(x) for i = 1, 2, x \in \Omega 0.

(3.1)
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For a given pair of coupled upper and lower solutions \~u and u\sim , we set

\Lambda i \equiv \{ ui(x, \cdot ) \in C[0, T ] : u\sim i \leq ui \leq \~ui\} , \Lambda \equiv \{ u : u\sim \leq u \leq \~u\} .(3.2)

There exist constants Ki(i = 1, 2) such that

Kiui +
\partial fi
\partial ui

(u) \geq 0 for u \in \Lambda .(3.3)

In fact, as for system (1.6) it suffices to choose any Ki satisfying

K1 = max
\bfu \in \Lambda 

| 1 - 2u1  - a1u2| , K2 = max
\bfu \in \Lambda 

| r  - a2u1  - 2ru2| .

For each i = 1, 2, we define

F1(u1, u2) = K1u1 + f1(u1, u2), F2(u1, u2) = K2u2 + f2(u1, u2).(3.4)

We consider the system\left\{         
\partial u1

\partial t  - d1\Delta \omega u1 +K1u1 = F1(u1, u2), (x, t) \in \Omega 0 \times (0, T ],
\partial u2

\partial t  - d2\Delta \omega u2 +K2u2 = F2(u1, u2), (x, t) \in \Omega 0 \times (0, T ],

u1(x, t) = u2(x, t) = 0, (x, t) \in \partial \Omega \times [0, T ],

u1(x, 0) = u10(x) \geq 0, u2(x, 0) = u20(x) \geq 0, x \in \Omega 0.

(3.5)

Then system (3.5) is equivalent to system (1.6) in a finite time interval.
By using u(0) = u\sim and u(0) = \~u as the initial iterations we can construct sequences

\{ u(m)\} \infty m=1 and \{ u(m)\} \infty m=1 from the iterations of scalar equations as follows:\left\{                       

\partial u
(m)
1

\partial t  - d1\Delta \omega u
(m)
1 +K1u

(m)
1 = F1(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

\partial u
(m)
2

\partial t  - d2\Delta \omega u
(m)
2 +K2u

(m)
2 = F2(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

\partial u
(m)
1

\partial t  - d1\Delta \omega u
(m)
1 +K1u

(m)
1 = F1(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

\partial u
(m)
2

\partial t  - d2\Delta \omega u
(m)
2 +K2u

(m)
2 = F2(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

u
(m)
i (x, t) = u

(m)
i (x, t) = 0 for i = 1, 2, (x, t) \in \partial \Omega \times [0, T ],

u
(m)
i (x, 0) = u

(m)
i (x, 0) = ui0(x) for i = 1, 2, x \in \Omega 0.

(3.6)

Since system (3.6) is a scalar discrete Laplacian system on networks, it follows from
the local existence theorem (Chung and Choi [6, Lemma 1.8]) that the sequences
\{ u(m)\} \infty m=1 and \{ u(m)\} \infty m=1 exist and are unique for a small T . Since (3.6) is a
monotone dynamical system, applying a similar argument as in Smith [38], we have
the following monotone property.

Lemma 3.2. The sequences \{ u(m)\} \infty m=1 and \{ u(m)\} \infty m=1 governed by (3.6) possess
the monotone property

u\sim \leq u(\bfm ) \leq u(\bfm +\bfone ) \leq u(\bfm +\bfone ) \leq u(\bfm ) \leq \~u for m = 1, 2, . . .(3.7)

for (x, t) \in \Omega 0 \times [0, T ]. Moreover, for each m = 1, 2, . . . ,u(\bfm ) and u(\bfm ) are coupled
upper and lower solutions of (1.6).

D
ow

nl
oa

de
d 

04
/1

8/
20

 to
 7

5.
30

.1
80

.1
35

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

936 ZUHAN LIU, CANRONG TIAN, AND SHIGUI RUAN

In view of Lemma 3.2, the pointwise limits

lim
m\rightarrow \infty 

u(\bfm ) = u, lim
m\rightarrow \infty 

u(\bfm ) = u(3.8)

exist for (x, t) \in \Omega 0 \times [0, T ]. In the following theorem we show that (u1, u2) and
(u1, u2) are the solutions of system (1.6).

Theorem 3.3. Let \~u and u\sim be a pair of coupled upper and lower solutions of
system (1.6) that are bounded on \Omega 0 \times [0, T ]. Let (u1, u2) and (u1, u2) be given by
(3.8). Then the following hold:

(i) (u1, u2) and (u1, u2) are the solutions of system (1.6). Moreover for all m \geq 1

u\sim \leq u(\bfm ) \leq u(\bfm +\bfone ) \leq u \leq u \leq u(\bfm +\bfone ) \leq u(\bfm ) \leq \~u in \Omega 0 \times [0, T ].(3.9)

(ii) If u = u(\equiv u\ast ), then u\ast is a solution of system (1.6).

