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Abstract. This paper presents qualitative and bifurcation analysis near the
degenerate equilibrium in a two-stage cancer model of interactions between

lymphocyte cells and solid tumor and contributes to a better understanding
of the dynamics of tumor and immune system interactions. We first establish
the existence of Hopf bifurcation in the 3-dimensional cancer model and rule
out the occurrence of the degenerate Hopf bifurcation. Then a general Hopf
bifurcation formula is applied to determine the stability of the limit cycle bi-
furcated from the interior equilibrium. Sufficient conditions on the existence
of stable periodic oscillations of tumor levels are obtained for the two-stage
cancer model. Numerical simulations are presented to illustrate the existence
of stable periodic oscillations with reasonable parameters and demonstrate the
phenomenon of long-term tumor relapse in the model.

1. Introduction. According to the study in Boyle et al. [3], every year millions of
people suffer with cancer and die from this disease throughout the world. In the new
century cancer still remains one of the most dangerous killers of humankind. In order
to study the progress of cancer and seek effective treatment strategies, researchers
have proposed comprehensive approaches, including biological, computational and
mathematical methods, to study the disease. An important aspect in studying
cancer is to understand the interactions between the immune system and tumor
cells. In order to simulate the host’s own immune response to destroy and eliminate
tumor cells, various types of mathematical models have been proposed, see Albert
et al. [1], de Pillis et al. [6], d’Onofrio [7], Kirschner and Panetta [15], Kirschner
and Tsyvintsev [16], Kuznetsov et al. [17], Lejeune et al. [19], Liu et al. [22], and
Swan [30]. We refer to a recent survey by Eftimie at al. [9] and the references cited
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therein for more references on modeling tumor and immune system interactions, in
particular using ordinary differential equations.

In this work we are interested in studying mathematical models of carcinogenesis
in which the tumor cells elicit an immune response. Based on some reasonable
hypotheses, the following model

dL
dt

= −λ1L+ α
′

1C̄L(1− L
Lc

),

dC
dt

= λ2Cf − α
′

2C̄L
(1)

was proposed by DeLisi and Rescigno [5] to qualitatively estimate the function
of the immune surveillance (Lefever and Garay [18]), where L(t) and C(t) denote
respectively the number of free lymphocytes and the total number of tumor cells
at time t, C̄ and Cf are the total number of free tumor cells and the number of
free cells on a tumor surface (i.e., not bounded by lymphocytes), respectively. The

values of λ1 and α
′

1 may be dependent on environmental stimuli and the type of
tissues where the tumor is growing. The last factor in the first equation 1 − L

Lc

is a saturation term which restricts the maximum number Lc of lymphocytes in
the system. If the relationship between free and bounded lymphocytes is assumed
to be equilibrium controlled, with K the equilibrium constant for lymphocyte and
tumor cell interaction, and the tumor is assumed to be spherical, then DeLisi and
Rescigno obtained that Cf = C−gKLC2/3/(1+KL), C̄ = gC2/3/(1+KL), where
g > 0 is a constant. DeLisi and Rescigno [5] analyzed the qualitative behavior of the
solutions of model (1) except near the degenerate equilibrium and compared briefly
with the results of the transplantation experiments. Recently, Lin [20] studied the
existence of the solutions and the stability of the steady states of model (1). The
dynamical behavior and bifurcations near the degenerate equilibrium in model (1)
was studied by Liu et al. [21].

System (1) describes a mathematical model of the interactions between the im-
mune system and solid tumor. This model is consistent with the experimental
observations in many conclusions, however, the development of de novo tumor is
unable to be predicted. To avoid this difficulty, Rescigno and DeLisi [26] made
slight but more realistic changes on the model by requiring that lymphocytes go
through two stages of development, namely immature and mature. They claimed
that only lymphocytes in the second stage are effective in killing tumor cells, which
were referred to as activated lymphocytes. We would like to mention that other
researchers have also considered different stages of immune cells or different immune
cells in modeling tumor and immune system interactions. For example, in modeling
cytotoxic reactions mediated by the response of immune cells to solid tumors, Leje-
une et al. [19] argued that lysis and binding are independent processes and modeled
free and bound immune cells separately. De Pillis et al. [6] proposed a model of
cell-mediated immune response to tumor growth and considered the interaction of
the natural killer cells and the CD8+ T cells with tumor cells separately.

Following Rescigno and DeLisi [26], we denote
Li(t) – the number of lymphocytes in stage i(i = 1, 2),
C(t) – the total number of cells in the tumor,
Cf (t) – the total number of free (i.e., unbounded) cancer cells,

and make the following assumptions:

(a) The tumor is spherical at all times and its geometry is protective so that only
cells on the surface of the tumor are vulnerable to attack.
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(b) The death rate of the stage-2 lymphocytes is a first-order process with constant
α3.

(c) Stage-1 lymphocytes are transformed into stage 2 at a constant rate λ1.
(d) Stage-1 lymphocytes are produced at a fixed rate λ1L0 (in the absence of

tumor cells) plus a rate proportional to the product of the number of free
tumor cells and stage-2 lymphocytes.

(e) In the absence of lymphocytes, the reproduction rate of the tumor cells is at
a constant rate λ2.

(f) The killing rate of the tumor cells by lymphocytes is proportional to the

frequency of interaction with stage-2 lymphocytes with constant α
′

2.
(g) There is an equilibrium relation between free tumor cells and stage-2 lympho-

cytes.
(h) The progeny of L2 must first pass through stage one before becoming mature

lymphocytes to approximate some biological delay in the formation of L2 by
tumor cell stimulation.

Now the interactions between the tumor cells and lymphocytes are described a
system of three ordinary differential equations (see [26]):

dL1
dt

= −λ1(L1 − L0) + α
′

1CfL2exp(−L2/Lc),

dL2
dt

= λ1L1 − α3L2,

dC
dt

= λ2Cf − α
′

2CfL2,

(2)

where α
′

1exp(−L2/Lc) represents the saturation of the system which restricts the
maximum number Lc of lymphocytes, (C − Cf )/CfL2 is a constant K under the
assumption that the relation between stage-2 lymphocytes and free tumor cells is
equilibrium controlled. Therefore, Cf = C/(1 +KL2) and (2) is written as

dL1
dt = −λ1(L1 − L0) + α

′

1
L2C

1+KL2
exp(−L2

Lc
),

dL2
dt = λ1L1 − α3L2,

dC
dt

=
λ2−α

′

2L2

1+KL2
C,

(3)

Some potential oscillation phenomena were observed by Rescigno and DeLisi
[26] in the development of cancer and lymphocyte cells. In this paper we study the
nonlinear dynamics of system (3) and prove that there is a stable periodic solu-
tion bifurcated from the interior degenerate equilibrium under certain assumptions
of the parameters, which means that all the trajectories in the neighborhood of
this equilibrium spiral towards the bifurcated limit cycle as time increases. More
precisely, by applying the Hopf bifurcation theorem (Zhang [32]) for 3-dimensional
systems, we first discuss the Hopf bifurcation in model (3) and obtain the nonex-
istence of degenerate Hopf bifurcation. The noticeable point lies in the determi-
nation of conditions on the stability of the bifurcated periodic orbit so that this
cancer model exhibits stable periodic oscillations between the solid tumor cells and
lymphocyte cells. Therefore, the tumor levels will oscillate inescapably once the
initial values of tumor cells and lymphocyte cells are close enough to the degen-
erate equilibrium. This oscillatory phenomenon of tumor levels has been observed
clinically and is known as Jeff’s Phenomenon (Thomlinson [31]). The theoretical
results in this work will be helpful for the further study of the dynamical behaviors
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in the mathematical models of carcinogenesis and for the better understanding of
the development of cancer when the tumor cells elicit an immune response.

The paper is organized as follows. Section 2 provides the qualitative analysis, the
existence of Hopf bifurcation and the nonexistence of degenerate Hopf bifurcation.
In section 3, an applicable transformation of a 3×3 Jacobian matrix is given. Section
4 discusses the stability of the bifurcated periodic orbit and presents the sufficient
conditions on the stable case. Numerical simulations supporting the theoretical
results of section 4 are presented in section 5. Section 6 provides a brief discussion
on this work.