Proof. (i) By (3.6), we know that u
(m)
1 and u

(m)
2 are solutions of the following

two scalar equations:\left\{           
\partial u

(m)
1

\partial t  - d1\Delta \omega u
(m)
1 +K1u

(m)
1 = F1(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

\partial u
(m)
2

\partial t  - d2\Delta \omega u
(m)
2 +K2u

(m)
2 = F2(u

(m - 1)
1 , u

(m - 1)
2 ), (x, t) \in \Omega 0 \times (0, T ],

u
(m)
1 (x, t) = u

(m)
2 (x, t) = 0, (x, t) \in \partial \Omega \times [0, T ],

u
(m)
1 (x, 0) = u10(x), u

(m)
2 (x, 0) = u20(x), x \in \Omega 0.

(3.10)

By the local existence theorem [6, Lemma 1.8], for (x, t) \in \Omega 0 \times (0, T ] we have

u
(m)
1 (x, t) = u10(x) +

\int t

0

(d1\Delta \omega u
(m)
1  - K1u

(m)
1 + F1(u

(m - 1)
1 , u

(m - 1)
2 ))ds,

u
(m)
2 (x, t) = u20(x) +

\int t

0

(d2\Delta \omega u
(m)
2  - K2u

(m)
2 + F2(u

(m - 1)
1 , u

(m - 1)
2 ))ds.

(3.11)

Since u\sim 1 \leq u
(m)
1 \leq \~u1 and u\sim 2 \leq u

(m)
2 \leq \~u2 for (x, t) \in \Omega 0 \times [0, T ], the dominated

convergence theorem implies that for t \in [0, T ] the limits u1(x, t) and u2(x, t) in (3.8)
satisfy the relation

u1(x, t) = u10(x) +

\int t

0

(d1\Delta \omega u1  - K1u1 + F1(u1, u2))ds,

u2(x, t) = u20(x) +

\int t

0

(d2\Delta \omega u2  - K2u2 + F2(u1, u2))ds.

(3.12)

Thus, (u1, u2) is a solution of system (1.6). A similar argument shows that (u1, u2)
is also a solution of system (1.6). Equation (3.9) can be immediately deduced from
(3.7) and (3.8).

(ii) Since u = u(\equiv u\ast ), for (x, t) \in \Omega 0 \times (0, T ], (3.12) becomes

u\ast 
1(x, t) = u10(x) +

\int t

0

(d1\Delta \omega u
\ast 
1  - K1u

\ast 
1 + F1(u

\ast 
1, u

\ast 
2))ds,

u\ast 
2(x, t) = u20(x) +

\int t

0

(d2\Delta \omega u
\ast 
2  - K2u

\ast 
2 + F2(u

\ast 
1, u

\ast 
2))ds.

(3.13)

Hence, u\ast is a solution of system (1.6). This completes the proof of the theorem.
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We extend the local solution obtained in Theorem 3.3 to the maximal time. To
do so, we need the following priori estimate.

Lemma 3.4. Let (u1, u2) be a solution to system (1.6) defined for t \in [0, T ] for
some T \in (0,\infty ). Then there exist constants M1 and M2 independent of T such that

0 \leq u1(x, t) \leq M1 for (x, t) \in \Omega 0 \times [0, T ],

0 \leq u2(x, t) \leq M2 for (x, t) \in \Omega 0 \times [0, T ].
(3.14)

Proof. As the initial conditions ui0(x) \geq 0 for i = 1, 2, we use the comparison
principle to get

ui(x, t) \geq 0 for (x, t) \in \Omega 0 \times [0, T ].(3.15)

Consequently, since (u1, u2) satisfies\left\{         
\partial u1

\partial t  - d1\Delta \omega u1 = u1(1 - u1  - a1u2) \leq u1(1 - u1), (x, t) \in \Omega 0 \times (0, T ],
\partial u2

\partial t  - d2\Delta \omega u2 = u2(r  - a2u1  - ru2) \leq u2(r  - ru2), (x, t) \in \Omega 0 \times (0, T ],

u1(x, t) = u2(x, t) = 0, (x, t) \in \Omega \times [0, T ],

u1(x, 0) = u10(x) \geq 0, u2(x, 0) = u20(x) \geq 0, x \in \Omega 0,

by choosing

M1 = max

\biggl\{ 
max
x\in \Omega 0

u10(x), 1

\biggr\} 
and M2 = max

\biggl\{ 
max
x\in \Omega 0

u20(x), 1

\biggr\} 
,(3.16)

we know that (M1,M2) and (0, 0) are a pair of upper and lower solutions of system
(1.6). Applying Theorem 3.3 immediately induces (3.14). The proof is complete.

Owing to the priori estimate of Lemma 3.4, we present the following global exis-
tence theorem.

Theorem 3.5. System (1.6) possesses a unique solution for all t \in [0,\infty ).

4. Stability of solutions. The main purpose of this section is to show global
asymptotic stability of solutions for system (1.6). According to the strength of com-
petitive interaction, we will discuss three types of competition relation: weak-strong
competition, strong-weak competition, and weak-weak competition.

4.1. Weak-strong competition and strong-weak competition. In this sub-
section, we first examine the case that u1 is an inferior competitor and u2 is a superior
competitor, namely,

a1 > 1 and a2 < r.(4.1)

In order to show global stability of solutions for system (1.6), we give the following
lemma.

Lemma 4.1. Suppose that for each x \in \Omega 0, w(x, \cdot ) \in C([0,\infty )) is differentiable
in (0,\infty ). Assume that

d > 0, \alpha > 0, \beta > 0(4.2)
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938 ZUHAN LIU, CANRONG TIAN, AND SHIGUI RUAN

are constants. If w satisfies\left\{     
\partial w
\partial t  - d\Delta \omega w \geq (\leq ) w(\alpha  - \beta w), (x, t) \in \Omega 0 \times (0,\infty ),

w(x, t) = 0, (x, t) \in \partial \Omega \times (0,\infty ),

w(x, 0) = w0(x) \geq 0, and w0(x) \not \equiv 0, x \in \Omega 0,

(4.3)

then for any given \varepsilon > 0 there exists t\varepsilon > 0 such that

w(x, t) >
\alpha 

\beta 
 - \varepsilon 

\Bigl( 
w(x, t) <

\alpha 

\beta 
+ \varepsilon 

\Bigr) 
for (x, t) \in \Omega 0 \times [t\varepsilon ,\infty ).(4.4)

Moreover,

lim inf
t\rightarrow \infty 

w(x, t) >
\alpha 

\beta 
 - \varepsilon 

\Bigl( 
lim sup
t\rightarrow \infty 

w(x, t
\Bigr) 
<

\alpha 

\beta 
+ \varepsilon ) uniformly in x \in \Omega 0.(4.5)

Proof. We first show that solutions of the scalar equation\left\{     
\partial z
\partial t  - d\Delta \omega z = z(\alpha  - \beta z), (x, t) \in \Omega 0 \times (0,\infty ),

z(x, t) = 0, (x, t) \in \partial \Omega \times [0,\infty ),

z(x, 0) = w0(x) \not \equiv 0, x \in \Omega 0,

(4.6)

converge to \alpha 
\beta uniformly in x \in \Omega 0.

Since w0(x) \not \equiv 0 for x \in \Omega 0, the strong maximum principle (Lemma 2.2) im-
plies that z(x, t) > 0 for (x, t) \in \Omega 0 \times (0,\infty ). For any small t1 > 0, we set
\delta = minx\in \Omega 0 z(x, t1), then \delta > 0. Consider z(x, t) satisfying the following equation:\left\{     

dz
dt = z(\alpha  - \beta z), x \in \Omega 0, t \in (t1,\infty ),

z(x, t) = 0, x \in \partial \Omega , t \in [t1,\infty ),

z(x, t1) = \delta , x \in \Omega 0.

(4.7)

Since \Omega 0 is finite, we have

lim
t\rightarrow \infty 

z(x, t) =
\alpha 

\beta 
uniformly in x \in \Omega 0.(4.8)

Moreover, owing to Definition 1.1, we have \Delta \omega z(t, x) =
\sum 

y\sim x \omega xy(z(t, y) - z(t, x)) \equiv 0.
Hence z is a lower solution of system (4.6) with t \in [t1,\infty ). The comparison principle
implies that z(x, t) \geq z(x, t) for (x, t) \in \Omega 0\times [t1,\infty ). Combining with (4.8), we obtain

lim inf
t\rightarrow \infty 

z(x, t) \geq \alpha 

\beta 
uniformly in x \in \Omega 0.(4.9)

On the other hand, consider z(x, t) satisfying the following equation:\left\{     
dz
dt = z(\alpha  - \beta z), x \in \Omega 0, t \in (0,\infty ),

z(x, t) = 0, x \in \partial \Omega , t \in [0,\infty ),

z(x, t1) = maxx\in S w0(x), x \in \Omega 0.

(4.10)

Since \Omega 0 is finite, we have

lim
t\rightarrow \infty 

z(x, t) =
\alpha 

\beta 
uniformly in x \in \Omega 0.(4.11)
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Moreover, since z is an upper solution of system (4.6) with t \in [0,\infty ), we have
z(x, t) \leq z(x, t) for (x, t) \in \Omega 0 \times [0,\infty ). Combining with (4.10), we obtain

lim sup
t\rightarrow \infty 

z(x, t) \geq \alpha 

\beta 
uniformly in x \in \Omega 0.(4.12)

Combining (4.9) and (4.12), we deduce that

lim
t\rightarrow \infty 

z(x, t) =
\alpha 

\beta 
uniformly in x \in \Omega 0.(4.13)

Next, since w satisfies (4.3), the comparison principle (Lemma 2.3) implies (4.4),
which immediately shows that (4.5) holds. This completes the proof.

Applying a similar argument, we obtain the following lemma.