2. Hopf bifurcation.

For system (3), we make the following transformations: x = K(L1 − L0), y =

KL2, z = KC, α1 = α
′

1/K, α2 = α
′

2/K, x0 = KL0, yc = KLc, then it is changed
into

dx
dt

= −λ1x+ α1
yz
1+y exp(−

y
yc
) , f(x, y, z),

dy
dt

= λ1(x + x0)− α3y , g(x, y, z),

dz
dt = λ2−α2y

1+y z , h(x, y, z).

(4)

The above system has two possible fixed points: A(xA, yA, zA) = (0, λ1x0

α3
, 0) and

B(xB , yB, zB) = (α3λ2

α2λ1
− x0,

λ2

α2
, λ1xB(1+yB)

α1yB
exp(yB

yc
)). The Jacobian matrix of the

linearized system of (4) is

J(x, y, z) =







−λ1 α1z
1−y/yc−y2/yc

(1+y)2 exp(− y
yc
) α1y

1+y exp(−
y
yc
)

λ1 −α3 0

0 − (α2+λ2)z
(1+y)2

λ2−α2y
1+y






. (5)

From the biological point of view, the state space of system (4) is the non-negative
octant

R
3
+ = {X = (x, y, z)T ∈ R3 : x > 0, y > 0, z > 0},

where T means the transpose of a matrix or a vector throughout this paper. Denote
the positive open subset of R3

+ as

R
3
p = {X = (x, y, z)T ∈ R3 : x > 0, y > 0, z > 0}.

If we set R0 = α3λ2

α2λ1x0
, then the following conclusion can be obtained directly

from [26].

Lemma 2.1. If R0 < 1, then for any solution (x(t), y(t), z(t)) of (4), we have that

lim inf
t→+∞

x(t) > 0, lim inf
t→+∞

y(t) > yA, lim inf
t→+∞

z
′

(t) < 0,

and the boundary equilibrium point A is the unique and globally stable equilibrium

of (4) in R
3
+.

From Lemma 2.1 we know that for any choice of initial conditions, the trajectory
of system (4) always approaches to A when R0 < 1. In other words, cancer will be
controlled and tumor cells will be annihilated eventually as long as the increasing
rate of lymphocyte cells is large enough.

Point B exists as a nonnegative equilibrium only if R0 > 1. In this case, point A
turns to be a saddle with a one-dimensional unstable manifold from a stable node,
which implies that for each orbit starting in R

3
p the number of cancer cells will not

tend to zero. A bifurcation occurs at R0 = 1.
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Remark 1. The role of R0 is similar to the basic reproduction number in epidemic
models.

Now we intend to study the qualitative properties of (4) near the equilibrium B.
The Jacobian matrix of (4) at B is

JB =





−λ1 λ1xB[
1

yB(1+yB) −
1
yc
] α1yB

1+yB
exp(− yB

yc
)

λ1 −α3 0

0 −α2λ1xB

α1yB
exp(yB

yc
) 0



 (6)

and the corresponding characteristic equation is

λ3 + a1λ2 + a2λ+ a3 = 0, (7)

where
a1 = α3 + λ1 > 0,
a2 = λ2

1[
x0

yB
+ xB(

1
yc

+ 1
1+yB

)] > 0,

a3 =
α2λ

2
1xB

1+yB
> 0.

Applying Routh-Hurwitz criterion to the Jacobian matrix JB, we achieve that the
sufficient condition for the stability of B is

a1a2 − a3 = λ2
1{(α3 + λ1)[

x0

yB
+ xB(

1

yc
+

1

1 + yB
)]−

α2xB

1 + yB
} > 0.

Thus, point B is unstable if a1a2 − a3 < 0 but is uncertain if a1a2 − a3 = 0.
Nevertheless, equation (7) always has at least one negative real root γ no matter
what the sign of a1a2 − a3 is. Also γ is the principle eigenvalue, and the absolute
value of γ is greater than that of the real parts of the other eigenvalues.

Under the assumption a1a2 − a3 = 0, it is clear to see that JB has one nega-
tive eigenvalue −(α3 + λ1) and two pure imaginary eigenvalues ±iw, where w > 0
satisfies w2 = a2 = λ2

1[
x0

yB
+xB(

1
yc
+ 1

1+yB
)]. Although the stability of B is not deter-

mined, Hopf bifurcation may occur at this equilibrium. We resort to the following
Hopf bifurcation theorem in three-dimensional differential systems to determine the
occurrence of Hopf bifurcation which can be found in Zhang [32].

Lemma 2.2. Let Ω ⊆ R3 be an open set containing O(x1, y1, z1) and let S ⊆ R
be an open set with 0 ∈ S. Let f : Ω × S → R3 be an analytic function such

that f(O, µ) = 0 for any µ ∈ S. Assume the variational matrix Df(O, µ) of f
has one real eigenvalue γ(µ) and two conjugate imaginary eigenvalues α(µ)± iβ(µ)
with γ(0) < 0, α(0) = 0, β(0) > 0. Furthermore, suppose that the eigenvalues

cross the imaginary axis with nonzero speed, that is, dα
dµ (0) 6= 0. Then the following

differential system

Ẋ = f(X,µ) (8)

undergoes Hopf bifurcation near the equilibrium point O at µ = 0.

Remark 2. If α
′

(0) > 0 and O is a stable but not asymptotically stable equilibrium
when µ = 0, then the solutions of system (8) on some surface in the neighborhood
of O are all periodic orbits.

Remark 3. If α
′

(0) > 0 and O is a asymptotically stable (unstable) equilibrium
when µ = 0, then system (8) has an asymptotically stable periodic orbit in the
neighborhood of O for sufficiently small µ > 0 (µ < 0).
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In order to clarify how system (4) undergoes Hopf bifurcation at point B, we
choose the death rate α3 of stage-2 lymphocytes as a perturbed parameter. The
equation a1a2 − a3 = 0 brings out

α3 =
α2yB − λ1(1 + yB)±

√

[α2yB − λ1(1 + yB)]2 − 4λ1α2x0(1 + yB)

2(1 + yB)
,

where we need 0 < λ1 < α2yB/(1 + yB) to guarantee that α3 is nonnegative.
Without loss of generality, set α3(µ) = α0

3 + µ, where α3(0) = α3 satisfies that

(a1a2 − a3)|µ=0 = λ2
1{(α3 + λ1)[

x0

yB
+ xB(

1
yc

+ 1
1+yB

)]− α2xB

1+yB
} = 0. (9)

We also need to determine the sign of the real part of dλ/dµ at µ = 0 when the
above equation is valid. Differentiating both sides of (7) with respect to µ, we have

3λ2 dλ
dµ + λ2 + 2(α3 + λ1)λ

dλ
dµ + λ2

1(
1
yc

+ 1
1+yB

)λdxB

dµ

+λ2
1[xB(

1
yc

+ 1
1+yB

) + x0

yB
]dλdµ +

α2λ
2
1

1+yB

dxB

dµ = 0,

which leads to

dλ

dµ
= −

λ2 + λ1yB(
1
yc

+ 1
1+yB

)λ+ α2λ1yB

1+yB

3λ2 + 2(α3 + λ1)λ+ λ2
1[xB(

1
yc

+ 1
1+yB

) + x0

yB
]
, (10)

where µ in xB is omitted for simplicity. Therefore, by (9), we have

sign{Re(dλdµ )|µ=0}

= sign{Re(−
−w2+λ1yB( 1

yc
+ 1

1+yB
)iw+

α2λ1yB
1+yB

−3w2+2(α3+λ1)iw+λ2
1
[xB( 1

yc
+ 1

1+yB
)+

x0
yB

]
)}

= sign{−(−w2 + α2λ1yB

1+yB
){−3w2 + λ2

1[xB(
1
yc

+ 1
1+yB

) + x0

yB
]}

−2λ1(α3 + λ1)yB(
1
yc

+ 1
1+yB

)w2}

= sign{−w2 + α2λ1yB

1+yB
− λ1(α3 + λ1)(

1
yc

+ 1
1+yB

)yB}

= sign{− λ1α2xB

(α3+λ1)(1+yB) +
x0(α3+λ1)

xB
}

= sign{−λ1α2x
2
0 + [2λ1α2x̄+ (α3 + λ1)

2(1 + yB)]x0 − λ1α2x̄
2}

, sign{h(x0)},

(11)

where x̄ = α3λ2

α2λ1
. Obviously, the degeneracy Re(dλdµ )|µ=0 = 0 occurs at

x∗
0 = x̄+

(α3 + λ1)
2(1 + yB)−

√

[2λ1α2x̄+ (α3 + λ1)2(1 + yB)]2 − 4λ2
1α

2
2x̄

2

2λ1α2
< x̄,

when h(x0) vanishes (see Figure 1).
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-
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r

r

x0

h(x0)

0 x∗
0 x̄ xc

0

−λ1α2x̄
2

Figure 1. Graph of the function h(x0) defined on [0, x̄],

xc
0 = x̄+ (α3+λ1)

2(1+yB)
2λ1α2

.