Lemma 4.2. Suppose that for each x \in \Omega 0, w(x, \cdot ) \in C([0,\infty )) is differentiable
in (0,\infty ). Assuming that

d > 0, \alpha < 0, \beta > 0(4.14)

are constants. If w satisfies\left\{     
\partial w
\partial t  - d\Delta \omega w \leq w(\alpha  - \beta w), (x, t) \in \Omega 0 \times (0,\infty ),

w(x, t) = 0, (x, t) \in \partial \Omega \times [0,\infty ),

w(x, 0) = w0(x) \geq 0, x \in \Omega 0,

(4.15)

then

lim inf
t\rightarrow \infty 

w(x, t) \leq 0 uniformly in x \in \Omega 0.(4.16)

Theorem 4.3 (weak-strong competition). Assuming that (4.1) holds, then the
solution (u1, u2) to system (1.6) satisfies

lim
t\rightarrow \infty 

(u1, u2) = (0, 1) uniformly in x \in \Omega 0.(4.17)

Proof. By Lemma 3.4, 0 \leq u2(x, t) \leq M2 for (x, t) \in \Omega 0 \times [0,\infty ). Then we find
that u1 satisfies\left\{     

\partial u1

\partial t  - d1\Delta \omega u1 \leq u1(1 - u1), (x, t) \in \Omega 0 \times (0,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [0,\infty ),

u1(x, 0) = u10(x) \not \equiv 0, x \in \Omega 0.

Applying Lemma 4.1, for any 0 < \varepsilon 1 << 1, we have

lim sup
t\rightarrow \infty 

u1(x, t) < 1 + \varepsilon 1 uniformly in x \in \Omega 0.

Consequently, there exists t1 > 0 such that

u1(x, t) < 1 + \varepsilon 1 for t \geq t1, x \in \Omega 0.(4.18)
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By (4.1), we can choose \varepsilon 1 = r - a2

2a2
> 0. Plugging (4.18) into system (1.6), we see

that u2 satisfies\left\{     
\partial u2

\partial t  - d2\Delta \omega u2 \geq u2(
r - a2

2  - ru2), (x, t) \in \Omega 0 \times (t1,\infty ),

u2(x, t) = 0, (x, t) \in \partial \Omega \times [t1,\infty ),

u2(x, t)| t=t1 = u2(x, t1), x \in \Omega 0.

Using Lemma 4.1, for any 0 < \varepsilon 2 << 1, we have

lim inf
t\rightarrow \infty 

u2(x, t) >
r  - a2
2r

 - \varepsilon 2 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 2, we have

lim inf
t\rightarrow \infty 

u2(x, t) \geq 
r  - a2
2r

:= v1 uniformly in x \in \Omega 0.

Consequently, for any 0 < \varepsilon 2 << 1, there exists t2 > t1 such that

u2(x, t) > v1  - \varepsilon 2 for t \geq t2, x \in \Omega 0.(4.19)

(i) Plugging (4.19) into system (1.6), we see that u1 satisfies\left\{     
\partial u1

\partial t  - d1\Delta \omega u1 \leq u1(1 - u1  - a1v1 + a1\varepsilon 2), (x, t) \in \Omega 0 \times (t2,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [t2,\infty ),

u1(x, t)| t=t2 = u1(x, t2), x \in \Omega 0.

Employing Lemma 4.1, for any 0 < \varepsilon 3 << 1, we have

lim sup
t\rightarrow \infty 

u1(x, t) < 1 - a1v1 + a1\varepsilon 2 + \varepsilon 3 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 2 and \varepsilon 3, it immediately follows that

lim sup
t\rightarrow \infty 

u1(x, t) \leq 1 - a1v1 := v1 uniformly in x \in \Omega 0.

Consequently, for any 0 < \varepsilon 3 << 1, there exists t3 > t2 such that

u1(x, t) < v1 + \varepsilon 3 for t \geq t3, x \in \Omega 0.(4.20)

(ii) Plugging (4.20) into system (1.6), we see that u2 satisfies\left\{     
\partial u2

\partial t  - d2\Delta \omega u2 \geq u2(r  - a2v1  - a2\varepsilon 3  - ru2), (x, t) \in \Omega 0 \times (t3,\infty ),

u2(x, t) = 0, (x, t) \in \partial \Omega \times [t3,\infty ),

u2(x, t)| t=t3 = u2(x, t3), x \in \Omega 0.

Using Lemma 4.1, for any 0 < \varepsilon 4 << 1, we have

lim inf
t\rightarrow \infty 

u2(x, t) > 1 - a2v1
r

 - a2\varepsilon 3
r

 - \varepsilon 4 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 3 and \varepsilon 4, we have

lim inf
t\rightarrow \infty 

u2(x, t) \geq 1 - a2v1
r

:= v2 uniformly in x \in \Omega 0.(4.21)
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Consequently, for any 0 < \varepsilon 4 << 1, there exists t4 > t3 such that

u2(x, t) > v2  - \varepsilon 4 for t \geq t4, x \in \Omega 0.(4.22)

(iii) Plugging (4.22) into system (1.6), we see that u1 satisfies\left\{     
\partial u1

\partial t  - d1\Delta \omega u1 \leq u1(1 - u1  - a1v2 + a1\varepsilon 4), (x, t) \in \Omega 0 \times (t4,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [t4,\infty ),

u1(x, t)| t=t4 = u1(x, t4), x \in \Omega 0.

Employing Lemma 4.1, for any 0 < \varepsilon 5 << 1, we have

lim sup
t\rightarrow \infty 

u1(x, t) < 1 - a1v4 + a1\varepsilon 4 + \varepsilon 5 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 4 and \varepsilon 5, it immediately follows that

lim sup
t\rightarrow \infty 

u1(x, t) \leq 1 - a1v2 := v2 uniformly in x \in \Omega 0.

Consequently, for any 0 < \varepsilon 5 << 1, there exists t5 > t4 such that

u1(x, t) < v2 + \varepsilon 5 for t \geq t5, x \in \Omega 0.(4.23)

(iv) Plugging (4.23) into system (1.6), we see that u2 satisfies\left\{     
\partial u2

\partial t  - d2\Delta \omega u2 \geq u2(r  - a2v2  - a2\varepsilon 5  - ru2), (x, t) \in \Omega 0 \times (t5,\infty ),

u2(x, t) = 0, (x, t) \in \partial \Omega \times [t5,\infty ),

u2(x, t)| t=t5 = u2(x, t5), x \in \Omega 0.

Using Lemma 4.1, for any 0 < \varepsilon 6 << 1, we have

lim inf
t\rightarrow \infty 

u2(x, t) > 1 - a2v2
r

 - a2\varepsilon 5
r

 - \varepsilon 6 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 5 and \varepsilon 6, we have

lim inf
t\rightarrow \infty 

u2(x, t) \geq 1 - a2v2
r

:= v3 uniformly in x \in \Omega 0.(4.24)

We obtain that (4.21) and (4.24) have the same iterative relation. Therefore, as
long as the sequence \{ vn\} is monotone increasing and the sequence \{ vn\} is monotone
decreasing, the condition (4.2) is naturally satisfied. We can apply Lemma 4.1 again.
Repeating the above procedure such as (i), (ii), (iii), and (iv), we obtain two sequences
\{ vn\} and \{ vn\} , which satisfy

v1 =
r  - a2
2r

, vn = 1 - a1vn, and vn+1 = 1 - a2
r
vn for n = 1, 2 . . . .(4.25)

We now claim that \{ vn\} is monotone increasing and \{ vn\} is monotone decreasing
under the conditions vn \geq 0 and vn \geq 0. We prove it by using an induction argument.
For the case n = 1, since a2 < r, it is easy to see that

v2  - v1 = 1 - a2
r

 - 
\Bigl( 
1 - a1a2

r

\Bigr) 
v1 > 1 - a2

r
 - v1 =

1 - a2
2r

> 0,

v2  - v1 =  - a1(v2  - v1) < 0.
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Suppose that vn  - vn - 1 > 0 and vn  - vn - 1 < 0. By (4.25), we have

vn+1  - vn =  - a2
r
(vn  - vn - 1) > 0,

vn+1  - vn =  - a1(vn+1  - vn) < 0.

Thus, the induction principle implies the claim.
Since the sequence \{ vn\} is monotone increasing and the sequence \{ vn\} is mono-

tone decreasing, the limits limn\rightarrow \infty vn and limn\rightarrow \infty vn exist, denoted by v and v,
respectively. We now show the claim that v > 1

a1
by contradiction. Assume that

v \leq 1
a1

on the contrary. By letting n \rightarrow \infty , (4.25) implies that\Biggl\{ 
v = 1 - a2

r v,

v = 1 - a1v.

Solving the above equations, we have

(v, v) =
\Bigl( r(1 - a1)

r  - a1a2
,

r  - a2
r  - a1a2

\Bigr) 
.(4.26)

Since a1 > 1 and a2 < r, (4.26) implies that v < 0 or v < 0, which is a contradiction.
We have shown the claim.

Since v > 1
a1
, for any given \varepsilon , we have

lim inf
t\rightarrow \infty 

u2(x, t) > v  - \varepsilon uniformly in x \in \Omega 0.(4.27)

Consequently, there exists fixed tn such that

u2(x, t) > v  - \varepsilon for t \geq tn, x \in \Omega 0.(4.28)

Plugging (4.28) into system (1.6), we see that u1 satisfies\left\{     
\partial u1

\partial t  - d1\Delta \omega u1 \leq u1(1 - u1  - a1v + a1\varepsilon ), (x, t) \in \Omega 0 \times (tn,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [tn,\infty ),

u1(x, t)| t=tn = u1(x, tn), x \in \Omega 0.

Since v > 1
a1
, we can choose sufficiently small \varepsilon such that 1 - a1v+a1\varepsilon < 0. Employing

Lemma 4.2, we have

lim sup
t\rightarrow \infty 

u1(x, t) \leq 0, uniformly in x \in \Omega 0.(4.29)

Similarly, we obtain

lim inf
t\rightarrow \infty 

u2(x, t) \geq 1 uniformly in x \in \Omega 0.(4.30)

On the other hand, applying Lemmas 3.4 and 4.1, we have

lim sup
t\rightarrow \infty 

u1(x, t) \geq 0 uniformly in x \in \Omega 0,

lim inf
t\rightarrow \infty 

u2(x, t) \leq 1 uniformly in x \in \Omega 0.
(4.31)

Combining (4.29), (4.30), and (4.31), we conclude that (4.17) holds. We complete the
proof.
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We next examine the case that u1 is a superior competitor and u2 is an inferior
competitor, namely,

a1 < 1 and a2 > r.(4.32)

Since the proof of Theorem 4.3 is valid for the case of strong-weak competition, we
obtain the following theorem.