According to Lemma 2.2 and the above calculations, we obtain the following
conclusion.

Theorem 2.3. For any given x0 ∈ [0, x̄] and x0 6= x∗
0, system (4) undergoes nonde-

generate Hopf bifurcation at the nonhyperbolic equilibrium B when the parameters

satisfy equation (9).

When x0 = x∗
0, the real part of

dλ
dµ becomes zero, then the transversality condition

fails. The occurrence of degeneracy may induce degenerate Hopf bifurcation or no
Hopf bifurcation. We will continue to differentiate (10) associating to µ to determine
the existence of degenerate Hopf bifurcation. Using (10), it can be easily deduced
after tedious and mechanical calculations that

d2λ
dµ2 = −

[2λ+λ1yB( 1
yc

+ 1
1+yB

)]{3λ2
1+2λ(α3+λ1)+λ2

1[xB( 1
yc

+ 1
1+yB

)+
x0
yB

]}dλ
dµ

{3λ2+2λ(α3+λ1)+λ2
1
[xB( 1

yc
+ 1

1+yB
)+

x0
yB

]}2

+
[λ2+λ1yB( 1

yc
+ 1

1+yB
)λ+

α2λ1yB
1+yB

][6λ dλ
dµ

+2(α3+λ1)
dλ
dµ

+2λ+λ1yB( 1
yc

+ 1
1+yB

]

{3λ2+2λ(α3+λ1)+λ2
1
[xB( 1

yc
+ 1

1+yB
)+

x0
yB

]}2 .

(12)
On the assumption of (9) and the condition x0 = x∗

0, it follows that Re(
dλ
dµ |µ=0) = 0

and

sign{Re(d
2λ

dµ2 )|µ=0}

= sign{Re(
[−w2+iλ1yB( 1

yc
+ 1

1+yB
)w+

α2λ1yB
1+yB

][2iw+λ1yB( 1
yc

+ 1
1+yB

]

{−3w2+2i(α3+λ1)w+λ2
1
[xB( 1

yc
+ 1

1+yB
)+

x0
yB

]}2 )}

= sign{Re(
(−w2+

α2λ1yB
1+yB

)λ1yB( 1
yc

+ 1
1+yB

)−2λ1yB( 1
yc

+ 1
1+yB

)w2

w2−(α3+λ1)2−2i(α3+λ1)w

+
i[2(−w2+

α2λ1yB
1+yB

)w+λ2
1y

2
B( 1

yc
+ 1

1+yB
)2w]

w2−(α3+λ1)2−2i(α3+λ1)w
)}

= sign{Re(
(−3w2+

α2λ1yB
1+yB

)λ1yB( 1
yc

+ 1
1+yB

)+i[2(−w2+
α2λ1yB
1+yB

)+λ2
1y

2
B( 1

yc
+ 1

1+yB
)2]w

w2−(α3+λ1)2−2i(α3+λ1)w
)}

= sign{Re(
−3w2+

α2λ1yB
1+yB

+i[2(α3+λ1)+λ1yB( 1
yc

+ 1
1+yB

)]w

w2−(α3+λ1)2−2i(α3+λ1)w
)}

= sign{(−3w2 + α2λ1yB

1+yB
)[w2 − (α3 + λ1)

2]− 2(α3 + λ1)[2(α3 + λ1)

+λ1yB(
1
yc

+ 1
1+yB

)]w2}

= sign{−w4 − w2(α3 + λ1)
2 − [3w2+(α3+λ1)

2]α2λ1yB

1+yB
}

< 0,
(13)
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where the last equation comes from h(x0) = 0 in (11), which implies that λ1yB(α3+

λ1)(
1
yc

+ 1
1+yB

) = −w2 + α2λ1yB

1+yB
.

- - -

6 6 6

µ µ µ

α(µ)

α(µ)

α(µ)

x0 > x∗
0 x0 < x∗

0x0 = x∗
0

Figure 2. Three cases of α(µ) when |µ| > 0 is small enough.

Theorem 2.4. For parameters satisfying equation (9), there is no Hopf bifurcation

for system (4) at the nonhyperbolic equilibrium B when x0 = x∗
0.

From Figure 2 we can see that if x0 = x∗
0, then when µ passes through the origin

from any direction, the interior equilibrium is always locally stable. In terms of the
notations in Golubitsky and Langford [12], α

′

(0) = 0 is equivalent to aµ(0, 0) = 0.

Since at the interior equilibrium of model (4) aµ(0, 0) = 0 holds but α
′′

(0) < 0,
the normal form of a(x2, µ) corresponds to the cases (2) or (7) or (10) in Theorem
3.19 of [12] for codimension less than 3. However, by the stability analysis, the
corresponding bifurcation diagram should be displayed as in Fig. 4.2 of that paper.

3. Normalized form of the Jacobian matrix. In this section we provide an
applicable transformation to normalize the Jacobian matrix. Consider the following
C∞ system in R3

+ × S:






ẋ1 = f1(x1, x2, x3, µ),
ẋ2 = f2(x1, x2, x3, µ),
ẋ3 = f3(x1, x2, x3, µ),

(14)

where R3
+ = {(x1, x2, x3)

T |xi > 0, i = 1, 2, 3} and S ⊆ R is an open set containing
0. Assume system (14) has an isolated equilibrium X∗(x∗

1, x
∗
2, x

∗
3) for any µ ∈ S

and the variational matrix of f = (f1, f2, f3)
T at point X∗ is denoted as A =

(aij)3×3. AssumeA has one negative real eigenvalue γ and a pair of purely imaginary
eigenvalues ±iw (w > 0) as µ = 0. Then the following lemma gives the normalized
form of A.

Lemma 3.1. ([4, pp.106]) Let A be a real n × n matrix. Then there exists a real

nonsingular matrix P such that Ã = P−1AP has the real canonical form consisting

of real square matrices A1, . . . , Ak, B1, . . . , Bm down the main diagonal. Each

Aj has the form

Aj =















Sj 02 · · · 02 02
I2 Sj · · · 02 02
02 I2 · · · 02 02
...

...
...

...
...

02 02 · · · I2 Sj















, (15)
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where 02 is the 2× 2 zero matrix, I2 is the 2× 2 identity matrix, and

Sj =

(

αj −βj

βj αj

)

.

Then Bj has the form

Bj =















λj 0 · · · 0 0
1 λj · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 λj















.

We can validate this lemma by considering the canonical form of the above-
mentioned 3× 3 matrix A for µ = 0 in explicit transformations. In fact, set

B(λ) , λI3 −A =





λ− a11 −a12 −a13
−a21 λ− a22 −a23
−a31 −a32 λ− a33



 ,

where Ii is the i × i identity matrix. Then obviously the determinant of B is
detB(λ) = (λ− ρ)(λ2 + w2). Moreover, we have

ρ = a11 + a22 + a33,
ρw2 = detA,
w2 = a11a22 + a22a33 + a11a33 − a12a21 − a23a32 − a13a31.