Theorem 4.4 (strong-weak competition). Assuming that (4.32) holds, then the
solution (u1, u2) to system (1.6) satisfies

lim
t\rightarrow \infty 

(u1, u2) = (1, 0) uniformly in x \in \Omega 0.(4.33)

4.2. Weak-weak competition. We now examine the case that both u1 and u2

are inferior competitors, namely,

a1 < 1 and a2 < r.(4.34)

Theorem 4.5 (weak-weak competition). Assuming that (4.34) holds, then the
solution (u1, u2) to system (1.6) satisfies

lim
t\rightarrow \infty 

(u1, u2) =
\Bigl( r(1 - a1)

r  - a1a2
,

r  - a2
r  - a1a2

\Bigr) 
uniformly in x \in \Omega 0.(4.35)

Proof. By Lemma 3.4, we have 0 \leq u1(x, t) \leq M1 for (x, t) \in \Omega 0 \times [0,\infty ). Then
we find that u2 satisfies\left\{     

\partial u2

\partial t  - d2\Delta \omega u2 \leq u2(r  - ru2), (x, t) \in \Omega 0 \times (0,\infty ),

u2(x, t) = 0, (x, t) \in \partial \Omega \times [0,\infty ),

u2(x, 0) = u20(x) \not \equiv 0, x \in \Omega 0.

Applying Lemma 4.1, for any 0 < \varepsilon 1 << 1, we have

lim sup
t\rightarrow \infty 

u2(x, t) < 1 + \varepsilon 1 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 1, we have

lim sup
t\rightarrow \infty 

u2(x, t) \leq 1 := v1 uniformly in x \in \Omega 0.

Consequently, there exists t1 > 0 such that

u2(x, t) < v1 + \varepsilon 1 for t \geq t1, x \in \Omega 0.(4.36)

(i) Plugging (4.36) into system (1.6), we see that u1 satisfies\left\{     
\partial u1

\partial t  - d1\Delta \omega u1 \geq u1(1 - u1  - a1v1  - a1\varepsilon 1), (x, t) \in \Omega 0 \times (t1,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [t1,\infty ),

u1(x, t)| t=t1 = u1(x, t1), x \in \Omega 0.

Using Lemma 4.1, for any 0 < \varepsilon 2 << 1, we have

lim inf
t\rightarrow \infty 

u1(x, t) > 1 - a1v1  - a1\varepsilon 1  - \varepsilon 2 uniformly in x \in \Omega 0.
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By the arbitrariness of \varepsilon 1 and \varepsilon 2, we have

lim inf
t\rightarrow \infty 

u1(x, t) \geq 1 - a1v1 := u1 uniformly in x \in \Omega 0.

Consequently, for any 0 < \varepsilon 2 << 1, there exists t2 > t1 such that

u1(x, t) > u1  - \varepsilon 2 for t \geq t2, x \in \Omega 0.(4.37)

After a similar argument of (ii), (iii), and (iv) in Theorem 4.3, we can obtain the
sequences \{ vn\} and \{ un\} , which satisfy

v1 = 1, un = 1 - a1vn, and vn+1 = 1 - a2
r
un for n = 1, 2 . . . .(4.38)

Similar to the proof of Theorem 4.3, we can show that \{ un\} is monotone increasing
and \{ vn\} is monotone decreasing. Thus the limits limn\rightarrow \infty un and limn\rightarrow \infty vn exist
and are denoted by u and v, respectively. Moreover, (4.38) implies that\Biggl\{ 

v = 1 - a2

r u,

u = 1 - a1v.

Solving the above equations, we have u = r(1 - a1)
r - a1a2

and v = r - a2

r - a1a2
. Therefore, the

above argument shows that

lim inf
t\rightarrow \infty 

u1(x, t) \geq u =
r(1 - a1)

r  - a1a2
uniformly in x \in \Omega 0,

lim sup
t\rightarrow \infty 

u2(x, t) \leq v =
r  - a2
r  - a1a2

uniformly in x \in \Omega 0.

(4.39)

It remains to show

lim sup
t\rightarrow \infty 

u1(x, t) \leq 
r(1 - a1)

r  - a1a2
uniformly in x \in \Omega 0,

lim inf
t\rightarrow \infty 

u2(x, t) \geq 
r  - a2
r  - a1a2

uniformly in x \in \Omega 0.

(4.40)

We can employ a similar argument as in (4.39). By Lemma 3.4, we have 0 \leq u2(x, t) \leq 
M2 for (x, t) \in \Omega 0 \times [0,\infty ). Then we find that u1 satisfies\left\{     

\partial u1

\partial t  - d1\Delta \omega u1 \leq u1(1 - u1), (x, t) \in \Omega 0 \times (0,\infty ),

u1(x, t) = 0, (x, t) \in \partial \Omega \times [0,\infty ),

u1(x, 0) = u10(x) \not \equiv 0, x \in \Omega 0.