(16)

Assume β = (β1, β2, β3)
T is the right eigenvector of A associated to the eigenvalue

ρ, then Aβ = ρβ, which is equivalent to the following equations:






(ρ− a11)β1 − a12β2 − a13β3 = 0,
−a21β1 + (ρ− a22)β2 − a23β3 = 0,
−a31β1 − a32β2 + (ρ− a33)β3 = 0.

(17)

Since the dimension of the basis of the eigenvector space corresponding to ρ is one,
Rank(B(ρ)) = 2. Without loss of generality, let us assume

det

(

ρ− a11 −a12
−a21 ρ− a22

)

6= 0.

Consider the first two equations of (17), we can solve one of the nonzero solutions
as

(β1, β2, β3)
T =

(∣

∣

∣

∣

a13 −a12
a23 ρ− a22

∣

∣

∣

∣

,

∣

∣

∣

∣

ρ− a11 a13
−a21 a23

∣

∣

∣

∣

,

∣

∣

∣

∣

ρ− a11 −a12
−a21 ρ− a22

∣

∣

∣

∣

)T

.

The following choice of a series of linear transformations is motivated by the
methods in Lu and Luo [23]. Choose

T1 =





ρ− a11 −a12 β1

−a12 ρ− a22 β2

−a13 −a23 β3



 ,

then we obtain that

T−1
1 AT1 =





c11 c12 0
c21 c22 0
c31 c32 ρ



 ,

(

C1 0
C2 ρ

)

,

where the elements of C1 satisfy c11 + c22 = 0 and w2 = c11c22 − c12c21 > 0.
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Choose

T2 =

(

I2 0
C2(C1 − ρI2)

−1 1

)

,

then

T−1
2 T−1

1 AT1T2 =

(

C1 0
0 ρ

)

.

Take

T3 =





1 −c11/w 0
0 −c21/w 0
0 0 1





and set T = T1T2T3, then we obtain

T−1AT =





o w 0
−w 0 0
0 0 ρ



 . (18)

The lemma is proved.

4. Stability of periodic orbits. In order to determine the stability of periodic
orbits bifurcated from the interior equilibrium of system (4), we apply the general
formula in Hsü and Kazarinoff [14], which turns out to be more applicable than the
original bifurcation formulas given by Hopf [13] and Friedrichs [11], and the center
manifold theorem in Perko [24]. Firstly we need to outline this method and some
notations. Consider the following class of autonomous differential systems:

Ẋ = A(µ)X + F (X,µ), (19)

where X = (x1, x2, · · · , xn)
T , F is a real analytic function on Ω × (−c, c) with

F (0, µ) ≡ 0 and FX(0, µ) ≡ 0, Ω is an open connected domain in R
n, c > 0 and A

is a real n×n analytic matrix defined on (−c, c) with exactly two purely imaginary
eigenvalues at µ = 0 whose continuous extensions are denoted by α(µ) and ᾱ(µ)
such that

α(0) = −ᾱ(0), Re(α
′

(0)) 6= 0, Im(α(0)) = w > 0. (20)

In virtue of Lemma 3.1, there exists a nonsingular matrix P which can transform A
into the normal form with the Jordan block as Aj and Bj . For the sake of simplicity,
in the following discussion we suppose A has the normal form as

A(0) =





0 w 0
−w 0 0
0 0 D



 . (21)

Hopf [13] obtained the bifurcation theorem on the existence of a periodic analytic
solution p(t, ε) with period T (ε) of system (26) under the above assumptions, where
the parameter ε is related to µ by an analytic function µ = µ(ε) such that µ(0) =
0, p(t, 0) = 0, T (0) = 2π/w and p(t, ε) 6= 0 for all sufficiently small |ε| > 0.
Furthermore, these periodic solutions exist for exactly one of three cases: µ > 0,
µ < 0, or µ = 0. By Hopf’s theorem, the characteristic exponents of this bifurcated
periodic solution p(t, ε) are the eigenvalues of the eigenvalue problem

V̇ (t) + λV (t) = L(t, ε)V (t), (22)

where V (t) has the same period T (ε) and L(t, ε) = A(µ(ε)) + FX(p(t, ε), µ(ε)).
According to the assumptions, there are exactly two characteristic exponents, which
depend continuously upon ε, are determined only by mod(2πi/T (ε)) and tend to
the imaginary axis as ε → 0, one of which is identically zero and the other β = β(ε)
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must be real and analytic at ε = 0 satisfying β(0) = 0. Hopf [13] pointed out that
in the expansions

µ = µ1ε+ µ2ε
2 + · · · , β = β1ε+ β2ε

2 + · · · , (23)

the coefficients µ1 and β1 must be both zeros and there are the elementary rela-
tionships between µ2 and β2:

β2 = −2µ2Re(α
′

(0))

= 2
∫ T0

0 [FXX(X0, X1) + 1
6FXXX(X0, X0, X0)] · Z(t)dt,

(24)

where X0, X1 are T0-periodic solutions of systems

Ẋ0 = A(0)X0 (25)

and

Ẋ1 = A(0)X1 + 1
2FXX(X0, X0), (26)

respectively, here

FXX(X0, X1) =
n
∑

i,j

∂2F (0,0)
∂xi∂xj

x0
i x

1
j ,

n
∑

i,j

Fijx
0
i x

1
j , (27)

FXXX(X0, X0) =
n
∑

i,j

∂2F (0,0)
∂xi∂xj

x0
i x

0
j ,

n
∑

i,j

Fijx
0
ix

0
j , (28)

Z(t) is a T0-periodic solution of

Ż(t) = −AT (0)Z(t), (29)

and T0 = T (0) such that
∫ T0

0
X0(s)Z(s)ds = 1 and

∫ T0

0
Ẋ0(s)Z(s)ds = 0.

The interested readers are referred to Hopf [13] for more details.
Based on the assumptions on A, A(0) has a pair of simple complex conjugate

eigenvalues ±wi, thus any T0-periodic solution of (25) is a linear combination of
ewita(0) and ¯ewita(0), where a(0) = (1, i, 0, · · · , 0)T is the characteristic vector cor-
responding to α(0). For the autonomous system (25), any nontrivial T0-periodic so-
lution X0(t) may be assumed as the form X0(t) = (b cos(wt),−b sin(wt), 0, · · · , 0)T

(b > 0) (see Poore [25, (4.7)]). For the nonlinear autonomous system (26), Hsü
and Kazarinoff [14] proved that there exists a unique T0-periodic solution X1(t)
corresponding to X0, which can be written as

X1 = b2

6w (cos(wt)h1 + sin(wt)h2,− sin(wt)h1 + cos(wt)h2, (X̃
1(t))T )T , (30)

where

h1 = sin3(wt)(−F 1
11 + 2F 2

12 + F 1
22) + cos3(wt)(F 2

11 + 2F 1
12 − F 2

22)
+3[sin(wt)F 1

11 + cos(wt)F 2
22] + 2F 2

11 − 2F 1
12 − F 2

22,
h2 = − sin3(wt)(F 2

11 + 2F 1
12 − F 2

22) + cos3(wt)(−F 1
11 + 2F 2

12 + F 1
22)

+3[sin(wt)F 2
11 − cos(wt)F 1

22] + F 1
11 − 2F 2

12 + 2F 1
22,

X̃1(t) = − 3w
2 D−1(F̃11 + F̃22)

+ 3
8w (I + D2

4w2 )
−1[2w sin(2wt)I − cos(2wt)D](F̃11 − F̃22)

+ 3
4w (I + D2

4w2 )
−1[2w cos(2wt)I + sin(2wt)D]F̃12,

where X̃1(t) = (x3, x4, · · · , xn)
T , F̃ij = (∂

2F 3(0,0)
∂xi∂xj

, ∂2F 4(0,0)
∂xi∂xj

, · · · , ∂2Fn(0,0)
∂xi∂xj

)T and

F k
ij is the kth component of Fij (i, j, k = 1, 2), D is defined as in (21) and I is the

(n− 2)× (n− 2) identity matrix.
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Based on the expressions (24), (30) and an algebraic computation, Hsü and
Kazarinoff [14] derived a formula for the direction of the bifurcation of periodic
orbits of system (19).

Lemma 4.1. ([14]) If µ 6= 0, the direction of the bifurcation of (4) is determined

by the following equation,

µ2 =
b20

16Re(α′(0))
{ 1
w [(F

1
11 + F 1

22)F
1
12 − (F 2

11 + F 2
22)F

2
12 − F 1

11F
2
11 + F 1

22F
2
22]

−(F 1
111 + F 1

122 + F 2
112 + F 2

222) + 2(G1
1 +G2

2)D
−1(F̄11 + F̄22)

+ 1
2w2 (G

1
2 +G2

1)(I +
D2

4w2 )
−1[w(F̄11 − F̄22) +DF̄12]

+ 1
4w2 (G

1
1 −G2

2)(I +
D2

4w2 )
−1[D(F̄11 − F̄22)− 4wF̄12]},

(31)
where Gi

j = (F i
j,3, F

i
j,4, · · · , F

i
j,n) for i,j=1,2, and (b, 0, · · · , 0)T is the initial value

of X0.

The stability of the periodic orbit bifurcated from the degenerate equilibrium
can be determined by the following lemma.

Lemma 4.2. ([14]) Under the assumptions in Hopf’s theorem, if A(0) has exactly

two purely imaginary eigenvalues and the other n− 2 eigenvalues have negative real

part and if µ2Re(α
′

(0)) > 0, then a bifurcating periodic solution whose existence is

asserted by Hopf’s theorem is asymptotically orbitally stable with asymptotic phase;

however, if µ2Re(α
′

(0)) < 0, these small periodic solutions are unstable. Moreover,

if any one of the other n− 2 eigenvalues has positive real part, then the bifurcating

periodic solution is orbitally unstable.

Now let us return to determine the stability of limit cycles bifurcated from the
equilibrium B of system (4). It is necessary first to transform the Jacobian matrix
JB expressed in (6) into the normal form. For simplicity, let us set

a , λ1xB[
1

yB(1+yB) −
1
yc
], b , α1yB

1+yB
exp(− yB

yc
), c , α2λ1xB

α1yB
exp(yB

yc
) = α2zB

1+yB
,

(32)
where b and c are both positive, then JB can be written as

JB ,





−λ1 a b
λ1 −α3 0
0 −c 0



 .

Suppose system (4) undergoes Hopf bifurcation at point B, then the parameters
in JB satisfy

bc = (α3 − a)(λ1 + α3) (33)

and JB has one negative eigenvalue −δ = −(λ1+α3) and a pair of purely imaginary
eigenvalues ±wi, where w2 = λ1(α3 − a) > 0. Select

P =





α3 w −1
λ1 0 1
0 cλ1w

−1 (α3 − a)b−1



 .

It is easy to check that the inverse matrix of P turns out to be

P−1 = 4−1





cλ1w
−1 w(α3 − a)b−1 + cλ1w

−1 −w
w2b−1 −α3(α3 − a)b−1 δ

−cλ2
1w

−1 cλ1α3w
−1 wλ1





and L(0) , P−1JBP becomes the normal form as the right side in (18), where
4 = w(w2 + δ2)/b.
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In the following a series of linear transformations will be introduced for system
(4). Let x1 = x− xB, y1 = y− yB, z1 = z− zB, then the positive equilibrium B is
translated into the origin of the system:

(ẋ1, ẏ1, ż1)
T

= JB





x1

y1
z1



+





1
2fyyy

2
1 + fyzy1z1 +

1
3!fyyyy

3
1 +

1
2fyyzy

2
1z1 +Q1

1(y1, z1)
0

1
2hyyy

2
1 + hyzy1z1 +

1
3!hyyyy

3
1 +

1
2hyyzy

2
1z1 +Q3

1(y1, z1)



 ,

(34)
where Qi

1(i = 1, 3) are C∞ power series of y1 and z1 with power higher than 3, fyy,
fyz, fyyy, fyyz and hyy, hyz, hyyy, hyyz are the corresponding partial derivatives at
point B.

If we denote Xi = (xi, yi, zi)
T (i = 1, 2) and let X2 = P−1X1, then





x1

y1
z1



 =





α3x2 + wy2 − z2
λ1x2 + z2

cλ1w
−1y2 + (α3 − a)b−1z2



 ,

and system (34) is changed into

Ẋ2 = P−1Ẋ1 = P−1JBPX2

+P−1





1
2fyyy

2
1 + fyzy1z1 +

1
3!fyyyy

3
1 +

1
2fyyzy

2
1z1 +Q1

1(y1, z1)
0

1
2hyyy

2
1 + hyzy1z1 +

1
3!hyyyy

3
1 +

1
2hyyzy

2
1z1 +Q3

1(y1, z1)





, L(0)X2 + P−1G(x2, y2, z2),
(35)

where

G =





















1
2fyy(λ1x2 + z2)

2 + fyz(λ1x2 + z2)[cλ1w
−1y2 + (α3 − a)b−1z2]

+ 1
2fyyz(λ1x2 + z2)

2[cλ1w
−1y2 + (α3 − a)b−1z2]

+ 1
3!fyyy(λ1x2 + z2)

3 +Q1
2(x2, y2, z2)

0
1
2hyy(λ1x2 + z2)

2 + hyz(λ1x2 + z2)[cλ1w
−1y2 + (α3 − a)b−1z2]

+ 1
2hyyz(λ1x2 + z2)

2[cλ1w
−1y2 + (α3 − a)b−1z2]

+ 1
3!hyyy(λ1x2 + z2)

3 +Q3
2(x2, y2, z2)





















=



















































λ2
1

2 fyyx
2
2 + cλ2

1w
−1fyzx2y2 + λ1[fyy + (α3 − a)b−1fyz]x2z2

+cλ1w
−1fyzy2z2 + [ 12fyy + (α3 − a)b−1fyz]z

2
2

+ 1
3!λ

3
1fyyyx

3
2 +

λ2
1

2 [fyyy + (α3 − a)b−1fyyz]x
2
2z2

+
cλ3

1w
−1

2 fyyzx
2
2y2 + λ1[

1
2fyyy + (α3 − a)b−1fyyz]x2z

2
2

+ cλ1w
−1

2 fyyzy2z
2
2 + [ 13!fyyy +

1
2 (α3 − a)b−1fyyz]z

3
2

+cλ2
1w

−1fyyzx2y2z2 +Q1
2(x2, y2, z2)

0
λ2
1

2 hyyx
2
2 + cλ2

1w
−1hyzx2y2 + λ1[hyy + (α3 − a)b−1hyz]x2z2

+cλ1w
−1hyzy2z2 + [ 12hyy + (α3 − a)b−1hyz]z

2
2

+ 1
3!λ

3
1hyyyx

3
2 +

λ2
1

2 [hyyy + (α3 − a)b−1hyyz]x
2
2z2

+
cλ3

1w
−1

2 hyyzx
2
2y2 + λ1[

1
2hyyy + (α3 − a)b−1hyyz]x2z

2
2

+ cλ1w
−1

2 hyyzy2z
2
2 + [ 13!hyyy +

1
2 (α3 − a)b−1hyyz]z

3
2

+cλ2
1w

−1hyyzx2y2z2 +Q3
2(x2, y2, z2)



















































,

in which Qi
2 (i = 1, 3) are C∞ power series of x2, y2, z2 with power higher than 3.
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Denote G = (G1, G2, G3)T and F = P−1G, then

F = 4−1





cλ1w
−1G1 − wG3

w2b−1G1 + δG3

−cλ2
1w

−1G1 + wλ1G
3



 ,





F 1 +Q1
3(x2, y2, z2)

F 2 +Q2
3(x2, y2, z2)

F 3 +Q3
3(x2, y2, z2)