Applying Lemma 4.1, for any 0 < \varepsilon 1 << 1, we have

lim sup
t\rightarrow \infty 

u1(x, t) < 1 + \varepsilon 1 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 1, we have

lim sup
t\rightarrow \infty 

u1(x, t) \leq 1 := u1 uniformly in x \in \Omega 0.

Consequently, there exists t1 > 0 such that

u1(x, t) < u1 + \varepsilon 1 for t \geq t1, x \in \Omega 0.(4.41)
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(v) Plugging (4.41) into system (1.6), we see that uw satisfies\left\{     
\partial u2

\partial t  - d2\Delta \omega u2 \geq u2(r  - a2u1  - ru2  - a2\varepsilon 1), (x, t) \in \Omega 0 \times (t1,\infty ),

u2(x, t) = 0, (x, t) \in \partial \Omega \times [t1,\infty ),

u2(x, t)| t=t1 = u2(x, t1), x \in \Omega 0.

Using Lemma 4.1, for any 0 < \varepsilon 2 << 1, we have

lim inf
t\rightarrow \infty 

u2(x, t) > 1 - a1
r
u1  - 

a1
r
\varepsilon 1  - \varepsilon 2 uniformly in x \in \Omega 0.

By the arbitrariness of \varepsilon 1 and \varepsilon 2, we have

lim inf
t\rightarrow \infty 

u2(x, t) \geq 1 - a1
r
u1 := v1 uniformly in x \in \Omega 0.

Consequently, for any 0 < \varepsilon 2 << 1, there exists t2 > t1 such that

u2(x, t) > v1  - \varepsilon 2, for t \geq t2, x \in \Omega 0.(4.42)

Using a similar argument as in (ii), (iii), and (iv) in Theorem 4.3 again, we can
obtain the sequences \{ un\} and \{ vn\} , which satisfy

u1 = 1, vn = 1 - a2
r
un, un+1 = 1 - a1vn for n = 1, 2 . . . .(4.43)

In view of the fact that \{ un\} is monotone decreasing and \{ vn\} is monotone increasing,
the limits limn\rightarrow \infty un and limn\rightarrow \infty vn exist, and

lim
n\rightarrow \infty 

un =
r(1 - a1)

r  - a1a2
, lim

n\rightarrow \infty 
vn =

r  - a2
r  - a1a2

.

Thus, we conclude that (4.40) holds, which completes the proof.

5. Numerical simulations: Applications to the invasion and competi-
tion of Ae. albopictus and Ae. aegypti in the U.S. In order to deal with the
numerical solutions of system (1.6), we assume that \Omega 0 has n vertices. The adjacent
matrix of the network \Omega 0 is denoted by G. Set u1(x, t) = Ui(t) and u2(x, t) = Vi(t).
Then System (1.6) is rewritten as the following ordinary differential equations:\left\{     

dUi

dt = Ui(1 - Ui  - a1Vi) + d1
\sum n

j=1 LijUj for i = 1, 2 . . . , n,
dVi

dt = Vi(r  - a2Ui  - rVi) + d2
\sum n

j=1 LijVj for i = 1, 2 . . . , n,

Ui(0) = u10(x)| x\in \Omega 0 , Vi(0) = u20(x)| x\in \Omega 0 for i = 1, 2 . . . , n,

(5.1)

where L is called the Laplacian matrix, which is defined by

Lij =

\Biggl\{ 
Gij\omega ij , j \not = i,

 - \Sigma n
j=1Gij\omega ij , j = i.

Here \omega ij means the distance from the ith state to the jth state.
Monitored data suggest that the two species Ae. aegypti and Ae. albopictus reach

relative steady states of coexistence in urban areas (Ayll\'on et al. [1]). The most
recent survey indicates that both Ae. aegypti and Ae. albopictus occur throughout
the entire state of Florida (Parker, Ramirez, and Connelly [33]). We aim to simulate
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Map of 23 states

Topological graph of 23 states

FL
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LATX
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CA

OK
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TN
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NC

VA
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KY
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IL IN
OH

PA

NY

Fig. 2. The map and corresponding topological graph of 23 states.

the invasion from Florida to the nearby 22 states (Figure 2). Moreover, according to
the adjacent geographical relation, we plot the topological graph \Omega 0. The adjacent
matrix of the network \Omega 0 is defined as G, which is a matrix with 23 rows and 23
columns. For system (1.6), we consider the values for the dimensional parameters in
the following unit system (Space = [x] = km, Time = [t] = one day):

D1 = 0.0125, D2 = 0.025, r1 = 0.02, r2 = 0.02,

K1 = 25,K2 = 25, \~a1 = 2.5\times 10 - 5, \~a2 = 4\times 10 - 5.
(5.2)

It was reported that (Verdonschot and Besse-Lototskaya [41]) the average flight dis-
tances of Ae. aegypti and Ae. albopictus are 333m (standard deviation 384m) and
676m (standard deviation 458m), respectively. So it is biologically reasonable to
choose D1 = 0.0125km and D2 = 0.025km, which are in agreement with the short
dispersal experiments and field studies (Oteroa, Schweigmann, and Solari [32]). The
other parameters are also chosen in a significant scope such as in Takahashi et al. [40].

By (1.5), we obtain the values for nondimensional parameters

d1 = 0.625, d2 = 1.25, a1 = 0.05, a2 = 0.08, r = 1.(5.3)

It follows from (5.3) that Ae. aegypti and Ae. albopictus are weak-weak competitors.
Theorem 4.5 implies that in the case of weak-weak competition the two mosquito
species coexist and their population densities converge to the positive equilibrium
values (Parker, Ramirez, and Connelly [33]). Moreover, besides the long time stability,
our numerical simulations present the intermediate states during the invasion.

Figure 3 shows the invasion process of Ae. albopictus while competing with Ae.
aegypti. Since we assumed that the whole state of Florida had Ae. albopictus (the
initial data), it took 1500 days for Ae. albopictus to spread over the other 22 states,
which was less than the real invasion time. Figure 2 shows that the degree of north-
ward states is larger than the degree of westward states. For example, the degree
of Georgia is 5 while the degree of Mississippi is 4. From Figure 3(b)--(c), we see
that the direction of invasion northward is faster than westward. From a biological
point of view, we see that even if in the same habitat the Ae. albopictus mosquito
is more likely to invade cluster points than remote points. Our discrete Laplacian
model (1.6) demonstrates that the degree of the graph drives Ae. albopictus moving
faster northward than westward. Moreover, in Figure 3(b)--(c), the habitats of Ae.
albopictus are larger than that of Ae. aegypti, which shows that Ae. albopictus is more
successful than Ae. aegypti in invading new territories. This also agrees with field
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(a) t = 0 day (b) t = 500 day
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(c) t = 1000 day (d) t = 1500 day
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Fig. 3. Invasion processes of Aedes mosquitoes over 23 states in 1500 days. The initial surviving
habit is assumed to be only Florida.

observations which indicate that Ae. albopictus is superior to Ae. aegypti in spreading
into neglected and densely urbanized areas if close to vegetated areas, being capable
of dispersing great distances inside forests near human dwellings, and moving easily
between sylvatic and urban environments (Ayll\'on et al. [1]).

6. Discussions. Invasions by insect vectors of human diseases such as mos-
quitoes have profound effects on global public health (Lounibos [28]). Ae. aegypti
and Ae. albopictus mosquitoes are two prominent transmitters of dengue fever virus,
chikungunya virus, yellow fever virus, Zika virus, etc. Understanding the dispersal
and invasive behavior of Aedes mosquitoes is essential in implementing vector control
strategies and preventing and controlling mosquito-borne diseases. The Ae. aegypti
mosquito is an invasive domestic species with tropical and subtropical worldwide dis-
tribution and Ae. albopictus is a most recent invasive species that has spread recently
to many countries. After arriving in the U.S. in the middle 1980s (Sprenger and
Wuithiranyagool [39], Peacock et al. [35]), Ae. albopictus mosquitoes have been com-
peting with Ae. aegypti mosquitoes, coexisting with Ae. aegypti where Ae. aegypti
is present, and spreading beyond the boundaries of Ae. aegypti's habitats (Hahn et
al. [13]). Our competition model with network (1.6) can be applied to describe the
invasion of Ae. albopictus and the competition between Ae. aegypti and Ae. albopictus.

Though the process of biological invasion is not well-understood, researchers have
been trying to explain it by using different population dynamical models. Mathe-
matical models included reaction-diffusion equations (Aronson and Weinberger [2, 3],
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Fisher [9], Liang and Zhao [23], Skellam [37], Weinberger, Lewis, and Li [42]) and het-
erogeneous environment models (Lou [26], He and Ni [15], and Zhang et al. [43]) have
been used to study the spreading of species via the investigation of traveling waves.
In these studies Laplacian operators were used to describe the population dispersal
in which every individual is assumed to obey the principle of Gaussian random walk,
i.e., the probability of moving in any direction is equal. Our competition model in
a network is different since the movement of mosquitoes in each vertex depends on
the topological structure of the network. We studied the short time and long time
dynamical behaviors of the invasive Ae. albopictus competing with Ae. aegypti by us-
ing a discrete Laplacian diffusion operator. To the best of our knowledge, there is no
population dynamical model that takes into account the network structure to describe
the biological invasion in the literature.

In the case of weak-strong competition or strong-weak competition, our results
(Theorems 4.3 and 4.4) indicate that one species will win the competition. The more
interesting and practical case is weak-weak competition. By Theorem 4.5, we see that
the invasive Ae. albopictus and the local Ae. aegypti coexist and their densities con-
verge to their positive equilibrium values in long time. The asymptotic behaviors are
parallel to that of the reaction-diffusion model. However, our numerical simulations
(Figure 3) demonstrated that the spreading speed is not the same in every direction
in short time. Consequently, Ae. albopictus not only coexists with Ae. aegypti in habi-
tats where Ae. aegypti presents but also expands to new territories. This dynamical
feature of our model seems to agree with the empirical evidence observed in Hon\'orio
et al. [17], Maidana and Yang [29], and Ayll\'on et al. [1].

It is known that temperature, humidity, and rainfall impact the survival of adult
Aedes mosquitoes and the availability of oviposition sites. It will be interesting to
study the effect of climate change on the dynamics of network competition models.
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