 ,

where

F 1 = 4−1{
λ2
1

2 (cλ1w
−1fyy − whyy)x

2
2 + cλ2

1w
−1(cλ1w

−1fyz − whyz)x2y2
+λ1[cλ1w

−1fyy − whyy + (α3 − a)b−1(cλ1w
−1fyz − whyz)]x2z2

+cλ1w
−1(cλ1w

−1fyz − whyz)y2z2
+[ 12 (cλ1w

−1fyy − whyy) + (α3 − a)b−1(cλ1w
−1fyz − whyz)]z

2
2

+ 1
3!λ

3
1(cλ1w

−1fyyy − whyyy)x
3
2 +

cλ3
1w

−1

2 (cλ1w
−1fyyz − whyyz)x

2
2y2

+
λ2
1

2 [(cλ1w
−1fyyy − whyyy) + (α3 − a)b−1(cλ1w

−1fyyz − whyyz)]x
2
2z2

+cλ2
1w

−1(cλ1w
−1fyyz − whyyz)x2y2z2

+λ1[
1
2 (cλ1w

−1fyyy − whyyy) + (α3 − a)b−1(cλ1w
−1fyyz − whyyz)]x2z

2
2

+ cλ1w
−1

2 (cλ1w
−1fyyz − whyyz)y2z

2
2

+[ 13! (cλ1w
−1fyyy − whyyy) +

1
2 (α3 − a)b−1(cλ1w

−1fyyz − whyyz)]z
3
2},

F 2 = 4−1{
λ2
1

2 (w2b−1fyy + δhyy)x
2
2 + cλ2

1w
−1(w2b−1fyz + δhyz)x2y2

+λ1[w
2b−1fyy + δhyy + (α3 − a)b−1(w2b−1fyz + δhyz)]x2z2

+cλ1w
−1(w2b−1fyz + δhyz)y2z2

+[ 12 (w
2b−1fyy + δhyy) + (α3 − a)b−1(w2b−1fyz + δhyz)]z

2
2

+ 1
3!λ

3
1(w

2b−1fyyy + δhyyy)x
3
2 +

cλ3
1w

−1

2 (w2b−1fyyz + δhyyz)x
2
2y2

+
λ2
1

2 [(w2b−1fyyy + δhyyy) + (α3 − a)b−1(w2b−1fyyz + δhyyz)]x
2
2z2

+cλ2
1w

−1(w2b−1fyyz + δhyyz)x2y2z2
+λ1[

1
2 (w

2b−1fyyy + δhyyy) + (α3 − a)b−1(w2b−1fyyz + δhyyz)]x2z
2
2

+ cλ1w
−1

2 (w2b−1fyyz + δhyyz)y2z
2
2

+[ 13! (w
2b−1fyyy + δhyyy) +

1
2 (α3 − a)b−1(w2b−1fyyz + δhyyz)]z

3
2},

F 3 = −λ1F
1,

(36)
and Q1

3 = cλ1w
−1Q1

2 − wQ3
2, Q2

3 = w2b−1Q1
2 + δQ3

2, Q3
3 = −λ1Q

1
3 are C∞ power

series of x2, y2, z2 with power higher than 3.

Let F i
1 = ∂F i

∂x2
(0), F i

2 = ∂F i

∂y2
(0), F i

3 = ∂F i

∂z2
(0), then F i

22, F i
122, F i

222 are all

vanished for i = 1, 2, 3. We obtain the following lemma directly from Lemma (4.1).

Lemma 4.3. For system (35), it holds that

16µ2Re(α
′

(0))
b2
0

= w−1(F 1
11F

1
12 − F 2

11F
2
12 − F 1

11F
2
11)− (F 1

111 + F 2
112)

− δ
4w2+δ2 [(F

1
13 − F 2

23)F
3
11 + 2(F 1

23 + F 2
13)F

3
12]−

2
δ (F

1
13 + F 2

23)F
3
11

+ 2w
4w2+δ2 [(F

1
23 + F 2

13)F
3
11 − 2(F 1

13 − F 2
23)F

3
12].

In order to get a stable periodic orbit bifurcated from the equilibrium B, we
constrain our discussion on the hypothesis yc = yB(1 + yB) in this section. As a
matter of fact, it is obvious to find from (36) the equations as below,

F 1
13 = 1

λ1
F 1
11 +

(α3−a)b−1w
cλ1

F 1
12, F 1

23 = 1
λ1
F 1
12, F 2

13 = 1
λ1
F 2
11 −

1
λ1
F 1
12,

F 2
23 = −w−1(α3+λ1)

λ1
F 1
12, F 3

11 = −λ1F
1
11, F 3

12 = −λ1F
1
12, F 2

112 = cλ1w
−1

zB
F 2
11.

Therefore, the next conclusion is followed from Lemma 4.3 after some simple cal-
culations.



STABLE PERIODIC OSCILLATIONS IN A TWO-STAGE CANCER MODEL 361

Lemma 4.4. Assume yc = yB(1 + yB), then for system (35) it holds that

16µ2Re(α
′

(0))
b2
0

= ( δ
4w2+δ2 + 2

δ )(F
1
11)

2 + [ 4w2

δ(4w2+δ2) +
4δ

4w2+δ2 ](F
1
12)

2

+ δ(6w2+δ2)
w2(4w2+δ2)F

1
12F

2
11 −

cλ1

wzB
F 2
11 −

6w2+δ2

w(4w2+δ2)F
1
11F

2
11

+w(8w2+3δ2)
δ2(4w2+δ2) F

1
11F

1
12 − F 1

111.

(37)

Now let us set

H1 = y2B[λ
2
2(δ

2α2
2 − δ4 − δ2w2 − 4w4) + δ(α2 + 2λ2)(δ

4 + 7δ2w2 + 2w4)],
H2 = δ2w4(1 + 2yB)

2 + δλ2(δ
4 + 5δ2w2 + 4w4)(1 + 3yB + 3y2B)].

Then the next theorem on the bifurcation of a stable periodic orbit will be achieved.

Theorem 4.5. Assume that the parameters in (4) satisfy the degenerate condition

(9) and yc = yB(1+yB). If α
2
2 6 2λ2

2 and H1 > H2, then when α3 undergoes slightly

small perturbations, an asymptotically stable limit cycle will be bifurcated from the

Hopf bifurcation point B in (4).

Proof. From the expressions of f and h in (4), it can be easily found that fyz = 0
in the case of yc = yB(1 + yB). We also obtain that

fyy = −α1zB(1+2yB)e
−

yB
yc

yB(1+yB)3 = −λ1(1+2yB)xB

y2
B
(1+yB)2

< 0,

hyy = 2(α2+λ2)zB
(1+yB)3 > 0, hyz = − α2+λ2

(1+yB)2 < 0,

fyyy =
α1zB(2+6yB+6y2

B)e
−

yB
yc

y2
B
(1+yB)4

= −
2+6yB+6y2

B

yB(1+yB)(1+2yB)fyy > 0,

fyyz = −α1(1+2yB)e
−

yB
yc

yB(1+yB)3 =
fyy
zB

< 0,

hyyy = − 6(α2+λ2)zB
(1+yB)4 = −

3hyy

1+yB
< 0,

hyyz = 2(α2+λ2)zB
(1+yB)3 = −

3hyy

1+yB
> 0.

(38)

Thus, it follows that F 1
11 < 0, while both F 1

12 and F 1
111 are positive.

Since

( δ
4w2+δ2 + 1

δ )(F
1
11)

2 + [ 4w2

δ(4w2+δ2) +
2δ

4w2+δ2 ](F
1
12)

2 > − 4(2w2+δ2)
δ(4w2+δ2)F

1
11F

1
12,

which together with w2 = λ1α3 produces that

( δ
4w2+δ2 + 1

δ )(F
1
11)

2 + [ 4w2

δ(4w2+δ2) +
2δ

4w2+δ2 ](F
1
12)

2 + w(8w2+3δ2)
δ2(4w2+δ2) F

1
11F

1
12

> −(4(2w
2+δ2)

δ(4w2+δ2) −
w(8w2+3δ2)
δ2(4w2+δ2) )F

1
11F

1
12 = − 4δ(2w2+δ2)−w(8w2+3δ2)

δ2(4w2+δ2) F 1
11F

1
12

> − 8w(2w2+δ2)−w(8w2+3δ2)
δ2(4w2+δ2) F 1

11F
1
12 > 0,

(39)
where δ = λ1 + α3.

The sign of F 2
11 is determined by

sign{F 2
11} = sign{λ2

1[λ1(α3 − a)b−1fyy + (α3 + λ1)hyy]}

= sign{−λ1(α3−a)(1+2yB)
y2
B
(1+yB)2

+ 2(α2+λ2)(α3+λ1)
(1+yB)3 }

= sign{2(α2 + λ2)(α3 + λ1)y
2
B − λ1(α3 − a)(1 + yB)(1 + 2yB)}

= sign{2(α3 + λ1)λ
2
2 − λ1(α3 − a)(α2 + 2λ2)}

= sign{[2λ2
2 − λ1(α2 + 2λ2)]α3 + 2λ1λ

2
2 + aλ1(α2 + 2λ2)}.

(40)
Since 0 < λ1 < α2yB/(1+ yB) = α2λ2/(α2 +λ2), we get that 2λ

2
2 −λ1(α2 +2λ2) >

2λ2
2−

α2λ2

α2+λ2
(α2+2λ2) =

λ2

α2+λ2
(2λ2

2−α2
2), which is nonnegative when the hypothesis
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α2
2 6 2λ2

2 holds. If yc = yB(1 + yB), then a = 0 from (32), and the sign of the last
equation in (40) is positive. As a consequence, F 2

11 > 0.

Since F 1
12 = −cλ2

1 4−1 hyz =
cλ2

1(α2+λ2)
4(1+yB)2 , using (32) and the Hopf bifurcation

condition (33), we have

sign{ δ(6w2+δ2)
w2(4w2+δ2)F

1
12F

2
11 −

cλ1

wzB
F 2
11}

= sign{ δ(6w2+δ2)
w2(4w2+δ2)

λ1(α2+λ2)
(1+yB)2 − 4

wzB
} = sign{ δ(6w2+δ2)

w2(4w2+δ2)
λ1(α2+λ2)
(1+yB)2 − w2+δ2

bzB
}

= sign{ δ(6w2+δ2)
w2(4w2+δ2)

λ1(α2+λ2)
(1+yB)2 − (w2+δ2)α2

δ(α3−a)(1+yB)} = sign{ δ(6w2+δ2)λ1

w2(4w2+δ2) − w2+δ2

δ(α3−a)}

= sign{( δ
w2 + 2δ

4w2+δ2 )λ1 −
w2+δ2

δ(α3−a)} = sign{−λ1

δ + 2δλ1

4w2+δ2 }

= sign{δ2 − 4w2}.
(41)

It is easy to see that δ2 − 4w2 = (λ1 + α3)
2 − 4λ1(α3 − a) = (λ1 − α3)

2 > 0.
Therefore, (41) has a nonnegative sign.

The remaining terms which need to be proved in (37) include 2δ
4w2+δ2 (F

1
12)

2

+ 1
δ (F

1
11)

2 − 6w2+δ2

w(4w2+δ2)F
1
11F

2
11 − F 1

111. Owing to

42[ 1δ (F
1
11)

2 + 2δ
4w2+δ2 (F

1
12)

2 − 6w2+δ2

w(4w2+δ2)F
1
11F

2
11]

= 1
δ [λ

2
1(cλ1w

−1fyy − whyy)]
2 + 2δ

4w2+δ2 [−cλ2
1hyz]

2

− 6w2+δ2

w(4w2+δ2) [λ
2
1(cλ1w

−1fyy − whyy)]λ
2
1[λ1(α3 − a)b−1fyy + (α3 + λ1)hyy)]

=
λ4
1z

2
B

δw2y4
B
(1+yB)6

[λ2
1α2(1 + 2yB)xB + 2w2(α2 + λ2)y

2
B]

2 +
2δλ4

1α
2
2z

2
B(α2+λ2)

2

(4w2+δ2)(1+yB)6

+
(6w2+δ2)λ4

1z
2
B

w2(4w2+δ2)y4
B
(1+yB)6

[λ2
1α2(1 + 2yB)xB + 2w2(α2 + λ2)y

2
B][2δ(α2 + λ2)y

2
B

−w2(1 + yB)(1 + 2yB)]

=
w2λ4

1z
2
B

δy4
B
(1+yB)6

[δ(1 + yB)(1 + 2yB) + 2(α2 + λ2)y
2
B]

2 +
2δλ4

1α
2
2z

2
B(α2+λ2)

2

(4w2+δ2)(1+yB)6

+
(6w2+δ2)λ4

1z
2
B

(4w2+δ2)y4
B
(1+yB)6

[δ(1 + yB)(1 + 2yB) + 2(α2 + λ2)y
2
B][2δ(α2 + λ2)y

2
B

−w2(1 + yB)(1 + 2yB)]

=
λ4
1z

2
B

y4
B
(1+yB)6

{w2

δ [δ(1 + yB)(1 + 2yB) + 2(α2 + λ2)y
2
B]

2 +
2δα2

2(α2+λ2)
2y4

B

4w2+δ2

+ 6w2+δ2

4w2+δ2 [δ(1 + yB)(1 + 2yB) + 2(α2 + λ2)y
2
B][2δ(α2 + λ2)y

2
B

−w2(1 + yB)(1 + 2yB)]}
(42)

and

42F 1
111 = 4λ3

1(cλ1w
−1fyyy − whyyy) =

λ3
1(w

2+δ2)
b (cλ1fyyy − w2hyyy)

=
λ4
1α2(w

2+δ2)z2
B

δy3
B
(1+yB)5

[δ(1 + yB)(2 + 6yB + 6y2B) + 6(α2 + λ2)y
3
B]

=
λ4
1z

2
B(w2+δ2)(α2+λ2)yB

δy4
B
(1+yB)6

[δ(1 + yB)(2 + 6yB + 6y2B) + 6(α2 + λ2)y
3
B],

(43)
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we obtain

sign{ 1
δ (F

1
11)

2 + 2δ
4w2+δ2 (F

1
12)

2 − 6w2+δ2

w(4w2+δ2)F
1
11F

2
11 − F 1

111}

= sign{w2

δ [δ(1 + yB)(1 + 2yB) + 2(α2 + λ2)y
2
B ]

2 +
2δα2

2(α2+λ2)
2

4w2+δ2 y4B
+ 6w2+δ2

4w2+δ2 [δ(1 + yB)(1 + 2yB)

+2(α2 + λ2)y
2
B][2δ(α2 + λ2)y

2
B − w2(1 + yB)(1 + 2yB)]

− (w2+δ2)(α2+λ2)yB

δ [δ(1 + yB)(2 + 6yB + 6y2B) + 6(α2 + λ2)y
3
B ]}

= sign{
(α2+λ2)

2y4
B(δ2α2

2−δ4−w2δ2−4w4)
δ(4w2+δ2) +

(α2+λ2)(δ
4+7w2δ2+2w4)(1+3yB+2y2

B)y2
B

4w2+δ2

−w4δ(1+yB)2(1+2yB)2

4w2+δ2 − (w2 + δ2)(α2 + λ2)(1 + yB)(1 + 3yB + 3y2B)yB}

= sign{y2B[λ
2
2(δ

2α2
2 − δ4 − w2δ2 − 4w4) + δ(α2 + 2λ2)(δ

4 + 7w2δ2 + 2w4)]
−[δ2w4(1 + 2yB)

2 + δλ2(δ
4 + 5w2δ2 + 4w4)(1 + 3yB + 3y2B)]

= sign{H1 −H2}.
(44)

According to the hypothesis, H1 −H2 > 0, therefore, uniting (39), (40) and (44),
the proof of this lemma is completed.

Remark 4. The hypothesis H1 > H2 in Theorem 4.5 implies that yB cannot in-
crease uncontrollable, thus yc is bounded, which indicates that the existence of a
stable periodic orbit in (3) is satisfied on the precondition of the bound of lympho-
cyte cells at the second stage. If the number of lymphocyte cells is much more than
that of the cancer cells, that is to say, the function of the immune system is strong
enough, then it is impossible for the cancer cells to survive stably for a long time.

5. Simulations. In this section we choose some suitable parameters in (4) to nu-
merically simulate the theoretical conclusions obtained in the previous sections by
using the software XPP.

(1) Choose α1 = 500, α2 = λ2 = 2, λ1 = 0.5 < α2λ2

α2+λ2
, x0 = 0.125, then

α3 = 0.25 can be obtained from (9). It is easy to calculate that xB = α3λ2/(α2λ1)−
x0 = 0.375, yB = λ2/α2 = 1, zB = λ1xB(1 + yB)exp(yB/yc)/(α1yB) = 0.001236,
yc = yB(1 + yB) = 2, x∗

0 = 0.125 = x0, which corresponds to the second case in
Figure 2. All eigenvalues of the degenerate positive equilibrium B after perturbation
have negative real parts at µ 6= 0, thus point B is locally asymptotically stable and
no Hopf bifurcation occurs in (3). Certainly periodic oscillation phenomena will not
occur in the development of the immune system and cancer cells in (3) in this case.

The numerical simulations in Figures 3-4 support our conclusions when µ = 0.
Figure 3 describes the solution curve initiating from point (4, 10, 1.5) in the xyz-
space. Figure 4 describe the three coordinate components in terms of time t of the
solution curve in Figure 3, where (a), (b) and (c) represent the curves of x(t), y(t),
z(t), respectively.

(2) Choose α1 = 1, α2 = λ2 = 2, λ1 = 0.5 < α2λ2

α2+λ2
, x0 = 0.0625, α3 = 0.07322

can be obtained from (9), therefore, xB = 0.08394, yB = λ2/α2 = 1, zB = 0.1384,
yc = yB(1 + yB) = 2 and x∗

0 = 0.0231 6= x0. In addition, w2 = α3λ1 = 0.03661,
δ = α3 + λ1 = 0.57322, H1 = 4.86176 and H2 = 1.39616 evidently satisfy the
hypotheses in Theorem 4.5. A stable limit cycle will bifurcate from point B by
perturbing the value of parameter α3 near 0.0732, which means that there is a
stable periodic orbit in R

3 in the 2-stage cancer model (3) by choosing suitable
parameters. Hence, the immune system and cancer cells can coexist for a quite
long time on some initial conditions and their development exhibits stable periodic
oscillation phenomenon.
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Figure 3. Trajectories tend to the equilibrium point B in R
3 as t increases when

µ = 0 and x0 = x∗
0.
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Figure 4. The plots of the coordinate components (a) x(t), (b) y(t), and (c) z(t)

of the solution in terms of time t near the equilibrium B when µ = 0.
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Figure 5. Three different solution orbits in the xyz-space with µ = 0.0051 and
x0 6= x∗

0, here the initial values are chosen as (a) (0.1, 1.3, 0.3) (outside the limit
cycle), (b) (0.194, 1.184, 0.27) (on the limit cycle), and (c) (0.09, 1.1, 0.1) (inside

the limit cycle).

Figure 5 shows three solution orbits near the equilibrium point B on differ-
ent initial conditions in R

3 as µ = 0.0051, where initial values are chosen as (a)
(0.1, 1.3, 0.3) (outside the limit cycle), (b) (0.194, 1.184, 0.27) (on the limit cycle),
and (c) (0.09, 1.1, 0.1) (inside the limit cycle), respectively. For the sake of con-
venience, we denote the limit cycle by L. It can be observed that the degenerate
equilibrium point B becomes a stable equilibrium point in this case.
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Figure 6. The projections of the periodic orbit L on the (a) xy-, (b) yz-, and (c)

xz-planes, respectively when µ = 0.0051 and x0 6= x∗
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Figure 7. The plots of the components (a) x(t), (b) y(t), and (c) z(t),

respectively, of the periodic orbit in terms of the time t when µ = 0.0051 and
x0 6= x∗

0.

Figure 6 presents the projections of the periodic solution curve on the coordinate
planes, where (a), (b) and (c) represent the projections on the xy-plane, yz-plane,
xz-plane, respectively. Figure 7 corresponds to diagrams between the coordinate
components and time t of the solution curve in Figure 6, where (a), (b) and (c)
represent the curves of x(t), y(t), z(t), respectively.

6. Discussion. Periodic oscillations with various periods have been observed in
some cancer data (Fortin and Mackey [10]) and oscillations are common in the
immune system (Stark et al. [29]). So it is reasonable to expect that the oscillatory
phenomenon occurs in tumor and immune system interaction models. Rescigno
and DeLisi [26] proposed a three equation model (3) to describe two different stages
of lymphocytes in the interactions of the solid tumor and immune system. The
oscillations existing in the signs of the derivatives of L1, L2 and C subject to the
time t were observed.

In this paper we established the existence and stability of periodic oscillations
in the two-stage cancer model (3) by choosing the parameters suitably. After mak-
ing a series of transformations of the variables, the qualitative analysis and some
bifurcation results near the degenerate equilibrium were given. We have shown
that the system could undergo Hopf bifurcation in the small neighborhood of the
interior degenerate equilibrium. It is valuable to find out that any degenerate Hopf
bifurcations cannot occur in this model, which excludes more complex dynamical
behaviors.

The conditions on the stability of the bifurcated periodic orbits guarantee the
appearance of stable periodic oscillations of the tumor levels. When a stable periodic
orbit exists, it can be seen as “safe” in the neighborhood of this closed orbit since
the trajectories originating from there will overwhelmingly go towards it. Therefore,
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Figure 8. Trajectories spiral away from the unstable equilibrium point B when
a1a2 − a3 < 0.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

x

0 50 100 150 200 250 300 350 400 450 500
t

0.85

0.9

0.95

1

1.05

1.1

y

0 50 100 150 200 250 300 350 400 450 500
t

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

z

0 50 100 150 200 250 300 350 400 450 500
t

(a) (b) (c)
Figure 9. The components (a) x(t), (b) y(t), and (c) z(t) of the orbit in Figure 8

in terms of the time t when a1a2 − a3 < 0.

the solid tumor and the immune system can coexist for a long term although the
cancer is not eliminated. The oscillatory dynamics in the tumor and immune system
interaction models demonstrate the phenomenon of long-term tumor relapse and
have been observed in some related tumor and immune system models (d’Onofrio
[7], Eftimie at al. [9], Kirschner and Panetta [15], Kuznetsov et al. [17], and
Lejeune et al. [19]). We can interpret this situation from the biological point of
view that while the immune system fights with cancer in the host, there exists a
balance between them because of the periodic changes in the internal tissues and
the external circumstances such that they coexist in a bounded region.

It is necessary to mention at the end that our discussions on the equilibrium
point B are based on the hypothesis (9). If we choose parameters in (4) such
that the left hand side term a1a2 − a3 in (9) is positive, then B turns to be an
asymptotically stable equilibrium point, which is similar to the first case of the
numerical simulations in the last section. If a1a2 − a3 < 0, then we find that B is
an unstable nondegenerate equilibrium by numerical simulations (see Figures 8-9).
In this case, the cancer cells will increase uncontrollably because their development
are not controlled by the immune system any longer.

It will be very interesting to include immunotherapy in the tumor and immune
system interaction model (Smyth et al. [28]), study the effects of adoptive cellular
immunotherapy on the model, and explore conditions under which the tumor can
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be eliminated (de Pillis et al. [6], Kirschner and Panetta [15]). We leave this for
future consideration.

Finally, we would like to mention that in model (3) the development from the
immature stage to the mature stage of lymphocytes was modeled by two ordinary
differential equations in L1(t) and L2(t) explicitly. As pointed out by the reviewer,
this process can be described by a time delay τ > 0. Thus, we would like to propose
the following two-stage cancer model described by two differential equations with a
time delay:

dL
dt

= λ1L(t− τ)− α3L(t) + α1
L(t)C(t)
1+KL(t)exp(−

L(t)
Lc

),

dC
dt = λ2−α2L(t)

1+KL(t) C(t),
(45)

where the time delay τ > 0 is the time for immature lymphocytes to develop
into mature ones and L(t) represents the density of the mature lymphocytes at
time t. Recently, delayed models of tumor and immune response interactions have
been studied extensively, we refer to d’Onofrio et al. [8], Bi and Ruan [2] and the
references cited therein. In particular, Bi and Ruan [2] have shown that various
bifurcations, including Hopf bifurcation, Bautin bifurcation and Hopf-Hopf bifur-
cation, can occur in such models. It would be interesting to consider the nonlinear
dynamics of the delayed model (45).
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